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1 Introduction

The MATLAB/C programtakeversion 3.1 is a program for simulation of X-ray
projections from 3D volume data. It is based on an older C version by Miiller-
Merbach [4] as well as an extended C version by Turbell [7]. The program can
simulate 2D X-ray projections from 3D objects. These data can then be input to
3D reconstruction algorithms. Here however, we only demonstrate a couple of 2D
reconstruction algorithms, written in MATLAB. Simple MATLAB examples show
how to generate thiakeprojections followed by subsequent reconstruction.

Compared to the olthkeversion, the C code have been carefully revised.

A preliminary, rather untested feature of using a polychromatic X-ray source
with different energy levels was already included in the talke version. The
current polychromatic feature X-ray is however carefully tested. For example, it
has been compared with the results from the program described in [3]. We also
demonstrate experiments with a polychromatic X-ray source and a Plexiglass ob-
ject giving the beam-hardening artefact.

Detector sensitivity for different energy levels is not includethike However,
in section 6.2, we describe a technique to include the detector sensitivity into the
energy spectrum.

Finally, an experiment with comparison of real and simulated data were per-
formed. The result wasn't completely successful, but we still demonstrate it.

2 Manual for take

2.1 General structure oftake

Thetakeenvironment is shown in Figure 1. All parameters to the program are given
in a number of text-files. By defautthke.txt is used as the initialization file. In

this file, all the other files are specified. Also, in some cases, a voxel volume might
serve as in-data. The out-data is normally projection data from a mathematical
phantom. However, the out-data can also be a voxel volume computed from a
mathematical phantonTakecan be executed in two ways

e as a stand-alone C program. The out-data is then returned in a binary file.

e as a MATLAB command. The out-data is then returned in a MATLAB vari-
able.

2.2 MATLAB interface

The general format is
[y,params] = take(commands);

whereparams andcommands are optional. The simplest version is



y = take;

which computes a projection (or a voxelized phantom) according to the contents of
the parameter files. The character strisggnmands can be used to override the
parameters given in the parameter files. A call by name convention is used so no
special order or number of commands is required. For instance

y = take('initfile=myinit.txt’);

will use myinit.txt instead oftake.txt . The table below gives a list of
available commands:

Command Comment
"attenuation=log’ do take the logarithm of the
projection data
'debug’ debug printouts during execution
'detector=file.txt’ use the detector definition in file.txt
‘'energyspectrum=file.txt’ use the spectrum definition in file.txt
'initfile=file.txt’ usefile.txt instead of
take.txt as initfile
initrot=fi’ rotates the phantom fi degrees befare
taking projections
'mono=energy’ use monoenergetic spectrum with
energy given in keV
'phantom=file.txt’ use the phantom definition in file.txt
'trajectory=file.txt’ use the trajectory definition in file.txt
'verbose’ prints logging information to log.txt
in case of projection generation
'voxelcenter=x y 7’ center of voxel volume given by the
doubles x,y,z and measured in meters
'voxelization’ computes a voxelized phantom
instead of projection data
'voxelnr=x y z’ size of voxel volume given by the
integers x,y,z and measured in voxels
'voxelsize=x y 7’ size of voxel volume given by the
doubles x,y,z and measured in meters




teketxt |
W phantom = phm.txt

detector = det.txt
trajectory = trj.txt
energyspectrum = spm.txt
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phantomfile

detector file J
tr txt take projection

data
trajectory file

spm.txt | log.txt

‘ . . .
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Figure 1: The in-files and the out-data for the progtake

Most of these commands can alternatively be given directly in the initialization file
take.txt

Command Comment
‘attenuation=log’ do take the logarithm of the
projection data
'detector=file.txt’ use the detector definition in file.txt
‘'energyspectrum=file.txt’ use the spectrum definition in file.txt
'mono=energy’ use monoenergetic spectrum with
energy given in keV
‘phantom=file.txt’ use the phantom definition in file.txt
'trajectory=file.txt’ use the trajectory definition in file.txt
'verbose=’ prints logging information to log.txt
in case of projection generation
'voxelcenter=x y 2z’ center of voxel volume given by the
doubles x,y,z and measured in meters
'voxelization=’ computes a voxelized phantom
instead of projection data
'voxelnr=x y Z’ size of voxel volume given by the
integers x,y,z and measured in voxels
'voxelsize=x y 7’ size of voxel volume given by the
doubles x,y,z and measured in meters

The command

[y geo] = take;



will return the projection data ip. Thel x 2-arraygeo returns some geometrical
parameters, where geo(1) is the distance in meters between the X-ray source and
the rotation center and geo(2) is the angle in radians between two fan rays.

2.3 The stand-alone syntax

The command
take

will execute the stand-alone C program witke.txt ~ as in-data and initializa-
tion file, i.e. take.txt is the default file. The projection data will by default be
returnedin thefilproj.dat  or alternatively to a file specified in the initialization
file. If another initialization file thamake.txt is desired, the command

take file.txt

will execute the stand-alone C program wiille.txt as in-data and initializa-
tion file. Alternatively, the out-data will be voxelized data, if so specified in the
initialization file. Additional possible commands to be given directly in the initial-
ization filetake.txt  is then:

Command Comment

'projection=projl.dat’ saves the projection data in the file
projl.dat instead of inproj.dat

'voxelization=' computes a voxelized phantom

instead of projection data

and saves it in the filgox.dat
'voxelization=vox1.dat’ computes a voxelized phantom
instead of projection data

and saves it in the fileox1.dat

The stand-alone syntax cannot read .mat-files. Spectrum files and material files
must be given in text-format in .txt-files, see Section 2.8 and 2.9.

The format of the projection and voxelized data is our own so called bvv-
format. It is simply three integers followed by the data in floating point. Actually,
the projection data is saved in the same order as the c-declaration

float[noProj][cSize][aSize]

wherenoProj is the number of projections, am$ize andcSize is the width
and height of the detector, respectively. The voxelized data is saved in the same
order as the c-declaration

float[zSize][ySize][xSize]



2.4 The initialization file

A typical initialization file might look like:

#
# init file for take
#

H

™

verbose

phantom = phm.txt
detector = det.txt
trajectory = trj.txt

H

T

#voxelization = vox.dat

voxelnr = 128 64 32
voxelsize = 0.6 0.6 0.6
voxelcenter = 0.0 0.0 0.0
voxelpoints = 1

H

™

energyspectrum = spm.txt

Lines beginning with # are treated as comments. If the paramgteestom ,
detector andtrajectory are not given, they are set to the default values
phm.txt ,det.txt  andtrj.txt . These files are necessary to enable a mean-
ingful calculation.

The prograntakewill voxelize the phantom if the parametevxelization
is specified. (Then th& character beforgoxelization in the example file
must naturally be removed.) In this case the parameteasinr  andvoxelsize
must be specified. The paramet@xelcenter  is optional with default value
0.0 0.0 0.0 . The meaning offoxelnr , voxelsize  andvoxelcenter
was given in the tables in section 2.2. The measures are given in relation to the
reference coordinate system, see below. If the integer parameter
voxelpoints = a > 1, each voxel will be split intax® sub-voxels. The result-
ing value for a voxel is then the average of the subvoxels, which will reduce the
jaggedness close to boundaries.

The energyspectrum  parameter is given as an ASCII .txt-file or alterna-
tively as a MATLAB .mat-file, see also Section 2.8.

2.5 The phantom file

Below we show an example of a simple phantom file describing a phantom, consist-
ing of a Plexiglass cylinder with three drilled holes. The line continuation symbol
“\” used in this example is not supported take



# plexi phantom

#

# cylinder

cylind a=0.040 b=0.040 c¢=0.01 x=0.0 y=0.0 z=0.0 \
theta=0.0 phi=0.0 dens=1.19 mat=0

# hole D = 20mm

cylind a=0.010 b=0.010 ¢=0.01 x=-0.02 y=0.0 z=0.0 \
theta=0.0 phi=0.0 dens=-1.19 mat=0

# hole D = 15mm

cylind a=0.0075 b=0.0075 c¢=0.01 x=0.01 y=-0.0173 z=0.0 \
theta=0.0 phi=0.0 dens=-1.19 mat=0

# hole D = 10mm

cylind a=0.005 b=0.005 ¢=0.01 x=0.01 y=0.0173 z=0.0 \
theta=0.0 phi=0.0 dens=-1.19 mat=0

#
# plexiglass
material = O ../materials/plexi.txt

The progranmakeallows three kinds of geometrical objects, nangdlipsoids :
cylinders andboxes . Moreover,takeallows voxel volumes, see the end of
this section. To specify them only the first letter is significant, that is, b or v.
These objects may be thought of as unit objects at the origin of a reference coordi-
nate system. For instance the unit ellipsoid is the unit sphere. The rest of the line in
the phantom file will then scale, rotate and translate the object. To describe these
operations we use 4-dimensional homogeneous transformation matrices. These
matrices will all have the same fourth row, which is not storethkie The scaling
matrix is given by

sa 0 0 0
0 s, 0 0

S(Say8p,8)=10 0 s. 0], Q)
0 0 0 1

and the translation matrix is given by

1 0 0 t,
01 0 t

T(ty,ty,t:) =10 0 1 t,]. (2)
0 00 1



An arbitrary coordinatézy, yo, z0, 1)’ on the unit sphere is transformedtQ xo, syyo, Sc20, 1)’
by the S-matrix, i.e.

. sa 00 0\
S“yo 0 s, 0 0 yo
vYo | 0
ae | = 0 0 s. 0 ol (3)
1 0 0 0 1 1

In a similar way an arbitrary poir(tco, o, 20, 1)" in the 3D world is translated to
(o + tz, Yo + ty, 20 + 2, 1)’ by theT-matrix, i.e.

To + 1t 100t x
yon 01 0 t, yo
0 Y o 0

ot | T 0 0 1 ¢, 2 | (4)
! 0 00 1 1

See also Figure 2 showing the result of transforming the unit sphere I8 dued
T-matrices.

Reference system, R
z

X! y! Z)

X

Figure 2: The unit sphere transformed by $eandT-matrices.

