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Abstract

An approach for fast tracking of arbitrary image features
with no prior model and no offline learning stage is pre-
sented. Fast tracking is achieved using banks of linear dis-
placement predictors learnt online. A multi-modal appear-
ance model is also learnt on-the-fly that facilitates the se-
lection of subsets of predictors suitable for prediction in the
next frame. The approach is demonstrated in real-time on a
number of challenging video sequences and experimentally
compared to other simultaneous modeling and tracking ap-
proaches with favourable results.

1. Introduction

This work seeks to develop an approach to visual track-
ing that removes the need for hard coding and offline learn-
ing of either the target appearance variations or motion
models by learning all models on-the-fly. For a visual track-
ing approach to be useful it must operate at high frame rates,
track fast moving objects and be adaptable to variations in
appearance brought about by occlusions or changes in pose
and lighting. This is achieved by employing a novel, flexi-
ble and adaptive object representation for efficient tracking
comprised of sets of spatially localised linear displacement
predictors bound to various modes of a multi component
template based appearance model.

The main contributions of this work are: first the use
of fast and efficient displacement predictors within a si-
multaneous modeling and tracking framework and, second
a novel, flexible and adaptive object representation for ef-
ficient tracking. Furthermore, by continually evaluating
and adapting the set of linear predictors based on their on-
line performance, poorly performing linear predictors can
quickly be replaced thus removing the need for complex or
costly predictor placement and/or learning strategies. The
tracker is shown to compare favorably to state of the art si-
multaneous modeling and tracking approaches in two chal-
lenging video sequences.

2. Background

Object tracking is an expansive area of research with nu-
merous approaches proposed, each able to cope with dif-
ferent contexts and user requirements. For a recent review
of state-of-the-art tracking methods the reader is referred
to [13]. Real time simultaneous modeling and tracking is
achieved here by online learning of fast displacement pre-
dictors tied to an adaptable multi-modal appearance model.
Relevant background to appearance models and displace-
ment predictors in tracking is now presented.

2.1. Appearance models for tracking

Tracking approaches typically employ appearance mod-
els in order to optimise warp parameters (e.g. translation or
affine) according to some criterion function. Linear predic-
tor trackers typically rely upon hard coded models of ob-
ject geometry [10, 9]. This requires significant effort in
hand crafting the models and like simple template models
[8, 1, 11], are susceptible to drift and fail if the target ap-
pearance changes sufficiently. Systems that use a priori data
to build the model [2] or train the tracker offline [12] can
be more robust to appearance changes but still suffer when
confronted with appearance changes not represented in the
training data. Incremental appearance models built online
such as the WSL tracker of Jepson et al. [5] have shown in-
creased robustness by adapting the model to variations en-
countered during tracking, but the overhead of maintaining
and updating the model can prevent real-time operation.

Two recent approaches that achieve real-time tracking
and have adopted an entirely online learning paradigm are
the discriminative tracker [4] that uses an online boosting
algorithm to learn a discriminative appearance model on the
fly and Dowson’s SMAT algorithm.

Dowson et al. have shown the benefits of online learn-
ing of a multiple component appearance model when em-
ploying alignment-based tracking for Simultaneous Model-
ing And Tracking, SMAT [3]. The appearance model pre-
sented here is similar to the SMAT multi component model
in that it partitions the appearance space into components
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each represented by a median exemplar. Building a multi-
modal exemplar based appearance model in this way nat-
urally segments the appearance space and hence facilitates
the assignment of efficient displacement predictors to spe-
cific aspects of the target object.

2.2. Displacement prediction

Alignment based tracking approaches obtain the warp
parameters by optimising the registration between the ap-
pearance model and a region of the input image according
to some similarity function (e.g. L2 norm, normalised corre-
lation, Mutual Information). Optimisation is often achieved
using a gradient decent or Newton method and hence as-
sume the presence of a locally convex similarity function
surface with a minima at the optimal warp position. A lim-
iting factor for such methods is the range or size of the basin
of convergence. Trackers with low range require low inter-
frame displacements to operate effectively and hence must
either operate at high frame rates (with high computational
cost) or only track slow moving objects.

