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Recognizing Actions Through Action-Specific
Person Detection

Fahad Shahbaz Khan, Jiaolong Xu, Joost van de Weijer, Andrew D. Bagdanov,
Rao Muhammad Anwer, and Antonio M. Lopez

Abstract— Action recognition in still images is a challenging
problem in computer vision. To facilitate comparative evaluation
independently of person detection, the standard evaluation proto-
col for action recognition uses an oracle person detector to obtain
perfect bounding box information at both training and test time.
The assumption is that, in practice, a general person detector
will provide candidate bounding boxes for action recognition.
In this paper, we argue that this paradigm is suboptimal and
that action class labels should already be considered during the
detection stage. Motivated by the observation that body pose
is strongly conditioned on action class, we show that: 1) the
existing state-of-the-art generic person detectors are not adequate
for proposing candidate bounding boxes for action classification;
2) due to limited training examples, the direct training of action-
specific person detectors is also inadequate; and 3) using only a
small number of labeled action examples, the transfer learning
is able to adapt an existing detector to propose higher quality
bounding boxes for subsequent action classification. To the best of
our knowledge, we are the first to investigate transfer learning
for the task of action-specific person detection in still images.
We perform extensive experiments on two benchmark data sets:
1) Stanford-40 and 2) PASCAL VOC 2012. For the action
detection task (i.e., both person localization and classification
of the action performed), our approach outperforms methods
based on general person detection by 5.7% mean average
precision (MAP) on Stanford-40 and 2.1% MAP on PASCAL
VOC 2012. Our approach also significantly outperforms the state
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of the art with a MAP of 45.4% on Stanford-40 and 31.4% on
PASCAL VOC 2012. We also evaluate our action detection
approach for the task of action classification (i.e., recognizing
actions without localizing them). For this task, our approach,
without using any ground-truth person localization at test time,
outperforms on both data sets state-of-the-art methods, which do
use person locations.

Index Terms— Action recognition, transfer learning, deep
features.

I. INTRODUCTION

ACTION detection in still images is the task of localizing
and classifying the actions of persons based on a single

image. It is an extremely challenging problem due to factors
such as person pose variation (e.g climbing), person
context (e.g. gardening), and object-person interactions
(e.g. phoning). Most research on the topic has focused on
the action classification task in which the bounding box of
the person performing the action is given at both training
and testing time (i.e. localization is not part of the task). The
rationale behind this has been that the harder task of action
detection can be decomposed into a pre-processing step in
which candidate persons are proposed, after which the action
each detected person is performing can then be classified.

One of the main reasons for this two-step action detection
methodology is that person detectors have become a mature
technology over the last decade [9]. One of the most successful
approaches, the Deformable Part Model (DPM), models the
person as a structured constellation of parts [12]. Based on
thousands of examples of labeled data, this method is able
to learn a very accurate human model. However, human
actions strongly condition the poses in which humans are
expected to be observed: a person riding a horse is generally
in a sitting position; somebody who is gardening is generally
kneeling or slightly bent; and a person climbing might be
in a contorted and infrequently observed pose (see Fig. 1).
Based on this observation, we question the traditional
two-step action detection methodology. Rather, we propose
the use of action-specific person detection instead of general-
purpose person detectors. Knowing what action class you are
detecting provides valuable information on the poses in which
the human is expected. Exploiting this information should
lead to more accurate person localization, and consequently
to better action classification results.

We consider two approaches to action-specific person
detection. First, we investigate direct application of DPMs
to each action class, by which we mean learning a com-
plete DPM model from scratch for each action category.
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Fig. 1. Four example action categories: ‘riding horse’, ‘gardening’, ‘cleaning’ and ‘climbing’ from the Stanford-40 action dataset. These classes illustrate
human actions strongly conditioned on pose. Action specific labels provide additional information on the poses in which the human is expected. (a) Action
category: riding horse; Pose: sitting. (b) Action Category: gardening; Pose: kneeling. (c) Action Category: cleaning; Pose: bending. (d) Action Category:
climbing; Pose: contorted.

