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1 Introduction

This report describes the principles of an algorithm developed within the WITAS project
[3]. The goal of the WITAS project is to build an autonomous helicopter that can navi-
gate autonomously, using differential GPS, GIS-data of the underlying terrain (elevation
models and digital orthophotographs) and a video camera.

Using differential GPS and other non-visual sensory equipment, the system is able
to obtain crude estimates of its position and heading direction. These estimates can
be refined by matching of camera-images and the on-board GIS-data. This refinement
process, however is rather time consuming, and will thus only be made every once in a
while. For real-time refinement of camera position and heading, the system will iteratively
update the estimates using frame to frame correspondence only.

In each frame a sparse set of image displacement estimates are calculated, and from
these the perspective in the current image can be found. Using the calculated perspective
and knowledge of the camera parameters, new values of camera position and heading can
be obtained.

The resultant camera position and heading can exhibit a slow drift if the original
alignment was not perfect, and thus a corrective alignment with GIS-data should be
performed once every minute or so.

2 Principles

The estimation of perspective relies on the existence of image locations that correspond
to positions on the ground in the real world. At present the algorithm also requires
the ground to be planar. This requirement could however easily be removed if required,
although this will require a denser displacement field.

The image produced by the camera is assumed to be the result of a perspective projec-
tion of features in the ground plane, onto the image plane, followed by a lens distortion. If
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the camera is set to the maximal amount of zoom, the lens distortion is usually negligible.
However, for completeness we will explain how to deal with lens distortion in section 3.2.

For the first frame, the perspective projection is known (it has been computed by
finding the correspondence between image and GIS-data). We can thus compute the
ground plane coordinates of the points in the image plane for this frame. Thus, we first
find a number of points that are well suited to tracking in the first frame, then compute
their locations in the ground plane. By keeping track of the displacements of the points in
the image plane, the perspective projections for the following frames can now be computed
(see sections 4 and 5). Once we know the perspective projection relating the image and
ground planes, we can finally compute the camera location and viewing direction (see
section 6).

3 Geometry

Before we can describe the algorithm in detail, we have to define some terms and concepts
relating to the camera parameters, and projective geometry.

3.1 Camera parameters

The camera coordinate system (CCS) is defined as a right-hand system { n̂ û n̂ × û },
with the origin at the focal point of the lens. The cross-product vector, r̂ = n̂× û points
right from the camera, and the view-plane normal, n̂, points forward, into the image (see
figure 1).

Image
Planen̂û

r̂

wr

h

Figure 1: Camera coordinate system (CCS)

The image dimensions in pixels are w × h, but in a physical metric, we have to take
non-square pixels into account, and thus we multiply the image width by the aspect ratio,
r, and get wr × h as indicated in figure 1.

The camera position and orientation can be described by three vectors:

n̂ view plane normal
û camera up vector
p camera position

The vector p above is only meaningful in the world coordinate system (WCS). In CCS
it is always zero.

In addition to these parameters we need to know, either the view angles αw and αh, or
the focal length f = h/2 tan(αh/2) = wr/2 tan(αw/2) and the aspect ratio r (see figure
2). But since the value of f depends on the physical dimensions of the detector element,
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the view angles are preferable. The focal length and the aspect ratio can when needed be
derived from the view angles.

n̂ ûxû

n̂n̂ h

Camera from the left Camera from above

αh αw

f f

wr

Figure 2: Camera parameters

Optionally we could also include a radial lens distortion parameter γ = γ(f) to describe
the camera state. Adding a lens distortion parameter will allow us to deal with the non
uniform spacing of pixels caused by the lens.

3.2 Lens distortion

Figure 3: Lens distortion.
A frame in a sample sequence before (left), and after (right) lens distortion compensation.

Most camera lenses distort the perspective in the scene in such a way that the pixels
are moved closer to the centre of the image (see figure 3). The amount of distortion
is a function of the zoom (the focal length), and varies radially [4]. Modelling the lens
distortion becomes easy if we express it in a polar camera coordinate system, {r,ϕ}, with
the origin situated at the point pc, where the optical axis intersects the image plane. The
lens distortion can now be written as a function of the radius only:

rn = r − γr3 when r < 1/
√

3γ (1)

The displacement of a pixel in the scene x = ( x1 x2 )T can thus be written as:
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y = x − γ(x − pc)r
2 (2)

r2 = (x − pc)
T (x − pc) (3)

Where y = ( y1 y2 )T is the new position [4].
In order to be able to use lens-distortion compensation, we need to know the value of

the γ parameter. In a real-time situation, this means that we have to know the current
amount of zoom, and the relationship between zoom and γ.

