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Abstract. Visual object tracking is a classical, but still open research
problem in computer vision, with many real world applications. The
problem is challenging due to several factors, such as illumination varia-
tion, occlusions, camera motion and appearance changes. Such problems
can be alleviated by constructing robust, discriminative and computa-
tionally efficient visual features. Recently, biologically-inspired channel
representations [9] have shown to provide promising results in many
applications ranging from autonomous driving to visual tracking.

This paper investigates the problem of coloring channel repre-
sentations for visual tracking. We evaluate two strategies, channel
concatenation and channel product, to construct channel coded color
representations. The proposed channel coded color representations are
generic and can be used beyond tracking.

Experiments are performed on 41 challenging benchmark videos.
Our experiments clearly suggest that a careful selection of color fea-
ture together with an optimal fusion strategy, significantly outperforms
the standard luminance based channel representation. Finally, we show
promising results compared to state-of-the-art tracking methods in the
literature.
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1 Introduction

Visual tracking is the problem of estimating the trajectory of a target in an image
sequence. It has a vast number of real world applications, including robotics [5]
and surveillance [30]. In generic visual tracking nothing is known about the
target except its initial location. It is one of the most challenging computer
vision problems due to factors such as illumination variation, occlusions and fast
motion. Many of the challenges encountered in visual tracking can be alleviated
by the usage of robust and discriminative features. This paper therefore aims at
investigating feature representations and fusion strategies for visual tracking.

In recent years, channel coded feature representations [9] have been suc-
cessfully used in many computer vision applications, including visual track-
ing [8], autonomous driving [11], image diffusion [16] and real-time object
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Fig. 1. Comparison of the standard luminance based channel representation (blue)
with color augmentation on two sequences (coke and woman). The straightforward
channel representation of RGB (green) fails to improve the performance. The proposed
color names extension of the luminance based channel representation (red) significantly
improves the performance.

recognition [10]. The biologically inspired channel representation [13], is a tech-
nique for representing data. A set of feature values is represented by a number
of channel coefficients, which essentially correspond to a soft histogram. In the
visual tracking application, the EDFT method [8] employs a channel representa-
tion based appearance model. However, it only models the luminance distribu-
tion over the target template, while ignoring all color information. In this paper,
we therefore extend channel representations to incorporate color information.

Channel coded color representations can be constructed using two standard
strategies. In both cases, channel coding is first performed on each color space
dimension (e.g. R, G and B) independently. In the channel concatenation strat-
egy, the channel coefficients for each dimension are concatenated into a final
representation. As an alternative, the final representation can be constructed by
taking the outer product of the individual channel coefficients, called channel
products. Typically, a large number of color channels are required to obtain a
more discriminative feature representation. However, such high dimensional rep-
resentations lead to an increased computational cost, and thereby restricting its
applicability to real-time tracking.

When incorporating color information into visual tracking, two main research
problems have to be addressed. The first issue is the selection of color represen-
tation to be used. Ideally, a color feature should possess a certain degree of pho-
tometric invariance while maintaining a high discriminative power. The second
problem is how to fuse color and intensity information into a single represen-
tation. Recently, Danelljan et al. [6] evaluated several color features for visual
tracking. In their evaluation, the color names representation [33] was shown
to provide superior performance compared to other color features. However, the
work of [6] only investigates what color feature to use, while employing raw pixel
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gray scale values to represent luminance information. Inspired by the success
of channel coded luminance information, we investigate how to augment these
representations with color information. Additionally, we extend the evaluation
performed by [6] with channel coded color features. We show that our proposed
feature representation outperforms the best color-intensity combination of [6].

Contributions: In this paper, we investigate how to incorporate color informa-
tion into channel representations for visual tracking. Both channel concatenation
and channel product coding strategies are evaluated on six different color spaces.
Additionally, we investigate combining color names and channel coded luminance
representations. The evaluated channel coded color representations are generic
and can be used beyond visual tracking.

