
Maximally Stable Colour Regions for Recognition and Matching

Per-Erik Forssén

Department of Computer Science

University of British Columbia

perfo@cs.ubc.ca

Abstract

This paper introduces a novel colour-based affine co-

variant region detector. Our algorithm is an extension of the

maximally stable extremal region (MSER) to colour. The ex-

tension to colour is done by looking at successive time-steps

of an agglomerative clustering of image pixels. The se-

lection of time-steps is stabilised against intensity scalings

and image blur by modelling the distribution of edge mag-

nitudes. The algorithm contains a novel edge significance

measure based on a Poisson image noise model, which we

show performs better than the commonly used Euclidean

distance. We compare our algorithm to the original MSER

detector and a competing colour-based blob feature detec-

tor, and show through a repeatability test that our detector

performs better. We also extend the state of the art in fea-

ture repeatability tests, by using scenes consisting of two

planes where one is piecewise transparent. This new test is

able to evaluate how stable a feature is against changing

backgrounds.

1. Introduction

In recent years there has appeared many vision algo-

rithms, that use local covariant feature detection and de-

scription [1, 5, 7, 8, 9, 10, 14, 15]. Such methods allow

fast 3D object recognition from single images in cluttered

environments, under partial occlusion. They are also appli-

cable to the related problems of view-matching, and wide-

baseline stereo.

From an abstract point of view, all such systems work in

three steps. They start with a detection step that detects ref-

erence frames in an image. These frames are covariant with

image changes under either a similarity transform (transla-

tion, scale, and rotation) [7, 15], or an affine transform (also

includes skew and different scalings of axes) [5, 8, 10, 14].

This is followed by a description step, where a local image

patch is sampled in the reference frame, and converted to

a descriptor vector that can be compared with a set of ref-

erence descriptors in the final matching step. This allows

the system to find a sparse set of correspondences between

scene and memory (3D object recognition), or between two

views of a scene (view-matching and wide-baseline stereo).

Figure 1 shows 428 such correspondences found between

two views, using the detector proposed in this paper.

Figure 1. View correspondence. Left to right: Frontal view of

scene, frontal view with 428 corresponding features painted in (as

white ellipses), 40
◦ view with corresponding features painted in.

Even though most cameras these days use colour, most

covariant feature detectors have been based on grey-scale

images. In the descriptor step however, the use of colour has

been common [8, 14, 16]. The reason why colour has not

been used in the detection step is that it normally increases

the computational load three times, but unless care is taken,

the performance improvement is negligible.

We have found three prior attempts at colour based de-

tection of local covariant features. Corso and Hager [1] find

extrema in DoG responses defined from three linear projec-

tions of the RGB space. They also compute such extrema

on two variance images computed with fixed window sizes

(thus non-scale invariant). The detected regions are rep-

resented as image-axis-aligned ellipses, and they are thus

only scale (x and y) and translation invariant. Their detec-

tor gives a lower repeatability than the the grey-scale SIFT

detector [7] in their own experiments [1] (unless they halve

the aspect ratio). Unnikrishnan and Herbert [15] test two

illuminant invariant scalar functions, one invariant to inde-

pendent scalings of the RGB channels, and one invariant to

a full 3 × 3 perturbation of the RGB space. They proceed

by detecting scale and rotation invariant LoG points. They

find that the version only invariant to independent scalings

of the RGB channels performs best under rotation and scale

changes, and more importantly it performs better than LoG

on a plain grey-scale image. They do not evaluate their

detector under view changes. Forssén and Moe [5] detect

affine covariant regions by approximating regions from a

scale-space segmentation algorithm as ellipses. We have

downloaded their algorithm implementation [17] and com-

pare it with ours in the experiment section.

We propose an extension of the popular MSER covariant

region detector [8] to colour. The original MSER detector

finds regions that are stable over a wide range of thresh-

oldings of a grey-scale image. We instead detect regions

that are stable across a range of time-steps in an agglom-

erative clustering of image pixels, based on proximity and

similarity in colour. In addition to extending the MSER al-

gorithm to non-scalar functions, the algorithm contains two

important theoretical contributions: First, we derive a novel

colour edge significance measure from the Poisson statistics

of pixel values. Second, we introduce a way to stabilise the

selection of clustering time-steps against intensity scaling

and image blur.