However, given that existing action recognition datasets only
contain a few hundred examples of each action class, it might
be hard to learn accurate DPMs. As a second approach, we
aim to exploit state-of-the-art person detectors by adapting
the DPM model to action-specific detection. We do so by
posing action-specific person detection as a transfer learn-
ing problem [32]. Transfer learning allows us to transfer
knowledge from a previously-learned task (i.e. generic person
detection by DPM) to new tasks (i.e. action-specific person
detection). We expect this approach to be less sensitive to few
training examples than directly training action-specific detec-
tors. Motivated by the recent success of convolutional neural
networks [16], [26], [31], we use deep features to represent our
person proposals for action classification. In our experiments,
we show that an action-specific person detector based on
transfer learning leads to significantly better results than a
general person detector, even when action recognition for both
is based on the same deep features.

To validate our proposed approach, we perform extensive
experiments on two action recognition datasets: Stanford-40
and PASCAL VOC 2012. We show that the prevailing para-
digm for action recognition is sub-optimal since an action class
is strongly conditioned on expected human poses. We further
show that action-specific person detection based on transfer
learning yields superior performance compared to the
de facto methodology based on general person detection.
On the PASCAL VOC 2012 dataset, our approach yields a
significant gain of 6.8% in mean average precision (MAP)
compared to the state-of-the-art method [17] based on deep
features and bottom-up person proposals for action detection.
Additionally, we also evaluate our action detection method
for the problem action classification achieving state-of-the-art
performance without exploiting exact ground-truth information
at test time.

In the next section we review the literature related to action
recognition in still images. We describe our approach to
transfer learning of action-specific person proposals

in section 3. In section 4 we report on experiments
conducted on the Stanford-40 and PASCAL 2012 action
recognition datasets, and we conclude with a discussion of
our contribution in section 5.

II. RELATED WORK

Recognizing human actions in still images is a challenging
task due to large variations in human appearance and pose.
In this section we briefly review the state-of-the-art in action
recognition, detection and transfer learning related to our
proposed approach.

1) Person Detection: Most state-of-the-art methods
for person detection are based on the learning-from-
examples paradigm [6], [12], [25]. Among the many
approaches, the deformable, part-based method (DPM) by
Felzenszwalb et al. [12] yields excellent performance for
person detection. The conventional DPM model employs HOG
features [6] for image representation, and Khan et al. [25]
augmented the DPM detector with color information. The
use of generic object proposals [1], [5], [30], [40] for object
detection has gained significant attention in recent years.
Girshick et al. [15] demonstrated significant improvement in
object detection performance with an approach combining
selective search [40] and CNN-based representations. Though
selective search has been shown superior for generic object
proposal, in the seminal work on selective search it was
shown that proposals based on Deformable Part Models [12]
outperform selective search for the person category of the
PASCAL dataset [40].

2) Action Classification in Still Images: The conventional
approach to action recognition assumes that person bounding
boxes are provided both at training and test time. The
task is to associate an action label with each given
person instance (i.e. to classify the action). Most
approaches [7], [24], [28], [35] employ the bag-of-words
framework for action classification. Others tackle the problem
by finding human-object interactions [33], [43], or take
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a human-centric approach that localizes persons and then
finds an object and its relationship to the person instance [33].
Yao et al. [43] proposed a method that uses attributes and
parts by learning a set of sparse attribute and part bases for
action recognition.

3) Action Detection in Images and Video: The standard
action classification pipeline which exploits exact knowledge
of person location is unrealistic for real-world applications.
Recently, several approaches have investigated the prob-
lem of action detection both in images [8], [17], [24] and
videos [13], [30], [39]. In the action detection problem ground-
truth person locations are not known at test time: the task
is to simultaneously localize and classify the action cate-
gory of each person instance. Khan et al. [24] proposed
a color extension of the Deformable Part Model [12] for
action detection. The work of Gkioxari et al. [17] proposed
a convolutional neural network approach for the the task of
action detection in still images. The method is built on the
R-CNN framework [15] and employs region proposals gener-
ated using a multiscale combinatorial grouping method [2].