Experiments are performed on 41 challenging videos including all the color
sequences from the online benchmark dataset [34]. Our experiments show that
fusion of color names and channel coded luminance information outperforms
the combination of color names and raw gray scale values [6]. By selecting the
best feature (color names and channel coded luminance) and the optimal fusion
strategy (concatenation), we achieve a significant gain of 5.4% in median dis-
tance precision compared to the standard channel concatenation using RGB.
Finally, our approach is also shown to outperform state-of-the-art trackers in
both quantitative and qualitative evaluations. Figure 1 shows the comparison of
channel coded color representations with the standard channel coded luminance.

2 Related Work

Generic visual trackers can be categorized into generative [2,24,25,31] and dis-
criminative [6,7,14,17,35] methods. The generative trackers search for image
regions most similar to a generative appearance model. On the other hand,
the discriminative approaches use machine learning techniques to differentiate
the target from the background. Recently, the discriminative correlation filter [3]
based trackers have received much research attention thanks to their accuracy,
simplicity and speed. These approches utilize the circulant structure induced
by correlation to efficiently train a regularized least squares regressor (ridge
regression). Most of the computations required for learning and detection are
performed using the Fast Fourier transform (FFT), which is the key for its low
computational cost. Henriques et al. [17] further introduced kernels into this
framework to allow non-linear classification boundaries. The work of Danelljan
et al. [6] proposed a consistent learning approach for increased robustness.

Most of the research effort into generic visual tracking has focused on the
learning aspect of appearance modeling, while relatively little work has been done
on the problem of constructing robust and discriminative features. Most state-of-
the-art methods rely on solely image intensity information [7,8,14,17,20,31,35],
while others employ simple color space transformations [27–29]. On the contrary,
feature representations have been thoroughly investigated in the related fields of
object recognition and action recognition [21,22]. Recently, Danelljan et al. [6]
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introduced the Adaptive Color Tracker (ACT), which learns an adaptive color
representation based on Color Names [33]. However, this approach still employs
a standard grayscale channel for capturing image intensity information.

Channel representations have been used in a large variety of applications
[8,10,11,16]. The Distribution Field Tracker (DFT) [31] utilizes a feature rep-
resentation similar to channel coding to capture the image intensity statistics
of the target. The Enhanced DFT (EDFT) [8] employs channel coding instead
of distribution fields and a more robust metric for computation of the objective
function. The work of [12,19] investigate how to fuse color and channel coded
luminance information. However, a comprehensive evaluation of color and chan-
nel coded luminance fusion is yet to be investigated for the task of tracking.

3 Tracking Framework

In this work, we use the discriminative correlation filter (DCF) based tracking
framework proposed by Danelljan et al. [6], called the Adaptive Color Tracker
(ACT). It has been shown to provide superior results on benchmark tracking
datasets. The method works by learning a kernelized least squared classifier
from several samples of the target appearance. The classifier is then applied to
locate the target in the new frame.

To update the classifier at frame n, a template fn centered around the target
is first extracted. The template is of a fixed size of M × N pixels and contains a
D-dimensional feature vector at each pixel location within the template. The fea-
tures are preprocessed by a normalization step and a windowing operation. The
classifier coefficients are updated in each frame through the recursive formula

ûn = (1 − γ)ûn−1 + γŷnân (1a)
v̂n = (1 − γ)v̂n−1 + γân(ân + λ). (1b)

Here, an is the kernelized autocorrelation of the template fn, and yn is a Gaussian
label function. The discrete Fourier transform (DFT) is denoted by a hat. The
constants γ and λ are learning and regularization weights respectively. A target
template tn is also updated as: tn = (1 − γ)tn−1 + γfn.