Cootes et al. comment that a similar optimisation task is
solved at each frame when optimising Active Appearance
Model (AAM) parameters [2] by minimising the magni-
tude of an image intensity difference vector. Therefore a
method for pre-learning a mapping between the image in-
tensity difference vector and the error (or required correc-
tion) in AAM model parameters is proposed. They propose
simple linear mappings that allow the prediction of motion
parameters as a linear function of image intensities. Jurie et
al. employed similar linear predictor (LP) functions to tack
rigid objects [6].

Williams et al. presented a sparse probabilistic tracker
for real-time tracking that uses an RVM to classify motion
directly from a vectorised image patch. The RVM forms
a regression between erroneous images and the errors that
generated them. The recent work of Matas et al. [10], uses
simpler linear regression for displacement prediction, simi-
lar to the linear predictor functions in [6] and [2].

A key issue for LP trackers is the selection of its refer-
ence point, i.e. its location in the image. In the work of
Marchand et al. predictors are placed at regions of high in-
tensity gradient [9] but Matas et al. have shown that a low
predictor error does not necessarily coincide with high im-
age intensity gradients [10]. In order to increase efficiency
of the predictors a subset of pixels from the template can
be selected as support pixels used for prediction. Matas et
al. present a comparison of various methods for learning
predictor support, including randomised sampling and nor-
malised reprojection, is presented and it is found that ran-
domised sampling is optimal [10]. The approach presented
here avoids the need for costly reference point and support
selection strategies by evaluating the real performance of
a predictor over time and allowing poor performers to be

Figure 1. Activation of linear predictors associated to active ap-
pearance model component through association matrix.

replaced as opposed to minimising a learning error offline.
Unlike the approach presented here, each of the displace-
ment prediction trackers detailed in [10, 12, 9] require ei-
ther an offline learning stage or the construction of a hand
coded model or both.

The proposed approach tracks a target object by online
learning of constellations of spatially localised linear dis-
placement predictors and associating them to aspect spe-
cific components of a multi-modal template based appear-
ance model. Figure 1 illustrates the approach when applied
to tracking a human nose. The approach requires no offline
learning stage or hand coded models and only requires that
the location of the target be given in the first frame. The
appearance model, initially just the image patch at the spec-
ified location in the first frame, is learnt on-the-fly during
tracking. In order to capture as much information about
target appearance as possible, an image patch or template
is drawn from the tracked target position in every frame.
These templates are clustered online into multiple compo-
nents that represent different views or aspects of the target.
The appearance model is illustrated in figure 1 by the par-
titioned image templates, medians and component weights.
Also learnt online is a set of linear mappings that predict
motion parameters from image intensity difference vectors.
These predictors are each associated to one or more of the
appearance model components through the association ma-
trix as illustrated in figure 1. The component of the appear-
ance model that best represents the targets current appear-
ance is found in each frame and thus activates the appro-



Figure 2. Intensity difference images for eight translations. Four
support pixel locations illustrate the predictive potential of the dif-
ference image. The input image is in the center. All images to
the left/right of the input have been translated left/right by 10 pix-
els. Those images above/below the input have been translated by
10 pixels up/down. Under the images, the motion and support set
vectors are illustrated.

priate subset of predictors for tracking in the next frame.
The performance of each predictor is continually evaluated
over time and new predictors are learnt every frame to re-
place the worst performers. Furthermore, the contribution
of a predictor to tracker output is weighted according to its
online performance.

The following three subsections detail the predic-
tion functions, appearance modeling and overall tracking
method employed.

2.3. Linear predictor tracker

The linear predictor consists of three simple data struc-
tures; a (2 × k) matrix, S, of randomly selected translations
from the linear predictor reference point that denotes the
relative position of the linear predictor support pixels; a k-
vector, q, of image intensities at the support pixel locations
in the training image; and a (2 × k) matrix, H, that forms a
linear mapping �k → �2 from image intensity differences,
d, to changes in warp parameters, δx. A prediction can be
made by first computing a k-vector, d, of image intensity
difference between q and the support pixel intensities from
the new input image, P, using the state vector, x, from the
last frame, Eq. 1. The state vector, x, is the 2D position of
the predictor, allowing for translation predictions. Trans-
lation is sufficient as the multi-modal appearance model
copes with affine deformations of the image templates [3].

di = P(xt−1+Si) − qi, i = 1...k (1)

Vector d is then multiplied by matrix H to obtain a mo-
tion prediction δx, see Eq. 2. This efficient prediction only
requires k subtractions and a single matrix multiplication,
the cost of which is proportional to k.