In the example in figure 3, we did not know this relationship. Instead we have esti-
mated γ by making sure that all structures that are straight on the map also are straight
in the adjusted video frame.

The relationship between zoom and γ can be found for instance by filming a pattern
consisting of straight lines, and altering the zoom in a known manner.

The inverse to the lens-distortion formula (equation 1) can be found using the cube co-
sine relationship.1 This method of finding real valued inverses to third-degree polynomial
equations is described in detail in [1]. We rewrite equation 1 as:

r3 − 1

γ
r +

1

γ
rn = 0

The inverse now becomes:

r = β cos

(

α − 2π

3

)

for (4)

β =

√

4

3γ
and α =

1

3
arccos

(
−3rn

β

)

3.3 A compact model of the camera view

The camera coordinate system CCS, and the world coordinate system WCS are nor-
mally different. We can change world coordinates into camera coordinates, by applying a
translation T that moves the camera position p to the WCS origin, followed by a rota-
tion R that aligns the axes of CCS and WCS. In homogeneous coordinates these affine
mappings can be described by two matrices:

T =

⎛

⎜
⎜
⎝

1 0 0 −p1

0 1 0 −p2

0 0 1 −p3

0 0 0 1

⎞

⎟
⎟
⎠

and R =

⎛

⎜
⎜
⎝

u1 u2 u3 0
r1 r2 r3 0
n1 n2 n3 0
0 0 0 1

⎞

⎟
⎟
⎠

The variable components of the matrices above are coordinates of the vectors û, r̂, n̂,
and p in WCS. The compound mapping will look like:

1cos 3α = 4 cos3 α − 3 cos α
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RT =

⎛

⎜
⎜
⎝

u1 u2 u3 −ûtp
r1 r2 r3 −r̂tp
n1 n2 n3 −n̂tp
0 0 0 1

⎞

⎟
⎟
⎠

This matrix will map a point ( xw yw zw 1 )t in homogeneous world coordinates
to camera coordinates:

⎛

⎜
⎜
⎝

ychc

xchc

zchc

hc

⎞

⎟
⎟
⎠

= RT

⎛

⎜
⎜
⎝

xw

yw

zw

1

⎞

⎟
⎟
⎠

A camera scene point ( yc xc zc )t can be transformed into an image point ( yi xi )t

as follows:

(

yi

xi

)

=
f

zc

(

yc

xc

)

Due to this, and to the fact that RT will give us results multiplied by hc, we can
thus move from 3D homogeneous coordinates to 2D homogeneous coordinates through
the following mapping:

⎛

⎝

yihi

xihi

hi

⎞

⎠ =

⎛

⎝

1 0 0 0
0 1 0 0
0 0 1/f 0

⎞

⎠

︸ ︷︷ ︸

P

⎛

⎜
⎜
⎝

ychc

xchc

zchc

hc

⎞

⎟
⎟
⎠

The compound mapping PRT will look like this:

PRT =

⎛

⎝

u1 u2 u3 −ûtp
r1 r2 r3 −r̂tp

n1/f n2/f n3/f −n̂tp/f

⎞

⎠

If we make the approximation z = 0 (flat ground), we can remove one column from
the compound mapping. We then arrive at a plain 2D perspective transformation in
homogeneous coordinates:

H = PRTF = PRT

⎛

⎜
⎜
⎝

1 0 0
0 1 0
0 0 0
0 0 1

⎞

⎟
⎟
⎠

=

⎛

⎝

u1 u2 −ûtp
r1 r2 −r̂tp

n1/f n2/f −n̂tp/f

⎞

⎠
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Finally this matrix will be normalised by division with the element h33.
If our GIS-data also contains elevation information, the F matrix should be omitted.

This will lead to three more parameters to estimate in the H matrix, and somewhat
different formulations of the formulae in the following sections.

