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Abstract

This paper introduces a new region based feature for ob-
ject recognition and image matching. In contrast to many
other region based features, this one makes use of colour
in the feature extraction stage. We perform experiments on
the repeatability rate of the features across scale and incli-
nation angle changes, and show that avoiding to merge re-
gions connected by only a few pixels improves the repeata-
bility. Finally we introduce two voting schemes that allow us
to find correspondences automatically, and compare them
with respect to the number of valid correspondences they
give, and their inlier ratios.

1. Introduction

The mathematics behind conic sections in projective ge-
ometry is fairly well explored, see e.g. [9, 4, 11]. There are
two main applications to conic correspondence: one is mak-
ing use of theabsolute conicfor self-calibration [6, 4], and
the other one is to detect actual conics in images, and match
them [9, 11]. While conic matching works quite well, its
application is limited to special situations, such as projec-
tive OCR [5] (where the printed letter ‘o’ can be used as a
conic) or scenes containing human artifacts such as mugs
and plates [9, 11].

This paper demonstrates that the mathematics behind
conic matching can also be used to matchblob features, i.e.
regions that are approximated with ellipses (which are conic
sections). This works well for a wide range of regions such
as rectangles and other ellipse-like regions, and less well for
some other region shapes. Thus we also derive (and test) a
measure that can be used to judge whether a certain region
is sufficiently well approximated by an ellipse.

Regions have also been used in wide baseline matching
and 3D object recognition using affine invariants [8, 13].
As we will demonstrate, the use of homography transfor-
mation rules for conics allows us to match planar regions
under quite severe inclination angles, i.e. the part of the ho-

mographic transformation that is not part of the affine trans-
formation. This means that our results are relevant for both
wide baseline matching and 3D object recognition.

A somewhat related approach to region based matching
is presented in [1], where tangents to regions are used to de-
fine linear constraints on the homography transformation,
which can then be found through linear programming. The
connection is that aline conicdescribes the set of all tan-
gents to a region. By matching conics, we thus implicitly
match the tangents of the ellipse-approximated regions.

2. Blob features

We will make use of blob features extracted using a clus-
tering pyramid built using robust estimation in local image
regions [2]. Each extracted blob is represented by its aver-
age colourpk, areaak, centroidmk, and inertia matrixIk.
I.e. each blob is a 4-tuple

Bk = 〈pk, ak,mk, Ik〉 . (1)

Since an inertia matrix is symmetric, it has3 degrees of free-
dom, and we have a total of3 + 1 + 2 + 3 = 9 degrees of
freedom for each blob. Figure 1 gives a brief overview of
the blob detection algorithm.
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Figure 1. Steps in blob detection algorithm.

Starting from an image the algorithm constructs a clus-
tering pyramid, where pixels at coarser scales are computed
as robust averages of12 pixel regions at the lower scale.
Regions where the support of the robust average is below
a thresholdcmin have a confidence flag set to zero. The al-
gorithm then creates a label image using the pyramid, by



traversing it top-down, assigning new labels to points which
have their confidence flag set, but don’t contribute to any ro-
bust mean on the level above. The labelling produces a set
of compact regions, which are then merged in the final step
by agglomerative clustering. Regions with similar colour,
and which fulfil the condition

Mij > mthr

√
min(ai, aj) (2)

are merged. HereMij is the count of pixels along the com-
mon border of blobsBi andBj , andmthr is a threshold. For
more information about the feature estimation, please refer
to [2], and the implementation [14], both of these are avail-
able on-line.

The current implementation [14] processes360 × 288
RGB images at a rate of 0.22 sec/frame on a AMD Athlon
64, 3800+ CPU 2.4GHz, and produces relatively robust and
repeatable features in a wide range of sizes.

The blob detection algorithm could probably replaced by
a conventional segmentation algorithm, as long as the de-
tected regions are converted to the form (1). As we will
show later, the option to avoid merging regions which are
only connected by a few pixels, according to (2) seems to
be advantageous though. After estimation, all blobs with
approximating ellipses partially outside the image are dis-
carded. Figure 2 shows two images where107 and 120
blobs have been found.

Figure 2. Blob features in an aerial image.
Left to right: Input image 1, Input image 1 with
detected features ( 107 blobs), Input image 2
with detected features ( 120 blobs).

The blob estimation [14] has two main parameters: a
colour distance thresholddmax, and a propagation thresh-
old cmin for the clustering pyramid. For the experiments in
this paper we have useddmax = 0.16 (RGB values in inter-
val [0, 1]) andcmin = 0.5. Additionally, we remove blobs
with an area belowamin = 20.