In the experiment section, we conduct a repeatability test

to demonstrate that our detector improves over the intensity

based MSER algorithm [8], and the colour based blob fea-

ture detector [5]. We also show that our detector is actu-

ally faster than most intensity based detectors (not MSER

though). We also show the benefits of using our novel edge

significance measure, and of changing the amount of spatial

neighbours considered in the agglomerative clustering.

2. Maximally Stable Regions

The concept of maximally stable regions (MSR) was

originally defined in [8], by considering the set of all possi-

ble thresholdings of a intensity image, I , to a binary image,

Et:

Et(x) =

{

1 if I(x) ≥ t

0 otherwise.
(1)

A maximally stable extremal region (MSER) is then a con-

nected region in Et with little size change across several

thresholdings. An evolution that successively increases the

threshold t in (1) detects only dark regions (called MSER+),

bright regions (called MSER-) are obtained by inverting the

intensity image. The number of thresholds for which the

region is stable is called the margin of the region. Figure 2,

left, shows the output of the MSER detector when a mini-

mum margin of 7 has been chosen. We have chosen to show

the approximating ellipses of the regions instead of the ac-

tual regions, in order to better illustrate that the regions are

often nested.

A straightforward way to detect more regions with

MSER, if a colour image is available, is to run the detector

on the grey-scale image, and on red-green and yellow-blue

channels, as was done with DoG in [1]. This will cause

some duplicate detections. We remove duplicates in the

Figure 2. Comparison of MSER and MSCRs. Ellipses show ap-

proximating ellipses for regions. Left: White is MSER+, Black

is MSER-, in total 34 regions. Right: MSCR output, in total 42

regions.

added channels if the region centroid distance is below 4
pixels, and the areas differ by less than 10%. We will refer

to this method as MSER3.

MSER has earlier been extended to colour for tracking

by Roth et al. [13]. Their approach requires as input an

RGB-space Gaussian model of the object to be tracked,

and consequently it does not do bottom up feature detection

(which we do).

2.1. Agglomerative clustering

To extend the MSR concept to colour images, we define

an evolution process over the image I : Ω 7→ R
3, where

Ω = [1 . . . L] × [1 . . .M] ⊂ Z
2 is the set of all image posi-

tions. This process successively clusters neighbouring pix-

els with similar colours. We will consider two sets of neigh-

bouring relations, one with horizontal and vertical relations,

and one which also includes diagonal relations:

N1 = {(x,y) ∈ Ω2 : y = x + (01) ∨ y = x + (10)} . (2)

N2 = N1 ∪ {(x,y) ∈ Ω2 : y = x + (11) ∨ y = x + (−1

1)} .
(3)

The positions, x, y, and the colour distance (defined in

section 2.2) are stored in a list. For an L × M image the

length of this list becomes either |N1| = 2LM − L − M
or |N2| = 6LM − 3L − 3M + 2. Such neighbour dis-

tances are sometimes called crack edges [11] to emphasise

that the output actually corresponds to a position in-between

the pixels. Note that the diagonal edges in N2 should be

normalised by 1/
√

2 to compensate for their larger spatial

distance.

For each time step t ∈ [0 . . . T], the evolution is a map

Et : Ω 7→ N of labels. Each unique label defines a con-

tiguous region R ⊆ Ω. Any two positions x,y ∈ R are

connected by a path of distances which are all smaller than

dthr(t). The design of the function dthr(t) is the topic of sec-

tion 2.3. Figure 3 shows a sample of evolutions Et of the

image in figure 2.

The label image Et is the generalisation of the thresh-

olded images (1) in the MSER algorithm. The label image

E0 is all zeroes, and Et+1 is constructed from Et by assign-

ing new regions to all pairs of pixels with a distance smaller

Figure 3. Illustration of evolution used in colour MSER detector.

Left to right, top to bottom: dthr = 0.0065, 0.011, 0.023, 0.038.

Each region is painted in a different, random colour.

Figure 4. Image variance as function of intensity. Left: Mean im-

age of 100 identical frames. Right: Variance from mean as func-

tion of intensity for the three colour bands.

than dthr(t). Alternatively, if one of the pixels in the pair

already belongs to a region, the non-assigned pixel is ap-

pended to the region, and if both pixels belong to regions

the corresponding regions are merged.

2.2. Edge significance

Most digital cameras in use today have sensors that es-

sentially count the number of photons, n, falling onto the

detector over a period of time. This implies that the im-

age noise should follow the discrete Poisson distribution.