4) Transfer Learning for Object Detection: At the core of
an object detector is a corresponding object classifier which,
given an object proposal, determines if it actually corresponds
to an object of interest. Underlying this approach is the
assumption that the probability distributions of the training
and testing data are the same. However, in practice this is
not always the case, which results in a loss of accuracy in
the learned classifier and consequently of associated detector.
In some cases, the discrepancy between the test and train
data probability distributions is due to changes in acquisition
sensor or the application environment. Domain adaptation
techniques are designed to tackle these situations [20], [22],
[34], [41], [42]. In other cases, the discrepancy is due to
the task in the application scenario differing from the
task for which the classifiers were trained. Approaches
addressing this type of problem are referred to as transfer
learning [3], [4], [32].

Domain adaptation for person detection has recently been
shown to be effective even for adapting models learned with
virtual data to operate in the real world (holistic model [41],
DPM [22]). In these approaches, only a few examples are used
from the target domain. Adaptation consists of a retraining
step, either by mixing source and target training data [41]
or by just modifying the source model with the new target
domain training data [22]. The latter case has the advan-
tage of not having to revisit source domain training data,
allowing faster training runs. In [22], DPMs are learned
using Structural SVM (SSVM) and are domain-adapted by
extension of the Adaptive SVM (A-SVM) [42] to operate
with the SSVM (A-SSVM). In this paper, we use A-SSVM
not to perform domain adaptation but for transfer learning.
In particular, we will bias a generic person DPM towards
action-specific person DPMs by using just a few action-
specific training examples.

5) Our Approach and the State-of-the-Art: Based on the
observation that actions strongly condition the poses in which
humans are expected to appear, and the impressive results
achieved by CNN features [15], in this paper we propose

a technique to generate candidate person proposals for action
detection in still images. We will show that generic person
detectors [12] are not up to the task of generating robust,
high quality action candidates, and that naive action-specific
training of person detectors is also insufficient to generate
high enough recall. Instead, we will use A-SSVM to trans-
fer knowledge from generic person detectors, specializing
them to action-specific ones that, combined with deep CNN
features for classification, yield a significant improvement
over the state-of-the-art on action recognition in still images.
Figure 2 compares general and action-specific person detectors
for action detection. The standard approach (in the middle
row) assumes that the candidate person proposals are generated
using a general person detector in an initial phase. On the
top row, the direct training of a complete DPM model from
scratch for each action class is shown. On the bottom row, we
show our transfer learning pipeline that adapts general person
DPM model to learn action-specific detectors.

III. PERSON PROPOSALS FOR ACTION RECOGNITION

The standard approach to action detection consists of
two steps: a general person detection step and an action-
specific classification step. However, the strong relation
between body pose and action suggests that this information
could already be used in the detection phase. In this section we
look into two approaches to action-specific person detection.

A. Direct Learning of Action-Specific Person Detectors

A straightforward approach to obtaining action specific
person proposals is to learn a detector for each action class.
We call this approach direct learning of the action detection
to distinguish it from our method based on transfer learning.
We use the latest version (version 5.0) of the DPM detec-
tor [14] for all detectors learned directly or via transfer
learning in this work.

Let D = (x1, y1, h1), . . . , (xN , yN , hN ) ∈ X × Y × H be
the set of training examples, where X is the input space,
Y = {+1,−1} is the label space, and H is the hypothesis
or output space as usually defined for DPMs. Let �(x, h) be
a joint feature vector, where h is a latent variable not known
during DPM training. Finally, let w be the usual vector of the
DPM parameters (appearance and deformation parameters of
the parts of all components).

The model parameters w are learned by solving the follow-
ing latent SSVM optimization:

min
w

1

2
‖w‖2 + C

N∑

i=1

max
ŷ,̂h

[w′�(xi , ĥ) + L(yi , ŷ, ĥ)]
︸ ︷︷ ︸

convex

−C
N∑

i=1

max
h

w′�(xi , h)

︸ ︷︷ ︸
concave

, (1)

where C is the scalar penalty, L(·) is the loss function (we use
0-1 loss, i.e., returns 0 if ŷ = yi and 1 otherwise). The latent
SSVM optimization objective function (1) can be solved by the
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Fig. 2. General and action-specific person detectors. In the middle row we show the standard pipeline based on general person detection. On the top, we
give the pipeline for action-specific person detection based on direct learning, while on the bottom we show our pipeline for action detection based on transfer
learning in which the general person model is exploited to learn action-specific detectors.