The classifier is applied to an image template gn by first computing its kernel-
ized cross-correlation bn with the learned target template tn−1 from the previous
frame. The classification scores sn are obtained by evaluating

sn = F−1

{
ûn−1b̂n
v̂n−1

}
. (2)

Here, F−1 denotes the inverse DFT. Henriques et al. [17] showed that the kernel-
ized correlations an and bn can be computed efficiently for radial basis function
kernels, using the FFT. For more details, we refer to [6].
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Fig. 2. A graphichal visualization of the binning functions employed in our channel
representations. Here the configuration is shown for n = 8 channels.

4 Channel Representation

Channel representation [9] is a biologically inspired approach for representing
data [13]. It is closely related to soft histograms and is used in many computer
vision applications, including visual tracking [8]. A scalar value x is represented
in terms of its channel coefficients {ck}n1 . The k:th coefficient ck is computed
by evaluating a kernel function K located at the k:th channel center x̃k using:
ck = K(x − x̃k). Common choices for the kernel function K include Gaussian,
cos2 and B-spline functions. The coefficients {ck}n1 can be interpreted as a soft
histogram of the data, where the bins are centered at {x̃k}n1 and the binning
function K weights the contribution of x to each bin.

In this paper, we construct the channel representation using regularly spaced
second order B-spline kernel functions. We set Kw(x) = B(x/w), where w is the
spacing between the channel centers and the second order B-spline is given by:

B(x) =

⎧⎪⎨
⎪⎩

3
4 − x2 , |x| ≤ 1

2
1
2

(|x| − 3
2

)2
, 1

2 ≤ |x| ≤ 3
2 .

0 , |x| ≥ 3
2

(3)

All color and luminance features used in this work only take values within a
bounded interval, e.g. the red component of an RGB image pixel. It can there-
fore be assumed that x ∈ [0, 1] by simply translating and re-scaling the feature
appropriately. The range [0, 1] is covered by n channels, which are centered at

x̃k = wk − 3w

2
, k = 1, . . . , n. (4)

The spacing is set to w = 1
n−2 . With this configuration the channel coefficients

always sum up to one, and thus have a direct probabilistic interpretation. The
used channel configuration is visualized in figure 2 for n = 8 channels.

Channel representations can be extended to multi-dimensional features x =
(x1, . . . , xm) (e.g. the RGB value of a pixel) using either channel concatenation
or channel products. In the former case, the final representation is obtained as
the collection of channel coefficients for each scalar component xj . The number
of coefficients in the channel concatenation is n = n1+. . .+nm, where nj denotes
the number of channels used for representing xj .
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The channel product representation considers m-dimensional channels ck =
K̂(x − x̃k). For a separable kernel K̂(x) = K1(x1) · · · Km(xm), the final repre-
sentation is obtained as the outer product of the individual channel coefficients

ck = ck1,...,km
=

m∏
j=1

c
(j)
kj

. (5)

Here, {c
(j)
1 , . . . , c

(j)
nj } is the channel representation of xj . The number of coeffi-

cients in the channel product representation is hence n = n1 · . . . · nm.

5 Channel Coded Color Representations

In this paper, we investigate different channel coded color representations for
visual tracking. We evaluate the two strategies mentioned in section 4 to con-
struct channel coded color representations. Six color spaces are used for our
evaluation: RGB, Opp, C, HSV, YCbCr and LAB. The opponent (Opp)
color space is an orthonormal transformation of the RGB cube aligning the
third dimension with the diagonal O3 = 3− 1

2 · (R + G + B). The image inten-
sity is thus captured by O3 while O1 and O2 are its color opponent dimensions.
The C space further adds photometric invariance to Opp space by dividing O1

and O2 with the intensity dimension O3. The HSV representation instead maps
the RGB cube to a cylinder, providing the hue angle H, saturation S and value
V components. The YCbCr space contains a luminance component Y and the
two chroma components Cb and Cr. LAB is a perceptually uniform color space,
which contains the lightness dimension L and the two color opponent dimensions
A and B.