2.1. Shape ratio

From the eigenvalue decompositionIk = λ1ê1êT1 +
λ2ê2êT2 we can find the axes of the approximating ellipse
as2
√
λ1ê1 and2

√
λ2ê2 [2]. Thus the approximating ellipse

area is given by4π
√

detIk. By comparing the approximat-
ing ellipse area, and the actual region area, we can define a
simple measure of how ellipse-like a region is:

rk =
ak

4π
√

detIk
. (3)

0.998 0.956 0.922 0.922 0.800 0.568∞

Figure 3. A selection of shapes, and their
shape ratios. Approximating ellipses are
drawn in grey.

Figure 3 shows a selection of shapes, their approximat-
ing ellipses, and their shape ratios. In the continuous case,
the ellipse is the most compact shape with a given inertia
matrix Ik. Thus the shape ratio will be near1 for ellipses,
and decrease as shapes become less ellipse-like. The sole
exception is the case where all region pixels lie on a line
(see figure 3, right). Such regions are approximated by a de-
generate ellipse with a zero length minor axis, and thus zero
area. Such regions are automatically eliminated by the blob
detection algorithm, by requiring thatdet Ik > 0.

3. Homography transformation of ellipses

We will now derive a homography transformation of an
ellipse. Assume that we have estimated blobs in two images
of a planar scene. The images will differ by a homography
transformation, and the blobs will obey this transformation
more or less well, depending on the shape of the underlying
regions.

A blob B in image 1, represented by its centroidm and
inertiaI approximates an image region by an ellipse shaped
region with the outline

xTCx = 0 for C =
1
4

(
I−1 −I−1m

−mT I−1 mT I−1m− 4

)
(4)

see [2]. This equation is called thepoint conicform of the

ellipse, andx =
(
x1 x2 1

)T
are image point coordi-

nates in homogeneous form. To derive the mapping to im-
age 2, we will express the ellipse inline conicform [4]. The
line conic form defines a conic in terms of its tangent lines
lTx = 0. For all tangentsl in image 1 we have

lTC∗l = 0 , C∗ =
(

4I−mmT −m
−mT −1

)
(5)



whereC∗ is the inverse ofC in (4). A tangent linel and
its corresponding linel′ in image 2 are related according to
l = HT l′, whereH is a3 × 3 homography mapping. This
gives us

l
′THC∗HT l′ = 0 and we setHC∗HT =

(
B d
dT e

)
.

(6)
We recognise the result of (6) as a new line conic form

−el′T
(

4Ĩ− m̃m̃T −m̃
−m̃T −1

)
l′ = 0 . (7)

This allows us to identifỹm andĨ as

m̃ = d/e and Ĩ = (−B/e+ m̃m̃T )/4 . (8)

Note that since this mapping only involves additions and
multiplications it can be implemented very efficiently.

4. Blob comparison

To decide whether a potential blob correspondence
Bi ↔ B′j is correct or not we will make use of colour, po-
sition and shape distances, which we will now define. For
this to be meaningful, we assume that all elements inB′j
have been mapped through the appropriate transforma-
tions, and signify this by a ‘∼’ symbol on each mapped el-
ement e.g.B̃′j . For colour comparison the mapping could
be a colour correction[12] according to known illumi-
nation, or estimated from image statistics. For position
and shape comparison the mapping will be the homogra-
phy transformation derived in section 3.

4.1. Colour distance

We define the distance between two colour vectorspi
andp′j as:

d(pi,p′j)
2 =

(
pi − p̃′j

)T
W
(
pi − p̃′j

)
. (9)

The matrixW defines the colour space metric. We have
usedW = TTdiag−2[d]T where

T =
1

255

 65.4810 128.5530 24.9660
−37.7970 −74.2030 112

112 −93.7860 −18.2140

 and

dT =
(
0.18 0.05 0.05

)T
. (10)

The matrixT is the standard mapping from RGB to the
YCbCr colour space (as defined in ITU-R BT.601) for RGB
values in interval[0, 1]. The vectord thus contains scalings
for the Y, Cb, and Cr components respectively. The purpose
of this scaling is mainly to reduce the sensitivity to differ-
ences in illumination.

4.2. Position and shape distance

For two blobs with centroidsmi andm′j , we define their
position distance as:

d(mi,m′j)
2 = (mi − m̃′j)

T (mi − m̃′j)
+ (m̃i −m′j)

T (m̃i −m′j) . (11)

For two blobs with inertia matricesIi andI′j , we define
their shape distance as:

d(Ii, I′j) =
||Ii − Ĩ′j ||
||Ii||+ ||Ĩ′j ||

+
||Ĩi − I′j ||
||Ĩi||+ ||I′j ||

. (12)

Note that we apply the transformation both ways in or-
der to remove possible bias favouring one direction of the
transform.