Convex-Concave Procedure (CCCP) [14], which guarantees
the convergence to a local minimum or a stationary point of
the objective function.

In the direct approach to learning action-specific detectors,
we learn a model wa independently for ever action class a
using labeled person instances performing action a as positive
examples. Our intuition behind introducing action-specific
detectors is that they should yield higher recall than the generic
DPM for detections on persons performing the corresponding
action.

In figure 3 we plot the detection recall of different types
of person detectors on six action classes from the Stanford-40
dataset. We use the same number of detections (per image)
for direct learning, general person and transfer learning based
detectors. For general person we also significantly lower
the standard threshold (25 times) to obtain extra detections
(indicated by “low threshold” in figure 3). This yields extra
detections ranging from 2 to 10 per image. No additional
detections are generated by further lowering the threshold.
We also compare with recall of the selective search based
proposal approach [40], which yields around 2k proposals per
image. The selective search proposal method has also been
used in the RCNN framework [15], obtaining state-of-the-art
results for the object detection task. Detection recall curves
are commonly used to evaluate object proposals [5], [10].
We consider detections in all positive images (negative images
are irrelevant for recall evaluation). Recall is shown as
a function of the overlap percentage, where the standard

PASCAL evaluation considers an overlap of 50% to be a
correct detection [11].

We see in this figure that the selective search approach
yields inferior recall compared to approaches based on the
DPM framework. For some classes (e.g. ‘running’ and ‘look-
ing through microscope’), direct learning yields higher recall
than general person detection. However, for other classes
(e.g. ‘playing violin’ and ‘smoking’), direct learning fails with
significantly lower recall than the general person detector.
The most likely explanation is that the lack of training
data available for action detection (around 100 per class)
prevents the action specific detectors to outperform the general
person detector which is based on 10,000 training exam-
ples. In principle, direct learning is expected to improve its
performance when given large amounts of labeled actions.
Our approach based on transfer learning mitigates precisely
this need for extensive labeling by using models from an
already learned task.

B. Transfer Learning of Action-Specific Person Detectors

From the analysis in the previous section we see that direct
learning of action-specific person detectors does not outper-
form general person detectors in terms of generating good
candidate detections for action recognition. In this section we
propose a transfer learning approach to action-specific person
detection that, instead of building new detectors from scratch,
specializes the knowledge of a general person detector trained
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Fig. 3. Recall curves for person detection on six classes from the Stanford-40 dataset. In most cases, the transfer learning approach yields significantly
improved person localizations compared to both the general and action-specific detectors.

on thousands of labeled bounding boxes to specific action
classes using a small number of training examples from each.
For transfer learning we apply the Adaptive SSVM (A-SSVM)
approach [22], [42].

Let Da be the labeled training examples for action a. Let wG

be the DPM parameter vector of the generic person detector
learned according to equation (1) by using all the available
training examples of a set DG (i.e. irrespective of the action
that the positive examples are performing). Da can be a small
subset of DG or a completely different set (zero intersection).
Now, by using Da and wG as input for an A-SSVM learning
procedure we obtain the action specific person detector wa for
action a by solving the following optimization problem:

min
wa,ξ

1

2
‖wa − wG‖2 + C

N∑

i=1

ξi

s.t. ∀i, y, h, ξi ≥ 0, ∀(xi , yi ) ∈ Da

wa′
�(xi , hi ) − wa′

�(xi , h) ≥ L(yi , y, h) − ξi , (2)

where yi and hi are the ground truth label and object hypoth-
esis, y and h represent all the alternative output label and
object hypotheses, and ξ = [ξ1, . . . , ξN ]′ are slack variables.
The regularization term ‖wa −wG‖2 in equation (2) adapts the
original model wG towards a new, action specific model wa

by regularizing the distance between them.
In the recall graphs of figure 3 we also plot the recall

of action-specific person detectors trained using the transfer
learning approach in equation (2). From these plots, we see
that in all cases except the running action (where variation in

pose is limited), our approach generates better candidates than
both the general and action-specific detectors.

