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Abstract

We present a framework for autonomous behaviour in vi-
sion based artificial cognitive systems by imitation through
coupled percept-action (stimulus and response) exemplars.

Attributed Relational Graphs (ARGs) are used as a sym-
bolic representation of scene information (percepts). A
measure of similarity between ARGs is implemented with
the use of a graph isomorphism algorithm and is used to
hierarchically group the percepts. By hierarchically group-
ing percept exemplars into progressively more general mod-
els coupled to progressively more general Gaussian action
models, we attempt to model the percept space and create a
direct mapping to associated actions.

The system is built on a simulated shape sorter puzzle
that represents a robust vision system.

Spatio temporal hypothesis exploration is performed ef-
ficiently in a Bayesian framework using a particle filter to
propagate game play over time.

1 Introduction

We present a framework for autonomous behaviour in vi-
sion based artificial cognitive systems by imitation through
coupled percept-action (stimulus and response) exemplars.

The assumption is made that if a system has, stored in its
memory, a symbolic representation of all the possible per-
ceptual stimuli (percepts) that it shall ever encounter each
coupled with a ’symbolic’ action model (response), then it
should be capable of responding as required to any given
visual stimulus. Of course biological vision systems exhibit
many high-order reasoning and context-dependent abstrac-
tion capabilities that go beyond any such simple predefined
mappings. Nonetheless, our assumption leads us to con-
sider how a practical estimation to such a system could be
achieved.

The main practical restriction to the above scenario is the
limit on the number of percept-action exemplars that can be
realistically obtained and stored. In most problem domains
the complete one-to-one mapping from percept space to ac-
tion space would require an enormous number of exemplars
and in many cases the nature of the perceptual input is not

known a priori. Practical requirements of the system are that
it must be capable of searching its entire percept store (vi-
sual memory) in order to find a match to the current percept
(visual stimulus), and then perform some associated action.

By hierarchically grouping the percepts into progres-
sively more general representations (expressions), and
given that the stored percepts adequately cover the percept
space, we can structure the stored percepts in such a way as
to allow fast searching. Also in generalising the percept rep-
resentations further at each level of the hierarchy, the system
is capable of compensating for the incomplete population of
the percept space by performing more general action mod-
els given more general percept representations.

This system operates within a simulated shape sorter
puzzle environment. The training phase is initiated by
the supervisor solving the shape sorter puzzle a number of
times. Each time the supervisor takes some action, the sys-
tem records both the action performed and the associated
visual percept. Once the training data has been recorded the
grouped percept hierarchy is built.

During the systems on-line state it extracts the current
scene information and builds a symbolic representation, At-
tributed Relational Graphs (ARGs), which can be compared
to the stored percepts. A multiple hypotheses forward ex-
ploration - back tracking algorithm based on a particle filter
is employed to guide the system toward its learned goal.

In order to allow the system to improve its performance
at a given task over time, during its own interactions with
the world it stores the resulting percept-action pairs. The
system is capable of supervising itself over time by reward-
ing near optimal action sequences. Optimality is defined in
terms of a cost function.

Only preliminary experimental results are available at
time of press. The influence of some system parameters and
algorithms on the systems performance at the given task are
however assessed.

2 Background

It has been argued that it is the ”purpose of cognitive vision
systems not primarily to build models of the geometry of
objects or of scenes, but to build up model structures that
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Figure 1: Percepts are represented as Attributed Relational Graphs

relate the percept domain and the action domain”[1]. With
this purpose in mind, a system has been developed that at-
tempts to estimate the mapping from perceptions to actions.
In the current system, we assume a linear/direct mapping
between the two spaces but in future work we intend to gen-
eralise to non-linear mappings.

In order for a cognitive system to actively respond to vi-
sual stimulus, a mapping between percepts and actions is
required. Recent neurophysiological research has shown
strong evidence supporting the existence of a mechanism,
in both primate and human brains, that obtains this percept-
action coupling, known in literature as ”direct-matching hy-
pothesis”. The mirror-neuron system essentially provides
the system (human/primate brain) with the capability ”to
recognise actions performed by others by mapping the ob-
served action on his/her own motor representation of the
observed action” [2].The system presented here has been
endowed with these same innate capabilities. Therefore
our work differs from that of Siskind, where an attempt is
made to analyse from visual data, the force dynamics of a
sequence and hence deduce the action performed[3]. In-
stead, by allowing the system to directly record symbolic
representations of the actions performed during the training
phase, an exact percept-action coupling can be achieved. As
an alternative approach, Fitzpatrick et al have shown that it
is possible for an agent to learn to mimic a human supervi-
sor by first observing simple tasks and then, through experi-
mentation, learning to perform the actions that make up the
tasks[4].