A rotation in the xy-plane around the z-axis is given by

cos(a) —sin(a) 0 0
sin(a)  cos(a) 0 O

Ra)=1| o0 0 10 (5)
O ........ 0 ...... 0 1

The rotation matriced?, and i, are defined in a similar manner. The program
take uses three different ways of specifying the rotation of an object, namely by

specifying

10



Reference system, RA z

Figure 3: The unit sphere transformed by Rg#) - Ry(¢) - S(sq, sp, s¢). Here
(Sa, Spy Sc) = (0.1,0.1,0.3), # = 60° and¢ = 30°.

e 2 anglesy (theta ) and¢ (phi ). The two angles specifies a point on the
unit sphered is the longitude and is the colatitude. For instance

a=0.1 b=0.1 ¢=0.3 x=0.0 y=0.0 z=0.0 \
theta=60 phi=30

corresponds to the transformation matrix

Q="T(ty,ty,tz) - R.(0) - Ry(¢) - S(5a, Sp, 5¢)
= T(0,0,0) - R.(60) - Ry (30) - S(0.1,0.1,0.3)

where the matrices are applied from right to left. See also Figure 3 showing
the result of transforming the unit sphere this way.

e 3rotationsy,,ry, 7, (rotx, roty, rotz ) around the axes of the refer-
ence system. For instance

a=0.1 b=0.1 c=0.1 x=-0.2 y=0.0 z=0.0 \
rotx=30 roty=45 rotz=90

which should be interpreted: rotate first 30 degrees around the x-axis, then
45 degrees around the y-axis and finally 90 degrees around the z-axis. The
complete transformation matrix is then given by

Q= RZ(TZ) ) Ry(ry) “Ry(ry) - T(traty7tz) : S(5a7 Sp, Sc)
= R.(90) - R,(45) - R,(30) - T'(—0.2,0,0) - S(0.1,0.1,0.1).

Translation is performed before rotating the object.
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e 3rotationsx,, y., z- (xrot, yrot, zrot ) around the object axes. The
following examples uses the Euler angles

a=0.1 b=0.1 c=0.1 x=-0.2 y=0.0 z=0.0 \
zrot=30 yrot=45 zrot=90

which should be interpreted as: begin by rotating 30 degrees around the z-
axis, then rotate 45 degrees around tiesvy-axis and finally 90 degrees
around thenewz-axis. The same 3D-rotation can be performed by rotating
relative to the fixed xyz-coordinate system just by reversing the order of the
rotations, that is

Q= T(tw>ty7tz) : Rz(zr) : Ry(yr) : Rz(zr) : S(Saa Sb, 5c>-
=T(-0.2,0,0) - R.(30) - Ry(45) - R,(90) - S(0.1,0.1,0.1).

The density of the object is given by, for instandens=1.19 . To handle
polychromatic spectrums, a material numbet=0 and a corresponding material
file

material = 0 ../materials/plexi.txt

should be specified in the phantom file, see the example in the beginning of this
section.

The voxel volume object can be seen as a box, the only difference being that
the density variation is described by a voxel file instead of being homogeneous.
The voxel data may be a reconstructed CT-volume or a voxelization of a phantom
not possible to construct from the existing primitives. The declaration is on the
form

# voxel volume object
#H

voxel a=0.5 b=0.5 c=2 x=0 y=0 z=2 theta=0 phi=0 \
file=head.bvv

where the last argument specifies the name of the file containing the voxel density
data. The file should be of bvv-type. The data is stretched to fully fill the box as
shown in Figure 4. The projections are generated by interpolating along the rays
using the technique of Joseph [1]. The projection generating procedure through
voxel volumes is currently not implemented for different energy levels.

2.6 The detector file
A typical detector file might look like:

12



a

Figure 4: A small voxel volume with $2x4 voxel values. Note that a, b, and ¢
define the outer dimensions of the voxel volume and that the voxels are non-cubic
in order to fill the box.

# detector file
#
xlen=0.092816
ylen=0.092816
Xpix=256
ypix=256
Xypoints=4

The size of the detector is given bjen andylen , see Figure 7. The param-
etersxpix andypix specifies the number of detector elements in the x- and
y-direction, respectively. The parametgrpoints  gives sub-sampling of the
detector elements, in this ca4e4=16 subsamples are specified.

The default detector shape is a flat rectangular detector. Cylindrical detectors
of two kinds are also allowed: cylindrical around the X-ray source or cylindrical
around the rotation axis. The first one is illustrated in Figure 5. The second one
is similar, the only difference being that the detector is more curved since it is
cylindrical around the rotation axis. In these cases a number of extra parameters
are needed.

¢ shape . SpecifycylindricalAroundSource or
cylindricalAroundRotationAxis

e fanangle . Specifies the angle, measured in radians, between the detector
center and the outer border of the border detector cell.

e height . Denotes the height of the detector projected onto the rotation axis.

13



Source

Figure 5: The parameters of a cylindrical detector centered around the source. The
detector consists of 4 rows of 8 channels, each.

e channels . Denotes the number of rays in a fan, i.e. the number of detector
elements in a row.

e rows . Denotes the number of fans in a cone, i.e. the number of detector
rows.

e skew. This parameter is only valid for the
cylindricalAroundRotationAxis case. It is used when slanted
rows are desired. It denotes thalisplacement per fan-angle for each row,
i.e. A(/A~. It can be used if a detector perfectly fitted to the helical scan
path is desired.

All types of detectors can be translated horizontally. In the case of cylindrical
detectors, this translation is a rotation.

e channel _offset . Translates or rotates the detector in the positive
direction the given number of detector channels. If this parameter is set to
0.25, quarter offset is achieved.

The default case itakeis to use a point-shaped source. More realistically, the
source can be modeled as a small rectangular plane parallel to the detector plane.
This feature only makes a difference if several rays are measured per detector cell,

14



i.e. whenxypoints > 1 . See Figure 6. The rays then start from a grid on
the source rectangle. This grid is defined in an identical way to the grid on each
detector cell. 1t would be too expensive to cast a ray from each source grid point
to each detector cell grid point, so a simple scheme is used. From each source grid
point two rays are casted to each detector cell, one to the corresponding detector
grid point and another to the mirrored detector grid point. For example, from the
upper left corner of the source rays are cast both to the upper left corner and to
the lower right corner of each detector cell. The number of grid points on the
source and detector are therefore the same, naryglgints 2. This results in

that 2-xypoints 2 rays are casted per detector cell. The following parameters
defining the source should be placed in the detector file:

e sourceWidth . Specifies the width of the source rectangle.
e sourceHeight . Specifies the height of the source rectangle.

Note that whermxypoints is odd, the central ray is measured twice. This is
however not the casexypoints=1  or if
sourceWidth = sourceHeight = 0

detector
cell

source
height

\

source—
width

Figure 6: Here, both source and detector are sub-sampled. The parameter
xXypoints = 2
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2.7 The trajectory file

The trajectory file describes the trajectories of the X-ray source and detector. It
must begin with the worgbrojections and the number of projections. The
trajectories can then be specified in two ways:

e by specifying in order, a vector for the first source position, a matrix for the
first detector position and a matrix for the transformation from one position
to the next.

e by specifying the wordexplicit immediately after the projections line.
Then comes in order source position 0, detector position 0 (matrix), source
position 1, ..., source positiaN — 1 and detector positioilV — 1.

We explain the first method with an example:

# trajectory file

projections = 254

#

# source position sO
0.725712 0.00000000 0.00000000

#

# detector position matrix DO
0.00000000 -1.00000000 0.00000000 -0.72571200
1.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

# transformation matrix T (pos i => pos i+l)
0.99991660 -0.01291508 0.00000000 0.00000000
0.01291508 0.99991660 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

See Figure 7. The first source position is givensgy= (0.725712,0,0), that
is on the positive part of the x-axis in the reference coordinate sy&ernihe
detector coordinate systemis defined as follows. Originallyp coincide withR,
so that the basis vectoss= x, b = y, ¢ = z and the two origins coincide. In
homogeneous matrix notation we have for the original detector position

1 000
01 00 x y z 0
R=L=|0 0 1 0 ( ........... ) (6)
........... 0 0 01
0 0 01

16



detector system, D
AcC

reference system, R P

oy

P

Figure 7: The source positiag and the detector coordinate systéhare specified
in relation to the reference coordinate systBm

The first detector position is then given by

0 —1 0 —-0.725712

1 0 0 0 a b c t
Dy-Iy=Dyg=1]10 0 1 0 =|....... ... @)

..................... 0 0 01

0 0 O 1

which is a translation by-0.725712 in the x-direction and &0° rotation around
the z-axis. Equivalently, the new basis vectors in the detector system-arg,
b = —x, ¢ = z. Finally the i-th position of the source and detector is given by
S; = T . S0
Dy =T'- Dy, (8)

whereT is the transformation matrix

0.99991660 —0.01291508 0 O
0.01291508  0.99991660 0 O
T = 0 0 1 01, 9)

i.e. this matrix rotates the source and the dete@tot® around the z-axis of the
reference system.

17



2.8 The energy-spectrum files

A spectrum file for an X-ray source, specifying the number of photons as a function
of energyN = N(E), is shown below. It consists of a table where the first column
gives the energy [keV] and the second column the number of photdhsThe
second column must begin and end with a zero.

# Name: 45.0 kV
# Continuous spectrum
# Dimension: 42

# E [keV]
5.0000000e+00
6.0000000e+00
7.0000000e+00
8.0000000e+00
9.0000000e+00
1.0000000e+01
1.1000000e+01
1.2000000e+01

4.6000000e+01

N

0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00
3.1155915e-09
4.0548318e-05
6.8623098e-04
1.8461402e-02

0.0000000e+00

The energy-spectrum file can also be given in .mat-format containing two columns
and a number of rows. Note, however, that the .mat-format does not work for a
stand-alone program. The whole energy-spectrum file is given in section 8.5.1.

2.9 The material files

A material file for Plexiglass is shown below. It consists of a table where the first
column gives photon energy [MeV]. The other columns list so called cross sections,
for coherent and incoherent scattering and photo-electric effect, respectively. The
cross-sections combined with the density gives the X-ray attenuation coefficient.
The density should be given in the phantom file.