C. Action Classification With Deep Features

Our action detection pipeline is as follows. For an action
class we run the corresponding action-specific detector (either
trained with direct learning or trained with transfer learning).
On the output of the specific detector we then run the classifier
trained for the same action class. Here we describe the
classification approach we use.

Recently, features learned using Convolutional Neural
Networks (CNNs) have shown significant performance gains
in many computer vision application such as object recogni-
tion [31], object detection [15], video recognition [23] and
face recognition [38]. These features (also sometimes called
deep features) are extracted from hidden convolutional layers
of CNNs. They are generic and result from training on a large
amount of training data (e.g. ImageNet). We use the Very
Deep Features pre-trained on ImageNet dataset from [37]. The
network takes as input a fixed size image of size 224 × 224.
Unlike conventional networks employing large receptive fields
in the first layer, the very deep network uses small 3 × 3
receptive fields throughout. The receptive fields are convolved
at each pixel with a stride of 1 pixel. The network has 5 max-
pooling layers that perform spatial pooling over 2 × 2 pixel
windows at a stride of 2 pixels. For more details, we refer
to [37].1

1The deep network models available at: http://www.robots.ox.ac.uk/~vgg/
research/very_deep/
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For classification we use a feature representation obtained
by concatenating the outputs of layers 16 and 19 from this
network, yielding a 8192D feature vector representing each
candidate action region. Classification is then performed using
SVMs with linear kernels.

IV. EXPERIMENTAL RESULTS

In this section, we report on a series of action recognition
experiments. We first describe the datasets and experimental
protocols used, and then provide quantitative and qualitative
results for action detection and action classification.

A. Datasets and Evaluation

We evaluate the performance of our approach on the
Stanford-40 and PASCAL VOC 2012 action recognition
datasets. Stanford-40 consists of 9532 images of 40 different
action classes such as gardening, fishing, applauding, cooking,
brushing teeth, cutting vegetables, and drinking.2 The dataset
is divided into 4000 training images and 5532 test images.
The PASCAL VOC 2012 dataset comprises 10 different action
categories: phoning, playing instrument, reading, riding bike,
riding horse, running, taking photo, using computer, walking
and jumping.3 Since the PASCAL 2012 test set is withheld
by the organizers, for action detection we use the validation
set for testing. The training set consists of 2296 images with
3134 instances (person bounding boxes and action labels).
To augment the available data for training, we use the extra
person bounding boxes and action label annotations provided
by the authors of [17] on the PASCAL 2012 validation dataset.
These additional annotations increase the instances in the
validation set from 3144 to 5891.

To evaluate the performance of action detection and action
classification, we follow the standard PASCAL detection
protocol by computing average precision (AP) under the
precision-recall curve. Given a set of proposals in an image,
a detection is considered correct if both the overlap is more
than 50% with the ground-truth and the action label is cor-
rectly classified for an instance [17], [24]. Our action-specific
detectors propose candidate windows which are then classified
into action categories.

B. Action Detection

We begin by comparing baseline person proposal methods
with the direct learning and transfer learning (TL) approaches
to training action-specific person detectors. We then com-
pare our approach with the state-of-the-art on action
detection in still images and also give some qualitative
evaluation.

1) Person Proposals for Action Detection: In action
detection, the task is to simultaneously localize and classify
the action associated with each person instance. We compare
the general person proposal approach to both types of action-
specific person detectors proposed in section 3.

