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Abstract

This report describes how blob features can be used for automatic estimation of the fun-
damental matrix from two perspective projections of a 3D scene. Blobs are perceptually
salient, homogeneous, compact image regions. They are represented by their average
colour, area, centre of gravity and inertia matrix. Coarse blob correspondences are found
by voting using colour and local similarity transform matching on blob pairs. We then do
RANSAC sampling of the coarse correspondences, and weight each estimate according to
how well the approximating conics and colours of two blobs correspond. The initial voting
significantly reduces the number of RANSAC samples required, and the extra information
besides position, allows us to reject false matches more accurately than in RANSAC using
point features.

1 Introduction

Epipolar geometry is the geometry of two perspective projections of a 3D scene. For
a thorough description of epipolar geometry, see [5]. For un-calibrated cameras epipolar

geometry is compactly described by the fundamental matrix F. A point x =
(
x1 x2 1

)T

in image 1, and the corresponding point x′ =
(
x′

1 x′
2 1

)T
in image 2 are related through

the fundamental matrix as

x
′TFx = 0 . (1)

If we know F, we can search for points x′, corresponding to x along its epipolar line l

x
′T l = 0 where l = Fx . (2)

Thus F can be used as a constraint on the correspondences. Once we have a set of
correspondences, we can use triangulation to compute a projective reconstruction [4].
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With more knowledge about the cameras, we could compute distances to objects, and
perform a metric scene reconstruction.

Computation of the fundamental matrix is possible using point correspondences alone,
provided that not one of the following two degenerate cases is present

1. all scene points lie on a plane

2. The camera motion between the two cameras is a pure rotation.

These two situations cannot be told apart from the two projections alone, and since F is
not well defined in situation 2, estimation of F is not possible [5]. When either of these
situations occur, we should use a different model. In this report we use a homography H,
that relates corresponding points directly

hx′ = Hx and gx = H−1x′ . (3)

1.1 Related work

Most work on estimation of epipolar geometry has involved correspondences between
points, lines or conics [5], but recently work has started on using richer features, such
as affine invariant features [8, 12], curve segments [10, 6] and the scale invariant feature
transform (SIFT) features [1]. Wide baseline matching is a broad field of research, and
we will make no attempt to cover all different approaches here. Instead we direct the
reader to the journal paper [10], and the book [5]. We will however briefly describe two
approaches similar to ours and outline the differences.

Tuytelaars and Van Gool [12] find affinely invariant regions in two ways, either as
parallelogram shaped regions extended from corners and edges, or as elliptical regions
found around local maxima in the intensity profile. Each region is then described by
its shape (parallelogram or ellipse) and 18 moment invariants computed from generalised
colour moments in the region.

Obdrzalek and Matas [8] construct local affine frames from maximally stable extremal
regions (MSER) on intensity images. An MSE region is defined as being darker/brighter
than all pixels on the region boundary. This allows MSER features to be invariant to
monotonic transformations of image intensity, and avoids using an intensity similarity
threshold.

The method introduced in this report is similar to the affine invariant region ap-
proaches described above in the sense that it uses region based features to estimate the
epipolar geometry. We will however make use of the region colour in the detection, and
apply recent results on conic matching [10, 6, 9] to estimate the geometry. The fea-
tures used will be introduced in section 2, and the similarities and differences to the two
methods above will be outlined.

1.2 Algorithm overview

The algorithm introduced in this report consists of the following steps:

1. Compute features in the two images to match, see section 2.
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2. Find a set of likely correspondences using colour and a local similarity transform
voting scheme. The colour constraint is described in section 3. The local similarity
transform voting is described in section 4.

3. Find correct correspondence using a global homographic or epipolar constraint. This
is done using RANSAC sampling of the correspondences found in step 2. Utilisation
of the two geometry constraints for ellipses is described in sections 5, 6, and 7.