# Material: Plexiglass

# Density: 1.19 g/cm”3

# Dimension: 201

# Energy Co CS In_CS

# [MeV] [cm"2/g] [cm”"2/g]
1.00000e-03 1.15e+00 1.42e-02
1.50000e-03 1.03e+00 2.83e-02
2.00000e-03 9.13e-01 4.36e-02
3.00000e-03 6.92e-01 7.21e-02
4.00000e-03 5.27e-01 9.46e-02
5.00000e-03 4.13e-01 1.11e-01

Ph_CS
[cm"2/g]
2.73e+03
8.91e+02
3.92e+02
1.19e+02
5.03e+01
2.55e+01

18



6.00000e-03 3.34e-01 1.23e-01 1.45e+01

2.00000e-01 1.06e-03 1.31e-01 1.61le-04

We make the assumption that a photon that has interacted by any of these three
effects does not reach the detector. The linear attenuation coeffictamt thus be
calculated by the formula

u(E) =100+ p- (00o(E) + orn(E) + opn(E)) [m~'],  (10)

wherep is the density of the material measured in [girac, is the cross-section

for coherent scatteringsy,, is the cross-section for incoherent scattering, apg

is the cross-section for the photo-electric effect. The cross-sections are all mea-
sured in [cmd/g]. The material file can also be given in .mat-format containing
four columns and a number of rows. Note, however, that the .mat-format does not
work for a stand-alone program. The whole material file for Plexiglass is given in
section 8.5.2.

2.10 Computation of a detector value given a polychromatic X-ray
source

Detector values are estimated by computing line integrals through the phantom.
The intensity that reaches the detector is given by

Sy = /OEW E N(E) - exp (—/LM(Z,E) dl) dE, (11)

where EN (E) is the intensity at the energy levél, the linear attenuation coef-
ficient i is given by (10) and. is a straight line through the phantom. For an
unattenuated ray, that does not intersect the phantom, we get

So = /0 ey N(E) dE. (12)

Projection data, that is used as input to a reconstruction algorithm, is given by

— SO
pL=1n <SL> ) (13)

where Sy and Sy, are defined by (11) and (12), respectively. For a phantom con-
sisting of K materials (11) is modified to

E"na(ﬂ
SL:/ EN(E)-exp(—
0

-1

uk<E>lk> dE, (14)
k=0
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b)

B N(E) - explyio( E)lo)

c)

+— — H i F—— i — -

Figure 8: a) Intensity spectrum at the sourde, N(E). b) Attenuation as
a function of energyexp(—uo(E)lp). c€) Intensity spectrum at the detector,
E - N(E) - exp(—po(E)lo).
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wherel;, is the length of the intersection with material If the phantom consists
of only one material (14) simplifies to

Emaas
Sy = / E N(E) e Bl gp, (15)
0

In Figure 8 we show how the integral in (15) is computed. The intensity spectrum
at the sourceZ N(E), Figure 8 a), and the attenuation as a function of energy
exp(—uo(F)ly), Figure 8 b), are typically sampled on different grids. The intensity
spectrum and attenuation function are re-sampled to a common grid and multiplied
as shown in Figure 8 c). We designate these sample paifitsi—o... k. Now (15)
can be computed using Simpson’s formula

K-1
1
Si =5 > EpN(Ey) - e oo (B — By ). (16)
k=1

Finally we can compute a monochromatic version of (11),

SL = E() N(E()) - exp <— /; /J,(l, E()) dl) . (17)

Note that the detector sensitivity is not included in this computation of the detector
value. The progranakedoes not support detector sensitivity either. However, the
experiment in section 6.2 shows a technique to include the detector sensitivity into
the energy spectrum.

3 Reconstruction with Computed Tomography (CT)

When a set of projections have been generated by a CT-scanner or computed by
a simulation program such #aske the behind-lying object function can be recon-
structed from its projections provided that

e The projections span the whal80° angular interval around the object.
e The projections cover the whole object, i.e. the projections are not truncated.

The above mentioned is valid for the 2D case, a 2D slice through the object and a
set of 1D parallel projections.

A modern CT tomograph does not create parallel rays, but a set of rays diverg-
ing from one point, the X-ray source. Such a set of rays gives a 2D function, a
cone-beam projection. If the rays are collimated so that they all travel in the same
2D object slice, a 1D fan-beam projection is produced instead, see Figure 10.

The simulation progrartakeis able to produce 2D cone-beam projections and
of course also 1D fan-beam projections. From 2D cone-beam projections there is,
under certain circumstances, possible to reconstruct a 3D object. We will, however,
not treat 3D reconstruction in this report.
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The most commonly used reconstruction algorithm is the filtered back-projection
method. There are three variants of this method depending on the ray geometry,
parallel rays, fan-beam rays with curved detector and fan-beam rays with flat de-
tector. In the following we will describe the first two ones, which both have been
implemented in théakeenvironment. There also exists another possibility, namely
to rebin the fan-beam rays into parallel rays before applying the reconstruction.
Rebinning from fan-beam rays with flat detector to parallel rays have been imple-
mented in théakeenvironment and is described below. A more thorough treatise
of all variants of the filtered back-projection method can be found in for example
[2] or [5].

3.1 The parallel filtered back-projection method

The whole process of parallel computed tomography (CT), is illustrated in Figure 9
and contains the following stepgsarallel projection generatioyramp-filteringand
back-projection The two last steps constitutes the parallel filtered back-projection
method. Note that the object is denotg@r,y) and the reconstructed object

f(z,y).

ramp-filter
ﬁr* h(r) f\‘ r

q(r.6)

p(r.0)

;

repeat for
all angles
0

f(x.y)

Figure 9: Parallel computed tomography illustrated.

e Projectiongeneration is described by

p(r,0) = / f(x,y) ds, (18)

()= (50 ?) <s> (19)
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e At first, theramp-filteris applied according to
a(r,0) = F;  [Folp(r,0)] - Foln(r)] (20)

whereF,. denotes the Fourier transform in thelirection, 7! denotes the
inverse Fourier transform, and

|P|> if |P| < Pmaz;
Flhr)l = Hip) = {O elsewhere (21)

e Thenback-projectioris applied, which means smearing of filtered projection
data over the image plane according to

™

flz,y) = /q(az cos + ysiné,0)do. (22)
0

3.2 The fan-beam filtered back-projection method with curved detec-
tor

The whole process of fan-beam computed tomography with curved detector, is
illustrated in Figure 10 and contains the following stdps;beam projection gen-
eration, pre-weighting filtering with a modified ramp-filteand weighted back-
projection The three last steps constitutes the fan-beam filtered back-projection
method. Note that the object is denotgdx,y) and the reconstructed object

preweighting preweighted

(\ /ﬂ ramp~filter ﬁ‘

ny.B " qay.B

repeat fo
all angles
B
f(x.y)
Projection generation Weighted Backprojection
Figure 10: Fan-beam computed tomography illustrated.
f(a,y)
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e Thefan-beam projectiom (v, 3) contains line integrals through(z, y) as
the geometry in Figure 10 illustrates.

e Atfirst, the projection data igre-weightedwvith

D - cos(7). (23)

e Then the modifiedamp-filteris applied according to

ar (v, B) = F FD - cos(y) - pr (v, B)] - Frlg()]],  (24)

whereF,, denotes the Fourier transform in thedirection, 7! denotes the
inverse Fourier transform and the relation between the original ramp-filter
h() in Equation (21) and the modified ramp-filtgf ) is

g(v) = ;( . >2h(v)- (25)

sin vy

e Theweighted back-projection

27

f(z,y) = 5 4f(B,v(z,y, B) dB. (26)

includes a space dependent factiof.?, whereL is the distance between
the actual point and the source aRds the distance between the origin and
the source,

L(z,y,0)? = (R—zsin 8+ ycos 3)? + (zcos B+ ysin f)2.  (27)
The positiorry, where the ray intersects the pixel, y) is given by

xcos 3+ ysinf )

28
R —xsinf+ ycosp (28)

P —

The explanation for Equation (27) and Equation (28) can be realized by this equa-
tion describing the rotation between two coordinate systems,

r\ [ cosB sinf\ (z
<s) N (— sin3 cos ﬁ) (y> ’ (29)

and the geometry in Figure 11.
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Figure 11: The geometry of a fan-beam system illustrated.

3.3 Rebinning from fan-beam rays and flat detector to parallel rays

The parallel filtered back-projection method has some advantages over the fan-
beam filtered back-projection method. At first, it is simpler and faster. Secondly,
the demanded projection angular interval is smaller. As can be seen in the back-
projection equations, Equation (22) and (26), the projection interval for parallel
data is¢ € [0, 7[, whereas it is3 € [0, 2| for fan-beam data. Nevertheless, it can
be shown that the projection interval can be diminishe@ ®[—vaz, ™+ VYmaz |,
wherev,... IS the maximum fan-angle. The cost for this is a more complicated
reconstruction algorithm.

Another possibility is to collect fan-beam in the intervale [—vpa0, ™ +
Ymaz| @Nd rebin them to parallel data in the inter@at [0, 7|, followed by simple
parallel filtered back-projection reconstruction. The naet@nningsuggests that
the fan-beam data could simply be resorted into parallel data, but the fact is that
interpolation is also necessary.

Figure 12 shows the fan-beam geometry with flat detector. SHaeis is the
axis along the detector and theaxis is simply a scaled version translated to the
origin. The fan-beam source angledsnd the fan-angle is. The maximum fan-
angle is denoted,,.... The coordinate axes for the parallel geométryr) is also
included in the figure. From the figure, it it easy to derive the following relations
between the different coordinates,

0=p+~, r=scos(y), (30)
or equivalently
S sD
= —_— = — 1
0 ﬂ—i—arctan(D), T S (31)
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Figure 12: Fan-beam computed tomography illustrated.

or equivalently
r rD
B = 6 — arcsin (—) LS = =, (32)
D VD2 — 2
Fan-beam data ? B Sinogram 0
T[+y max
T T
T[_y max

_ymax
Figure 13: Rebinning.

Figure 13 now shows rebinning from the fan-beam projection coordiféates
to the parallel coordinatg®, ). The(6, r)-scheme consequently shows 1D paral-
lel projections piled up on each other. Such a scheme is often caladgram As
mentioned above, the indicated 2D interval witk [0, 7| andr € [—7maz, Tmaz)
is sufficient for reconstruction. This interval can be mapped ontd/the)-space

26



by using Equation (31). The location of the interval is indicated in the figure and
shows that? € [—Vmaz, ™ + Tmaz| IS NEcessary and sufficient for reconstruction.
The maximum fan-angle,,... can be calculated from Equation (30) by inserting

r = rmaz. From figure 13, it can also be noted that some of the data is redundant,
i.e. they need not to be utilized for rebinning to tlter)-space.