2The Stanford-40 dataset is available at http://vision.stanford.edu/Datasets/
40actions.html

3PASCAL 2012 is available at: http://www.pascal-network.org/challenges/
VOC/voc2012/

TABLE I

COMPARISON OF OUR TRANSFER LEARNING (TL) BASED ACTION

DETECTION APPROACH WITH THE TWO BASELINE METHODS

AND THE CN-HOG DETECTOR. PERFORMANCE IS MEASURED

IN MAP (%). WE USE SAME SET OF DEEP FEATURES

FOR ALL THE METHODS. ON STANFORD-40, OUR

APPROACH IMPROVES PERFORMANCE BY

5.7% COMPARED TO GENERAL-PERSON

DETECTION. ON PASCAL 2012, OUR

APPROACH AGAIN OUTPERFORMS

BOTH DIRECT-SPECIFIC AND

GENERAL-PERSON METHODS

For all three person proposal techniques we train a
HOG-based generic person DPM model.4 The three evaluated
techniques are:

• General-Person: we train the DPM using the person
instances from all action classes as positive training
samples. To obtain negative samples, we use the images
from the 19 non-person image classification classes of the
PASCAL VOC 2012 set.

• Direct-Specific: for this first action specific approach we
train a DPM model for each action category as described
in section 3.1. These models are used to obtain action-
specific person proposals on test images.

• Transfer-Learning (TL): we perform transfer learning
to adapt the general-person source model to each
specific action class using the approach discussed
in Section 3.2.

After person proposal by one of these techniques, we use
the deep feature classifier described in section 3.3 to recognize
actions. To train action-specific classifiers, we use the positive
bounding boxes of the respective class and the bounding
boxes of other action classes as negative training samples.
To obtain additional hard negatives, we apply a person detector
on all training images and extract detections with an overlap
threshold of 0.3 with any action class.

Table 1 shows the results of all three person proposal
methods for action detection. On the Stanford-40 dataset,
the general-person proposal approach achieves a mean AP of
39.7%, while direct-specific proposals are 2% lower at 37.6%.
This is probably due to a lack of training data per action
class. Further, the direct use of action-specific HOG detector
outputs provides significantly inferior action detection perfor-
mance (21.7%) compared to employing an action classification
stage based on deep features (37.6%). Our transfer-learning
method, which adapts the general person model to the specific
action, significantly improves this performance with a mean
AP of 45.4%. On this dataset, we also perform an experiment
by training a DPM model using action class labels to initialize
the model mixtures. This does improve performance over
direct-specific DPM method but is still significantly inferior
to our transfer learning based detection approach.

4The code for the DPM detector is available at: http://www.cs.berkeley.edu/
~rbg/latent/index.html
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TABLE II

COMPARISON WITH STATE-OF-THE-ART RESULTS ON PASCAL VOC 2012 AUGMENTED VALIDATION SET FOR ACTION DETECTION.

OUR APPROACH YIELDS A SIGNIFICANT GAIN OF 6.0% IN MEAN AP OVER THE BEST REPORTED RESULTS IN THE LITERATURE

Fig. 4. Per-category performance comparison of our action detection
approach with the two baseline methods on the Stanford-40 dataset. Our
approach outperforms the two conventional methods on 24 out of 40 action
classes.

Similarly, on the augmented PASCAL VOC 2012 validation
set the general-person approach slightly outperforms direct-
action proposals, while transfer learning yields a gain of 2.1%
compared to the general-person method. In conclusion, these
results clearly show that the two step paradigm of a general
person detector and an action classifier is suboptimal, and that
it is important to already take the action class into account
during detection.

In figure 4 we give a per-category performance compar-
ison of our approach with the two baseline methods on
the Stanford-40 dataset. Our approach improves the detec-
tion results on 24 out of 40 action classes. Especially,
remarkable accuracy gains are obtained on the holding-an-
umbrella (+14.9%), cleaning the floor (+12.8%), playing
violin (+10.3%), and looking through a telescope (+8.1%)
action classes. These actions all have very distinctive poses
related to them (such as kneeling when cleaning the floor,
and bending when looking through telescope) which are not
well-described by the general person model.

2) Comparison With the State-of-the-Art: We compare
our action detection approach with state-of-the-art methods
from the literature. The HOG-based DPM detector [12] and
Opponent-HOG (OPP-HOG) were evaluated on the action
detection task in [24]. The HOG obtains a mean AP of
21.7%, and OPP-HOG and CN-HOG further improve the
detection performance with a mean AP of 25.7% and

27.5%, respectively. Our approach based on transfer
learning (TL) improves the state-of-the-art (CN-HOG) by
17.9% in mean AP on this dataset.

