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Abstract

This report describes an experimental still image coder that grew out of a
project in the graduate course “Advanced Video Coding” in spring 2000.

The project has investigated the idea to use local orientation histograms in
fractal coding. Instead of performing a correlation-like grey-level matching of
image regions, the block search is made by matching feature histograms of the
block contents. The feature investigated in this report is local orientation, but in
principle other features could be used as well.

In its current state the coder does not outperform state of the art still image
coders, but the block-search strategy seems promising, and will probably prove
useful in several other applications.
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1 Introduction
This project has investigated the idea to use local orientation histograms in fractal cod-
ing (see e.g. [2] for details about fractal coding). The search for the best transform from
a part of the image to a block is usually very time consuming and is generally limited
to correlation with a block and a down-sampled version of the image. If the content
in every block and every local area in the image is represented by an orientation his-
togram then the search can be made more efficient by simply matching histograms.
This match is not optimal in the least square sense, but in general the matches have
similar appearence. The method sometimes gives a more perceptually satisfying result
than the result from a simple least square approach.

In other words, for each image block we assume the fractal model (adopted from
[2])

w(
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x
I(x)

)

) =
(

A 0
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I(x)

)

+
(

b
p4

)

(1)

The main idea to find the parametersA, b, and p is as follows:
1. Calculate suitable local image features. In this case image gradients in several
scales was chosen.

2. Calculate local feature histograms in several scales. These will represent the
content in local image areas.

3. For each image block:

(a) Find the local image area that best matches the block by comparing their
histograms.

(b) CalculateA = sRM and b using the best matched histograms. s is a scale
factor,R is a rotation matrix, andM is a mirroring matrix.

(c) Calculate p = (p1 p2 p3 p4) using weighted least square on equation 1.

2 Local orientation
Local orientation is an important feature in human vision and is also a very common
feature in any kind of image. We have therefore chosen local orientation as feature in
our matching procedure.

Local orientation can be estimated in a number of ways, e.g. by finding simple
signals, edges, lines etc. In this project we have used a simple edge detector - calculate
the image gradient∇I = (∂Im

∂x , ∂Im
∂y ) using derivating Gaussian filters:
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(∗ means convolution)
Figure 1 contains the result from calculating the image derivatives in several scales on
the famous image ’Lena’. The orientation is represented in double angle representation
which is calculated as

z = |∇I|e2i ∇I

The orientation is represented by a complex number which has the interpretation:

• The phase is the double orientation angle. This means that the representation
is unaffected by a rotation of the orientation by 180◦ (as it should because the
orientation is then the same).

• The magnitude represents our confidence in the orientation.

(See [1] for a more detailed explanation).
The complex valued image in fig. 1 is visualized by colours, see fig. 2 for an explana-
tion of their meaning.

All the gradient images in fig. 1 will be used in the matching procedure explained
further on.

3 Local orientation histograms
Local histograms on the local orientation can be calculated in two steps:

1. Calculate one histogram for each pixel, H(x. Each bin in the histogram repre-
sents a certain local orientation (or rather an interval of the local orientation). We
have used overlapping bins in order to get a more smooth histogram. This will
hopefully make the histogram matching more robust. The overlapping function
used in this project is 90◦ overlapping cos2-functions, see figure 3. Each orienta-
tion value will then fall into two neighbouring bins. The sum of the contributions
by one orientation will always be 1, since cos2(x) + cos2(x + π/2) = 1.

2. Make local area histograms,HσH (x) by summing up pixel histograms in a local
region, i.e.HσH (x) =

∑

x w(x, σH )H(x), where w(x, σH ) is a Gaussian filter
with standard deviation σH .

Figure 4 shows an example of an orientation histogram with 10 bins.
The histogram is a compact representation of the content in each local area, and it is

also computationally efficient to calculate. The histogram can of course only describe
the presence of an orientation and not the position, but hopefully this description is
sufficient.