δx = Hd (2)

In order to learn the linear mapping, H, training exam-
ples of {δxi, di} pairs, (i ε [1,N]) are required. These are
obtained from a single training image by applying synthetic
warps to the training image and subtracting the deformed
image from the original. For efficiency the warp and differ-
ence computation is only performed at the support pixel lo-
cations but the result of performing this operation on the en-
tire image is illustrated in figure 2 for eight different transla-
tion warps. Also marked on the figure are four possible lo-
cations for a support pixel. It can be seen from this illustra-
tive result that the intensities at the support pixel locations
provide a good indication of translation displacements.

Linear predictor reference points are selected at random
from within a predefined range R of the object center and
support pixel locations are randomly selected from within a
range r of the predictors reference point. The next step in
learning the linear mapping H is to collect the training data,
{δxi, di} into matrices X, (2 ×N ), and D (N ×X k) where
N is the number of training examples. The least squares
solution, see Eq. 3, is then the linear mapping matrix H.

H = XD+ = XDT (DDT )−1 (3)

The parameter R determines the range around the target
center that predictors are placed, it is set according to the
size of the initial template. The parameter, r, defines the
range from the reference point within which support pix-
els are selected as well as the range of synthetic displace-
ments used for learning the predictor. Large r increases the
maximum inter frame displacement at the expense of align-
ment accuracy. Range r is set to 30 to allow maximum of
30 pixel interframe displacement. The predictor complex-
ity, k, models the trade off between speed of prediction and
accuracy. N does not effect prediction speeds but instead
parameterises a trade off between predictor learning speeds
and accuracy. In all the experiments N=150 and k=100 give
sufficient accuracy whilst not jeopardising the goal of real-
time tracking.

2.4. Online multi-modal appearance modeling

The proposed appearance model is similar to that used in
SMAT [3]. If a single template appearance of an object is
considered as one point on the appearance-space manifold,
the manifold can be represented by storing all templates



Figure 3. Four modes of the learnt appearance model for head
tracking represented by medians. Also shown is the state of the
tracker. Top: The head has rotated and translated and various
modes of rotation have been separated out by the model allowing
view specific predictors to be learnt for each aspect of the head.
Bottom: Occlusion introduces a new appearance cluster but after
occlusion is over an existing mode of the appearance model with
all its associated predictors is reactivated. The black mark indi-
cates which component to be used next. The left most images
show the tracker output and the linear predictor placements, white
predictors are currently active and black ones are inactive.

{G0...Gt} drawn from all frames {F 0...F t}. A probabilis-
tic modal of appearance, P (Gt|F t...F 0) is constructed in-
crementally by partitioning templates into components. The
model is represented as a weighted mixture of M compo-
nents as in Eq. 4 where ηm represents a component distri-
bution modeled by the median template µm and the distance
threshold τm.

P (Gt) =
M∑

m=1

wmηm(µm, τm) (4)

This partitioning of the appearance space identifies dif-
ferent views or aspects of the target and facilitates the use
of view specific displacement predictors as described in sec-
tion 2.5. Two examples of the resulting appearance model
when applied to head tracking are shown in figure 3.