In table 2 we compare our approach with the state-of-the-
art on the augmented PASCAL VOC 2012 validation dataset.
From [17], the action R-CNN network obtains a mean AP of
10.0%, the detection R-CNN further improves this with mean
AP of 11.9%, and the network trained jointly for detection
and action recognition improves the performance with a mean
AP of 24.6%. We also performed experiments by training
action-specific HOG and CN-HOG based DPM detectors. The
HOG and CN-HOG based DPM action detectors of achieve
comparable results at 24.1% and 25.4% mean AP, respectively.
Our approach significantly improves on the state-of-the-art
with a mean AP of 31.4%.

3) Error Analysis: We analyze the types of errors made
by our action detection approach using the protocol proposed
by Hoiem et al. [21] for diagnosing errors in generic object
detectors. Three types of false positive errors are distinguished:
Loc (localization errors), BG (confusion with background) and
Oth (other errors, which is correct localization of a person
but misclassification of action label). We compare the trans-
fer learning method with direct learning on the Stanford-40
dataset. Transfer learning significantly reduces errors due to
localization and confusion with background compared to direct
learning method. Background errors are reduced by 4% using
our approach, and localization errors are similarly reduced
by 4% compared to the direct learning method. This shows
that our transfer learning based person proposals efficiently
localize persons while rejecting the background. Figure 5
shows the percentage of errors of each type identified in the
top scoring 25-3200 false positives using our approach and
direct learning method on four action classes: playing violin,
walking with dog, waving hands and feeding a horse. On most
action classes, our approach significantly reduces localization
errors and background confusion.

Figure 6 shows several example action detection results
based on action-specific person proposals (in green) and our
action specific proposals obtained through transfer learning
(in red). These examples clearly suggest that our approach
leads to generally better localization of person instances and
also higher and more precise action classification scores.

C. Action Classification

We also validate the performance of our action detection
approach for the task of action classification. In the standard
protocol for action classification, bounding box information
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Fig. 5. Action detection error analysis using direct learning (DL) and transfer learning (TL) based methods. Top row: comparison on ‘playing violin’ and
‘walking with dog’ action classes. Bottom row: comparison on ‘waving hands’ and ‘feeding a horse’ classes. In most cases our TL method significantly
reduces the percentage of false positive errors due to localization (Loc) and background confusion (BG).

Fig. 6. Example action detection results based on action-specific person proposals (green) and proposals obtained through transfer learning (red). Transfer
learning of action-specific proposals leads to generally better person localizations and higher classification scores for the correct class.

TABLE III

COMPARISON OF OUR ACTION CLASSIFICATION APPROACH WITH THE

STATE-OF-THE-ART ON STANFORD-40. NOTE THAT OUR APPROACH

DOES NOT USE ANY GROUND-TRUTH INFORMATION AT TEST TIME.

OUR APPROACH YIELDS A SIGNIFICANT GAIN OF 22.4% IN

MEAN AP OVER THE BEST REPORTED RESULTS

IN THE LITERATURE

of each person instance is provided both at train and test
time. The task is then to classify the action category for each
person instance. Typically, action classification approaches use
both the bounding box of a person together with full image
representation. In our experiments, we do not use any ground
truth bounding box information at test time. Instead, we use the
outputs from our action detector as an approximate location
of a person. For the Stanford-40 dataset, since there is one
person instance per image, we use the output from our action
detector with maximum confidence for the action class respec-
tively. We further combine it with a representation of the full
image.

In table 3 we compare our approach with the state-
of-the-art on Stanford-40 for the action classification task.

The CF method [24] based on fusing multiple color
descriptors obtains a MAP of 51.9%. The expanded part
based method (EPM) [36] employs part based informa-
tion and obtains a MAP of 45.2%. The semantic pyramid
method (SMP) [24] based on constructing pyramids on differ-
ent body parts obtains a MAP of 53.0%. Our approach, without
using any bounding box information at test time, improves
the state-of-the-art by 22.4% on this dataset. We also perform
an experiment by using the bounding box information at test
time in our pipeline obtaining a mean AP of 77.8%. The
results clearly suggest that our approach performs favorably
compared to using ground-truth information. Figure 7 shows
top few predictions of six different action classes from the
Stanford-40 dataset.