2 Blob features

We will make use of blob features extracted using a clustering pyramid built using robust
estimation in local image regions [3]. The current implementation processes 360 × 288
RGB images at a rate of 1 sec/frame on a Intel P3 CPU at 697 MHz, and produces
relatively robust and repeatable features in a wide range of sizes. Each extracted blob is
represented by its average colour pk, area ak, centroid mk, and inertia matrix Ik. I.e. each
blob is a 4-tuple

Bk = 〈pk, ak,mk, Ik〉 .

Since an inertia matrix is symmetric, it has 3 degrees of freedom, and we have a total of
3+1+2+3 = 9 degrees of freedom for each blob. For more information about the feature
estimation, please refer to [3], and the implementation [11], both of these are available
on-line. After estimation, all blobs with approximating ellipses partially outside the image
are discarded.

The blob estimation has two main parameters: a colour distance threshold dmax, and a
propagation threshold cmin for the clustering pyramid. For the experiments in this report
we have used dmax = 0.16 (RGB values in interval [0, 1]) and cmin = 0.5.

The number of blobs in an image depends heavily on image content and resolution.
We typically get between 70 and 350 blobs in each image. Figure 1 shows two images
where 107 and 120 blobs have been found.

Figure 1: Blob features in an aerial image. Left to right: Input image 1, Input image 1
with detected features (107 blobs), Input image 2 with detected features (120 blobs).

The blob features are related to the MSER features used in [8] in the sense that
they are compact and can be nested. Differences are that our features utilise the colour
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information in the image, and the regions are not required to be darker/brighter than
all neighbours as is the case for MSER regions. Instead we find stable regions using
a hierarchical clustering scheme, where pixels that are similar in colour and position
are grouped. When the intensity profile looks like a staircase, we can still detect the
steps although they have brighter pixels on one side and darker pixels on the other. An
advantage with the MSER approach however is that no grouping distance threshold is
necessary.

Our approach is also related to the regions used by Tuytelaars and Van Gool [12], but
our features are detected using colour instead of intensity. Moreover, we detect features
in a wide range of scales, whereas the detection method in [12] uses a single smoothing
scale, which in effect limits the sizes of the detected regions. Our colour comparison is
less advanced though, since we use a similarity measure on the average RGB values in
the region, instead of computing the 18 invariants used in [12].

3 Colour constraint

We will use a voting scheme to find an initial set of correspondences between the two
images. A potential correspondence Bi ↔ B′

j can quickly be discarded by making use of
the colour parameter of the blobs. Thus we compute the colour distances of all blobs in
image 1 and all blobs in image 2, and use them to define a correspondence matrix M. We
set Mij = 1 whenever

(
pi − p′

j

)T
W

(
pi − p′

j

) ≤ 1 (4)

and Mij = 0 otherwise. The matrix W defines the colour space metric. We have used
W = TT diag−2[d]T where

T =
1

255


 65.4810 128.5530 24.9660
−37.7970 −74.2030 112

112 −93.7860 −18.2140


 and d =


0.18

0.05
0.05


 . (5)

The matrix T is the standard mapping from RGB to the YCbCr colour space (as defined
in ITU-R BT.601) for RGB values in interval [0, 1]. The vector d thus contains scalings
for the Y, Cb, and Cr components respectively. The purpose of this scaling is mainly to
reduce the sensitivity to differences in illumination. Typically M will have a density of
about 15%, and thus this simple operation does a good job at reducing the correspondence
search space.

As a side note, we have observed that similar quality in results can be obtained by
setting W = αC−1 where C is the covariance of the colour of a large set of blobs. This
is known as the Mahalanobis metric. Using the Mahalanobis metric could be a seen as a
way towards automatic adaption to new data-sets, since the tuning of the vector d now
is replaced with tuning of a scalar α.

