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Abstract. This paper describes a system for structure-and-motion es-
timation for real-time navigation and obstacle avoidance. We demon-
strate a technique to increase the efficiency of the 5-point solution to
the relative pose problem. This is achieved by a novel sampling scheme,
where we add a distance constraint on the sampled points inside the
RANSAC loop, before calculating the 5-point solution. Our setup uses
the KLT tracker to establish point correspondences across time in live
video. We also demonstrate how an early outlier rejection in the tracker
improves performance in scenes with plenty of occlusions. This outlier
rejection scheme is well suited to implementation on graphics hardware.
We evaluate the proposed algorithms using real camera sequences with
fine-tuned bundle adjusted data as ground truth. To strenghten our re-
sults we also evaluate using sequences generated by a state-of-the-art
rendering software. On average we are able to reduce the number of
RANSAC iterations by half and thereby double the speed.

Structure and motion (SaM) estimation from video sequences is a well ex-
plored subject [1–3]. The underlying mathematics is well understood, see e.g. [1],
and commercial systems, such as Boujou by 2d3 [4], are used in the movie indus-
try on a regular basis. Current research challenges involve making such systems
faster, more accurate, and more robust, see e.g. [2, 3]. These issues are far from
solved, as is illustrated by the 2007 DARPA urban challenge [5]. In the end,
none of the finalists chose to use the vision parts of their systems, instead they
relied soley on LIDAR to obtain 3D structure. Clearly there is still work to be
done in the field.

This paper aims to increase the speed and accuracy in structure-and-motion
estimation for an autonomous system with a forward looking camera, see fig-
ure 1. Although on a smaller scale, this platform has the same basic geometry
and motion patterns as the DARPA contenders, and as the vision based colli-
sion warning systems developed for automotive applications. In such systems,
estimated 3D structure can be used to detect obstacles and navigable surfaces.

When dealing with forward motion there are a number of problems that
must be adressed. The effective baseline is on average much smaller than for the
sideways motion case, resulting in a more noise sensitive structure estimation.
A tracked point feature near the camera often has a short lifespan because it
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quickly moves out of the the visual field. Unfortunately, such points also contain
most of the structural information [6]. Forward motion also produces large scale
changes in some parts of the image, and this can be a problem for some trackers.

This paper studies the calibrated SaM formulation, which has several advan-
tages over the uncalibrated formulation. In calibrated SaM, estimated cameras
and structure will be in Euclidean space instead of a projective space, and we
can use more constrained problem formulations [1]. Planar-dominant scenes are
not an issue when doing calibrated five point pose estimation [7], which turns
out to be a very desirable property when doing autonomous navigation, as these
kinds of scenes are quite common. Note also that in autonomous navigation the
camera is often fixed, which makes calibration of the camera straightforward.

Fig. 1. Left: Robotic car platform. Upper right: Frame from a forward motion sequence.
Lower right: Estimated structure using the proposed algorithm.

We should also note that monocular SaM has an inherent scale ambiguity
[1]. Despite this, the estimated structure can still be effectively used for obstacle
avoidance if time-to-collision is used as the metric [8].

The main contributions of this paper are:

1. Introduction of a distance constraint that significantly reduces the number
of RANSAC iterations in the five point algorithm, while retaining the pose
accuracy. Even when all correspondences in a sample are inliers, their dis-
tribution in space makes a big difference. This idea is very easy incorporate.
Somewhat surprisingly it does not appear to be described elsewhere.

2. Experimental evaluation of a recently introduced outlier rejection technique
for the KLT tracker [9], in the SaM setting. This technique adds an outlier
rejection step already in the tracking algorithm. With respect to performance
this is used to move calculations from the CPU to a GPU.
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We also demonstrate how sophisticated rendering techniques can be used for
controlled evaluation of the system.