Magee et al[5] have recently presented a framework for
learning of object, event and protocol models from audio
visual data. Their framework employs both statistical learn-
ing methods, for object learning, and symbolic learning for
sequences of events representing implicit temporal proto-
cols. As [5] point out this learning of temporal protocols
is analogous to grammar learning, in this respect the sys-
tem presented here shares some goals with that presented by
[5]. Further, both systems attempt to achieve this grammar
learning through generalising a symbolic data set. There is
however very little similarity between the approach taken
by [5] (Inductive Logic Programming), and that which we
have taken (grouped percept-action exemplars). Where [5]
have developed, using Progol, an inference engine to extract

temporal protocols, we have employed an approximation to
imitation approach to learning puzzle grammars.

3 Modelling Perception
This section describes our approach to capturing informa-
tion from the perceptual domain in order to symbolically
represent the scene in an invariant and compact form.

3.1 Capturing scene information
In order to process perceptual data in the symbolic domain
a grounded symbolic representation must be obtained.

As the system presented here operates within a simulated
environment, many of the common computer vision prob-
lems of symbol grounding in terms of feature extraction,
classification and object labelling are avoided. Essentially
the simulated environment provides a robust computer vi-
sion system. That said, exactly what information is needed
is of primary concern. The shape sorter puzzle, along with
many other potentially autonomous tasks, rely on the abil-
ity of the system to identify and classify objects. Further it
is essential that the relationships between objects be repre-
sented. It is these two elements; scene objects and scene
structure that are captured in the representation adopted
here.

3.2 Symbolic representation - percepts
Once all the scene information has been extracted it needs to
be represented in an invariant and compact form, a percept.
In order to group percepts, the representation must allow us
to compare, and to find a measure of similarity between two
percepts.

Here a scene is represented symbolically as an Attributed
Relational Graph. Formally we define Attributed Relational
Graphs (ARGs) as a 4-tuple, g = (V,E, u, v) where V and
E(E ⊆ V × V ) are the set of nodes (graph vertexes) and
edges (links between nodes) respectively. u : V −→ AV is
a function assigning attributes to nodes, and v : E −→ AE

is a function assigning attributes to edges. AV and AE are
the sets of node and edge attributes respectively.
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Graph vertexes represent the objects in the scene. Graph
edges represent the relational structure of the scene, see
figure-1. Type attributes are attached to each vertex and
dictate the type of object. Graph edge attributes are 3D
relative position/orientation vectors that represent both the
horizontal and vertical displacement and the relative orien-
tation between the two objects connected by the edge.

As an alternative approach, we intend to make a slight
modification of the ARG percept by emphasising the impor-
tance of contextually important objects. Objects (nodes),
and the relationships between them (edges), that are impor-
tant to the dynamics of the modelled scene are therefore
considered more important when grouping and matching
percepts, see Percept distance below.

Bunke et al [7] argued that structural pattern recognition,
that uses symbolic data structures such as graphs, is more
powerful in terms of representational capabilities than sta-
tistical pattern recognition, that uses feature vectors to rep-
resent patterns. It is the ability of the structural approach to
model structural relationships between pattern features that
is of particular interest here. However as [7] point out, the
rich set of mathematical tools available in the statistical do-
main, in particular clustering techniques, are not so readily
available in the structural domain. In order to apply statisti-
cal clustering techniques in the structural domain, a distance
metric between the symbolic representations is required.

4 Perceptual Grouping
This section describes how we group our percepts into a
hierarchical structure and how higher levels in the hierarchy
represent more general percepts.

4.1 Percept distance
In order to group the percepts we need some way to mea-
sure/compute the similarity or distance between two At-
tributed Relational Graphs.