4 Estimation of perspective

We can model the projection of a point x =
(

x1 x2 1
)T

in the WCS ground plane,
into homogeneous camera coordinates as:

yh = Hx

The components of H can be identified as a translation b, a rotation A, and skewing
with distance, c:

⎛

⎝

yh,1

yh,2

h

⎞

⎠ =

⎛

⎝

a11 a12 b1

a21 a22 b2

c1 c2 1

⎞

⎠

⎛

⎝

x1

x2

1

⎞

⎠ (5)

y =
1

h

(

yh,1

yh,2

)

(6)

In order to find the perspective in the image, we thus have to estimate a total of eight
parameters. In principle, we could either estimate these from the projection of the image
plane onto the ground plane, or the projection of the ground plane onto the image plane.
However, since we are going to solve the problem as a least-square fit, and we want to
minimise the error in the ground plane, we estimate the parameters of the mapping from
the image plane onto the map. This projection can be estimated if we know a set of
coordinates y in the image plane, and x in the ground plane. We first reformulate the
projection equation in a form suitable for a least-squares solution:

y = Sp (7)

Where the matrices S and p are defined as:

S =

(

x1 x2 1 0 0 0 −x1y1 −x2y1

0 0 0 x1 x2 1 −x1y2 −x2y2

)

(8)

p =
(

a11 a12 b1 a21 a22 b2 c1 c2

)

(9)

For each pair of coordinates, we thus get two equations. If we combine all these
equations into the matrices y, and S, we can find the parameters p as:

p = (ST S)−1(ST y) (10)
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From these coefficients, we can now compose the sought perspective projection matrix
as:

Hi =

⎛

⎝

p1 p2 p3

p4 p5 p6

p7 p8 1

⎞

⎠ (11)

The corresponding inverse projection, i.e. the ground-to-image-plane projection, is
computed as:

H =
1

(Hi
−1)33

Hi
−1 (12)

An example of this method is shown in figure 4. The left and centre images show a
set of corresponding points. The resultant projection, overlaid on the map, is shown in
the image to the right.

Figure 4: Reference points, and the resultant projection.
The correspondence between a set of points in the map (left), and the scene (middle) is
needed in order to estimate the parameters of the perspective projection (right).

If we want to deal with lens distortion as well, we should apply the inverse of the
lens-distortion formula (see equation 4) on the y coordinates before computing the least-
squares fit.

5 Keeping track of the perspective

As discussed in section 1, the perspective estimation is initiated with known camera
location and viewing angle. Using these we can create an initial perspective transformation
matrix, as described in section 3.3.

Using the Harris corner detector [5], we can find regions in the scene that do not exhibit
the aperture problem [2]. We then keep track of these regions using the cos2-region tracking
algorithm described in [6].

After some time, the regions we have selected will inevitably change or move out of
view due to the camera movement. Thus we have to select new points at regular intervals.
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We should try to keep the points as long as possible, since each time we change templates
we run the risk of introducing an error.

Each time we select a new point to track, we project it onto the ground plane. At each
moment, we thus have a set of coordinates in the image plane, with known positions in
the ground plane, and can estimate the perspective using the method described in section
4.

The described method requires that the points we track actually lie in the ground
plane. If they don’t, clearly the method will fail. Thus we have to remove the outliers,
the points that do not fit the plane model. Removal of outliers can be made if we look at
the residuals, rk, in the image-to-ground transformation:

xpk = Hixk (13)

rk =
√

(xpk − yk)T (xpk − yk) (14)

That is, we project our image coordinates onto the ground, and compute the distances
to their assumed locations.

If the largest rk is above a certain threshold, the projection of this point onto the
ground plane has moved. This could be either because the point belongs to a moving
object, or because it does not lie in the ground plane (parallax movement). Either way,
this point should not be used to estimate new perspectives. When detecting outliers this
way, we can only find them one at a time. The second largest outlier could in fact lie in
the ground plane, and pull in the opposite direction compared to the largest.

Usually outliers are not detected right away, and thus all points selected after the
outlier will have slightly erroneous ground-plane coordinates. If, and how this should be
dealt with is an unsettled question.

Since the point detection algorithm is blind to what points it finds, we might as
well keep tracking the outliers, but exclude them from the perspective estimation, since
otherwise we will probably detect, and start tracking them again.

6 Computing the camera parameters

The camera parameters used to build the initial perspective projection matrix (see section
3.3) can be extracted again from the perspective projection matrix H .