For more advanced approaches to colour matching, see e.g. [7, 12].
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4 Initial correspondences

Any pair of points in image 1 can be mapped to any pair in image 2 using a similarity
transform. In homogeneous coordinates, a similarity transform looks like this

x′ =

(
sR t
0 1

)
x . (6)

We now generate blob pairs in both images, by joining together spatially adjacent
blobs. Each blob gets to form ordered pairs with its three nearest neighbours. Thus, if
we had N1 and N2 blobs in the two images, we now have 3N1 and 3N2 blob pairs. We
will now try to find correspondences of such blob pairs, i.e.

〈Bi,Bk

〉 ↔ 〈B′
j,B′

l

〉
. For each

such correspondence, we first check if the colours match, using M (see section 3). This
excludes most candidates. For the correspondences that match, we then calculate the
similarity mapping (6) from the blob centroids. We then transform both blobs in the pair
through the mapping, and compute their shape distance

d2
ij =

||Ii − Ĩ′j||2
||Ii||2 + ||Ĩ′j||2

where Ĩ′j = s2RI′jR
T . (7)

Both distances are summed and added in a new correspondence matrix S according to

Sij + e−(d2
ij+d2

kl)/σ2
s 7→ Sij (8)

Skl + e−(d2
ij+d2

kl)/σ2
s 7→ Skl (9)

where σs is a shape distance scaling.
This implements a soft voting scheme, where very few constraints on the image struc-

ture have been imposed. A set of potential candidate correspondences Bi ↔ B′
j are now

extracted from S by requiring that the position Sij should be a maximum along both row
i and column j. The result of this operation for a pair of aerial images is shown in figure
2. Roughly half of the correspondences are correct in this case.

Figure 2: Raw correspondences found using voting. Roughly 50% of the correspondences
are correct. Unmatched blobs are painted black.
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5 RANSAC estimation of geometry

We now improve the quality of correspondences using outlier rejection with RANSAC, see
e.g. [5]. We draw a random subset of the correspondences (4 for homography estimation,
and 8 for fundamental matrix estimation), and estimate the applicable mapping (F or H)
using the centroids only, i.e. mi ↔ m′

j. Note that the centroid is only an affine invariant,
not a projective one, and thus this estimation contains a model error. In practise this
means that even if the chosen correspondences are in perfect alignment, there will be a
slight bias in the estimated mapping (F or H). Once we have a set of correspondences,
we could however remove this bias with an iterative refinement using correspondences of
conics, e.g. using the method in [6]. This has however not been tested yet.

For each candidate mapping (F or H), we now verify all correspondences that are
valid according to M (see section 3) with respect to projection error of both blob position
and shape. The projection error for the homography is derived in section 6, and for the
fundamental matrix in section 7.

The decision on how many random samples to draw is often made according to

N =
log(1 − m)

log(1 − (1 − ε)K)
(10)

where K is the number of correspondences needed for the estimation of F or H, m is the
required probability of picking one inlier only sample after N tries (typically set to 0.99),
and ε is the probability of picking an outlier correspondence [5]. For the example in figure
2, we may set ε = 0.5, and K = 4, and get N = 72.

As noted in [2], there are problems with (10). The obtained N is for instance an
underestimate of the actual number of samples needed if the data also has inlier noise.

6 Homography constraint

For a homography it is possible to further constrain which correspondences are allowed
as inliers by mapping the ellipse shape through the homography, and rejecting the corre-
spondence if the shape distance, i.e. the quotient in (7), is above a threshold.

We will now derive a homography transformation of an ellipse. Note that even though
an ellipse mapped through a homography is a new ellipse, this mapping is merely approx-
imately correct for regions which are not elliptical.