Each of the M partitions of the appearance manifold are
represented by: a group of templates, the median template
µm, a threshold τm, and a weighting wm. Use of the me-
dian rather than the mean avoids pixel blurring caused by
the averaging of multiple intensity values. Weight wm rep-
resents the estimated a priori likelihood that the mth par-
tition best resembles the current appearance of the target.
During tracking, a template is drawn from the new frame at
the location determined by the linear predictors. To identify
the best matching partition to the new template, a greedy
search is performed starting with the partition with the high-
est weight and terminating when a partition is found whose
L2 norm distance to the image patch is less than the thresh-
old τ . The input image patch is then added to partition m
and the median, threshold, τm, and weight, wm, are up-
dated. See Eq. 5 for the component weight update strat-
egy. If no match is made, a new component is created with

the new template and the template from the previous frame.
The learning rate, α, sets the rate at which component rank-
ings change and is set to α=0.2 which was found through
experimentation.

wm =
{ wm+α

1+α if m = mmatch;
wm

1+α if m �= mmatch.
(5)

To facilitate the efficient update of an appearance model
component, a matrix Tm maintains the L2 norm distances
between each template in component m. Adding a new tem-
plate to the component then requires only the computation
of a single row of Tm i.e. the distances between the new
template and each other template. The median template in-
dex can then be calculated using Eq. 6 and the component
threshold τm can be computed using Eq. 7 which assumes
a Gaussian distribution of distances and sets the threshold
to three standard deviations of the distribution. The dimen-
sions of Tm depend on the number, n, of templates in the
model but can be limited to bound memory requirements
and computational complexity. In practice, new templates
replace the worst template from the component. It is also
possible to limit the number of components, M . When cre-
ating a new component, if M has reached its maximum,
the new component replaces the worst existing component
identified by the lowest weight wm. For all the experiments
presented here a maximum of n=60 templates are main-
tained in each of a maximum of M=4 components of the
model. This is found to be sufficient to model a stable dis-
tribution whilst preventing computational costs becoming
too high for real-time tracking.

j∗ = arg min
j

n∑
i=0

Tm
ij , j = 1....n (6)

τm = 3 ∗
√√√√ n∑

i=0

(Tm
ij∗)2 (7)

The appearance model facilitates the activation of dis-
placement predictors for the next frame by identifying
which aspect or view is currently visible. Unlike the SMAT
approach, the component medians are not used to identify
displacement as no alignment process is performed. How-
ever, experiments have shown that, at significant cost to
computational efficiency, some improvement in tracking ac-
curacy may be achieved by including an additional optimi-
sation procedure to align the images after the linear predic-
tor stage. The results of these experiments are omitted here
as the additional overhead of performing a full gradient de-
cent optimisation was prohibitive to achieving the goal of
real-time simultaneous modeling and tracking.

The following section describes how efficient and robust
simultaneous modeling and tracking is obtained by asso-
ciating view specific constellations of the linear predictors



Figure 4. Prototypical results from tracker running at between 20
and 25 frames per second. Tracking through large pose variations
and over 100 frames of occlusion

learnt online to various modes of such a multi-modal ap-
pearance model.

2.5. Robust tracking through adaptive LP subset
selection

Each appearance model component, representing a par-
tition of the target appearance manifold, can be viewed as a
particular aspect of the target object. By learning predictors
specific to a particular view of the target object the approach
is able to continue to track through significant appearance
changes. This association is achieved by an association ma-
trix, A, as illustrated in figure 1. Given a bank of L linear
predictors and M appearance model components, the asso-
ciation matrix A has dimension (L × M ). A zero value at
Alm indicates that predictor l is not associated to compo-
nent m and therefore is deactivated when component m is
active. Each component is associated to L/M predictors.
For all the experiments, M = 4 and L=160 meaning 40 LPs
are associated to each component and hence that 40 linear
predictions are computed each frame.

An error function is used to continually evaluate predic-
tor performance over time. This allows poorly performing
predictors to be replaced by predictors learnt online as well
as providing a means for weighting each predictors con-
tribution to overall tracker output, δx̄, defined in Eq. 10.
Rather than assigning a single error value to predictor l, er-
ror values are instead assigned to the association between
each of the L predictors and each of the M appearance
model components. The error values are stored in the as-
sociation matrix A and can also be interpreted as a measure
of the strength of association between a predictor and an
appearance model component. The performance value used

is a running average of prediction error with exponential
forgetting; meaning that high values indicate poor perfor-
mance. The error function used is the L2 norm distance be-
tween predictor output δxl and the overall tracker output δx̄,
‖δxl − δx̄‖. Equation 8 details how the association matrix
is updated with these error values. The rate of forgetting is
determined by parameter β=0.1, set experimentally.