For the PASCAL VOC 2012 dataset, we evaluate our
approach on the “Boxless Action Classification Taster” task
(competition 11). Since there are multiple person instances
in an image, a person in a test image is indicated only by a
“single point” lying somewhere on their body. The objective
of this taster competition is to evaluate action classifiers given
no precise information (bounding box) of a person. We use
the bounding boxes generated by our action-specific person
detector. Again, for every person instance in the test set,
we select the output from our action detector closest to the
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Fig. 7. Example action classification results from the Stanford-40 dataset. Top correct predictions are shown of six action classes: ‘cutting tree’, ‘feeding a
horse’, ‘climbing’, ‘phoning’, ‘playing violin’ and ‘riding a horse’. The proposed action classification approach combines the outputs from our action detector
and holistic image classifier. (a) Action category: cutting tree. (b) Action category: feeding a horse. (c) Action category: climbing. (d) Action category: phoning.
(e) Action category: playing violin. (f) Action category: riding a horse.

TABLE IV

COMPARISON WITH THE STATE-OF-THE-ART ON PASCAL VOC 2012 TEST SET FOR THE ACTION CLASSIFICATION TASK. OUR APPROACH,

WITHOUT USING THE EXACT BOUNDING BOX INFORMATION, PERFORMS FAVORABLY COMPARED TO STATE-OF-THE-ART METHODS.

OUR METHOD PROVIDES BEST PERFORMANCE ON 5 OUT OF 10 ACTION CATEGORIES

provided reference point of a person. We further combine it
with a representation of the full image.

In table 4 we compare our approach with the state-of-the-
art on the PASCAL VOC 2012 test set for the action classifi-
cation task. The mid-level deep image representation (MDF)
method [31] obtains a MAP of 70.2%. The approach based on
weak alignment of body part method (WAB) provides a MAP
of 70.5% [19]. The method of [18] based on regularized max
pooling (RMP) of feature vectors at multiple scale and win-
dows obtains a MAP of 76.4%. The RMP approach employs
both full image and bounding box information for feature
extraction. Our approach, based on approximate localization
using a single reference point, yields a mean AP of 77.0%.
We also performed an experiment using the bounding box
information at test time in our pipeline and obtained a mean
AP of 81.3%. The notable difference is on the Taking Photo
and Walking categories where the performance deteriorates
when using our detector output. On the rest of the action cat-
egories, our approach provides similar performance compared
to using exact bounding box information.

V. CONCLUSION

In this paper we investigated the problem of action detection
in still images. Most state-of-the-art approaches to action
recognition exploit bounding box information at test time.
In such a pipeline, it is assumed that the candidate persons
are reliably proposed (e.g. using a general person detector) in
an initial phase. Afterwards, action classification associates
an action category label to each detected person instance.
Since body pose is strongly conditioned on the action category,

we argued that using a general person detector is sub-optimal
for action recognition.

Instead, we proposed using action-specific person detec-
tors to drive action detection in still images. We showed
that a direct extension of the DPM framework to action-
specific detection gives sub-optimal performance due to lim-
ited amounts of action training data. We then proposed a new
approach by posing action detection as a transfer learning
problem. Transfer learning is used to transfer knowledge from
a previously-learned person detection task to the new task of
action-specific person detection.

We evaluated our approach on the Stanford-40 and
PASCAL 2012 action recognition datasets. For action detec-
tion, our approach based on transfer learning yields significant
improvements compared to both general person and direct
learning methods. On both datasets, our approach outper-
forms the state-of-the-art for action detection. This confirms
our hypothesis that the action class label should be used
when learning the detector. We also evaluated our approach
on the action classification problem. Results show that
our performance is superior to state-of-the-art methods
that exploit ground truth bounding box information at test
time.

It is worth mentioning that our transfer learning approach
is non-parametric in that there is no parameter controlling the
relative weight of source and target models. We expect that
learning such a weighting will further improve performance.
Another interesting direction is to investigate combining mul-
tiple transfer learning methods to obtain even better person
proposals for action detection in still images.
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