There are a number of proposed algorithms for the
computation of an ARG distance metric;[8],[9],[10],[12].
Cordella et al[13] at the Artificial Vision Group (Univer-
sity of Naples) have developed the VF graph matching al-
gorithm and have provided the graph matching database and
VFlib 1, a class library for testing graph matching algo-
rithms. The VF algorithm uses a Contextual Transforma-
tional Model for the inexact matching of ARGs.

In our work we have used VFlib and the VF
graph/subgraph isomorphism algorithm in order to compute
a distance between ARGs/percepts. As our graphs currently
always have the same objects in the scene each labelled with
distinctive labels that are consistent across graphs, there is

1Graph Database: http://amalfi.dis.unina.it/graph/

always an exact isomorphism between any two graphs. In
order to compute the distance between two graphs we there-
fore compute the cost of the isomorphism/match found. The

(a)

(b)

Figure 2: (a) Distance between original and noisy scene
as noise level increases, (left) without taking log and (right)
with taking log. (b) Two system are built using ARG dis-
tance and log ARG distance methods. When presented with
a scene from the hierarchy with 10dB of AWGN added, the
log distance system is more successful at the given task.

distance (cost of match) was initially computed by summing
the Euclidean distance between the relative position vec-
tors (graph edge attributes) of each matching graph edge.
Although this approach did give some measure of sim-
ilarity (temporally local percept pairs in a sequence are
awarded greater similarity than temporally distant pairs), it
was found that the distance values obtained increased expo-
nentially when AWGN (Additive White Gaussian Noise) is
applied to scene object positions. This non-linearity of dis-
tance function is resolved by taking the log of the euclidean
distance value. This gives us,

dist(G1, G2) = log
∣∣∣AG1

E −AG2
E

∣∣∣ = log

√√√√ d∑
i=1

∣∣∣AG1
Ei
−AG2

Ei

∣∣∣2
(1)
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where AGk

E is the edge attribute set of graph Gk and d is the
dimension of the edge attribute, in this case 3.

Figure-2 (a) illustrates the effect of taking the log of the
distance function. Figure-2 (b) shows the improvement in
performance of the system when the log distance function
is used. See section 7 Experimental Results for details of
this experiment.

As mentioned in Symbolic representation - percepts
above, contextually important nodes and edges can be made
to have a greater influence on the graph distance.

This method of computing a distance could be imple-
mented without the use of a graph matching algorithm but
it is intended that this system shall be applied to a less robust
vision system that may not provide consistent object labels
across scenes. In these situations the use of an inexact graph
matching algorithm is highly applicable.

The distance between two puzzle scenes is often not ob-
vious to specify. Although the method employed here has
shown some good results, it is an engineered measure and
can not be trusted completely in its ability to measure sim-
ilarity in a way relevant to the problem context. In future
systems it is intended that the distance metric be learned
from training data[14]. This work is being carried out con-
currently.

4.2 Hierarchical percept grouping

Due to the complexity of the distance computation and the
size of the data set, the groups are formed greedily i.e. non
optimally.

During grouping, a distance matrix is incrementally pop-
ulated and used as a look up table to avoid recomputing
ARG distances. This is only necessary with large graphs.

At the bottom level of the percept hierarchy, all the per-
cepts in the system memory are present. At the next level up
the hierarchy, lev2, we group these percepts together if they
are within the current levels Maximum allowable Distance
(MD), i.e. clust(G1, G2) if dist(G1, G2) ≤ lev2.MD.
Then the median of each group/cluster is computed and is
used to represent the group members at the current level.
The median graph is computed by finding the graph that
has the minimum sum of distances to all other cluster mem-
bers. At each successive level the levels MD is increased,
the medians from the lower level are clustered and finally
the new level medians are computed. Currently the value
of MD at each level is engineered, the values are selected
through percept distance histogram analysis to roughly en-
sure that the level MD values divide the distance histogram
into approximately even areas. In future work a more prin-
cipled method of setting level generality threshold would be
desirable.

As mentioned in the introduction, each percept is cou-
pled to an action model or response. For the percepts in

Figure 3: Percepts are clustered into a hierarchy.

the bottom level of the hierarchy i.e. ungrouped percepts,
this model is a one-to-one mapping to an action vector.
However for groups of percepts, formed through the per-
ceptual grouping procedure described above, the coupled
action group is modelled as a multivariate Gaussian proba-
bilistic distribution. Section 5 below gives the details of the
action models used.