We evaluate the channel concatenation and product representations for each
of the six aforementioned color spaces. In both cases, we use the channel config-
uration described in section 4 to code the individual color space dimensions.

The channel coded color representations are compared with Color Names
(CN) [33], which achieved the best results among the evaluated color features
in [6]. The CN representation is inspired by linguistics. An RGB value is mapped
to probabilities for the 11 basic color names in the English language: black, blue,
brown, grey, green, orange, pink, purple, red, white and yellow. This mapping
was automatically learned from images retrieved by Google image search.

Color names have successfully been applied in object recognition [22], action
recognition [21] and image stitching [26] to capture color information. On the
other hand, channel coded intensity features have been used in visual tracking
[8,31] to capture the image intensity statistics. The EDFT tracker [8] employs
channel coded grayscale values with the same channel configuration as described
in section 4. Inspired by their success, we propose to combine the two features
into a single representation. Given an image template, color names and channel
coded luminance are computed at each pixel. The two representations are then
concatenated into a single feature vector.
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Table 1. The median Distance Precision (DP) (%), Overlap Precision (OP) (%) and
Center Location Error (CLE) (in pixels) results using different features on 41 videos.
The best two results shown in red and blue fonts. In all cases, the channel concatenation
using color names significantly improves the performance compared to luminance based
channels and color names alone.

IC CN [6] RGB-c RGB-p LAB-c LAB-p YCbCr-c YCbCr-p HSV-c HSV-p Opp-c Opp-p C-c C-p IC+CN

DP 77.1 81.4 71.7 71.2 71.1 62.1 79.8 57.3 75.6 73.4 74.1 56.7 81.5 60.1 83.1
OP 53.3 51 52.3 49.2 46.1 42 47.5 40.5 53.3 52.2 43.9 44.4 58.6 41.5 59
CLE 19.1 13.8 17.8 17.2 19.1 24.3 17.3 26.1 15.5 20.4 16.6 31.2 14.9 25.2 13.7

6 Experiments

We perform a comprehensive evaluation of the color representations for visual
tracking described in section 5. The best performing representation is then com-
pared to several state-of-the-art tracking methods.

6.1 Evaluation Methodology and Dataset

The results are evaluated using the standard benchmark protocol suggested by
Wu et al. [34]. We present the results using three standard evaluation metrics,
namely center location error (CLE), distance precision (DP) and overlap preci-
sion (OP). CLE is computed as the euclidean distance between the ground truth
bounding box and the tracked bounding box centers. The average CLE value is
then used for each sequence. Distance precision is the percentage of frames where
the CLE is below a threshold. We present the DP value at 20 pixels, following
[34], [17]. Overlap precision is the percentage of frames where the intersection-
over-union overlap between the ground truth and tracked bounding boxes is
greater than a threshold. We present numeric values of OP at the threshold 0.5,
which corresponds to the PASCAL evaluation metric.

The results are also presented as precision plot and success plots [34]. In the
plots, the average DP and OP is plotted over a range of thresholds. The mean
DP value over all sequences is included in the legend of the precision plot, while
the area under curve (AUC) is shown in the legend of the success plot.

We use the same dataset as employed in the evaluation performed by Danell-
jan et al. [6]. It consists of all the 35 color sequences from the benchmark dataset
[34] and 6 additional color videos. All methods are thus evaluated on 41 videos.

6.2 Experiment 1: Channel Coded Color Representations

Here we present results of augmenting channel representations with color infor-
mation. All features are evaluated in the DCF-based tracker proposed by [6]
with the suggested parameters. However, no adaptive dimensionality reduction
is performed. For the six color spaces mentioned in section 5, we use 16 channels
per dimension for the channel concatenation and 4 channels per dimension for
the channel product representation. The feature dimensionality is thus 48 and
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Table 2. Quantitative comparison of our approach with 15 state-of-the-art trackers on
41 videos. The results are presented in median Distance Precision (DP) (%), Overlap
Precision (OP) (%), Center Location Error (CLE) (in pixels) and frames per second
(FPS). The two best results are shown in red and blue. In all cases, our approach
significantly outperforms the best reported tracker (Struck) in the literature.