5. Repeatability test

We will now demonstrate how the repeatability of the
blobs is affected by view changes. To do this in a con-
trolled fashion, we make use of a large aerial photograph
(3125 × 5468 pixels) of a city. We place a synthetic cam-
era with focal lengthf = 200 above the image, at varying
angles and distances (scale). We then compute blob repre-
sentations of both the synthesised view (200× 200 pixels),
and a cropped version of the aerial photograph, see figure 4.

We then transform the blobs in the synthetic view to the
coordinate system of the aerial photograph, and vice versa,
using the relations derived in section 3, and compute the
position, shape and colour distances between blobs. Corre-
spondences falling below a threshold in colour, position and
shape are counted, and are used to determine therepeatabil-
ity rateof the detector.

The repeatability rate[10] concept was originally used
to compare interest point detectors, by computing the fre-
quency with which an interest point detector gives repeated
detection of the same 3D point in different 2D projections
of the scene. We now extend the repeatability rate defini-
tion to regions, by also considering the shape and colour of
the detected features

r(σs, σp, σc) =
Nc(σs, σp, σc)
min(Np, Ns)

. (13)

HereNp andNs are the number of detected blobs in the
overlapping parts of the photo and the synthesised view re-
spectively, andNc is the number of correspondences found.
The explicit formula forNc is

Nc(σs, σp, σc) = |
{〈
Bi,B′j

〉
|d(pi,p′j) < σc

}
∩{〈

Bi,B′j
〉
|d(mi,m′j)

2/σ2
p + d(Ii, I′j)

2/σ2
s < 1

}
| . (14)

The parametersσs, σp, and σc are shape, position and
colour distance thresholds. We have usedσp = 7 and
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Figure 4. Experiment setup. (a) Cropped pho-
tograph with homography quadrangle over-
laid. (b) Synthesised view. (c) Photograph
with detected blobs painted in. (d) Synthe-
sised view with detected blobs painted in.
White blobs are valid correspondences, grey
blobs are discarded.

σs = 0.3, which gives visually quite similar ellipses after
transformation, and for colour we have simply setσc = 1.

Figure 5b shows how the repeatability is affected by the
inclination angle. The angle is varied in the range0 . . . 50◦

which results in homography quadrangles according to fig-
ure 5a. As can be seen in the graphs, using the shape mea-
sure to remove non-elliptical shapes makes a minor im-
provement on the repeatability rate, at the price of reduc-
ing the number of correspondences (see figure 5c).

5.1. Homography error

To be able to compare an estimated homography with a
known correct one we will now define a homography er-
ror measure. We do this by comparing where transformed
points end up. The distance between two pointsx andy, in
homogeneous coordinates is

d(x,y)2 = (x1/x3 − y1/y3)2 + (x2/x3 − y2/y3)2 . (15)

For the synthesised image, we denote the four corner points
by x1 . . .x4. We can now write the error of the estimated
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Figure 5. (a) Homography quadrangles for in-
clination angles 0 . . .50◦. (b) Repeatability as
function of inclination angle. (c) Number of
correspondences as function of inclination
angle. (d) Error in homography estimate from
correspondences, as function of inclination
angle. Blobs with shape ratios below 0.7
have been excluded. Solid curves are aver-
ages over all in-plane rotations. Thick dashed
curves are averages without thresholding on
shape ratio.

homographyHest wrt. the correct oneH as

ε(Hest,H)2 =
1
4

4∑
k=1

d(Hestxk,Hxk)2

+
1
4

4∑
k=1

d(H−1
est xk,H

−1xk)2 . (16)

We have used the centroids of the correspondences found
using (14) to estimate a homography (see e.g. [4]), and com-
puted the error (16) with respect to the correct homography.
The result is shown in figure 5d.

As can be seen, the error increases with the inclination
angle. This is to be expected, since the centroids are merely
affine invariants, and thus don’t correspond to the same im-
age points when we change the inclination angle. The pur-
pose of this plot however, was to show that removal of non-
ellipse-like shapes reduces the error slightly. This is despite
the fact that fewer correspondences are used, and thus the
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Figure 6. (a) Homography quadrangles for
scales 0.5 . . .2.0. (b) Repeatability as func-
tion of scale. (c) Number of correspondences
as function of scale. (d) Error in homography
estimate from correspondences, as function
of scale. Blobs with shape ratios below 0.7
have been excluded. Solid curves are aver-
ages over all in-plane rotations. Thick dashed
curves are averages without thresholding on
shape ratio. Solid thin curves used 300× 300
synthetic views instead of 200× 200.

removed blobs (on the average 5 out of between 55 and 40,
see figure 5c) contribute even more to the error than a first
glance at these curves would suggest.