For high values of n, a good continuous approximation is

a Gaussian with mean and variance equal to the expected

intensity [3]. This is easily verified by the simple experi-

ment reproduced in figure 4. Here the variance as a func-

tion of intensity has been estimated from 100 frames of a

static scene. As can be seen, the variance is indeed lin-

ear in the expected intensity. This motivates us to model

the measured intensity, I , given the expected intensity µ,

as p(I|µ) = g(µ,
√

aµ), where a is the camera gain that

converts the photon count to a pixel value, and g(µ, σ) is a

Gaussian with mean µ and variance σ2. As can be seen in

figure 4, the camera white balance has resulted in different

gain factors for the three colour bands.

In order to derive a measure of edge significance, we now

Figure 5. Edge significance PDF. Left: Input image, Centre: Image

blurred with a Gaussian (σ = 1.2). Right: PDFs for the edge sig-

nificance measure. Solid curve is the PDF for the original image,

dashed curve is the PDF after Gaussian blur.

consider the probability that a pixel location x has a larger

mean than its neighbour y:

P (µ(x) > µ(y)) =

∫ ∞

0

g(t, µ, σ)dt

= 1 − Φ(−µ/σ) = Φ(µ/σ) , (4)

where Φ is the CDF of the standardised normal distribution,

and µ = µ(x)−µ(y) and σ =
√

a(µ(x) + µ(y)). Since Φ
is monotonic, the absolute value of the argument of Φ gives

us an ordering of edges according to statistical significance:

d = |µ/σ| = |µ(x) − µ(y)|/
√

a(µ(x) + µ(y)) . (5)

Assuming that the three colour bands are independent, we

should multiply their PDFs, and this instead gives us:

d2 =

3
∑

k=1

(µk(x) − µk(y))2

ak(µk(x) + µk(y))
. (6)

When we do not have access to the gains, we can simply

set ak = 1. We also have to replace each mean µk(x) with

its maximum likelihood estimate given one image, i.e., the

pixel value Ik(x). This measure is sometimes referred to as

the Chi-squared distance. To demonstrate that (6) is indeed

an improvement, we will compare it with the Euclidean dis-

tance

d2 =

3
∑

k=1

(Ik(x) − Ik(y))2 , (7)

in the experiment section.

2.3. Distribution of Edge Significance Magnitudes

The distribution of the edge significance measure (6) be-

tween neighbouring pixels in an RGB image is far from uni-

form. Due to the high degree of spatial correlation in an

image we tend to have many small values, and increasingly

fewer large ones. Figure 5 shows an estimated probability

density function (PDF) of (6) for an image, and also how

the PDF is affected by applying Gaussian blur to the image.

The Euclidean distance (7) follows a similar, but slightly

more jagged distribution.

If we were to linearly increase the threshold dthr with

the time-step, we would end up with an image evolution

10
−3

10
−2

10
−1

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200
0

0.5

1

1.5

2

x 10
5

Figure 6. Left: Empirical CDFs and the approximating X
2

3 CDFs

on a logarithmic scale. Solid curve is empirical distance CDF for

the original image, dashed curve is distance CDF after Gaussian

blur. Thin curves are approximating X
2

3 CDFs. Right: The re-

sultant number of edges processed after each time step. Dotted

straight line is desired curve.

where changes are very fast in the beginning, and very slow

at the end of the evolution. In order for the image evolu-

tion to progress at a similar rate for different time steps in a

given image, we should instead change the distance thresh-

old according to the inverse of the cumulative distribution

function (CDF), c(x) = P (d < x). This will also have

the benefit of stabilising the evolution under image blur and

contrast changes. In order to stabilise the evolution with re-

spect to small image content changes, we should not use the

exact inverse of the CDF, but a regularised version. If we as-

sume that the normalised difference between two pixels is

Gaussian, the edge significance measure (6) will follow a

scaled Chi-squared distribution [3]. For grey-scale images

we should use X 2
1 , and for colour images X 2

3 :

c1(x) = erf(
√

x/λ) and (8)

c3(x) = −
√

4x

λπ
e−x/λ + erf(

√

x/λ) . (9)

For X 2
1 , we have µ = λ/2 and for X 2

3 , µ = 3λ/2, where µ
is the mean, which we can estimate by the sample average.

Figure 6, left, shows the estimated distance CDFs for the

blurred and non-blurred images in figure 5.