The first step in this process is to remove the influence of the focal length. If we know
the focal length this is easy:

H =

⎛

⎝

1 0 0
0 1 0
0 0 f

⎞

⎠Hf = α

⎛

⎝

u1 u2 −ûtp
r1 r2 −r̂tp
n1 n2 −n̂tp

⎞

⎠

As indicated above, the elements of this matrix can be identified as components of the
CCS vectors, except for a scaling factor α.
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6.1 Estimating the focal length

In many situations we can obtain a probable value of the focal length from the Hf , but
this value is not guaranteed to be robust.

In order to do this, we note that { n̂ û r̂ } constitutes an ON basis. and thus:

R−1 =

⎛

⎝

u1 u2 u3

r1 r2 r3

n1 n2 n3

⎞

⎠

−1

=

⎛

⎝

u1 r1 n1

u2 r2 n2

u3 r3 n3

⎞

⎠ = Rt

The matrix R maps world coordinates into camera coordinates, and thus Rt does the
opposite.

This means that after we have removed the influence of the focal length, the first two
columns of H should have the same norm (= α) since they are scaled versions of vectors
in an ON basis. This gives us the following relations for the coefficients {hkl} of Hf :

h2
11 + h2

21 + f 2h2
31 = α2

h2
12 + h2

22 + f 2h2
32 = α2

f > 0
⇒ f =

√

h2
11 + h2

21 − h2
12 − h2

22

h2
32 − h2

31

In other words, we can estimate f , if we restrict the solution to positive values (these
are the only ones that make physical sense anyway). Note that this method will not work
when the difference h2

32 − h2
31 is close to zero.

6.2 The camera coordinate system

Once the influence of the focal length has been removed from H , we can estimate the
magnitude of the scaling factor α. We are at this point unable to determine the sign of
α. This means that the vectors n̂, and û we will compute could just as well have the
opposite signs.

To find the magnitude of α, we again make use of the fact that the first two rows of
H are vectors in an ON basis. This gives us the following relations for the coefficients
{hkl} of H :

h2
11 + h2

21 + h2
31 = α2

1

h2
12 + h2

22 + h2
32 = α2

2

These equations will give us two values of α. If our value of f was correct, and if there
was no measurement errors, they should be identical. In practise however, they will differ
slightly, so we set our final scaling value to their average α = 0.5(α1 + α2).

After normalising the rows of H (with α1 and α2 respectively), we can find the third
vector of our ON basis as their cross product:

1

α1

⎛

⎝

h11

h21

h31

⎞

⎠ × 1

α2

⎛

⎝

h12

h22

h32

⎞

⎠ = ŵ =

⎛

⎝

u3

r3

n3

⎞

⎠
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Thus our estimates of n̂, û, and r̂ will be:

n̂ =
(

h11/α1 h12/α2 w1

)

û =
(

h21/α1 h22/α2 w2

)

r̂ =
(

h31/α1 h32/α2 w3

)

These values should be used when computing the camera position p̂, but to describe
the camera orientation we might have to change the sign of them as well. The sign can
be resolved, for instance if we know earlier, or approximate directions n̂0, and û0. We
can now find correct values of n̂ and û as:

sign(n̂tn̂0)n̂ $→ n̂
sign(ûtû0)û $→ û

An other way to correct the signs could be to make sure that n̂ is pointing downwards,
or that û is pointing upwards.

6.3 The camera position

The third column of H is defined by the following equation:

⎛

⎝

u1 u2 u3

r1 r2 r3

n1 n2 n3

⎞

⎠ p = − 1

α

⎛

⎝

h13

h23

h33

⎞

⎠ or Sp = − 1

α
h3

We can thus compute p as:

p = − 1

α
S−1h3 ≈ − 1

α
Sth3

As values for the rows of S we should use the values of n̂ and û obtained before
correction of the signs.

The resultant estimated camera location is shown in figure 5 (right). The effect of the
perspective projection matrix H on the image is shown left.

Animated sequences of these images can be found at:
http://www.isy.liu.se/~perfo/witas/.
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Figure 5: Perspective projection, and calculation of camera position and heading.
Alignment of a frame from an image sequence to a map (left), and the corresponding
calculated camera position (right).
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