CT TLD DFT EDFT ASLA L1APG CSK SCM LOT CPF CXT Frag Struck LSST LSHT Ours

DP 20.8 45.4 41.4 49 42.2 28.9 54.5 34.1 37.1 37.1 39.5 38.7 71.3 23.4 55.9 83.1
OP 13.3 36.7 34.3 44.8 42.2 26.3 37.7 33.6 31.1 33.1 33.2 36.8 53.8 19.5 40.4 59
CLE 78.4 54.4 47.9 53.5 56.8 62.9 50.3 54.3 60.9 41.1 43.8 70.8 19.6 78.4 32.3 13.7
FPS 68.9 20.7 9.11 19.7 0.946 1.03 151 0.0862 0.467 55.5 11.3 3.34 10.4 3.57 12.5 36.6
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Fig. 3. Precision and success plots for comparison with state-of-the-art trackers. Only
the top 10 trackers are displayed for clarity. Our approach outperforms the second best
tracker (Struck) in both mean distance and overlap precision.

64 for the concatenation and product representations respectively. We denote
the concatenation representation by adding a “c” to the color space name, e.g.
RGB-c. Similarly, RGB-p denotes the channel product representation of RGB.

The channel coded color spaces are compared with the color names (CN) fea-
ture and the standard luminance based channel representation (IC). As in [8],
we use 16 channels for the IC representation. For the IC+CN combination app-
roach presented in section 5, we use 16 intensity channels combined with the
11 color names. For a fair comparison, we append the usual grayscale compo-
nent (obtained by Matlab’s rgb2gray) to all evaluated feature representations,
including the channel representations. We further perform the appropriate nor-
malization steps [6] to reduce the windowing effect within the DCF framework.

Table 1 shows a comparison of the evaluated feature representations. The
standard luminance based channel representation achieves a median DP of
77.1%. The channel concatenation and product representations using the C color
space achieve a median DP of 81.5% and 60.1% respectively. In all cases, the con-
catenation strategy provides improved results compared to the channel product
representation. The CN approach of [6], employing color names and an intensity
component, provides a median DP of 81.4%. Our channel concatenation using
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Fig. 4. A frame-by-frame comparison with four state-of-the-art trackers on six example
videos. The results are shown in terms of center location error in pixels for each frame.
Our approach provides favorable performance compared to the existing trackers.

color names provides an improvement of 1.7% in median DP compared to [6].
Similarly, our channel concatenation using color names also provides the best
results in median OP and CLE. Based on this analysis, we select the channel-
color names combination (IC+CN) as our proposed representation for tracking.

6.3 Experiment 2: State of the Art Comparison

We compare our proposed feature representation with 15 state of the art trackers:
CT [35], TLD [20], DFT [31], EDFT [8], ASLA [18], L1APG [2], CSK [17], SCM
[36], LOT [28], CPF [29], CXT [7], Frag [1], Struck [14], LSHT [15] and LSST [32].
Table 2 shows the comparison of our tracker with the state-of-the-art tracking
methods using median DP, OP and CLE. The two best results are presented in
red and blue fonts. The CSK tracker [17] achieves a median DP of 54.5%. The
EDFT method [8] based on channel coded luminance provides a median DP of
49.0%. Among the existing tracking approaches, Struck [14] provides a median
DP of 71.3%. Our approach significantly outperforms Struck by 11.8% in median
DP. Similarly, our tracker achieves the best performance by providing a gain of
5.2% and 5.9 pixels in median OP and CLE respectively compared to Struck.