Note that gradient magnitudes, i.e. (7), have previously

been shown to follow the Weibull distribution [6]. We set-

tled for the X 2
1 and X 2

3 distributions here, since they gave a

good enough fit, and are easier to estimate.

After estimation of the mean, evolution thresholds can be

computed as dthr(t) = c−1(t/T) for t ∈ [0, T]. For speed,

we store values of c−1 in a lookup table. The number of

time-steps T is heuristically set to T = 200. In figure 6,

right, we plot the actual number of edges processed after

each evolution time-step. This should ideally be a straight

line, and as can be seen we come reasonably close. One

could also imagine sorting the distances and picking L ×
M/T new edges in each time-step. This turns out to be

a bad idea, since such an approach would inevitably cause

0 0.1 0.2
0

5

10

15
x 10

4

Figure 7. Evolution for a single pixel. Left: The pixel is indicated

by a cross. Centre: Region area as function of distance threshold.

Right: Detail of region area function.

some edges with the same distance to be split across two

time-steps.

2.4. Detecting Stable Regions

An alternative illustration of region evolution is shown

in figure 7. Here the area of the region to which a selected

pixel belongs is plotted as a function of the current merger

threshold dthr. As can be seen in this plot, the area func-

tion has plateaus of little or no area change, and it is these

plateaus we want to detect as stable regions.

For each region in the label image the algorithm remem-

bers the area a∗ and distance threshold d∗ at which the re-

gion appeared. Whenever the area increases more than a

given percentage between two time steps (i.e., at+1/at >
athr), a∗ and d∗ are re-initialised. Typical value is athr =
1.01. For each new time-step the algorithm computes the

slope, s, of the curve between d∗ and dt:

s =
at − a∗

dt − d∗
. (10)

If s is the best (i.e., smallest) since the previous re-

initialisation, the region is stored, possibly replacing an ear-

lier region. For stability reasons, we also avoid choosing the

first distance as the optimal. The margin of the region is set

to the distance between the initialisation point and point be-

fore the next initialisation point, i.e., m = d†−d∗. For each

region, now represented by a binary mask v : Ω 7→ {0, 1},

we also compute and store the raw moments µk,l up to order

2, and the colour moments π of order 0:

µk,l(v) =
∑

x

∑

y

xkylv(x, y) and (11)

π(v) =
∑

x

∑

y

I(x, y)v(x, y) . (12)

Although the above is the definition of the moments, no in-

tegration is required in practise. All moments can be up-

dated incrementally, as new pixels join a region, or two re-

gions merge. Since the moments are linear functions of the

region mask v, a region merger simply means an addition:

v = v1 + v2 ⇒
{

µk,l(v) = µk,l(v1) + µk,l(v2) ,

π(v) = π(v1) + π(v2) .

(13)

From the raw moments we then compute the region area

a, centroid m, inertia matrix C, and average colour p, see

e.g. [11]. These measures define an approximating ellipse

for the detected region as:

R(m,C) = {x : (x − m)T C−1(x − m) ≤ 4} . (14)

2.5. Restricting the Number of Regions

The above described procedure produces a huge number

of regions, which are pruned by requiring that the margin,

m = d† − d∗ is above a given threshold m > mmin (typ-

ically set to 0.003). After this procedure, we are still left

with some small unstable regions in textured areas. We deal

with this simply by also requiring that the area is above a

threshold a > amin (typically set to 60). Finally we require

that the minor axis of the approximating ellipse is larger

than 1.5 pixels. This last constraint removes regions that

are very long and narrow, since such regions tend to appear

more often when aligned to the image grid, and this makes

them highly unstable. The output of the maximally stable

colour region (MSCR) algorithm after pruning is shown in

figure 2, right. Compare this to the output of the MSER

detector in figure 2, left. We can observe that the MSER

detector sometimes combines object and shadow, while this

is less often the case for MSCR.

2.6. Improving the Distance Computation

The distance measurements that control the evolution of

the image (6) are a very crude form of measurement, po-

tentially sensitive to image noise. We have tried two ways

of improving the distance computation: Image smoothing.

Here each colour band of the input image is blurred with a

Gaussian filter, as is common in many segmentation algo-

rithms, see e.g. [4]. Edge smoothing. Here each of the four

edge directions (see (2) and (3)) are treated as edge images,

and each is separately smoothed. These two approaches will

be compared in a repeatability test in section 3.4.