We now calculate local histograms in every orientation image in fig. 1. σH is chosen
to be proportional to σ∇. This means that we have a quick (and suboptimal) way to
match image contents between local areas in different scales by simply comparing their
histograms. The comparison can be made invariant to rotation and mirroring with a
suitable choice of histogram matching algorithm. This is explained in the next section.
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Figure 1: Image gradient in several scales. Top row: σ∇ = 1, Bottom row: σ∇ =
21, 21.5, 22
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Figure 2: Left: Colour representation of complex numbers in figure 1, Right: Orienta-
tion interpretation of each colour (complex number).
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Figure 3: Overlapping bins used when computing the histograms.

Figure 4: Example. Left: Local orientation image (same representation as in fig. 1).
Middle: Orientation histogram. Right: Same orientation histogram drawn in a polar
coordinate system (which may be easier to interpret).

4 Matching of histograms
The first step when finding a suitable affine mapping xn = Ax + b is to compare
the local orientation histograms of the destination blocks with the histograms of local
image regions in three larger scales, and at all integer pixel offsets.

Finding the affine mapping is a two-stage process. First we find the most similar
histogram regardless of rotation and mirroring, then we find the best rotation (modulo
π, due to the double angle nature of the local orientation statements) for the histogram
we found. This will give us four candidate mappings, which all have to be evaluated at
the grey-scale level.

4.1 Finding the best histogram regardless of rotation
We can find the best matching histogram regardless of rotation and mirroring, by look-
ing at the absolute values of the Fourier coefficients.

Since the grey-level mapping can handle scalings, we are only interested in the
shape of the histograms, not in the scaling. For this reason we normalize the histograms
before computing their Fourier transforms.

As a measure of how well two histograms match, we have used:

mk = |W 0||W k|t (2)

Here W 0 is the Fourier transform of the target block histogram, and W k is the
Fourier transform of one of the possible source blocks.

To find the best matching histogram, we thus first generate a list of all histograms,
then compute mk for each one of them. Finally we select the histogram that corre-
sponds to the highestmk value.

One thing is important to note here. Taking the absolute values of the Fourier coef-
ficients will give matches not only to histograms that differ by one global shift, but also
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to histograms that have different shifts in each frequency. An important implication of
this is that if two histograms have a certainmk value, the same value will be obtained
if one of them is mirrored.

4.2 Mirrored histograms
One problem when using orientation features to estimate the rotation of a block is
that the orientation property is only defined modulo π. The reason for this is that the
local orientation is represented with the double angle of the gradient direction. This
means that an image, and the same image rotated π rad will have the same orientation
histogram (see figure 5).
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Figure 5: Four permutations of the “Lena” test image.

We can also see that if we mirror the image content with respect to the x, or y axis,
the histogram will be mirrored as well.

As mentioned in section 4.1, the Fourier coefficients of these four candidates have
the same absolute values. At the histogram level there is no easy way to tell which
one of these four permutations is the best, so we will pass them all on to the grey-level
matching stage.

4.3 Finding the best rotation of a histogram
The best way to rotate an orientation histogram in order to align it with another one
can be found using the Fourier transforms of the two histograms. The method to be
described produces results with a resolution considerably higher than what is indicated
by the number of bins in the two histograms.

The method utilizes the Fourier coefficients in the positive half of the Fourier do-
main, ie. for an orientation histogram {h1, h2, . . . , hN} we will use the coefficients

wk(h) =
N
∑

n=1

hne−i2πk(n−1)/N for k = 1 . . . ⌊N/2⌋ (3)
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If we have two histograms h1, . . . hN , and g1, . . . gN , with similar shape, but dif-
ferent shifts, the phase difference of the Fourier coefficients can give an estimate of
how much the histograms have been shifted. However, since only the first coefficient
can give a full estimate (the others are given modulo π, modulo π/2 and so on), we
will have to use it to move the others into place. The shift as seen by the first Fourier
coefficients looks like this:

c1 = w1(h) conj(w1(g)) (4)

The next shift estimate can be moved into place (or unwrapped) using this estimate
as follows:

c̃2 = w2(h) conj(w2(g)) (5)