5 Modelling Actions
The lowest level actions that the simulator system is capable
of performing are ’pick up object’, ’put down object’ and
’move gripper’. Within the context of the problem the sys-
tem needs only to perform these actions in a fixed format:
A:= move - pick up - move - put down. Since such a com-
pound action may generate multiple intermediate percepts,
key scenes corresponding to the beginning of a sequence
are extracted and coupled to the action model. It is these
key scenes, represented as ARGs, that form the data set of
the systems visual memory. By temporally segmenting the
continuous perceptual input in accordance with the begin-
ning of our compound action sequences we can discard all
the perceptual data not extracted as key scenes.

Another motivation for forming compound action se-
quences is that a fixed length vector can be used to represent
actions. VA = (δx1,δy1,δx2,δy2,δθ). The first and second el-
ements of the action vector represent the initial movement
prior to ’pick up’. As ’pick up’ and ’put down’ need no
parameterisation being implicit to the action, they are not
represented. The last three elements of the action vector are
therefore left to parameterise the post ’pick up’ move oper-
ation with a rotation.

Now that an action can be modelled as a vector, the ac-
tions coupled to a percept group can be represented as a
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Gaussian. The actions associated with a percept group are
collected together into a 5 by N matrix, where N is the num-
ber of percepts in the group. By computing the zero mean
covariance matrix and performing an Eigen value decom-
position, a multivariate Gaussian probability distribution is
obtained.

6 Perception-Action Cycle
Many of the activities that cognitive systems must perform
require perceptually guided action e.g. walking or catching.
It is also true to say that much of what is perceived by a cog-
nitive system is the result of actions performed by that sys-
tem e.g. moving to a new space in the environment or pick-
ing up an object to examine it. Here, the perception-action
cycle simply describes a model of behaviour whereby per-
ception influences action and action influences perception.

6.1 System overview

The system extracts a symbolic representation, percept,
from the current sensory input. It then finds a set of closest
matching percepts in the percept hierarchy. Each match is
associated with an action model whose variance depends on
the level in the hierarchy at which the match was made.

In initial experiments the system simply selected the
best matching percept and performed the associated action -
MLE (see Section 7). This approach worked in some cases
where the input scenes were present in the percept hierar-
chy. In some cases, given an already seen perceptual scene,
it was capable of entirely solving the puzzle. However,
given any input the system had not seen (did not have in
its percept store), the system randomly performs actions i.e.
it does not generalise well. In many cases even with seen
data the system would find itself ’stuck’ in an action loop.

To allow the system to deal with perceptual stimuli not
already encountered in a more guided fashion, we intro-
duced a cost function. We also introduced a multiple hy-
potheses forward exploration algorithm to optimise action
selection. See section 6.2.

6.2 Cost function, probabilistic framework
and multiple hypotheses search strategy

The systems inability to solve puzzles from unseen percepts
can be attributed to number of factors. Firstly the current
system only has 1000 percept-action couples in its store,
this is unlikely to provide an adequate coverage of either
percept or action spaces i.e. the spaces are under populated.
Secondly the limitations of the distance measure currently
used, as mentioned above, will hinder the systems perfor-
mance.

As the hierarchy attempts to generalise the action space
and its mapping to percepts it is unlikely that a single ran-
dom variable sampled from an action model will provide
a purposeful action. Therefore multiple samples must be
tested.

In order to judge the effectiveness of any given sampled
action a generic performance metric is required. The cost
of performing a certain set of action parameters given the
current state of the world is defined by the distance between
two percepts. One being the result of performing the ac-
tion on the world, the other being a learned solved state.
Although no formal justification of this evaluation function
has been made, experimental evidence does suggest it to be
of some value i.e. the function decreases as the solution is
approached.

When it comes to deciding what action to take we have
two guiding factors: similarity of a percept match and cost
of performing an action. Posing this in a probabilistic
framework allows us to combine the factors in a principled
manner. Also the potential for including other probabilistic
factors such as a prior on particular regions of the percept
space or action transition probabilities becomes available.
To do this we use a particle filter framework.

By searching the percept-action store maintaining mul-
tiple hypotheses over a number of time steps, we can over-
come local minima and plateaus in our evaluation function.
By backtracking we can then obtain the optimal action at
the current step.

The first stage in the multiple hypotheses forward explo-
ration algorithm is to initialise the state of a particle filter,
S, at t = 0.