4 The physics of X-ray projections

Ideally, an X-ray with/Ny photons transversing an object along a lines attenu-
ated to/N photons according to

N = Ny - e~ Jorhd (33)

wherey is the attenuation coefficient of the material in the object. By taking the
natural logarithm on both sides we can express the line integral dl@sg

/Lu(l)dl =In % (34)

This is the monochromatic case, compare these equations with the polychromatic
case in Equation (11), (12) and (13). A set of line integrals forms a projection and a
set of projections can be reconstructed to a CT-image, see section 3. Consequently,
a CT—imagef(x,y) shows the attenuation coefficients in the reconstructed slice,
f(@,y) = p(z,y).

More precisely, theu-value is the probability for interaction per unit length.
Normally, the unit foru is attenuation per meter or simply/m]. The p-value is
composed of three different interaction processes,

U =0Co+ 0+ 0pp (35)
where the three interaction processes are

e Coherent scattering (Rayleigh scattering),: This is the interaction of an
X-ray photon and an atom. As a result of the interaction, the X-ray photon
does not loose any energy, but is deflected from its original path.

e Incoherent scattering (Compton scattering): This is the interaction of an
X-ray photon and a free or loosely bound electron in one of the outer shells
of an atom. As a result of the interaction, the X-ray photon looses some of
its energy and is deflected from its original path. The energy loss is gained
by the electron.

e The photo-electric absorptianp,: An X-ray photon imparts all its energy
to a tightly bound inner electron in an atom. The electron uses some of the
acquired energy to overcome the binding energy within its shell. The rest of
the energy is used for kinetic energy.
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A more thorough treatise of these three types of interactions can be found in any
basic literature on modern physics.

Coherent and incoherent scattering do not only contribute to the attenuation
coefficientu, they also produce new X-rays traveling in a new direction, so called
scattering. If these rays enters the detector, they cannot be distinguished from
primary rays. The scattered rays are not wanted since they cause errors in the mea-
surement of the line integral in equation (34). It is possible to diminish scattering
by using mechanical arrangements of collimators and rasters.

A good simulation of scattering is nevertheless valuable and can be realistically
done with so called Monte Carlo simulation. There is one disadvantage with Monte
Carlo simulation, however, it is very slow. The simulation progtakecannot do
scatter simulation. Instead, we hope to combine high resolution projection gener-
ation intakewith low resolution scattering simulation such as the one in [3]. We
think that this is possible since scattering seems to be a low frequency distortion.
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5 Experiments with simulated data

5.1 Demonstration of voxel data and projection generation.

The progranmakewas used operate on a Plexiglass object consisting of a cylinder
with a cylindrical hole. At first, the object was voxelized. In Figure 14, three
cross-sections of the voxelized object are shown. Tthkawas used to generate

a) voxel-volume xy-slice b) voxel-volume xz-slice
-0.2 -0.2 1
-0.1 0.8
0 0 0.6
0.1 0.4
0.2 0.2 0.2

c) voxel-volume yz-slice

-0.2
-0.1
0
0.1
0.2

Figure 14: Three cross-sections of the voxelized 3D object. a) xy-slice b) xz-slice
c) yz-slice

cone-beam projections for the Plexiglass object with a monochromatic spectrum at
30 keV. The number of projections was 180, spanning an angular interoal-of

360°. The detector was specified to be 64 channels and 65 rows. The projection
data are shown in Figure 15. Figure 15a-c show 2D projection data at projection
angle0°, 60° and90°. Note how the little hole in the object change position in
projection data. Figure 15d shows the central row of projection data at the whole
angular interval()° —360°, i.e. this is equal to a complete set of fanbeam projection
data. Note how the little hole in the object gives rise to a skewed sinusoid in
the fan-beam projection data. The MATLAB code for this experiment is given in
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Appendix, Section 8.1.

a) detector data O deg b) detector data 60 deg

~20 20 15

. . 10

20 20 °
20 0 20 20 0 20

¢) detector data 90 deg d) 1 row 0-360 deg projdata

-20 =20 15
10
0 0
5
20 20
=20 0 20 0

100 200 300
Figure 15: 2D projection data from the 3D object. a) 2D projection datd.ab)
2D projection data at0°. c) 2D projection data &0°. d) One row (the central) of
projection data)® — 360°.

5.2 Demonstration of fan-beam CT reconstruction.

The prograntakewas used to generate fan-beam projections for a Plexiglass object
and monochromatic spectrum at 30 keV. The material file for Plexiglass is given
in Section 8.5.2 and a material curve for Plexiglass is shown in Figure 17 b). The
number of projections was 180 and the detector was specified to be 64 channels
but only one row. Therefore, one projection can be regarded as 1D instead of 2D.
The fan-beam projection data for all projection angles is shown as a 2D image in
Figure 16a. Note how the little hole in the object gives rise to a skewed sinusoid
in the fan-beam projection data. The data was reconstructed by the fan-beam fil-
tered back-projection method described in Section 3.2. The reconstruction result
is shown in Figure 16b. Cross-sections along the middle horizontal and vertical
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lines are shown in Figure 16c. The MATLAB code for this experiment is given in
Appendix, Section 8.2.

Remember that the current experiment uses a monochromatic spectrum at 30 keV,
recall Equation (10) and see Section 8.5.2 with the material data for Plexiglass.
Also, check the filphm.txt in Section 8.2 giving that the densityisl9g/cm?.

This altogether gives that

1(30keV) =100 - 1.19 - (3.68 - 102+ 1.78 - 10 +8.35- 107?) = 35.5m .

This value is in accordance with Figure 16c, which gives thagtwvalue for the
reconstructed object is approximately 35.

a) fanbeam proj -
) pro] b) reconstruction

20

0 100 200 300 -0.2 0 0.2

C) recon cross—sec

um™

-02-01 0 0.1 0.2
x[m], y [m]

Figure 16: a) Fan-beam projection data. b) Reconstruction result. ¢) Cross-sections
along the middle horizontal and vertical lines in the reconstruction.

31



5.3 Demonstration of 1D beam hardening.

In Figure 17 we show how beam hardening artefacts can be demonstrated with
take Figure 17 a) and b) show the X-ray source spectrum and the attenuation for
Plexiglass, respectively. Compare these curves with the data in Section 8.5. In
the experiment depicted in Figure 17 c), projection data is simulated for a slab of
Plexiglass where the thickness is varied from 1 cm to 10 cm. For a monochromatic
beam we have

pmono(l) = M(EO) . l, (36)

where E; = 30 keV. Consequently, for a monochromatic beam projection data
is proportional to the thickness of the slab. The polychromatic formula is more
complicated

[E N(E) dE )

Ppoty(1) = In <f B N(B) oxp(—u(E)) dB 37)

which is a combination of Equation (11), (12) and (13). Since the attenuation
coefficienty( E) decreases with increasing photon enefgyhe lower energy part

of the spectrum will be more attenuated than the higher energy part. Therefore,
along the path of the beam through the object, the percentage of high energy in
the beam will increase. This is beam hardening. In particular if we try to estimate
the thickness of an object by measuring projection data we will get too low values,
as shown in Figure 17 c). The MATLAB code for this experiment is given in
Appendix, Section 8.3.
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Figure 17: a) X-ray spectrumvV(E).
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b) Attenuation coefficient(E) for Plex-

iglass. c) Normalized projection data from a slab of Plexiglass as a function of

thickness. Monochromatic beam (solid line) and polychromatic beam (dashed

line).
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5.4 Demonstration of beam hardening in CT reconstruction.

The prograntakewas used to generate fan-beam projections for both monochro-
matic and polychromatic spectrum. An energy level of 30 keV was used for
the monochromatic case. The object consisted of Plexiglass. Figure 17 a) and
b) show the polychromatic X-ray source spectrum and the attenuation for Plexi-
glass, respectively. Compare these curves with the data in Section 8.5. The data
was reconstructed by first using rebinning as described i Section 3.3 followed by
the parallel filtered back-projection method as described in Section 3.2. In Fig-
ure 18a, the monochromatic fan-beam projection data is shown and in Figure 18b,
the monochromatic rebinned projection data is shown. The polychromatic projec-
tion data is of course a little different, but will not be distinguishable in an image.
The reconstructions from monochromatic and polychromatic data are shown in

a) mono fanbeam proj b) mono parallel proj
-0.04 -0.04 25
-0.02 -0.02 2
0 0
0.02 0.02
0.04 0.04
50 100 150
€) mono recon d) poly recon

-100 34 -100
-50 32 =50

50 28 50
100 26 100
-100 0 100 -100 0 100

Figure 18: a) Monochromatic fan-beam projection data. b) Monochromatic re-
binned projection data. c¢) Reconstruction from monochromatic data. d) Recon-
struction from polychromatic data.

Figure 18c and d, respectively. Cross-sections along the middle vertical line are
shown in Figure 19. The typical beam hardening artefact is shown to be a cup-
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ping artefact. This artefact is due to that the rays passing through the center of the
cylinder are under-estimated. The MATLAB code for this experiment is given in
Appendix, Section 8.4.

recon cross—sec
40 T

35+ N—

30

251

= 151

10

o 20 '
|
|
|

ol —J [:j/‘\adw

‘
-0.05 0 0.05
x[m]

Figure 19: Reconstructed Plexiglass cylinder. Monochromatic beam (solid line)
and polychromatic beam (dashed line).

6 Experiment with real data

6.1 The Tomohawk system

Tomohawk is a system for industrial X-ray radiography and computed tomography
[6]. The basic components are shown in Figure 20. An X-ray source generates a
cone-beam projection on the detector, which consists of an image intensifier and
a CCD-camera. A turntable is used for positioning the test object. The image
intensifier converts the X-rays into visible light, which generates an image in the
CCD-camera. The image is then transferred to the personal computer. In the case
of radiography, this image is the final result. In the case of computed tomography
several images collected from different rotational positions of the turntable serves
as in-data for a reconstruction algorithm giving slices or a whole 3D-volume of
the object. The personal computer both processes the reconstruction algorithm and
controls the turntable via the manipulator control unit.

Unfortunately, an image intensifier introduces geometric distortion. Thus, it
is necessary to perform a two-dimensional geometrical correction of the image
obtained from the CCD-camera.
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Figure 20: The Tomohawk system.