At+1
lm = ((1 − β) ∗ At

lm) + (β ∗ ‖δxl − δx̄‖) (8)

Note that when a new component of the appearance
model is created all the predictors from the previously used
component are assigned to the new component by copying
a column of A. A step by step description of the tracking
procedure follows.

1 Initialise. Given the position and size of the target in
the first frame, F 0, the first template, G0, is extracted and
used to create the first component of the appearance model.
The range R is set to equal the largest dimension of the
initial template and L/M linear predictor reference points
are randomly selected from within a radius R of the target
center. Linear mappings are learnt at all reference points
by generating N artificial displacements and N intensity
difference vectors, {δxi, di}, (i ε [1,N]) and obtaining the
least square solution using Eq. 3. Clearly the single appear-
ance model component and this initial set of predictors is
activated for prediction for the second frame F 1.

2 Compute the support pixel intensity difference vec-
tor d. Subtract the predictor’s template intensity vector, q,
from the intensity of the input image at all k support pixel
locations, see Eq. 1, for each active predictor.

3 Make predictions Multiply intensity difference vec-
tors d by mapping functions H to obtain motion predictions
δx, Eq. 2.

4 Compute weighted mean prediction δx̄ The error val-
ues stored in A are used to weight the contribution of each
active predictor to the tracker output. The weight for predic-
tor l when the active component is m is computed using Eq.
9 and is used to compute a weighted average of all active
predictor outputs as in Eq. 10. Using the weighted mean
as tracker output reduces the effect of prediction outliers
caused by suboptimal predictor performance whilst min-
imising the computational overhead.

Wm
l =

{
max(1 − Alm

Aim
), i = 1...L if Alm > 0;

0 if Alm = 0.
(9)

δx̄ =
∑L

l Wm
l δxl∑L

l Wm
l

(10)

5 Evaluate predictor performance Update association
matrix A using Eq. 8 and identify the worst predictor, φ,
from the current active component m using Eq. 11.



Figure 5. Prototypical results from tracker running at between 25
and 33 frames per second. Large inter frame displacement is han-
dled as well as predicting from very blurred images.

φ = arg min
l

Alm, l = 1...L. (11)

6 Update appearance model Using the new warp pa-
rameters, δx̄, a new template is extracted and compared to
the median of each appearance model component. Com-
parison is performed in order of component weight until a
match is found as described in section 2.4. The new tem-
plate is then added to the appearance model and the parti-
tion is updated using Eq. 6 and 7.

7 Activate predictors for next frame Activate LPs as-
sociated to appearance model component matched and up-
dated in step 6.

8 Learn new linear predictor A new predictor is learnt
from every frame, as detailed in Eq. 3. It is learnt from
synthetic displacements of the previous frame and used to
make a prediction on the current frame. If the prediction er-
ror is less than the worst predictors error, ‖δxnew − δx̄‖ <
‖δxworst − δx̄‖, then the new predictor replaces the worst
predictor (only in the current active component). This pro-
cess serves both to introduce view-specific predictors as
well as prevent outliers from contributing to the tracker out-
put. Note that a predictor can be used by multiple compo-
nents and is only completely destroyed if it has zero values
for all components.

Repeat steps 2 through 8 for each new frame.

3. Evaluation

The system is demonstrated on two challenging and var-
ied video sequences that illustrate the systems ability to
simultaneously model and track objects through large in-
ter frame displacements with robustness to changes in tar-

get appearance brought about by changes to pose and oc-
clusion. Performance comparisons on both sequences are
made with two alternative tracking approaches that require
no offline learning or model building, namely the inverse
compositional algorithm for the Lucas Kenade tracker [8]
and SMAT [3]. Clearly the Lucas Kenade tracker, that has
no template update strategy, is not a fair comparison and
provides only a baseline performance. However, SMAT
has been shown, [3], to outperform both naive and strategic
update approaches [11, 7] and therefore provides a useful
comparison. The sequences are both captured from a low
cost web cam. The first sequence is 2500 frames long and
features a human head and torso with the head undergoing
large pose variations and at one point becoming occluded by
a cup for over 100 frames. The second sequence is of a static
scene and a moving camera. The camera undergoes consid-
erable shaking causing large inter frame displacements as
well as translation, rotation and tilting. The target patch is
identified by hand only in the first frame. Ground truth for
every frame was achieved by hand labeling and was used to
generate the comparative error plots in figures 6 and 7.