Note that all thick curves in figure 5 are averages over in-
plane rotations (in steps of15◦), thus we also demonstrate
that the features are repeatable across rotations.

The result of changing scale instead of inclination angle
is shown in figure 6. As can bee seen here, the repeatabil-
ity drops to0.4 after a one octave scale change, in either di-
rection. The homography error on the other hand increases
slowly as we move away from the image, but increases dra-
matically as we move closer. The reason for this is that there
simply aren’t enough large features in an image of the cho-
sen size. To demonstrate that this is an issue of image size,
we redid the experiment with300×300 synthetic views, in-
stead of200×200. As shown in the graphs, using the larger
image size gives basically the same results, except for the
error at small scales which is now smaller. The reason is

that for200 × 200 images there simply aren’t enough fea-
tures to compute the homography reliably.

5.2. Changing the merger threshold

To some extent it is possible to constrain which region
mergers are allowed in the region merging step of the blob
detection algorithm (see section 2). Figure 7 shows a com-
parison of setting the merger threshold to0.5 and0, where
the latter corresponds to always merging connected regions
(i.e. the strategy used in conventional segmentation algo-
rithms). As can be seen, settingmthr = 0.5 is clearly prefer-
able when the perspective is changed. When only the scale
changes however, the difference is negligible. The value
mthr = 0.5 has been selected by making similar compar-
isons.
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Figure 7. (a) Repeatability as function of in-
clination angle. (b) Number of correspon-
dences as function of angle. (c) Repeatabil-
ity as function of scale. (d) Number of corre-
spondences as function of scale. Solid thick
mthr = 0.5, Dashed thick mthr = 0.

6. Solving the correspondence problem

Automatic matching of two views that differ by a ho-
mography is often accomplished by RANSAC sampling of
an initial set of tentative correspondences [4]. The minimal



number of corresponding conics needed to estimate a ho-
mography is2, when the entire shape of the conic is used.
See [5] for a description of how to do this estimation. A less
advanced (but easier to implement) approach is to pick4
correspondences, and estimate the homography using the
conic centroid points alone. Note that this requires more
RANSAC samplings, and has a built in bias, since the cen-
troids are only affine invariants.

An algorithm for automatic solving of the correspon-
dence problem would be the following (see [3] for an ear-
lier publication of this scheme):

1. Compute blob features in the two images to match.

2. Find a set of tentative correspondences using a voting
scheme.

3. Apply RANSAC sampling to the set of tentative corre-
spondences to eliminate outliers.

4. Re-estimate homography using the inliers (the consen-
sus set). This step may be repeated a few times until
convergence.

Ideally, step 4 should be replaced by an iterative optimi-
sation that considers the entire conic shape, and not just the
centroid.

6.1. Voting scheme 1

For the voting scheme we use a correspondence matrix
M where each cellMij estimates the likelihood that blob
Bi in image 1 and blobB′j in image 2 correspond. As a first
screening, we only allow votes to cells where the colour dis-
tance is below a thresholdσc.

As a second stage in the voting, we generate pairs of
neighbouring blobs in both images by joining together spa-
tially adjacent blobs. Each blob gets to form ordered pairs
with its three nearest neighbours. Thus, if we hadN1 and
N2 blobs in the two images, we now have3N1 and 3N2

blob pairs. We will now try to find correspondences of
such blob pairs, i.e.

〈
Bi,Bk

〉
↔
〈
B′j ,B′l

〉
. For each such

correspondence, we first check if the colours match, using
the colour distance. This excludes most candidates. For the
correspondences that match, we then calculate a similarity
mapping

x′ =
(
sR t
0 1

)
x . (17)

using the blob centroids. We then transform both blobs in
the pair through the mapping, and compute their shape dis-
tances (12). Both distances are summed and added in a new
correspondence matrixS according to

Sij + e−(d2
ij+d

2
kl)/σ

2
s 7→ Sij (18)

Skl + e−(d2
ij+d

2
kl)/σ

2
s 7→ Skl (19)

whereσs = 0.25 is a shape distance scaling. This imple-
ments a soft voting scheme, where very few constraints on
the image structure have been imposed. A set of tentative
correspondencesBi ↔ B′j are now extracted fromS by re-
quiring that the positionSij should be a maximum along
both rowi and columnj, and above a thresholdSthr = 0.5.