6.2 The experiment

To test our model we have carried out a series of measurements on the Tomohawk
system. The phantom was a Plexiglass cylinder, diameter 80 mm, with three drilled
holes of diameters 10 mm, 15 mm, 20 mm, respectively. We had access to a data
base of previously measured spectrums for the Tomohawk X-ray tube for varying
acceleration voltages. Before using the spectrutakewe compensated for the
attenuation in air and &; = 2 mm thick aluminum filter:

Nf(E) — N(E) . e_tu'airlair_NAllAl’ (38)

see Figure 21 a),b).

We had also access to a simulated single-event distrib@tidti, F) for the
detector used in the Tomohawk system.C10F’, E), E is the incoming energy
and £’ is the outgoing energy, i.e. one energy lefeWill be converted to other
energies in the detector. We now modify (11) to allow for detector sensitivity

Sy = /E’ (/Q(E’,E)AL(E)Nf(E) dE) dE, (39)

whereAy (F) is the attenuation along the lirlg

Ar(E) = exp <_ /L u(l, E) dl) . (40)

By rearranging (39) we get
St = / </ E'Q(E' E) dE’> AL(E)N¢(E) dE

_ / O5(E) AL(E) N;(E) dE, (41)
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where
Qp(E) = /E’Q(E’,E) dFE'. (42)

This equation can be precomputed. It is illustrated for detector used in the Tomo-
hawk system in Figure 21 c).

We finish this theoretical discussion by pointing out that by inserting (40) into
our original formula for calculation of a detector value (11) we get

Sy = /E AL(E) N(E) dE, (43)

which is (41) without compensation for detector sensitivity, air and aluminum filter.
See Figure 8a. The energy spectrBmV (E) should be replace Y g (E)-N¢(F)

if detector sensitivity is to be regarded. The combinatiomV@), N;(FE) and

Qg (F) to the effective spectrug(E) - N¢(F) is shown Figure 21.

a) b)
3000 : : : : 1200 : :
2500¢ 1000

20001 800

T 1500l m
< 1500 S 600
1000} 400
500} 200
0 0 ‘ ‘ ‘ ‘
0 50 0 10 20 30 40 50
E [keV] E [keV]
<) x 10* <)
45 5
40t 1 4
35} g3
w z
G (m
30t T 2
25¢ 1 1
20 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 10 20 30 40 50 0 10 20 30 40 50
E [keV] E [keV]

Figure 21: a) Original spectrum¥ (E). b) Filtered spectruniV,(E). c) Detector
sensitivityQ g (£). d) Effective spectrumg(E) - N¢(E).

Projection data, see Figure 22 a), was collected from the Tomohawk and re-
constructed with a fan-beam algorithm, see Figure 22 b). The experiment was also
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simulated intake see Figure 22 d), and reconstructed, see Figure 22 e). The sim-

ulated reconstruction result, see Figure 22 f), shows the typical beam-hardening
cupping effect, which is however unfortunately not visible in the measured recon-

struction result, see Figure 22 c).

a) Tomohawk: log data

3 c) Tomohawk: attenuation coeff.
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Figure 22: a) Measured projection data from a Plexiglass phantom b) Recon-
struction from measured projection data ¢) Reconstructed attenuation coefficient
(through the two lower holes) d) Simulated projection data from a Plexiglass phan-
tom e) Reconstruction from simulated projection data f) Reconstructed attenuation
coefficient (through the two lower holes).

7 Future work

As mentioned in Section 4 scattering is not implementadke Instead, we want

to combine high resolution projection data generatetblg with low resolution
scattering generated by, for example, [3]. In [3], scattering is computed by Monte
Carlo simulation, a good but time consuming method. Therefore, we would like
to have a simpler approximative scatter simulation includetke Modeling of
noise, both Poisson and thermic, are lackintpake It is desired that the projection
generating procedure through voxel volumes would be implemented for different
energy levels.
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The last experiment in this report, a comparison between real and simulated
data, wasn’t completely successful and should therefore be analyzed and improved.
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8 Appendix

8.1 Experiment1

8.1.1 main program
f = take('mono=30’, 'initfile=takel.txt’);

sizevol = size(f);

N1 = sizevol(1); % N1  *N2x*N3
N2 = sizevol(2);

N3 = sizevol(3);

rec = 0.6;

vecl = (-(N1-1)/2:(N1-1)/2) *rec/N1,; % image axis
vec2 = (-(N2-1)/2:(N2-1)/2) *rec/N2; % image axis
vec3 = (-(N3-1)/2:(N3-1)/2) *rec/N3; % image axis

fl = zeros(N1,N2);
f1(:,) = f(:,:,N3/2);
f3 = zeros(N2,N3);
f3(;,)) = f(NL1/2,:,2);
f2 = zeros(N1,N3);
f2(:,;) = f(:,N2/2,2);

figure(1);
colormap(gray);
subplot(2,2,1), imagesc(vec2, vecl, f1');

colorbar;

title(a) voxel-volume xy-slice’)

axis image;

subplot(2,2,2), imagesc(vecl, vec3, f2');
colorbar;

title(’b) voxel-volume xz-slice’)

axis image;

subplot(2,2,3), imagesc(vec2, vec3, f3’);
colorbar;

title('c) voxel-volume yz-slice’)

axis image;

f = take('mono=30’, 'attenuation=takelog’,'initfile=take2.txt’);

sizevol = size(f);

N1 = sizevol(1); % N1 = nr of channels
N2 = sizevol(2); % N2 = nr of rows

N3 = sizevol(3); % N3 = nr of projections
vecl = (-(N1-1)/2:(N1-1)/2); % image axes

vec2 = (-(N2-1)/2:(N2-1)/2);

vec3 = 1:360;

fl = zeros(N1,N2);

f1(:,) = f(;,;,1);

f2 = zeros(N1,N2);
f2(:,1) = f(:,:,N3/6);
f3 = zeros(N1,N2);
f3(:,;)) = f(:,:,N3/4);
f4 = zeros(N1,N3);
fa(:,) = f(:,(N2+1)/2,:);

figure(2);
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colormap(gray);

subplot(2,2,1), imagesc(vec2, vecl, f1');
colorbar;

titte(a) detector data O deg’)

axis image;

subplot(2,2,2), imagesc(vec2, vecl, f2');
colorbar;

titte('b) detector data 60 deg’)

axis image;

subplot(2,2,3), imagesc(vec2, vecl, f3’);
colorbar;

title(’c) detector data 90 deg’)

axis image;

subplot(2,2,4), imagesc(vec3, vecl, f4);
colorbar;

title(d) 1 row 0-360 deg projdata’)

8.1.2 takel.txt

# init file for take

- S ——————
verbose

phantom = phm.txt
detector = det.txt
trajectory = trj.txt

Hom e

voxelization = vox.dat
voxelnr = 128 64 32
voxelsize = 0.6 0.6 0.6
voxelcenter =
voxelpoints = 1

energyspectrum = spm.mat

8.1.3 take2.txt

# init file for take

- S —
verbose

phantom = phm.txt
detector = det.txt
trajectory = trj.txt

- R ——————

#voxelization = vox.dat
voxelnr = 128 64 32
voxelsize = 0.6 0.6 0.6
voxelcenter = 0.0 0.0 0.0
voxelpoints 1

energyspectrum = spm.mat

8.1.4 det.txt
# detector file
R ——

shape=cylindricalAroundSource
fanangle=0.4571

height=0.6

channels=63

rows=65

xypoints=1
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8.1.5 trj.txt

# trajectory file

-
projections = 180
#
# source pos. 0
0.700 0.00000000 0.00000000
#

# detector pos. O
0.00000000 -1.00000000 0.00000000 0.00000000
1.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

# transformation matrix
0.99939083 -0.03489950 0.00000000 0.00000000
0.03489950 0.99939083 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

8.1.6 phm.txt

# PlexiGlass phantom

.

cylind a=0.240 b=0.240 ¢=0.25 x=0.0 y=0.0 z=0.0 theta=0.0 phi=0.0 dens=1.19 mat=0
cylind a=0.030 b=0.030 ¢=0.25 x=0.0 y=0.21 z=0.0 theta=0.0 phi=0.0 dens=-1.19 mat=0
#

material = 0 ../materials/plexi.mat

8.2 Experiment 2

8.2.1 main program

g = take('mono=30);

rec = 0.6; % reconstructed image size
[N,R,M] = size(g); % N = nr of pixels per projection

% R = nr of rows
% M = nr of projections

X = (-(N-1)/2:(N-1)/2); % detector axis

a = (0:M-1) =*360/M; % projection angles
xvec = (-(N-1)/2:(N-1)/2) *rec/N; % image axis

geo = [0.7 0.4571 2/64]; % fanbeam geometry
firstang = O;

gl = zeros(N,M);

g1(.) = 9(.1,;

gl = log(max(max(gl))) - log(gl); % take the logarithm
fhat = fanFB(gl, geo, rec, firstang); % fanbeam reconstr
figure(1);

subplot(2,2,1), imagesc(a, X, gl);

colorbar;

title(a) fanbeam proj’)

subplot(2,2,2), imagesc(xvec, xvec, fhat);
colorbar;

title(’b) reconstruction’)

axis image;
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subplot(2,2,3), plot(xvec, fhat(32,:), -r', ...
xvec, fhat(:,32), '--b’);

title('c) recon cross-sec’)

xlabel(’x [m], y [m]);

ylabel(\mu [m~{-1}]);

axis([-rec/2 rec/2 -5 40]);

8.2.2 take.txt

# init file for take

- ———
verbose =1
phantom = phm.txt
detector = det.txt
trajectory = trj.txt

#

energyspectrum = spm.mat

8.2.3 det.txt
# detector file
F

shape=cylindricalAroundSource
fanangle=0.4571

height=0.0014

channels=64

rows=1

Xypoints=1

8.2.4 trj.txt

# trajectory file

projections = 180
#
# source pos. 0

0.700 0.00000000 0.00000000
#

# detector pos. O

0.00000000 -1.00000000 0.00000000 0.00000000
1.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

# transformation matrix
0.99939083 -0.03489950 0.00000000 0.00000000
0.03489950 0.99939083 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

8.2.5 phm.txt

# PlexiGlass phantom

#

cylind a=0.240 b=0.240 ¢=0.25 x=0.0 y=0.0 z=0.0 theta=0.0 phi=0.0 dens=1.19 mat=0
cylind a=0.030 b=0.030 ¢=0.25 x=0.0 y=0.21 z=0.0 theta=0.0 phi=0.0 dens=-1.19 mat=0
#

material = 0 ../materials/plexi.mat

8.2.6 fanFB.m

function f = fanFB(g, geo, rec, firstang)
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%

% f = fanFB(g, geo, rec, firstang)

%

% geo(1): distance source <-> origo
% geo(2): angle between rays

% rec: image x size

% firstang: angle for first projection [rad]

if nargin ~= 4
fprintf(The number of arguments must be 47\n’);
return;

end

[M,N] = size(g); % M = nr of pixels per pr ojection,
% N = nr of projections

D = geo(1);
dalfa = geo(2);

if N == % special case for rot. sym. obj.
N = 2« M;
g = g*ones(1,N);

0wy o
< X 8.