We let the standard deviation of the Gaussian filter be

specified by the side of the spatial support, as σ =
√

N/5,

e.g., for a 5 × 5 filter we get σ = 1.0. This will make the

Gaussians similar to binomial filters of the same size.

Note that image smoothing compresses the distance PDF

(see figure 5). This is also the case for edge smoothing.

This implies that the margin threshold, mmin (see section

2.5) should be lowered accordingly.

2.7. Performance Issues

To speed up re-labeling after region mergers, we incre-

mentally maintain the bounding boxes of the active regions.

Even better performance could probably be obtained by us-

ing the union/find algorithm [2]. Table 1 gives average com-

putation time (of 10 runs) for the first 800 × 640 image in

the ’Graffiti’ test set on a 3GHz Pentium 4 CPU. The grey-

scale methods are downloaded at [18]. The blob detector is

downloaded at [17]. As can be seen in table 1, our detec-

tor is significantly faster than the other colour based detec-

tor, and also faster than all grey-scale based methods except

MSER.

grey-scale method computation time (seconds)

MSER 0.26

Harris affine 2.63

Hessian affine 3.50

IBR 13.5

EBR 144.9

colour method computation time (seconds)

MSCR(N2)+edge blur 1.67

MSCR(N1)+edge blur 1.01

Blob detector 4.95

Table 1. Average computation times on ’Graffiti1’ image.

3. Repeatability Test

In order to demonstrate the stability of the developed fea-

ture, we make use of the affine covariant feature evaluation

software available at [18]. This software compares detected

features in two views of a scene that differ by a known view

change (a homography), and checks whether corresponding

features are extracted in both views. It was used in a recent

performance evaluation of affine covariant region detectors

[10], where the original MSER detector compared well to

the other detectors in all of the sequences, and was actually

the winner in several of them. For clarity of presentation,

we will thus only include the MSER curves from [10], and

ask the interested reader to look up the results for other de-

tectors. We will show repeatability graphs of the following

methods:

1. MSER detector, downloaded at [18]

2. MSER3 detector, see section 2.

3. Blob detector, downloaded at [17]

4. MSCR with edge smoothing (N = 7, mmin = 0.0015).

See section 2.6 for details on MSCR smoothing. The im-

ages in the test sets are available on the web at [18], see also

figure 1 for an illustration of the view change experiment.

3.1. Repeatability Measure

The repeatability measure used is based on the overlap

error of the ellipses µa and µb in view 1 and 2 respectively:

ǫo(µa, µb) = 1 − |R(µa) ∩R(HT µbH)|
|R(µa) ∪R(HT µbH)|

. (15)

Figure 8. Repeatability rates and number of correspondences for

viewpoint change. Top row shows repeatability rates, and bottom

row shows number of correspondences. Left column is ’Graffiti’

sequence, right column is ’Wall’ sequence.

Here H is the ground truth homography that transforms fea-

tures between the two views, ∩ and ∪ are set (i.e., region)

intersection and union respectively, | · | is the area of a re-

gion, and R(µ) is the set of image positions enclosed by the

ellipse:

R(µ) = {x : (x − m)T C−1(x − m) ≤ 4} with (16)

µ =
1

4

(

C−1 −C−1m

−mT C−1 mT C−1m − 4

)

. (17)

Here m and C are the centroid and inertia matrix of

the region. Two regions are counted as corresponding if

ǫo < 40%, and the repeatability score is computed as the

ratio between the number of region-to-region correspon-

dences and the smaller of the number of regions in the pair

of images. Only regions located in the part of the scene

present in both images are considered [10].

3.2. Sequences

The first two sequences (called ’Graffiti’ and ’Wall’) test

stability across view-point change. Figure 8 shows the re-

peatability rates and number of correspondences found for

the different methods.

The following two sequences (called ’Bikes’ and

’Trees’) test stability across de-focus blur. Figure 9 shows

the repeatability rates and number of correspondences

found for the different methods.

As can be seen, the MSCR detector has a better repeata-

bility than MSER in sequences ’Wall’ and ’Bikes’, they

tie in ’Trees’, and the MSER detector does better in the

’Graffiti’ sequence. The MSER3 method adds more cor-

respondences to MSER, but the repeatability is not affected

(it improves in two sequences, but degrades in two). The

Figure 9. Repeatability rates and number of correspondences for

de-focus blur. Top row shows repeatability rates, and bottom row

shows number of correspondences. Left column is ’Bikes’ se-

quence, right column is ’Trees’ sequence.

