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Abstract. Visual object tracking performance has improved signifi-
cantly in recent years. Most trackers are based on either of two para-
digms: online learning of an appearance model or the use of a pre-trained
object detector. Methods based on online learning provide high accuracy,
but are prone to model drift. The model drift occurs when the tracker
fails to correctly estimate the tracked object’s position. Methods based
on a detector on the other hand typically have good long-term robust-
ness, but reduced accuracy compared to online methods.

Despite the complementarity of the aforementioned approaches, the
problem of fusing them into a single framework is largely unexplored. In
this paper, we propose a novel fusion between an online tracker and a pre-
trained detector for tracking humans from a UAV. The system operates
at real-time on a UAV platform. In addition we present a novel dataset
for long-term tracking in a UAV setting, that includes scenarios that are
typically not well represented in standard visual tracking datasets.

1 Introduction

Visual tracking is one of the classic computer vision problems, with a wide range
of applications in surveillance and robotics. In a surveillance scenario, a tracking
system could be used to detect when a person is moving into a prohibited area.
In robotics, a real-time tracking system can be used to track the positions of
objects of interest, for example to make the robot follow a specific person at a
set distance. Recently a number of challenges in the visual tracking area have
triggered a high pace of improvement in the area of online-tracking [1-5]. A
particularly interesting class of trackers is the model-free tracker. Here model-
free refers to the fact the tracker does not require any information beyond an
initial bounding box. These methods are typically evaluated on datasets such as
OTB [6], or VOT [1-3]. These datasets are composed of a large number of short
videos, typically recorded using a high quality camera.

A popular robotics platform is the Unmanned Aerial Vehicle (UAV), these
robots are usually equipped with a wide range of sensors, including cameras. A
typical situation is that the operator instructs the UAV to follow a designated
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Fig. 1. Visualization of fusion system, the detector output is blue, tracker output
green and the fused result red. The combination of both tracker and detector produces
a more accurate bounding box estimate than the respective inputs, as seen in the first
two frames. The last two demonstrate drift correction.

person at a fixed distance without manual intervention. This requires the UAV
to have the ability to track the designated target, and act on the information
produced by the tracker. As the camera is fixed on the UAV the view might sud-
denly change when the UAV is repositioning or is impacted by wind. It is usually
desired that the system can follow the designated person for an extended period
of time, likely for thousands of frames rather than the few hundred common
in most benchmark videos [3]. Such scenarios are problematic for the current
model-free trackers, as they are prone to model drift, and will eventually lose
the tracked object.

The drift problem is not present in methods based on a pre-trained object
detector, as they do not update the appearance model online. The most recent
methods such as deformable parts models (DPM), and convolutional neural net-
works (CNN) have increased the state of the art performance significantly in
detection tasks [7]. Unfortunately this increase in performance demands signifi-
cantly more computations. A tracking system based on general object detectors
will attempt to associate each detection with a tracked object, or when no known
object matches initialize a new track. A disadvantage of this type of tracker is
that a single object will give a large number of detections of high confidence.
For these reasons detector based methods typically give a more noisy estimate
of the target bounding box.

In order for a UAV to accurately follow a designated person the tracking sys-
tem must fulfill certain requirements. The object tracker should output position
and size estimates that are accurate at all times, or notify the system that the
estimate is not sufficiently precise to act on. The system should be robust in
difficult situations such as occlusions, and unstable camera movement. Finally,
in order to be practically useful it should be capable of real-time operation on
the limited hardware present on a UAV. A visualization of the output from our
detector, tracker and combined position estimate is present in Fig. 1.

1.1 Contribution

We propose an approach for fusing the output of an online model-free tracker and
a pre-trained person detector for UAV based tracking of humans. The system is
capable of real-time operation on a UAV platform.
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Additionally we present a challenging dataset for long term tracking from a
UAV. All sequences are recorded with a flying UAV, and are significantly longer
than the typical tracking benchmark videos. The sequences contain long term
occlusions of the entire tracked person, and background of varying complexity.
Further challenging situations are long term partial occlusions, and significant
change of pose of the tracked person. One sequence also includes a number
of distracting events where other humans walk past the tracked person and
temporarily occlude him.