M

€c;
X3
M;

>3
E
oy

startx
starty

rec

S

= -Sx/2 + 05 * SX/M;

= startx;

% projection angles

dbeta = 2 *pi/N;

beta = O+firstang:dbeta:2 * pitfirstang-dbeta;

% detector angles
alfa = dalfa  *(-(M-1)/2:(M-1)/2)";

% preweight the projections with D * cos(alfa)
g = g. *(D*cos(alfa)  *ones(1,N));

% rampfilter the projections
q = ramp(g,dalfa);

% the grid for the reconstructed image

dx = Sx/mo;
dy = Sy/n0;
[X,Y] = meshgrid(startx:dx:startx+(m0-1) +dx, starty:dy:starty+(n0-1) * dy);

f = zeros(size(X));

% weighted backprojection
for i=1:N

X0 = D=sin(beta(i));
y0 = D=*cos(beta(i));

L2 = (x0-X)."2 + (yO+Y).~2;

gamma = -adjust(atan2(x0-X,y0+Y) - beta(i));

f = f + interp2(ones(M,1) *(1:N), alfa +»ones(1,N), q, i *ones(m0O,m0), gamma)./L2;
end
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% find NaN:s and replace them with O
loc = find(isnan(f)==1);
f(loc) = O;

f = f »dbeta *dalfa;

function y = adjust(x)
y=X

y(find(x>=pi)) = y(find(x>=pi)) - 2 *pi;
y(find(x<-pi)) = y(find(x<-pi)) + 2 * pi;
8.2.7 ramp.m

function q = ramp(g, dalfa)

% q = ramp(g, dalfa)
% rampfilter the columns of g
[MN] = size(g);

M2 = 27ceil(log2(M));
r = zeros(2 *M2,1);

if nargin==1
r(M2+1) = 1/4;
r(2:2:end) = -1 ./(pi*2 * (-M2+1:2:M2-1).42);
end
if nargin==2
r(M2+1) = 1/(8 =dalfa™2);
r(2:2.end) = -1 /(2 *pin2 *sin((-M2+1:2:M2-1) * dalfa).*2);
end
w = cos(pi *(-M2:M2)/(2  *M2)); % low pass weighting
R = (w(l:end-1). = fftshift(fft(ifftshift(r)))) *ones(1,N);

q = zpadcol(g,2 *M2);
g = real(fftshift(ifft(ifftshift (R. + fftshift(fft(ifftshift(q)))))));
q = zpadcol(q,M);

function y = zpadcol(x,m2)
%

% y = zpadcol(x,m2)

% pad or unpad

%

[m,n] = size(x);

if mod(m-m2,2) ==
offset = abs((m-m2)/2);

else
offset = (abs(m-m2)+1)/2;
end
if m2>m
y = [zeros(offset,n); x; zeros(m2-m-offset,n)];
else
y = x(offset+1:offset+m2,:);
end

8.3 Experiment 3

8.3.1 main program

% Spectrum data

45



load spm.mat

subplot(2,2,1), plot(f(:;,1), f(:,2), -b’);
titte(a) Spectrum’);

xlabel(E [keV]); ylabel(N(E));
axis([5 50 0 1200]); grid;

% Material data
load ../materials/plexi.mat

dens = 1.19; % Plexiglass density
pmat = 100 * dens * (f(:,2) + f(:,3) + f(:,4));
subplot(2,2,2), plot(1000 *f(:,1), pmat, -b’);

title(’b) Attenuation coeff’);
xlabel(CE [keVT); ylabel(\mu(E) [1/m]’);
axis([5 50 0 100]); grid;

% Loop over phantoms with different thickness and
% compute the relative attenuation
gl = zeros(1,10);

for i=1:10
p = [phantom = phm’ num2str(i) ’.txt’];
y = take(p);
g1() = log(y(1)/y(33));

end

g0 = zeros(1,10);

for i=1:10

p = [phantom = phm’ num2str(i) ’.txt’];
y = take(p,’mono=30’);
go()) = log(y(1)/y(33));
end
subplot(2,2,3), plot(1:10, g1/g1(1), '--r’, 1:10, g0/g0(1), -b")
title('c) relative attenuation’);
xlabel('d [cm]’); ylabel('relative attenuation’);
axis([1 10 1 10]); grid;

8.3.2 take.txt

- S ———
phantom = phm.txt
detector = det.txt
trajectory = trj.txt

#

energyspectrum = spm.mat

8.3.3 det.txt

# detector file

xlen=0.2
ylen=0.001
Xpix=65
ypix=1
Xypoints=1

8.3.4 trj.txt

# trajectory file

projections = 1
# source pos. 0
0.7 0.00000000 0.00000000
#
# detector pos. 0
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0.00000000 -1.00000000 0.00000000 0.00000000
1.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

# transform
0.99991660 -0.01291508 0.00000000 0.00000000
0.01291508 0.99991660 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

8.3.5 phml.txt

# plexi phantom
H

# cylinder

cylind a=0.005 b=0.040 c=0.01 x=0.0 y=0.0 z=0.0 theta=0.0 phi=0.0 dens=1.19 mat=0
#

material = 0 ../materials/plexi.mat

8.3.6 phma2.txt, phm3.txt, ..., phm10.txt

The filesphm2.txt, phm3.txt, ..., phm210.txt look similar asphm1.txt above. The only excep-
tion is thata increaces according to:
a=0.005 , a=0.010 ,a=0.015 , ...,a=0.050 .

8.4 Experiment 4

8.4.1 main program

L = 0.2 % distance source - rot. center
dx0 = 0.00036; % detector element size

dfi0 = 0.74; % angle increment in degrees

MO = 256; % nr of pixels per projection

NO = 280; % nr of projections

dx1 = 0.00036; % new detector element size

dfil = 1 % new angle increment in degrees
M1 = 255; % new nr of pixels per projection
N1 = 180; % new nr of projections

gamma = 180-atan(MO0/2 *dx0/L)/pi;% fanbeam angle

firstang = pil2 + pi *gamma/180; % first angle after rebinning
x0 = (-M0/2:M0/2-1) * dxO0; % detector axis

a0 = (0:NO-1) =dfio; % detector axis

x1 = (-M1/2:M1/2-1) * dx1; % new detector axis

al = (0:N1-1) =dfil+gamma; % new detector axis

xvec = (-(M1-1)/2:(M1-1)/2); % image axis

OA) Khkkkkkkkkkk mono
g = take('mono=30);
[N,R,M] = size(g); % N = nr of pixels per projection
% R nr of rows
% M nr of projections
g = log(max(max(g))) - log(g);
gl = zeros(N,M);
91() = g1,

reb = rebinning(gl, L, dx0, dfi0, 1, 0, dx1, dfil, M1, N1);
fhat0 = parFB(reb, dx1, firstang);
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figure(1);

subplot(2,2,1), imagesc(a0,x0,91);

colorbar;

titte(a) mono fanbeam proj’)

subplot(2,2,2), imagesc(al,x1,reb);

colorbar;

titte('’b) mono parallel proj’)

subplot(2,2,3), imagesc(xvec, xvec, fhat0’, [25,35]);

colorbar;

titte('c) mono recon’)
axis image;

O Hkxrkkkkxrhk p0|y
g = take;

g = log(max(max(g))) - log(9);
gl = zeros(N,M);
gl

) = a(,1,);

reb = rebinning(gl, L, dx0, dfi0, 1, O, dx1, dfil, M1, N1);

fhat = parFB(reb, dx1, firstang);

subplot(2,2,4), imagesc(xvec, xvec, fhat', [25,35]);
colorbar;

titte('d) poly recon’)

axis image;

figure(2);

subplot(2,2,1), plot(x1, fhat0(128,:), "-r’, ...
x1, fhat(128,:), '--b’);
title('recon cross-sec’)
xlabel(’x [m]);
ylabel(\mu [m™-1}]");
axis([-0.05 0.05 -5 40]);

8.4.2 take.txt

# init file for take

-2
verbose =1
phantom = phm.txt
detector = det.txt
trajectory = trj.txt

#

energyspectrum = spm.mat

8.4.3 det.txt
# detector file
xlen=0.09216
ylen=0.00012
Xpix=256

ypix=1

Xypoints=4

8.4.4 phm.txt

# plexi phantom
#

# cylinder
cylind a=0.040 b=0.040 c=0.01 x=0.0 y=0.0 z=0.0 theta=0.0 phi=0.0 dens=1.19 mat=0
cylind a=0.005 b=0.005 c=0.01 x=0.0 y=0.035 z=0.0 theta=0.0 phi=0.0 dens=-1.19 mat=0
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#
material = 0 ../materials/plexi.mat

8.4.5 trj.txt

# trajectory file

projections = 280

#

# source pos. 0

0.20000000 0.00000000 0.00000000

#

# detector pos. 0

0.00000000 -1.00000000 0.00000000 0.00000000
1.00000000 0.00000000 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

# transform
0.99991660 -0.01291508 0.00000000 0.00000000
0.01291508 0.99991660 0.00000000 0.00000000
0.00000000 0.00000000 1.00000000 0.00000000

8.4.6 rebinning.m

function y = rebinning(x, L, dt, dfi, fb, rot, dtn, dfin, Mn, Nn)
% function y = rebin(x, L, dt, dfi, rot, dtn, dfin, Mn, Nn)
% L: distance to source

% dt: detector element size

% dfi: angle increment degrees

% fb: clockwise or counterclockwise rotation?