6.2. Voting scheme 2

Since the similarity transform is quite a strong assump-
tion, which does not hold for large inclination angles, we
will also try an alternative voting scheme. We now replace
the similarity transform with a projective invariant using a
pair of coplanar conics, see e.g. [7], chapter 3. We proceed
in the same way as for the similarity transform, by gen-
erating pairs of neighbouring blobs. For correspondences〈
Bi,Bk

〉
↔
〈
B′j ,B′l

〉
that match in colour, we then calcu-

late the projective invariants

I1(i, j) = tr(Ĉ−1
i Ĉj) andI2(i, j) = I1(j, i) . (20)

Note that the conics must be normalised according toĈi =
Ci/(det Ci)1/3 for (20) to be invariants. To evaluate a cor-
respondence pair, we then use the absolute distances be-
tween these invariants

d((i, k), (j, l)) = |I1(i, k)− I1(j, l)|
+ |I2(i, k)− I2(j, l)| (21)

and fill in the correspondence matrixS according to

Sij + e−d((i,k),(j,l))/σ2
s 7→ Sij (22)

Skl + e−d((i,k),(j,l))/σ2
s 7→ Skl (23)

whereσs = 1.0 is a shape distance scaling. Correspon-
dences are then extracted fromS in the same way as be-
fore.

6.3. RANSAC cleanup

When applying RANSAC to the initial sample set, we
simply pick four of our tentative correspondences, compute
a homographyH using the centroid positions, and count
the number of inliers wrt.H. This is repeated until a suffi-
ciently large number of inliers is found. A potential corre-
spondence is counted as an inlier if the colour distance is
below a thresholdσc, and the shape and position is inside
an ellipse with radiiσp andσs, just like in the repeatability
test, (cf. (14)). Note that since all potential correspondences
are considered, this allows us to find correspondences that
were not found in the voting step.

When sufficiently many inliers are found (hereNmin =
15), we re-estimateH using the inliers (the consensus set).
This step is repeated untilH stops changing.



7. Evaluation

We have tried the algorithm above on the data-set used
for the repeatability test (see section 5). For most views the
algorithm ends up with the correspondences found in the
repeatability test (it fails for 2 of the images at50◦ inclina-
tion, (using projective invariant voting)). More interestingly
however this experiment allows us to compare the two vot-
ing strategies. As can be seen in the graphs in figure 8, the
similarity transform voting does far better for scale changes,
and is also better for moderate inclination changes. The pro-
jective invariant is however better at high inclination angles
(above35◦ if number of inliers is considered.).

A high inlier fraction1−ε is quite important since the ex-
pected number of RANSAC steps varies dramatically with
ε. As a rule of thumb, the number of required samples
to draw to obtain an uncontaminated one, for sample size
K = 4 and likelihoodm = 0.99 is given by [4]:

N =
log(1−m)

log(1− (1− ε)K)
. (24)

Some examples relating to figure 8 are given below.
ε 0.1 0.25 0.5 0.7 0.8
N 5 13 72 567 2876

8. Concluding remarks

In this paper we have introduced a new region based fea-
ture, and demonstrated its stability across scale and plane
projective view changes. We have shown that avoiding to
merge regions connected by only a few pixels improves
repeatability (and at the same time gives more correspon-
dences per image pair). To judge whether a region is ellipse-
like (and thus transform as a conic) we have introduced
a measure of how ellipse-like a region is. Removing non-
ellipse like regions gives a small improvement in repeata-
bility, and the remaining regions gives a slightly better ho-
mography estimate. We have also introduced two voting
schemes, that allow region correspondences to be found au-
tomatically in a robust fashion. When comparing the vot-
ing strategies, it was found that similarity transform vot-
ing was superior under scale, and moderate inclination an-
gle changes. For large inclination angles, however the pro-
jective invariant voting did better. Thus, the similarity trans-
form voting is to be preferred whenever we know that incli-
nation angles are small, but without any a priori information
we should probably use the projective invariant voting.
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Figure 8. (a,b) Perspective change. (c,d)
Scale change. (a,c) Fraction of correspon-
dences from voting that were inliers. (b,d) To-
tal number of inliers from voting. Solid curves
are averages when the similarity transform
voting is used. Dashed curves show result
from the projective invariant voting. Thick
curves show the result when blobs with
shape ratios below 0.7 have been excluded,
thin curves show results without thresh-
olding. Dotted curves are single view mea-
surements corresponding to the solid thick
curves.
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