ϕ2 = ϕ1 + arg(c̃2e
i2ϕ1)/2 (6)

c2 = |c̃2|eiϕ2 (7)

We keep the magnitude of the complex number, since it contains a measure of the
two signal energies at the current frequency. Using the two shift estimates c1 and c2,
we can construct an estimate that takes the energy at the two frequencies into account:

θ2 = arg(c1 + c2) (8)

For the next pair of Fourier coefficients it would thus be better to use this estimate
to unwrap the phase. We will thus use the following algorithm:

c̃k = wk(h) conj(wk(g)) (9)

ϕk = θk−1 + arg(c̃keikθk−1)/k (10)

ck = |c̃k|eiϕk (11)

θk = arg

(

k
∑

l=1

cl

)

(12)

The final value of θk will be our estimate of the rotation. Thus we now have four
candidates for theA matrix in the affine transform:

• Rotation θk/2

• Rotation θk/2 + π

• Rotation θk/2, and mirroring

• Rotation θk/2 + π, and mirroring
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The first two rows in figure 6 shows some examples of regions selected by the
histogram matching algorithm. (The smaller of the two blocks in each image is the
destination block.) The top row shows the block outlines superimposed on the original
image, and the centre row shows them on the corresponding orientation images. As
can be seen in the bottom row (explained further in section 5), these regions may later
be mirrored, and even inverted in grey-level by the grey-level matching stage.
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Figure 6: Example of chosen blocks.

5 Finding a grey-level mapping
To find out which of the four candidates is the best, we will now apply a grey-level
mapping to the pixels in the source block. Recall the full mapping:

⎛

⎝

yn

xn

in

⎞

⎠ =

⎛

⎝

a11 a12 0
a21 a22 0
p1 p2 p3

⎞

⎠

⎛

⎝

y
x
i

⎞

⎠+

⎛

⎝

b1

b2

p4

⎞

⎠ (13)

We will now use the third of these equations to find the best grey-level mapping
from the source block to the target block.

There are two ways to do this. Either we use all four intensity parameters p1 . . . p4,
or we only use only the DC-offset, and scaling parameters, p3 and p4.

10



In either variant, the parameters are estimated using a least squares fit. If the target
blocks overlap, we will instead use a weighted least squares fit, where the pixels in the
centre of the block are regarded as more important than those near the rim.

The weighted least squares fit uses a weighting function that is one in the middle of
the block. At the sides, where the block overlaps it’s neighbours, the function decreases
as a cos2(x) function (see figure 7). Near the corners the function will consequently
decrease as cos2(x) cos2(y).

The reason for using this weighting function is mainly that the decoder uses it
to merge the overlapping blocks. This weighting function will turn the merging of
neighbouring blocks into a simple weighted sum, due to the fact that cos2(x)+cos2(x+
π/2) = 1, regardless of the value of x.

Figure 7: Weighting function.

Once we have found the (in the least square sense) best grey-level mapping, we
can use it to compute a performance measure. The performance measure we will use
is the sum of squares of the residual, ie. the difference between the intensities in the
destination block, and the transformed source block. As in the weight computation, we
will use a weighted sum of squares if the blocks overlap.

Of the four candidate blocks found by the histogram matching, we now select the
one with the smallest residual. This selection is illustrated in the bottom row of figure
6. The first column for each image shows the target block contents, the second column
shows the four variants of transformed source blocks, the third column shows the trans-
formed source blocks, with the grey-level adjusted according to ( p1 p2 p3 p4 ).
The source and destination block histograms are plotted next to the chosen mapping.

6 Bit rates
The two alternatives in grey-levelmatching will give us two different bit-rates, but there
are many factors that stay constant. For each block we have the following parameters:

• b1 and b2. For a 256 × 256 image these will correspond to 2 ∗ 8 = 16 bits.
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• The rotation angle ϕ. This will have to have a fairly high accuracy, for instance
as 8 bits.

• The block could either be mirrored, or not. This is 1 bit.