A blob B in image 1, represented by its centroid m and inertia I approximates an
image region by a new ellipse shaped region with the outline

xTCx = 0 for C =
1

4

(
I−1 −I−1m

−mT I−1 mT I−1m − 4

)
(11)

see [3]. This equation is called the conic form of the ellipse. To derive the mapping to
image 2, we will express the ellipse in dual conic form [5]. The dual conic form defines a
conic in terms of its tangent lines lTx = 0. For all tangents l in image 1 we have

lTC∗l = 0 , C∗ =

(
4I − mmT −m

−mT −1

)
(12)
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where C∗ is the inverse of C in (11). A tangent line l and its corresponding line l′ in
image 2 are related according to l = HT l′. This gives us

l
′THC∗HT l′ = 0 where we set HC∗HT =

(
B d
dT e

)
. (13)

We recognise the result of (13) as a new dual conic form

−el
′T

(
4Ĩ − m̃m̃T −m̃

−m̃T −1

)
l′ = 0 . (14)

This allows us to identify m̃ and Ĩ as

m̃ = d/e and Ĩ = (−B/e + m̃m̃T )/4 . (15)

Note that since this mapping only involves additions and multiplications it can be imple-
mented very efficiently. The mapping of blob shapes through the homography is illustrated
in figure 3 (left).

To rank the correspondences we will use the spatial projection error

r2
ij = ||mi − m̃′

j||2 + ||m̃i − m′
j||2 (16)

and the shape distance

s2
ij =

||Ii − Ĩ′j||2
||Ii||2 + ||Ĩ′j||2

+
||Ĩi − I′j||2

||Ĩi||2 + ||I′j||2
(17)

to fill in a new correspondence matrix S according to

Sij = e−r2
ij/σ

2
r e−s2

ij/σ
2
s . (18)

A correspondence is considered valid if the correspondence matrix S has a maximum along
both row i and column j, and furthermore is larger than some threshold smin = 0.5. (The
scalings are at present set to σr = 10 and σs = 0.75.)

For each random subset of correspondences, we use the number of correspondences
as a measure of how good the generated mapping was, and choose the one with most
correspondences as the correct one.

As soon as we find a solution with at least 15 correspondences, we leave the RANSAC
loop, and instead do a local optimisation1. Since we have some inlier noise, the local
optimisation significantly reduces the number of RANSAC samples (cf. [2]). The final
solution is shown in figure 3. Running the algorithm 1000 times gives the average number
of RANSAC samples as 40.7 and a 99.8% success rate. By comparing the final (figure
3) and the initial (figure 2) correspondences, we get ε = 22/39 ≈ 0.5641. Inserting
this in (10), gives 125.2 samples for 99% success rate. The reason for the “better than
theoretical” result on this image pair is that several outlier contaminated samples give an
initial H that is close enough to the correct solution for the local optimisation to succeed.

1In the local optimisation we compute a new H from the inlier correspondences, check for correspon-
dences, compute a new H using them and so on until H stops changing.
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Figure 3: Left: Detected blobs (white), and blobs from image 2 mapped through homog-
raphy (black). Centre and right: Final 32 correspondences. Unmatched blobs are painted
black.

7 Epipolar constraint

We will now describe how the fundamental matrix constraint for points (1)-(2) can be
applied to conics. From projective geometry we know that a point in an image corresponds
to a point in 3D that lies somewhere on the line defined by the focal point and the point
position in the image plane. In analogy with this, an ellipse in an image corresponds to a
3D cone that intersects the image plane in the ellipse, and has its tip passing through the
focal point, see figure 4, left. In analogy with [9], we now make the assumption that the
object in space is an ellipse. This is convenient, since we know from projective geometry
that a projective transformation of a conic will always be another conic.

Camera 2Camera 1

tangents
epipolar

point
focal

Figure 4: Epipolar constraints for ellipse. Left: cone in space generated by an ellipse in
image 1 and projected into image 2. Centre and Right: The two images.

We have 3 degrees of freedom in choosing the ellipse in space, since any 3D ellipse that
is defined by the intersection of the ellipse cone and an arbitrary plane is projected to the
ellipse in the first image. A general ellipse in 2D has 5 d.o.f. and thus the cone defined
by the ellipse in the first image should give us two constraints on a corresponding ellipse
in the second image. These constraints can be found by requiring that the ellipse in the
other image has the projected cone outline as tangents. An ellipse is uniquely defined
by 5 tangent lines, and thus the two cone outline lines, or epipolar tangents [10] are our
two constraints. The epipolar tangents for an ellipse and a given F in an image pair are
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shown in figure 4 (centre and right).