% try either fbo = 0 and fb = 1

% rot: rotation center pixel nr

% dtn: new detector element size

% dfin: new angle increment

% Mn: new nr of pixels per proj

% Nn: new nr of projs

[M,N] = size(x); % M = nr of pixels per projection
% N = nr of projections

if nargin < 10
Nn =

Z

i

end
if nargin <
Mn =

_z_@

end

if nargin < 8
dtn = dt;

end

if nargin < 7
dfin = dfi;

end

if nargin < 6
rot = 0;

end

gamma = 180 atan(M/2 = dt/L)/pi; % fanbeam angle

% in- and out-grid
[F.t] = meshgrid((0:N-1) *dfi, (-(M-1)/2:(M-1)/2) * dt);
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[Fn,tn] = meshgrid((0:Nn-1) *dfin+tgamma, (-(Mn-1)/2:(Mn-1)/2)
else

[F.f] = meshgrid((0:N-1) *dfi, ((M-1)/2:-1:-(M-1)/2) *dt);
[Fn,tn] = meshgrid((0:Nn-1) *dfintgamma, ((Mn-1)/2:-1:-(Mn-1)/2)
end
% rebin
(07 Tm—
y=interp2(F, t+rot, x, Fn-180 *asin(tn/L)/pi, tn./sqrt(1-tn."2/L"2));

% find NaN:s and replace them with O
%
loc = find(isnan(y)==1);
y(loc) = 0;

8.4.7 parFB.m

function f = parFB(g, dtau, firstang)

%

% f = parFB(g, tau)

% parallel filtered backprojection method

%
% g: projection indata
% dtau: detector element size

% firstang: angle for first projection [rad]

if (nargin == 0)|(nargin>3)
fprintf(1, 2 or 3 arguments is desired\n’);
return;

end

if nargin == 1
dtau = 1,
firstang = O;

end

if nargin == 2
firstang = O;

end

[M,N] = size(g); % M = nr of pixels per pr ojection,
% N = nr of projections

; % image x size
; % image y size
; % image x size in pixels
n ; % image y size in pixels
if mod(M,2)==0
startx=-M/2;
starty=-M/2;
else
startx=-(M-1)/2;
starty=-(M-1)/2;
end

[2N]
< X
Z=zz2x=

E
oy non

% projection angles

dtheta = pi/N;

%theta = -pi/2-firstang:-dtheta:-3 * pi/2+dtheta-firstang;
theta = O+firstang:dtheta:pi-dtheta+firstang;

% detector array

if mod(M,2)==0
det = (-M/2:M/2-1);
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else
det = (-(M-1)/2:(M-1)/2)’;
end

% rampfilter the projections
q = ramp(g);

% the grid for the reconstructed image
dx = Sx/mo;
dy = Sy/no;

[X,Y] = meshgrid(startx:dx:startx+(m0-1) *dx, starty:dy:starty+(n0-1)

f = zeros(size(X));

% backprojection
for i=1:N

= cos(theta(i));
sin(theta(i));

c
s
f
end
% find NaN:s and replace them with 0

loc = find(isnan(f)==1);
f(loc) = 0;

f = f *dtheta/dtau;

8.4.8 ramp.m

function q = ramp(g, dalfa)
%

% g = ramp(g, dalfa)

% rampfilter the columns of g
%

[M,N] = size(g);

M2 = 27ceil(log2(M));
r = zeros(2 *M2,1);
if nargin==1
r(M2+1) = 1/4;
r(2:2:end) = -1 ./(pi*2 * (-M2+1:2:M2-1)./2);
end
if nargin==
r(M2+1) = 1/(8 =dalfa"2);
r(2:2.end) = -1 /(2 *pif2 *sin((-M2+1:2:M2-1) * dalfa).”2);
end
w = cos(pi *(-M2:M2)/(2  *M2)); % low pass weighting
R = (w(l:end-1). = fftshift(fft(ifftshift(r)))) *ones(1,N);

zpadcol(g,2 *M2);

q =
q = real(fftshift(ifft(ifftshift (R. « fftshift(fft(ifftshift(a)))))));
q =

zpadcol(g,M);
function y = zpadcol(x,m2)
%
% y = zpadcol(x,m2)
% pad or unpad
%
[m,n] = size(x);

if mod(m-m2,2) == 0
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offset = abs((m-m2)/2);

else

offset = (abs(m-m2)+1)/2;

end

if m2>m

y = [zeros(offset,n); x; zeros(m2-m-offset,n)];

else

y = x(offset+1:offset+m2,:);

end

8.5 Spectrum and Material files

8.5.1 spm.txt

# Name: 45.0 kV

# Continuous spectrum

# Dimension: 42

# E [keV]
5.0000000e+00
6.0000000e+00
7.0000000e+00
8.0000000e+00
9.0000000e+00
1.0000000e+01
1.1000000e+01
1.2000000e+01
1.3000000e+01
1.4000000e+01
1.5000000e+01
1.6000000e+01
1.7000000e+01
1.8000000e+01
1.9000000e+01
2.0000000e+01
2.1000000e+01
2.2000000e+01
2.3000000e+01
2.4000000e+01
2.5000000e+01
2.6000000e+01
2.7000000e+01
2.8000000e+01
2.9000000e+01
3.0000000e+01
3.1000000e+01
3.2000000e+01
3.3000000e+01
3.4000000e+01
3.5000000e+01
3.6000000e+01
3.7000000e+01
3.8000000e+01
3.9000000e+01
4.0000000e+01
4.1000000e+01
4.2000000e+01
4.3000000e+01
4.4000000e+01
4.5000000e+01
4.6000000e+01

N
0.0000000e+00
0.0000000e+00
0.0000000e+00
0.0000000e+00
3.1155915e-09
4.0548318e-05
6.8623098e-04
1.8461402e-02
2.3796571e-01
1.7065633e+00
7.5493386e+00
2.3382856e+01
5.6251281e+01
1.1165767e+02
1.9116994e+02
2.9152420e+02
4.0898978e+02
5.3109138e+02
6.5615568e+02
7.7426157e+02
8.7962451e+02
9.7048676e+02
1.0409779e+03
1.0995464e+03
1.1299357e+03
1.1454061e+03
1.1430603e+03
1.1240242e+03
1.0893693e+03
1.0417206e+03
9.8133317e+02
9.1089186e+02
8.3169753e+02
7.4364895e+02
6.4928316e+02
5.4973676e+02
4.4499243e+02
3.3716408e+02
2.2643508e+02
1.1309668e+02
4.5457152e+00
0.0000000e+00
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8.5.2 plex.txt

# Material: Plexiglas
# Density: 1.19 g/cm”3
# Dimension: 201

# Energy
# (MeV)
1.00000e-03
1.50000e-03
2.00000e-03
3.00000e-03
4.00000e-03
5.00000e-03
6.00000e-03
7.00000e-03
8.00000e-03
9.00000e-03
1.00000e-02
1.10000e-02
1.20000e-02
1.30000e-02
1.40000e-02
1.50000e-02
1.60000e-02
1.70000e-02
1.80000e-02
1.90000e-02
2.00000e-02
2.10000e-02
2.20000e-02
2.30000e-02
2.40000e-02
2.50000e-02
2.60000e-02
2.70000e-02
2.80000e-02
2.90000e-02
3.00000e-02
3.10000e-02
3.20000e-02
3.30000e-02
3.40000e-02
3.50000e-02
3.60000e-02
3.70000e-02
3.80000e-02
3.90000e-02
4.00000e-02
4.10000e-02
4.20000e-02
4.30000e-02
4.40000e-02
4.50000e-02
4.60000e-02
4.70000e-02
4.80000e-02
4.90000e-02
5.00000e-02
5.10000e-02
5.20000e-02
5.30000e-02
5.40000e-02

Co_CS

(cm”2/g)

1.15e+00
1.03e+00
9.13e-01
6.92e-01
5.27e-01
4.13e-01
3.34e-01
2.77e-01
2.36e-01
2.04e-01
1.79e-01
1.59e-01
1.42e-01
1.28e-01
1.16e-01
1.06e-01
9.71e-02
8.92e-02
8.22e-02
7.59e-02
7.03e-02
6.53e-02
6.08e-02
5.67e-02
5.30e-02
4.97e-02
4.66e-02
4.38e-02
4.13e-02
3.90e-02
3.68e-02
3.48e-02
3.30e-02
3.13e-02
2.98e-02
2.83e-02
2.70e-02
2.57e-02
2.46e-02
2.35e-02
2.24e-02
2.15e-02
2.06e-02
1.97e-02
1.90e-02
1.82e-02
1.75e-02
1.68e-02
1.62e-02
1.56e-02
1.51e-02
1.45e-02
1.40e-02
1.36e-02
1.31e-02

In_CS
(cm”2/g)
1.42e-02
2.83e-02
4.36e-02
7.21e-02
9.46e-02
1.11e-01
1.23e-01
1.32e-01
1.39e-01
1.45e-01
1.50e-01
1.54e-01
1.57e-01
1.60e-01
1.62e-01
1.65e-01
1.67e-01
1.69e-01
1.70e-01
1.71e-01
1.73e-01
1.74e-01
1.74e-01
1.75e-01
1.76e-01
1.76e-01
1.77e-01
1.77e-01
1.77e-01
1.78e-01
1.78e-01
1.78e-01
1.78e-01
1.78e-01
1.78e-01
1.78e-01
1.78e-01
1.78e-01
1.78e-01
1.77e-01
1.77e-01
1.77e-01
1.77e-01
1.77e-01
1.76e-01
1.76e-01
1.76e-01
1.76e-01
1.75e-01
1.75e-01
1.75e-01
1.74e-01
1.74e-01
1.74e-01
1.73e-01