• We tested histograms in three scales, this corresponds to 2 bits
(or really log 3/ log 2 ≈ 1.585 but we prefer being generous).

• each of the grey-level parameters p1, . . . p4 will need 8 bits.

Thus we have the cases:

• A two-parameter grey-level mapping:
BB = 2 ∗ 8 + 8 + 1 + 2 + 2 ∗ 8 = 43 bits/block.

• A four-parameter grey-level mapping:
BB = 2 ∗ 8 + 8 + 1 + 2 + 4 ∗ 8 = 59 bits/block.

The final bit rate can be computed as:

bitrate =
BBNB

XimYim
(14)

Where (Xim, Yim) is the image size, and NB is the number of blocks. Assuming
that the image size is a multiple of the block size, the bit-rate calculation instead be-
comesBB/(XblYbl) where (Xbl, Ybl) is the block size. This calculation has been done
for a few block sizes in the table below:

Block size two parameters four parameters
8 × 8 0.67 0.92
16 × 16 0.17 0.23
32 × 32 0.04 0.06
Bit rates for some block sizes with no overlap between the blocks.

In general, the number of blocks can be computed from the following formula:

NB =
⌈

Yim − Ybl(1 − α)
αYbl

⌉ ⌈

Xim − Xbl(1 − α)
αXbl

⌉

(15)

Where α is the fraction of a block that is overlapped by its neighbour.
If we add some overlap, the bit rates in the table above will go up, but they will

always stay below the value in the cell above the current. Also note that any bit rates
should naturally be judged in combination with some kind of error measure.
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7 Decoding
The bit stream output from the encoder contains some representation of the three ma-
trices:

A =
(

a11 a12

a21 a22

)

b =
(

b1

b2

)

p =
(

p1 p2 p3 p4

)

for each block in the image. The matrices A and b define a mapping from the
target block to the source block

(

ys

xs

)

= A
(

yd

xd

)

+ b (16)

and the p vector defines an intensity mapping from the source block to the destina-
tion block. In the two-parameter case this is

id = p3is + p4 (17)

and in the four parameter case:

id =
(

ys xs is 1
)

pt (18)

7.1 Iterations
The decoding starts off with an image with random content. For each destination block
we then apply the two mappings in the following way:

• First the backward mapping (equation 16) is applied to each pair of coordinates
in the destination block. This gives us the location where we should fetch our
intensity value. This will in general be a non-integer image position, so we apply
bi-cubic interpolation in order to find the correct intensity value is.

• For each of the resultant intensity values we then apply the intensity mapping
(equation 17 or 18).

Figure 8: Illustration of the decoding process.

This process is repeated until the image content is stable, usually after 5 or 6 itera-
tions (see figure 8).
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7.2 Decoding performance
If we compare the time it takes our decoder to decode an image with that of a conven-
tional fractal image coder, ours is clearly much slower. This is mainly due to the bicu-
bic interpolation step. In MATLAB our implementation requires more than a minute to
unpack a 256 × 256 image coded with 32 × 32 blocks. However, an efficient imple-
mentation should be possible if we could somehow make use of vectorized machine
code instructions such as MMX2, or 3DNOW.

The use of large blocks seems to reduce the number of iterations required in the
decoding. Especially the ratio between the sizes of the source and the target blocks
seem to matter.

The cos2(x) windowing seems to give us smooth and pleasant looking results.
However, it might also introduce unnecessary blurring of the decoded image.

8 Experiments
In this section we will evaluate the presented image coding algorithm. All bit rates
are computed according to equation 14. Most of the tests have been performed on the
256 × 256 “Lena” image. As a comparison we have also coded the 401 × 401 fractal
image “Zapato”.

8.1 Varied overlap
The first experiment involves varied degree of overlap. The overlap is gradually in-
creased from no overlap, until two neighbouring blocks have exactly half their pixels
in common (see figure 9). As we can see, all overlaps except the last one have visible
artefacts stemming from the destination block positions.

8.2 Two and four grey-level parameters
The next experiment involves smaller block sizes, and the two-parameter grey-level
mapping. The result is shown in figure 10.