1 Previous work

The use of calibrated epipolar geometry in computer vision was pioneered by
Longuet-Higgins in his seminal work [10]. The minimal number of point corre-
spondences in the calibrated case is five, and the current state-of-the-art five-
point method is the one introduced by Nistér [7]. The exact solution involves
cubic constraints, which result in a polynomial with 13 roots. Nistér reduced
the number of roots to 10 and provided very efficient solutions to each step of
the algorithm. His paper also describes how to add a third view, by solving the
perspective-three-point problem [11]. We use this complete three view method
in our paper, and refer to it as the Nistér three view method.

Ever since the original RANSAC algorithm was introduced [11], many mod-
ifications to the algorithm have appeared. Some methods assume prior informa-
tion of which points are likely to be inliers, and use this to bias the sampling,
e.g. PROSAC. Others estimate the point inlier likelihoods as they go [12], for
instance using the point residual distributions [13]. Others discard samples (i.e.
groups of points), before scoring them against a model, by comparing the sam-
ple points against the model. R-RANSAC [14] and preemptive RANSAC [15],
are examples of this. In our setup model estimation is relatively expensive, so it
would be better if we could discard a sample even before computing the model.
This is exactly what our constraint does, and in this respect, it is similar to
NAPSAC [16], which selects points that lie close together when estimating hy-
perplanes. But, as we will show, for our problem it is on the contrary better to
select points that are far apart.

Wu et al.[17] have shown how the KLT tracker can be improved by simul-
taneously tracking both forwards and backwards in time. Another approach is
to simply run the tracker again, backwards in time, and reject trajectories that
do not end up at the starting point [9]. We will use the latter approach, and
demonstrate its effect in the experiment section.

Rendered 3D scenes as synthetic ground truth has a long history in the field
of motion estimation, e.g., the famous Yosemite sequence [18]. This was at the
time a very complex scene as it had real 3D structure. Baker et al. argued in
[9] that the Yosemite sequence is outdated and they introduce a new set of
ground truth data. These new datasets use modern rendering software that can
accurately model effects such as shadows, indirect lighting and motion blur. We
will use similar data of our own design, in the experiment section.

2 Method

2.1 Overview

The real-time SaM method that we are using consists of two steps:
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1. Point correspondences are maintained over time using the Kanade-Lucas-
Tomasi (KLT) tracking framework [19, 20].

2. The relative pose is estimated for 3 cameras, according to the method de-
scribed in [7]. In this approach, the relative pose is first found between 2
cameras. Then, triangulation and the perspective-3-point algorithm [11] is
used to incorporate the third camera. All of this is done for the minimal
5-point case, inside a RANSAC [11] loop.

We will describe these two steps in detail below, as well as the modifications we
have added to each step.

2.2 Tracking

We use the KLT-tracker [20] to maintain point correspondences across time.
The KLT-tracker is basically a least-squares matching of rectangular patches
that obtains sub-pixel accuracy through gradient search. We use a translation-
only model between neighbouring frames. Tracking between neighbouring frames
instead of across larger temporal windows improves the stability, especially since
it helps us to deal with the scale variations that are present in forward motion.
When tracking frame-by-frame, the changes in viewing angle and scale are suf-
ficiently low for tracking to work well.

A simple way to increase the quality of the point correspondences is to add
an early outlier rejection step. We do this by running the tracker backwards from
the current frame and position and checking if it ends up at its initial position
in the previous frame. We will call this procedure track-retrack from now on.
Adding the track-retrack step doubles the amount of computations. However,
since our tracker is running on the GPU, which has cycles to spare, this does
not affect the overall performance of the rest of our system.

The KLT tracker has successfully been implemented on a GPU by several
authors [21–23]. Reference [22] shows a speed increase of more than 20x, and can
track thousands of patches in real time. Such a large amount of tracked points
is not necessary to estimate the camera motion, and we can thus easily afford
to run the tracker a second time. In order to fully utilize the GPU, the number
of threads of an implementation must be high. While a CPU can efficiently
run 2 threads on a 2 core system, the GPU’s core is a simpler version of a
processor with very high memory latencies, little or no cache and with many
SIMD characteristics. To achieve maximum performance from such a design we
need many more threads than processors, and as the current high-end hardware
has 240 processors, one often needs more than 5000 threads [24].