MSCR detector also gives more correspondences, except in

the ’Trees’ sequence. We can also see that the other colour

based detector, the Blob feature detector, does significantly

worse. With the exception for the ’Graffiti’ sequence, we

do consistently better. The reason for this is probably that

the Blob feature detector is based on a segmentation. Thus,

whenever the choice arises whether to merge two regions or

not, the algorithm has to choose. The MSER and MSCR

algorithms, on the other hand, will output both alternatives.

Four more sequences are available at [18]. These test

stability across zoom+rotation, shutter changes, and JPEG

compression. They are not included here for lack of space.

The results for those sequences are similar, with the excep-

tion for the JPEG artifacts, which the MSCR algorithm ap-

pears to be more sensitive to than the other methods.

3.3. Two layer scenes

The repeatability tests performed by Mikolajczyk et al.

[10] are quite useful for comparing detectors that are used

to match planar, and near planar scenes. However, the test

does not reveal how sensitive a detector is to background in-

terference. A low background interference is important for

3D scene matching, and recognition of non-planar objects.

Since we suspect that the use of colour would help discrim-

inate foreground from background, we will now extend the

repeatability test to two layer scenes, see figure 10.

We generate a two layer scene, by controlled blending of

the two scenes ’Graffiti’ and ’Wall’, which are available on-

line at [18]. First, we generate an opacity mask for the fore-

ground layer, starting from a 100 × 75 image composed of

uniformly distributed random numbers in range [0, 1]. This

image is first blurred with a Gaussian kernel, with σ = 2.4,

Figure 10. Generation of a two layer scene with ground truth.

Figure 11. Repeatability rates and number of correspondences for

viewpoint change on two-layer scene. Top row shows number

of correspondences in background and foreground layers respec-

tively. Bottom row shows repeatability and total number of corre-

spondences.

and then up-sampled to the resolution of the foreground

layer, and finally thresholded such that 25% of the pixels

are ones. For all images except the first one, we then trans-

form the mask using the ground truth homography for the

foreground layer, and blur it with a Gaussian with σ = 1.0,

see figure 10. Finally we blend each of the colour bands in

the two layers using a weighted sum:

mk(x) = (1−mask(x))L1,k(x)+mask(x)L2,k(x) . (18)

Figure 11 shows the repeatability rates and number of

correspondences for the two-layer scene shown in figure

Figure 12. Discrimination plots for repeatability. Each point is

the result of two repeatability tests on the same image pair, the

vertical axis has the optimal feature enabled, and the horizontal

has the feature disabled or replaced with a competing feature. Left

to right: edge measure, neighbour set, image blur, and no blur.

10. The total repeatability has been computed as the sum

of correspondences for the two layers, divided by mini-

mum of the number of features in the overlapping regions

of the two images. It is interesting to compare these results

to the sequences in figure 8, since the two-layer scene is

composed of these sequences. We can see that the num-

ber of correspondences for MSCR relative to MSER is now

significantly higher, it is now also consistently higher than

for the MSER3 method. We can also see that the the fore-

ground layer gives almost as many correspondences as the

’Graffiti’ sequence. This is probably because the opacity

mask actually creates many regions in the foreground by

cutting up large regions of uniform colour. To conclude,

these graphs show that MSCR gives a small but significant

improvement in repeatability, and increases the number of

correspondences by more than 50% compared to MSER.

3.4. MSCR variants

We have tried a number of different variants of the

MSCR algorithm, and here we compare these to the edge

blur method. In figure 12 we show discriminative repeata-

bility graphs for the following cases:

1. edge measure (6) vs. (7)

2. neighbour set N2 vs. N1

3. edge blur vs. image blur.

4. edge blur vs. no blur

Each point in figure 12 corresponds to one of the 20 im-

age pairs from the four sequences in section 3.2. As can be

seen, most points are above the diagonal, and thus the cho-

sen algorithm variant has a consistently higher repeatability

than the other variants. We can also see that the choice of

blur is the most crucial improvement, while the use of N1

instead of N2 can be recommended for speed, see table 1.

3.4.1 Edge Significance Measure

The two edge significance measures (6) and (7) differ

slightly in which regions they allow the detector to find.