S0 = {θn
0 , An

0 , πn
0 , ιn0 , n = 1...N} (2)

Where, for each of the n hypotheses θn
t is the state of the

world at iteration t. An
t is the action to be performed on θn

t .
πn

t is the posterior probability of hypotheses Sn
t and also

the prior probability of hypotheses S
ιn
t+1

t+1 , where ιnt is the
index to the ’parent’ particle, Sn

t . N is the total number of
particles employed.

At t=0 the set of world states, θn
0 , are the same for all n

i.e. the current state of the world. In order to construct S0 a
set of initial action hypotheses A0 must be generated.

Searching the percept hierarchy for the M best matches
to the current scene yields M bivariate Gaussian action mod-
els, Λ, and M match likelihood values that coarsely approx-
imate the probability of action model Λ given current world
state.

ρ(Λm | θ = θ0) ≈ 1− dist(θo, φm)∑M
i=1 dist(θo, φi)

(3)

where φm for m = 1 ... M is the set of matched scenes.
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Next , N random samples, An
0 n = 1 ... N, are taken

from the action models. The number of samples taken from
model Λm being determined by N * ρ(Λm | θ = θ0).

The Final step in initialising the particle filter is to con-
struct π0. This is done by setting πn

0 = ρ(Λm | θ = θ0)
where An

0 was sampled from model Λm. πn
0 must then be

normalised to ensure
∑N

n=1 πn
0 = 1.

Once initialised, the particle filter must iteratively con-
struct

St = {θn
t , An

t , πn
t , ιnt , n = 1...N} (4)

from,

St−1 = {θn
t−1, A

n
t−1, π

n
t−1, ι

n
t−1, n = 1...N} (5)

for t = 1 ... T.
This is achieved by performing T iterations on the fol-

lowing steps.

1. Perform actions for each hypotheses. Generate θt by
performing At−1 on θt−1.

2. Compute hypotheses weights ωn
t .

ωn
t = 1− dist(θn

t ,Γ)∑N
i=1 dist(θi

t,Γ)
(6)

where Γ is the learned solved state.

3. Multiply hypotheses prior by weight to obtain poste-
rior.

πn
t = πn

t ∗ ωn
t (7)

4. Normalise, sort and discard hypotheses. Sort hypothe-
ses according to posterior and discard worst to ensure
just N remain. Normalise posteriors

πn
t =

πn
t

πn
t ∗ ωn

t

(8)

5. Find world state match and sample distributions. A
best match to the current world θn

t is found. The as-
sociated action model Λ is sampled to provide At+1.
The number of times Λ is sampled is determined by N
* πn

t . For each new particle formed ιnp
t+1 is assigned

the index value for the parent hypotheses.

6. Propagate posteriors to next iteration priors.

πnp
t+1 = π

ιnp
t+1

t (9)

7. End of iteration. St+1 is now constructed so move to
next iteration.

Once T iterations have been performed, the optimal world
state is

opt(ST ) = arg max
∀n

(πn
T ) (10)

The optimal action at t = 0 is then obtained by backtracking
from opt(ST ) through the particle filter states, using ι to
indicate particle parents.

Figure 4: Cost plots for sequences of play with different
levels of noise applied to (already seen) input.

7 Experimental Results

Figure-2 (a) shows the results of an experiment designed
to examine the nature of the developed distance function.
A seed percept is taken from the hierarchy and new per-
cepts are generated by applying increasing levels of AWGN
(Additive White Gaussian Noise) the the percepts object lo-
cations. The distance from each of the noisy scenes to the
seed scene is computed and plotted both before and after
taking logs. Figure-2 (b) shows the resulting puzzle state
at a given task for two versions of the system. One system
that uses the log distance (to group and search for percepts
as well as to provide cost and likelihood values) and another
system where the log is not taken. The original input scene
in this case is a scene from the hierarchy with 10dB AWGN
applied.