2.3 Five point pose estimation

The minimal case for relative pose estimation in the calibrated case is five cor-
responding points seen in two cameras. Currently, the fastest algorithm for this
problem is given by Nistér in [7]. It runs in real-time, and thus we have chosen
it as our starting point. In this method, the relative pose estimation is extended
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to three cameras by doing the following within the RANSAC loop: The essen-
tial matrix is estimated from five point correspondences between two cameras.
The relative camera position and rotation are then extracted from the essen-
tial matrix. From these, the camera projection matrices are created and used
to triangulate the five 3D points. The perspective-3-point algorithm [11] is then
used to calculate the third camera from three 3D points and their respective
projections onto this camera.

One advantage with using the minimal case is that it imposes all available
constraints on the estimation. This is especially important when handling more
complicated cases like the forward motion case. If one plane is dominant, the
uncalibrated case has several solutions. In the calibrated case, the number of
solutions is reduced to two, where one can be discarded (as it has the cameras
below ground). It is thus not necessary to switch between the homographic and
the full epipolar geometry model. We use the Nistér method here, but note that
in principle any five point solver would benefit from the improvements we suggest
in this paper.

2.4 Distance constraint

Forward motion in structure from motion is a notoriously difficult case, because
of the much smaller equivalent baseline1 created between two cameras than with
other types of motions. The forward motion also gives rise to large scale differ-
ences in the point correspondence estimation. The point tracking becomes less
accurate under these scale transformations. Most of the time we will also have
a singular point (the epipole) lying in the image (in the motion direction). At
this point the equivalent baseline is zero, and it increases towards the edges of
the frame.

Computation of the relation between two cameras by estimating the essential
matrix is quite sensitive to the actual 3D positions of the used correspondences.
This is demonstrated by a recent discovery by Martinec and Pajdla [3]. In their
paper, they show that bundle adjustment using only four carefully chosen cor-
respondences between each pair of views can be almost as accurate (and much
faster) as using all correspondences. These four points are chosen to be maxi-
mally distant in the 3D space with metric determined by the data covariance.
However, for a direct solution of SaM this is too expensive as it requires triangu-
lated 3D points. Instead, our proposal is to look at the projections in the image
plane. The rationale is that points that are distant in the image plane are likely
to be distant also in 3D space.

The standard approach when solving structure and motion with [7] is to place
the minimal case five point solver inside a RANSAC loop. Our proposal is to
add a simple distance test inside the loop, before the minimal case solver. With
this test we put a minimum distance constraint on the randomly chosen image
points, x. Only sets of five points x1,. . . , x5, that satisfy:

1 By equivalent baseline, we informally mean the distance between the camera centers
when projected onto the image plane.
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||xi − xj ||2 > T, ∀{(i, j) : i, j ∈ [1..5], j > i} , (1)

will be used for pose estimation. For other sets the sampling is run again. We
use the threshold T = 0.1 on distances in normalized image coordinates. This
corresponds to approximately 150 pixels in our sequences (or about 10% of the
image diagonal). This value gave a reasonable compromise between the number
of resamplings, and the precision obtained. We have not done any extensive tests
on the exact value to use.

The computational load of the point pre-selection procedure is small com-
pared to the 5 point solver. It consists of 5 rand() function calls, 10 conditional
instructions and some simple arithmetical operations. If necessary this can be
further optimized by different gridding methods. The average time to compute
one sample on our platform (in one thread on an Intel 2.83GHz Q9550 CPU)
in standard C++ is 0.1 microseconds. On our datasets this is done on average
2-4 times, for T = 0.1. The three-view five-point method is reported to take
140 microseconds in 2004 [7]. Accounting for CPU speedups gives us about 35
microseconds, or 87-175x more than our sampling step.

indoor concrete

gravel grass

reconstruction of concrete sequence reconstruction of grass sequence

Fig. 2. The top four subplots show the used frames from the real world sequences. The
indoor sequence (top left) is chosen as it has plenty of occlusions. The three outdoor
scenes are captured while driving the robotic car forward on different terrains: concrete,
gravel and grass. The two lower images are the three-view reconstructions of two of the
sequences (a navigable planar surface is also estimated and textured for illustration).
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3 Evaluation

Evaluation was carried out on four real world sequences captured with a Point-
Grey Flea2 camera (1280 × 960 at 15 Hz) with pure forward motion, see top
of figure 2. OpenCV’s software library is used to calibrate the camera from
a checkerboard pattern [25]. We have also chosen to use OpenCV’s KLT im-
plementation in the experiments to make it easier for others to reproduce our
results.