Ph_CS

(cm”2/g)
2.73e+03
8.91e+02
3.92e+02
1.19e+02
5.03e+01
2.55e+01
1.45e+01
8.98e+00
5.91e+00
4.08e+00
2.92e+00
2.16e+00
1.64e+00
1.27e+00
9.98e-01
7.99e-01
6.49e-01
5.33e-01
4.43e-01
3.72e-01
3.15e-01
2.68e-01
2.31e-01
2.00e-01
1.74e-01
1.52e-01
1.34e-01
1.18e-01
1.05e-01
9.34e-02
8.35e-02
7.50e-02
6.75e-02
6.10e-02
5.53e-02
5.03e-02
4.58e-02
4.18e-02
3.83e-02
3.52e-02
3.23e-02
2.98e-02
2.75e-02
2.55e-02
2.36e-02
2.19e-02
2.04e-02
1.90e-02
1.77e-02
1.65e-02
1.55e-02
1.45e-02
1.36e-02
1.27e-02
1.20e-02
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5.50000e-02
5.60000e-02
5.70000e-02
5.80000e-02
5.90000e-02
6.00000e-02
6.10000e-02
6.20000e-02
6.30000e-02
6.40000e-02
6.50000e-02
6.60000e-02
6.70000e-02
6.80000e-02
6.90000e-02
7.00000e-02
7.10000e-02
7.20000e-02
7.30000e-02
7.40000e-02
7.50000e-02
7.60000e-02
7.70000e-02
7.80000e-02
7.90000e-02
8.00000e-02
8.10000e-02
8.20000e-02
8.30000e-02
8.40000e-02
8.50000e-02
8.60000e-02
8.70000e-02
8.80000e-02
8.90000e-02
9.00000e-02
9.10000e-02
9.20000e-02
9.30000e-02
9.40000e-02
9.50000e-02
9.60000e-02
9.70000e-02
9.80000e-02
9.90000e-02
1.00000e-01
1.01000e-01
1.02000e-01
1.03000e-01
1.04000e-01
1.05000e-01
1.06000e-01
1.07000e-01
1.08000e-01
1.09000e-01
1.10000e-01
1.11000e-01
1.12000e-01
1.13000e-01
1.14000e-01
1.15000e-01
1.16000e-01

1.27e-02
1.23e-02
1.19e-02
1.15e-02
1.11e-02
1.08e-02
1.05e-02
1.02e-02
9.87e-03
9.59e-03
9.32e-03
9.05e-03
8.80e-03
8.56e-03
8.33e-03
8.11e-03
7.90e-03
7.70e-03
7.50e-03
7.31e-03
7.13e-03
6.95e-03
6.78e-03
6.62e-03
6.46e-03
6.31e-03
6.16e-03
6.02e-03
5.88e-03
5.75e-03
5.62e-03
5.50e-03
5.38e-03
5.26e-03
5.15e-03
5.04e-03
4.94e-03
4.83e-03
4.74e-03
4.64e-03
4.55e-03
4.46e-03
4.37e-03
4.28e-03
4.20e-03
4.12e-03
4.04e-03
3.97e-03
3.89e-03
3.82e-03
3.75e-03
3.68e-03
3.62e-03
3.55e-03
3.49e-03
3.43e-03
3.37e-03
3.31e-03
3.25e-03
3.20e-03
3.14e-03
3.09e-03

1.73e-01
1.73e-01
1.72e-01
1.72e-01
1.72e-01
1.71e-01
1.71e-01
1.71e-01
1.70e-01
1.70e-01
1.70e-01
1.69e-01
1.69e-01
1.68e-01
1.68e-01
1.68e-01
1.67e-01
1.67e-01
1.67e-01
1.66e-01
1.66e-01
1.65e-01
1.65e-01
1.65e-01
1.64e-01
1.64e-01
1.64e-01
1.63e-01
1.63e-01
1.63e-01
1.62e-01
1.62e-01
1.62e-01
1.61e-01
1.61e-01
1.60e-01
1.60e-01
1.60e-01
1.59e-01
1.59e-01
1.59e-01
1.58e-01
1.58e-01
1.58e-01
1.57e-01
1.57e-01
1.57e-01
1.56e-01
1.56e-01
1.56e-01
1.55e-01
1.55e-01
1.55e-01
1.54e-01
1.54e-01
1.54e-01
1.53e-01
1.53e-01
1.53e-01
1.53e-01
1.52e-01
1.52e-01

1.13e-02
1.06e-02
1.00e-02
9.45e-03
8.93e-03
8.44e-03
7.99e-03
7.57e-03
7.18e-03
6.81e-03
6.47e-03
6.15e-03
5.85e-03
5.57e-03
5.31e-03
5.06e-03
4.83e-03
4.61e-03
4.40e-03
4.21e-03
4.02e-03
3.85e-03
3.69e-03
3.53e-03
3.39e-03
3.25e-03
3.12e-03
2.99e-03
2.87e-03
2.76e-03
2.66e-03
2.56e-03
2.46e-03
2.37e-03
2.28e-03
2.20e-03
2.12e-03
2.04e-03
1.97e-03
1.90e-03
1.84e-03
1.77e-03
1.72e-03
1.66e-03
1.60e-03
1.55e-03
1.50e-03
1.45e-03
1.41e-03
1.36e-03
1.32e-03
1.28e-03
1.24e-03
1.20e-03
1.17e-03
1.13e-03
1.10e-03
1.07e-03
1.04e-03
1.01e-03
9.77e-04
9.50e-04
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1.17000e-01
1.18000e-01
1.19000e-01
1.20000e-01
1.21000e-01
1.22000e-01
1.23000e-01
1.24000e-01
1.25000e-01
1.26000e-01
1.27000e-01
1.28000e-01
1.29000e-01
1.30000e-01
1.31000e-01
1.32000e-01
1.33000e-01
1.34000e-01
1.35000e-01
1.36000e-01
1.37000e-01
1.38000e-01
1.39000e-01
1.40000e-01
1.41000e-01
1.42000e-01
1.43000e-01
1.44000e-01
1.45000e-01
1.46000e-01
1.47000e-01
1.48000e-01
1.49000e-01
1.50000e-01
1.51000e-01
1.52000e-01
1.53000e-01
1.54000e-01
1.55000e-01
1.56000e-01
1.57000e-01
1.58000e-01
1.59000e-01
1.60000e-01
1.61000e-01
1.62000e-01
1.63000e-01
1.64000e-01
1.65000e-01
1.66000e-01
1.67000e-01
1.68000e-01
1.69000e-01
1.70000e-01
1.71000e-01
1.72000e-01
1.73000e-01
1.74000e-01
1.75000e-01
1.76000e-01
1.77000e-01
1.78000e-01

3.04e-03
2.99e-03
2.94e-03
2.89e-03
2.85e-03
2.80e-03
2.76e-03
2.72e-03
2.67e-03
2.63e-03
2.59e-03
2.55e-03
2.51e-03
2.48e-03
2.44e-03
2.40e-03
2.37e-03
2.33e-03
2.30e-03
2.27e-03
2.24e-03
2.20e-03
2.17e-03
2.14e-03
2.11e-03
2.08e-03
2.06e-03
2.03e-03
2.00e-03
1.97e-03
1.95e-03
1.92e-03
1.90e-03
1.87e-03
1.85e-03
1.82e-03
1.80e-03
1.78e-03
1.76e-03
1.73e-03
1.71e-03
1.69e-03
1.67e-03
1.65e-03
1.63e-03
1.61e-03
1.59e-03
1.57e-03
1.55e-03
1.53e-03
1.52e-03
1.50e-03
1.48e-03
1.46e-03
1.45e-03
1.43e-03
1.41e-03
1.40e-03
1.38e-03
1.37e-03
1.35e-03
1.34e-03

1.52e-01
1.51e-01
1.51e-01
1.51e-01
1.50e-01
1.50e-01
1.50e-01
1.49e-01
1.49e-01
1.49e-01
1.49e-01
1.48e-01
1.48e-01
1.48e-01
1.47e-01
1.47e-01
1.47e-01
1.47e-01
1.46e-01
1.46e-01
1.46e-01
1.45e-01
1.45e-01
1.45e-01
1.45e-01
1.44e-01
1.44e-01
1.44e-01
1.43e-01
1.43e-01
1.43e-01
1.43e-01
1.42e-01
1.42e-01
1.42e-01
1.42e-01
1.41e-01
1.41e-01
1.41e-01
1.41e-01
1.40e-01
1.40e-01
1.40e-01
1.40e-01
1.39e-01
1.39e-01
1.39e-01
1.39e-01
1.38e-01
1.38e-01
1.38e-01
1.38e-01
1.37e-01
1.37e-01
1.37e-01
1.37e-01
1.36e-01
1.36e-01
1.36e-01
1.36e-01
1.36e-01
1.35e-01

9.23e-04
8.98e-04
8.73e-04
8.50e-04
8.27e-04
8.05e-04
7.83e-04
7.63e-04
7.43e-04
7.24e-04
7.05e-04
6.87e-04
6.70e-04
6.53e-04
6.37e-04
6.21e-04
6.06e-04
5.91e-04
5.77e-04
5.63e-04
5.50e-04
5.37e-04
5.24e-04
5.12e-04
5.00e-04
4.89e-04
4.78e-04
4.67e-04
4.57e-04
4.46e-04
4.37e-04
4.27e-04
4.18e-04
4.09e-04
4.00e-04
3.91e-04
3.83e-04
3.75e-04
3.67e-04
3.60e-04
3.52e-04
3.45e-04
3.38e-04
3.31e-04
3.25e-04
3.18e-04
3.12e-04
3.06e-04
3.00e-04
2.94e-04
2.88e-04
2.83e-04
2.77e-04
2.72e-04
2.67e-04
2.62e-04
2.57e-04
2.52e-04
2.48e-04
2.43e-04
2.39e-04
2.34e-04
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1.79000e-01
1.80000e-01
1.81000e-01
1.82000e-01
1.83000e-01
1.84000e-01
1.85000e-01
1.86000e-01
1.87000e-01
1.88000e-01
1.89000e-01
1.90000e-01
1.91000e-01
1.92000e-01
1.93000e-01
1.94000e-01
1.95000e-01
1.96000e-01
1.97000e-01
1.98000e-01
1.99000e-01
2.00000e-01

1.32e-03
1.31e-03
1.29e-03
1.28e-03
1.27e-03
1.25e-03
1.24e-03
1.23e-03
1.21e-03
1.20e-03
1.19e-03
1.17e-03
1.16e-03
1.15e-03
1.14e-03
1.13e-03
1.12e-03
1.10e-03
1.09e-03
1.08e-03
1.07e-03
1.06e-03

1.35e-01
1.35e-01
1.35e-01
1.34e-01
1.34e-01
1.34e-01
1.34e-01
1.34e-01
1.33e-01
1.33e-01
1.33e-01
1.33e-01
1.32e-01
1.32e-01
1.32e-01
1.32e-01
1.32e-01
1.31e-01
1.31e-01
1.31e-01
1.31e-01
1.31e-01

2.30e-04
2.26e-04
2.22e-04
2.18e-04
2.14e-04
2.11e-04
2.07e-04
2.03e-04
2.00e-04
1.97e-04
1.93e-04
1.90e-04
1.87e-04
1.84e-04
1.81e-04
1.78e-04
1.75e-04
1.72e-04
1.69e-04
1.66e-04
1.64e-04
1.61e-04
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