Figure 3 shows the results using precision and success plots, containing mean
distance and overlap precision. The mean results are calculated over all the 41
videos. The values in the legends of precision and success plots are the mean
DP at 20 pixels and the AUC respectively. Among the existing trackers, Struck
provides the best results with mean DP of 63.9% in the precision plot. Our
approach outperforms Struck by 5.6% in mean DP. Similarly, our approach also
provides superior performance compared to existing methods in success plot.
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Fig. 5. Precision plots to compare the robustness of our approach with respect to ini-
tialization. The performance is validated using temporal and spatial robustness (TRE
and SRE). Our method achieves superior performance compared to existing trackers.

Figure 4 shows a frame-by-frame comparison of our tracker with existing
tracking methods in terms of center-pixel error. Our tracking method provides
favorable performance compared to existing trackers on the six example videos.

Robustness to Initialization: We follow the protocol suggested by Wu
et al. [34] to validate the robustness of our approach with respect to initial-
ization. The performance is evaluated using two different strategies: temporal
robustness (TRE) and spatial robustness (SRE). In the case of TRE, the trackers
are initialized at different frames. In the case of SRE, the trackers are instead ini-
tialized at different locations in the first frame of the sequence. As in [34], twelve
different initializations are performed for SRE whereas each video is segmented
into 20 partitions for TRE. Figure 5 shows the results for both TRE and SRE.
For clarity, we only compare with the top six trackers in our evaluation. In both
cases, our approach provides promising results compared to existing methods.

Attribute-Based Comparisons: Here, we investigate the factors that can
affect the performance of a visual tracker. The videos in the benchmark dataset
[34] are annotated with 11 attributes: illumination variation, occlusion, defor-
mation, scale variation, motion blur, fast motion, in-plane rotation, out-of-plane
rotation, out-of-view, low resolution and background clutter. We show a com-
parison of our tracker with existing methods on 35 videos annotated with these
11 attributes.

Figure 6 shows the precision plots of six different attributes: in-plane rotation,
motion blur, fast motion, illumination variation, occlusion and out-of-plane rota-
tion. For clarity, we only show the results for the top 10 trackers in each attribute
plot. Our approach performs favorably compared to existing methods. A signifi-
cant improvement in performance is achieved in case of in-plane rotation, motion
blur, illumination variation and out-of-plane rotation. This is due to the robust-
ness and complementary properties of our feature representation. In the presence
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Fig. 6. Attribute-based comparison with the state-of-the-art trackers. The results are
shown for in-plane rotation, motion blur, fast motion, illumination variation, occlusion
and out-of-plane rotation. The number of videos for an attribute is mentioned in each
title. Our approach provides favorable results compared to the existing methods.

of fast motion, Struck provides the best results. This is attributed to the local
search strategy employed in the baseline DCF-based tracking algorithm.

7 Conclusions

In recent years, luminance based channel representations have shown to pro-
vide promising results in many vision applications. In this work, we investigate
the problem of augmenting channel representations with color information. Our
results clearly suggest that channel conatenation using color names significantly
improves the performance of conventional channel coded luminance features. Our
quantitative and attribute-based qualitative evaluations demonstrate promising
results compared to existing methods.

Recently, efficient tracking methods with scale estimation capability have
shown promising results in the VOT 2014 challenge [23]. Currently, our app-
roach has no explicit scale estimation component. Future work involves investi-
gating how to incorporate our feature representation into efficient scale adaptive
trackers, e.g. the Discriminative Scale Space Tracker [4].
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Tech. rep., Linköping University (2002)

13. Granlund, G.H.: An associative perception-action structure using a localized space
variant information representation. In: Sommer, G., Zeevi, Y.Y. (eds.) AFPAC
2000. LNCS, vol. 1888, pp. 48–68. Springer, Heidelberg (2000)

14. Hare, S., Saffari, A., Torr, P.: Struck: Structured output tracking with kernels. In:
ICCV (2011)

15. He, S., Yang, Q., Lau, R., Wang, J., Yang, M.H.: Visual tracking via locality
sensitive histograms. In: CVPR (2013)
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