Additionally we have generated two synthetic sequences, shown in figure 4.
We have used a rendering software called Mental ray that has a wide variety of
modelling capabilities such as complex geometry, soft shadows, specular high-
lights and motion blur. These are effects that impact the performance of the
SaM, and we would like to further investigate this in the future. For now we
have just used them with settings that give footage similar to the real camera.
Besides being used in many movies, Mental ray was also used in [9] to generate
image sequences and ground truth for optical flow.

We will use the real-world sequences together with the synthetic sequences
to evaluate the efficiency of the distance constraint. We use two measures in the
experiments:

– Inlier Frequency. We count the number of inliers in the best model found
by RANSAC. This is the criterion that RANSAC itself tries to maximise, and
thus it demonstrates how much our modifications have assisted RANSAC.

– Model Precision. We evaluate the scale normalised position of the third
camera. On real sequences, this is done by comparing our estimate against
the output of the bundle-adjustment algorithm described in [26]. On the
synthetic sequences, we know the exact locations of each camera, and use
that as ground truth.
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Fig. 3. Statistics of inlier/outlier ratios as a function of number of RANSAC iterations
(12, 25, ...). Each graph shows results for one sequence. Each experiment is repeated 500
times, and the median, and 5% and 95% quantiles are plotted. The four curves (in left-
right order within each group) show results without distance constraint and without
track-retrack (CYAN), with distance constraint and without track-retrack (BLUE)
without distance constraint and with track-retrack (GREEN), with distance constraint
and with track-retrack (RED).
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3.1 Inlier frequency evaluation

In each sequence, we have used 3 images to compute SaM, and this has been
done for 12, 25, 50, 100 and 200 RANSAC iterations. This procedure is run
500 times, and from this we calculate the median and the 5 and 95 percentiles
to show where 90% of the estimates lie. This kind of evaluation is used for all
graphs in the paper. To evaluate the performance of the distance constraint the
same setting is run both with, and without the constraint.

In figure 3 we give graphs of the expected inlier frequency in the best model
found by RANSAC, as a function of the number of RANSAC iterations. These
graphs clearly show an inlier increase when the distance constraint is used, and
this holds both with, and without the track-retrack step. Almost everywhere,
the curves without the distance constraint need more than double the amount
of iterations to reach the same inlier frequency. In most of the real sequences we
could reduce the number of RANSAC iterations by half and still have the same
inlier count as when the distance constraint was not used.

The indoors sequence was chosen to demonstrate an important aspect of
the track-retrack scheme: As can clearly be seen in the graphs, the improvement
caused by track-retrack is much bigger in the indoor sequence than in the others.
The reason for this is that track-retrack is very effective at detecting outliers
caused by occlusions.

synth road synth complex
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Fig. 4. The synthetic sequences and their inlier/outlier ratios, as function of number
of RANSAC iterations. Same legend as figure 3.
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The same test is run for the synthetic test data, see figure 4. The behaviour
here is nearly identical to the evaluation with real images, and we can also
observe that we can reduce the number of RANSAC steps by approximately
half with maintained inlier/outlier ratio when adding the distance constraint.
The first scene consists of a forward motion on a planar road and the second is
also forward motion but on a more complex scene. For each synthetic sequence,
we have also generated images of calibration patterns. This allows us to process
the synthetic sequences in exactly the same manner as the real ones.