For sequence 1 the target patch is 100*90 pixels and the
tracker achieves between 20 and 25 frames per second with-
out any tracking failures. Prototypical results are shown in
figure 2.5. Figure 3 illustrates how the multi component ap-
pearance model adapts to the target appearance and helps
the tracker overcome occlusions and large changes in pose.
Figure 6 presents the comparative results using the ground
truth data to compute the tracking error (euclidean distance
to ground truth). It can be seen that the LK tracker (using
L2 norm and Levenberg-Marquardt optimisation) manages
to track for around 150 frames after which it drifts com-
pletely off target. Both the presented tracker and the SMAT
tracker achieve similar error plots on this sequence but due
to the relatively large image patch the SMAT tracker oper-
ates at between 8 and 12 frames per second compared with
20 to 25. The worst results (from peaks in the error plot) for
this sequence are also shown in figure 6.

For sequence 2 the target patch is 25*25 pixels and in
this case the tracker operates at between 25 and 33 frames
per second. Figure 3 shows some typical results with a grid
placed over images so that interframe displacement can eas-
ily be seen. The middle row of figure 3 shows three consec-
utive frames. The displacement predicted from frame 374
to 375 is 37 pixels (16 vertical and 33 horizontal) and de-
spite the significant blurring in frame 375, the tracker still
succeeds in making a low error prediction to frame 376.
Due to the constant online learning of predictors some are
learnt from blurred images allowing for prediction during
this blur. Figure 7 shows the error plots generated by the
three trackers on this sequence. Due to the limited basin of
convergence both the alignment based trackers fail to deal
with the large inter frame displacements and SMAT loses



Figure 6. Error plots for each tracker are shown along with the
tracker output at peaks in the error surface i.e. the worst results.

track as soon as the camera starts to shake. There is one
tracking failure in the sequence illustrated in figure 7 but
due to the large prediction range of the predictors, recovery
is achieved in the next frame.

Unique to this approach is the continual online learning
and evaluation of efficient linear predictors. A fraction of
the computational cost of the approach is attributed to this
learning and adaptation rather than to tracking. For a se-
quence running at 25 frames per second, i.e. 40ms per
frame, around 15ms per frame is spent learning new pre-
dictors (35% computational cost). The computational cost
attributed to learning and maintaining the appearance model
is around 50% of the overall cost (average 20ms per frame
when running at 25 frames per second). Each LP takes less
than 0.01ms per prediction so with 40 predictions per frame
a total of 0.4ms per frame is spent making predictions i.e.
about 1% of overall computational cost. The remaining 10
to 15% of computational cost is attributed to the computa-
tion of δx̄ as in Eq. 10 and maintaining and updating the
association matrix.

4. Conclusion, discussion and future work

A novel approach to tracking visual features that re-
quires no offline learning or hard coded models is presented
and demonstrated. It is shown that the approach can han-
dle large inter frame displacements and adapt to significant
changes in the target appearance whilst running at up to 33
frames per second. Furthermore, the approach is shown to
outperform two alternative approaches that also require no
offline learning or hard coding.

The advantages of such a simultaneous modeling and
tracking approach are clear when considering how much
hand crafting, offline learning and parameter tuning must

Figure 7. Error plots for each tracker are shown plus a three frame
sequence illustrating the only tracking failure in the whole se-
quence

be done in order to employ many existing object tracking
approaches. Many applications require tracking that oper-
ates at high frame rates and can handle high object veloci-
ties as well as be robust to significant appearance changes
and occlusion. This is achieved here by utilising the com-
putationally efficient technique of least squares prediction
and modeling the target appearance by greedy partitioning
of templates drawn from each frame.
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