These differences are best visible in images with both dark

regions and highlights, as in figure 13. Here we have used

a margin threshold of m = 0.0015 with (7), which gave

611 regions. For (6) we then picked a threshold such that

Figure 13. Comparison of Euclidean and normalised colour dis-

tances. Top row: detected blobs overlaid on a gamma-corrected

input image. Bottom row: Detected regions (using a non gamma-

corrected input) painted with their average colours. Left column:

Euclidean distances, Right column: Normalised distances.

611 regions were also detected. Thus this figure should give

an idea of in which order regions are ranked with the two

measures. As can be seen in the figure, the Euclidean dis-

tance measure tends to generate more regions in highlight

areas, while the normalised distance gives more regions in

the shadows.

4. Discussion

In this paper we have implemented and tested a colour

based feature detector, and compared it with the corre-

sponding intensity-based detector, and a competing colour

based detector. We have shown that our method has better

repeatability in most scenes, and consistently gives a higher

number of correspondences (more than a 50% increase in

the two layer scene), while still being faster than most grey-

scale based detectors. We have also designed a novel re-

peatability test that evaluates a detector’s ability to separate

foreground and background. In figure 2 we have also hinted

at another possible advantage with the use of colour: bet-

ter separation between object and shadow. An evaluation of

this effect will however require a test scheme based on a full

3D scene, such as the one in [12].

Although we have chosen to describe the MSCR feature

detector as a detector for finding affine-covariant regions,

its use should not be limited to defining the affine frame for

local image descriptors [9, 10]. As can be gathered from the

illustration in figure 13, many scenes are actually recognis-

able in the blob representation, indicating that the detector

output could actually be used as it is, perhaps as one of the

features in a perception system of a robot.

Acknowledgements

The author thanks Jim Little and David Lowe for helpful

discussions and comments. This work was supported by the

Swedish Research Council through a grant for the project

Active Exploration of Surroundings and Effectors for Vision

Based Robots.

References

[1] J. J. Corso and G. D. Hager. Coherent regions for concise and

stable image description. In CVPR, pages 184–190, 2005. 1,

2

[2] M. Couprie, L. Najman, and G. Bertrand. Quasi-linear algo-

rithms for the topological watershed. Journal of Mathemati-

cal Imaging and Vision, 22(2-3):231–249, May 2005. 5

[3] M. Evans, N. Hastings, and B. Peacock. Statistical Distribu-

tions. John Wiley & Sons, Inc., 3rd edition, 2000. 3, 4

[4] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based

image segmentation. IJCV, 59(2):167–181, 2004. 5

[5] P.-E. Forssén and A. Moe. View matching with blob features.

In 2nd CRV, pages 228–235, May 2005. 1, 2

[6] J.-M. Geusebroek and A. Smeulders. Fragmentation in the

vision of scenes. In ICCV’03, 2003. 4

[7] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 1

[8] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide

baseline stereo from maximally stable extremal regions. In

13th BMVC, pages 384–393, September 2002. 1, 2

[9] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. TPAMI, 27(10):1615–1630, 2005. 1, 8

[10] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, F. Schaffalitzky, T. Kadir, and L. van Gool. A

comparison of affine region detectors. IJCV, 65(1/2):43–72,

2005. 1, 5, 6, 8

[11] V. H. Milan Sonka and R. Boyle. Image Processing, Analy-

sis, and Machine Vision. Brooks/Cole Publishing Company,

2nd edition, 1999. 2, 5

[12] P. Moreels and P. Perona. Evaluation of features detectors

and descriptors based on 3D objects. IJCV, 73(3):263–284,

July 2007. 8

[13] P. M. Roth, M. Donoser, and H. Bischof. Tracking for learn-

ing an object representation from unlabeled data. In CVWW,

pages 46–51, 2006. 2

[14] T. Tuytelaars and L. V. Gool. Wide baseline stereo matching

based on local, affinely invariant regions. In BMVC2000,

Bristol, September 2000. Invited Paper. 1

[15] R. Unnikrishnan and M. Hebert. Extracting scale and illu-

minant invariant regions through colour. In 17th British Ma-

chine Vision Conference, September 2006. 1

[16] J. van de Weijer and C. Schmid. Coloring local feature ex-

traction. In ECCV, 2006. 1

[17] Web-site. http://www.isy.liu.se/∼perfo/

software/, 2005. 2, 5

[18] Web-site. http://www.robots.ox.ac.uk/∼vgg/

research/affine/, 2005. 5, 6