3.2 Precision evaluation

As calibrated monocular reconstructions are only defined up to scale, accuracy
evaluation is rather problematic. We have chosen to evaluate the accuracy of the
obtained SaM solutions using the position error of the third camera. For this to
be possible, we need first to adjust the distance of the second camera to be the
same as in the ground truth (here we set this distance to be 1). Only after this
normalisation are we able to compare positions of the third camera.

In the absence of real ground truth on the real sequences, we have used
the output of the bundle-adjustment (BA) algorithm described in [26]. Bundle-
adjustment is the maximum likelihood estimate of SaM, and has been shown
to greatly improve the results [27]. On the synthetic sequences we simply save
the camera locations used for generating the frames. Note that we get similar
results on both real and synthetic sequences, which supports the use of BA for
evaluation purposes.

Figure 5 shows the absolute position error of the third camera in each triplet.
Here we can see that the position error follows the same trend as the inlier/outlier
ratio. If anything the improvement is even more pronounced here.

We have summarised the results of the precision experiments in table 1 and 2.
Table 1 shows the speed increase (i.e. reduction in number of RANSAC samplings
needed to obtain the same precision) from the distance constraint, when the
track-retrack step is disabled, and table 2 shows the speed increase with track-
retrack enabled.

The percentages are obtained as follows: For each number of iterations, we
look up the precision with the distance constraint enabled. We then estimate how
many iterations it would take to archieve the same precision when the constraint
is not used. The estimate is found through linear interpolation (note although
the graphs are in log scale, the interpolation is done on a linear scale). The speed
increase is now the ratio of the two iteration counts. There are some cases where
the intersection point lies after the 200 iteration value, these values could have
been extrapolated, but we have instead chosen to just show them as >200.

Note that a speed increase computed in this way does not take the extra
overhead of the sampling into account. But, as shown in section 2.4 this overhead
is 0.6-1.2% of the total time, and as mentioned, there are ways to reduce this
even further.



10 Johan Hedborg, Per-Erik Forssén, and Michael Felsberg

12 25 50 100 200
0

0.01

0.02

0.03

0.04

0.05

12 25 50 100 200
0

0.005

0.01

0.015

0.02

indoor concrete

12 25 50 100 200
0

0.005

0.01

0.015

0.02

12 25 50 100 200
0

0.005

0.01

0.015

0.02

gravel grass

12 25 50 100 200
0

0.01

0.02

0.03

0.04

12 25 50 100 200
0

0.01

0.02

0.03

0.04

synth road synth complex

Fig. 5. Position errors on real and synthetic sequences as function of number of
RANSAC iterations. The sequences are evaluated against bundle adjustment output
on the same data set. The synthetic sequences are evaluated against their ground truth.
The four methods are coloured as in figure 3.
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Table 1. Speed increase from the distance constraint, with track-retrack disabled
(i.e. CYAN curve vs. BLUE)

#iterations synt. r. synt. c. indoor concrete gravel grass

12 180% 190% 230% 198% 216% 193%

25 184% 198% 215% 256% 234% 199%

50 199% 225% 216% 265% 199% 187%

100 185% 194% >200% >200% 162% >200%

Table 2. Speed increase from the distance constraint, with track-retrack enabled
(i.e. GREEN curve vs. RED)

#iterations synt. r. synt. c. indoor concrete gravel grass

12 229% 211% 215% 243% 201% 197%

25 198% 191% 242% 277% 244% 195%

50 264% 209% 235% 258% 232% 183%

100 >200% 191% >200% >200% >200% >200%

4 Conclusions

We have introduced a method that significantly speeds up the current state of
the art SaM algorithm for calibrated cameras. On average we are able to reduce
the number of RANSAC iterations by half and thereby double the speed. The
improvement is achieved by adding a distance constraint to the point selection
inside the RANSAC loop. We have also added an outlier rejection step (which
we call track-retrack) to the KLT tracker. For scenes with high level of occlusion
the track-retrack scheme also gives a similar improvement in performance. For
scenes with little or no occlusion, however, the difference is negligible. Note also
that the two improvements are independent, for scenes where the track-retrack
scheme gives and improvement, we will get further improvement by adding the
distance constraint.
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