7.1 Epipolar tangents

To construct the epipolar tangents for an ellipse, we need the epipoles. They are obtained
(using SVD) as the left and right null-vectors of F [5], i.e.

eTF = 0 and Fe′ = 0 . (19)

We will now derive the epipolar tangents in image 2 defined by an ellipse in image 1.
The construction of tangents in image 1 is made in a similar way. First we find the polar
line in the left image, using the pole-polar relationship [5]. The polar line is a line which
intersects the ellipse in two points. In these two points, the ellipse has tangents which go
through the epipole e. To construct the polar line l, we use the conic form (11) of the
ellipse C

l = Ce . (20)

We now write points on this line in parameter form

x = αt1 + t2 where t1 =


 l2
−l1
0


 , t2 =


 0
−l3
l2


 and α ∈ R . (21)

Plugging this into (11) gives us a quadratic polynomial in α, and inserting the two so-
lutions in (21) gives us the two tangent points, x1 and x2. Finally we obtain the two
epipolar tangents as the epipolar lines for these two points

l1 = FTx1 and l2 = FTx2 . (22)

7.2 Tangent distances

Since we are using ellipses generated from measurements in real images, we can not expect
the epipolar tangents to be exact tangents to a corresponding ellipse. Thus we will now
define a measure of how close an epipolar tangent is to being a tangent to an ellipse.

l1

l2

n1
n2

21

d11

d12
d22

d

Figure 5: Tangent distances

The points on the ellipse are parametrised according to

x = RTD−1/2

(
cos t
sin t

)
+ m t ∈ [0, 2π[ (23)
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where R and D are the eigenvalue factorisation of I, i.e. I = RDRT [3]. If we project
the points onto the line normal, i.e. left multiply by l, we get a set of positions along the
normal

d(t) =
(
l1 l2

)
RT

(
d1 cos t
d2 sin t

)
+

(
l1 l2

)
m + l3 . (24)

This is an expression of the form

d(t) = a1 cos t + a2 sin t + a3 (25)

which has the two extrema

d11 =
√

a2
1 + a2

2 + a3 and d12 = −
√

a2
1 + a2

2 + a3 . (26)

We repeat this for the second line, and combine the distances into two pairs 〈d12, d21〉 and
〈d11, d22〉. Finally we compute the epipolar distance as the minimum of the pair sums

r = min(|d12| + |d21|, |d11| + |d22|) . (27)

We use these to fill in a new correspondence matrix S according to

Sij = e−(rij + rji)
2/σ2

r . (28)

A correspondence is considered valid if the correspondence matrix S has a maximum along
both row i and column j, and furthermore is larger than some threshold smin = 0.5. (The
scaling is at present set to σr = 5.)

The count of valid correspondences is then used as a way to rank the F matrices
obtained from RANSAC. The correspondences obtained in this way for the image pair
in figure 4 (centre and right) are shown in figure 6. A total of 35 correspondences were
found, and out of these 5 were visually judged as false matches.

Figure 6: Final 35 correspondences. Left: Unused blobs (black) and used blobs (white)
in image 1. Centre and Right: The found correspondences (white), out of these, 5 are
wrong. Unmatched blobs are painted black.
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8 Concluding remarks

This report has demonstrated the how blob features can be used for direct estimation
of geometry. The number of RANSAC samples required is significantly lower than in
estimation using point features (c.f. e.g. [2]). Note that although there are still some false
matches in the final set of correspondences (see figure 6), the obtained fundamental matrix
correctly describes the geometry situation. False matches could probably be rejected by
requiring that correspondences are consistent across more than two views.
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