Figure-4 shows the results of an experiment designed to
determine the noise level at which the MLE version of the
system (no multiple hypotheses search strategy - just match
likelihood) will fail on a given sequence. From a percept
present in the hierarchy, a set of new initial puzzle states
are generated by applying AWGN (from 1dB to 20dB) to
the object positions of the percept. In general as the noise
level increases the system performance (in terms of the cost
function) decreases. As can be seen from Figure-4 there
is a point at which system performance drops greatly (the
cost plots fail to reach low minima). It is at this noise level
(the breaking point of the MLE system on this sequence),
that the multiple hypotheses forward exploration strategy
system is tested. The reason for this is that this noise level is
the lowest level at which any improvement can be observed
in system performance due to the exploration strategy. For
the sequence selected the noise level found was 18.65dB.
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In the following experiments the multiple hypotheses ex-
ploration algorithm has a total particle population, N = 40,
so 40 hypotheses are maintained at each iteration. The num-
ber of matches found when initialising the particle filter is
M = 10.

The system was run, with the same initial puzzle state
(generated by applying 18.65dB noise to object positions
of percept from the hierarchy), with 4 different depths of
hypotheses exploration. All the runs were stopped after 24
moves. The costs for the resulting sequences are plotted
in Figure-5 (a) along with the cost of the MLE sequence.
It can be seen that the sequence with the optimal end cost
is the sequence generated by the system that applies 4 it-
erations of the multiple hypotheses forward exploration al-
gorithm while the least optimal sequence comes from the
MLE system. Figure-5 (b) shows scenes from each of the
sequences in (a) after the 1st, 19th and 24th moves.

8 Conclusion, discussion and Future
Work

When exact matches to perceptual stimuli are present in the
percept hierarchy the system can solve the puzzle. Fur-
thermore, when no exact match to the perceptual stimuli is
present in the hierarchy the system is capable of identifying
the most similar percept and, within a certain range of sim-
ilarity, completing the puzzle - MLE (Figure-2 (b)). This
suggests that it is able to generalise. By combining match
likelihood and action cost values in a Bayesian framework,
the multiple hypotheses forward exploration strategy ap-
pears to allow the system to further extend its generalising
capabilities and its ability to solve the puzzle.

During the sequences shown in Figure-5, the MLE sys-
tem moves one of the blocks (half circle) out of it matching
hole. This action selection is based purely on similarity of
percept match and has no regard for the problem context
- provided by the cost function. The multiple hypotheses
system with a forward exploration depth of 4 is shown in
Figure-5 to perform actions that also result in a higher cost
value (the highest over all hypotheses at step 19), however
in this case the system selects the hypotheses based on the
fact that there is a lower minima on the cost function once
the local maxima has been overcome. In fact the system
moves the triangle well away from the board and in so doing
changes the puzzle state such that a percept-action couple is
found that brings the triangle over the correct hole.

The results presented here come from preliminary exper-
imental data. Clearly in order to fully evaluate the systems
performance a great number of tests must be run. This is
partly due to the random nature of the sampling process and
partly due to the number of system variables involved. For
example the number of particles/hypotheses that the system

(a)

(b)

Figure 5: (a) Cost plots of sequences of play when
18.65dB AWGN applied to input scene. The number of it-
erations refers to depth of the hypotheses exploration. (b)
Scenes from the sequences represented in (a) at step 1, 19
and 24.
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maintains at any time and the effect on performance is to
be investigated further. The number of initial matches that
are found when initialising the particle filter may also effect
performance.

This system demonstrates an ability to solve shape sorter
puzzles without any hard coded rules (currently only with
puzzle states similar to states that it has seen before). It is
believed that this approach could be employed to aid un-
constrained automation, endowing human like attributes of
adaptability into systems. There are any number of environ-
ments where no amount of hard coded rules account for all
eventualities and it is these environments where the frame-
work presented may provide some benefit.

In future work, a number of improvements to the sys-
tem are to be included. As mentioned already, we intend to
weight contextually important nodes and edges when com-
puting similarity values. Initial testing has shown that this
may lead to more meaningful action models formed as a
result of perceptual grouping. It is also expected that by in-
creasing the size of the exemplar set, the ability of the sys-
tem to generalise will increase. Further, both the similarity
measure and the cost function are expected to become more
relevant to the context problem when the learned distance
function is applied[14]. This will improve the Maximum A
Posteriori (MAP) estimate made at the end of each particle
filter iteration. Another way to improve the MAP estimates
is to include more a priori information such as action transi-
tion probabilities. Finally, it is thought that some problems
will require a more complex mapping (than one-to-one) be-
tween percepts and actions. This will also be addressed in
future work.
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