8.3 Fractal coding of fractals
Out of curiosity we also tried fractal coding on a fractal image. Considering that frac-
tals actually are built up from smaller parts of themselves (which is the assumption
made in fractal image coding), this should work at least as good as fractal coding on an
ordinary image.
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12
4
0.1521

32 × 32
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4
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Figure 9: Coding of the “Lena” image with varying degree of overlap.
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Block size
Overlap
p-params
Bit rate

32 × 32
16
4
0.2026

32 × 32
16
2
0.1476

Block size
Overlap
p-params
Bit rate

16 × 16
8
4
0.8652

16 × 16
8
2
0.6305

Figure 10: Varying block size, and grey-level mapping.

Block size
Overlap
p-params
Bit rate

32 × 32
16
4
0.2293

32 × 32
16
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0.1671

Figure 11: Fractal coding of a fractal image.
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8.4 Comparison with other coders
Previous approaches to fractal coding, use only a subset of the full mapping:
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The first reported implementations were made by Jacquin in 1989 and 1990. They
used the following restrictions onA:

(

a11 a12

a21 a22

)

=
(

±0.5 0
0 ±0.5

)

or
(

0 ±0.5
±0.5 0

)

and did not use the parameters p1 and p2. Jacquin’s approach was extended in 1991
by Øien to use the grey-level mapping parameters p1 and p2 [2]. The reduced degree
of freedom in block matching reduces the amount of bits per block.

Method Bits per block,BB

Jacquin 3 + 2 ∗ 8 + 2 ∗ 8 = 35
Øien 3 + 2 ∗ 8 + 4 ∗ 8 = 51

A comparison between the Øien coder and ours is made in table 1. The bitrates and
the PSNR values in this table are plotted against each other in figure 12.

Coder Block size Overlap No of p-pars bitrate PSNR
Our 32 × 32 16 4 0.2026 20.5085
Our 32 × 32 32 4 0.0576 18.0918
Our 32 × 32 24 4 0.1089 18.5946
Our 32 × 32 20 4 0.1521 19.0208
Our 16 × 16 8 4 0.8652 24.9872
Our 32 × 32 16 2 0.1476 17.7871
Our 16 × 16 8 2 0.6305 22.5896
Øien 32 × 32 16 4 0.1751 20.7532
Øien 16 × 16 8 4 0.7478 25.2421

Table 1: Table of various bitrates and PSNR values.

The PSNR values in the table have been computed using the following formula:

PSNR = 10 log10
|xpp|2

∑

ij(xij − x̂ij)2
dB (20)
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As can be seen in figure 12, the Øien coder outperforms our coder at present. How-
ever, there exists several possibilities to improve our coder as is mentioned in section
9.
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Figure 12: PSNR vs. bitrate

Plus-signs show the performance of the Øien coder.
Asterisks are our results.

One advantage with our approach is the encoding time. Even though our coder
searches three scales, and arbitrary rotations of the image, the search is significantly
faster. So, even if we make the search more detailed we would still have a coder that is
at least as convenient to use as the Øien coder.
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9 Conclusions
The idea to find similar local areas in the image by matching their feature histograms
seems to work fine in some areas and worse in other areas, especially ones that contain
complex patterns. There are several things that can be improved in the algorithm, some
of them are:

• In the experiments above we only used the best histogram match for further
processing. We could instead use for instance the 5 best matches, calculate A,
b, and p for each match and then decide which one is the best.

• Image gradients are probably not enough in areas with complex patterns. For
instance the fractal image in fig. 11 containts a lot of orientations in every local
area and the orientation histograms do not contain enough information about the
area. To improve the algorithm we could make histograms from other features.
One example is to use corners as features. The histogram can then be based
on corner orientation or corner angle. Another example could be to use texture
features.

The idea to match feature histograms to find similar areas should also be possible to
use in video coding. We could then try to predict areas in one frame from areas in the
previous one. The algorithm will be very similar to the one used in this report. Another
idea could be to make local feature histograms in volumes instead of frames.
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