2 Related Work

There are two common approaches to visual tracking, model free tracking using
on-line learning to create a robust appearance model of the specific tracked
target, or using a pre-trained detector and associating detections with a tracked
target. Model free trackers such as those evaluated in the VOT challenge [1-3]
require no prior information about the target, except an initial bounding box.
An appearance model is created on-line by gathering additional samples while
tracking. Detection based trackers on the other hand use a detector for the
object or class to track, this detector is applied on each new frame. The tracking
problem then becomes a matter of associating each detection with an already
tracked object or initialing new objects to track. However few attempts have
been made to combine the strengths of both approaches into a single system. In
this paper we present such a system, for on-line tracking of humans on a micro
UAV platform.

2.1 Visual Object Tracking

In the last few years a significant progress has been made in visual object track-
ing. In particular methods based on Discriminative Correlation Filters (DCF)
have shown a great deal of promise, in the 2014 visual object tracking (VOT)
challenge [2] the top 3 methods where DCF based. Trackers based on the DCF
framework exploit the circulant structure of images and the Fourier transform
to efficiently create a linear classifier. Our method is based on a combination
of the winning entry in the VOT 2014 challenge [8], but rather than using the
HOG features we use the lower dimensional color names suggested in [9]. The
lower dimensionality of the color names descriptor allows our implementation to
run at high frame rates while maintaining comparable accuracy.

2.2 Visual Object Detection

Methods for visual object detection, using a wide range of classifiers and feature
representations exist in literature. Of particular interest is the method utiliz-
ing Histogram of Oriented gradient features proposed by Dalal [10]. Using this
feature representation in a sliding window support vector machine (SVM) an
efficient and robust classifier is obtained. This provides a fast detector that is
suitable for real-time operation.
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Other popular methods include Deformable Parts models such as the one
proposed by Felsenzwalb [11] or a number of deep learning based methods
[12,13]. In practice these more complex models require an order of magnitude or
more of computational power beyond Dalal’s method, as such they are imprac-
tical to use on a UAV with limited computational capacity, particularly when
real-time operation is desired.

2.3 Detector and Tracker Fusion

The combination of a model-free tracker and a static detector is a conceptually
simple way to improve the long term robustness of a tracking system. However
combining the tracker and detector in way that maintains the accuracy of the
on-line tracker while keeping the long term robustness of the detector is not
trivial. A previous attempt was made in [14] were the output of both the tracker
and detector where used as inputs into a Probability Hypothesis Density (PHD)
filter, this approach disregards that the on-line component contains valuable
appearance information from the tracked object.

Other approaches include the PN learning proposed by Kalal [15] that utilizes
binary classifiers and the structural constraints of the labels. This approach is
purely on-line learning based, unlike our combination of pre-trained detector and
on-line learning tracker.

3 Active Vision Framework

Our vision framework combines the output of a pre-trained human detector
with that of a model-free correlation filter based tracker. An overview of the
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Fig. 2. An overview of the tracking system, the details of the tracker are described in
Sect. 3.1, the detector in Sect. 3.2 and the observer components in Sect. 3.4
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system is presented in Fig.2. The complete system is composed of three main
parts: an online model-free tracked based on the Discriminative correlation filter
framework; A human detector trained off-line, with a static model that runs over
the image in a sliding window, or is evaluated at a small region; A system that
observes the performance of each subsystem in order to estimate the current
reliability of each one.

3.1 DCF Based Online Tracker

The online tracker used is based partly on the DSST [8] and the ACT [16]. Both of
these methods are based on the framework of Discriminative Correlation Filters.
We use the color names representation proposed in [16], and the separate scale
filter suggested in [8], where we use a gray scale feature instead of the HOG
used by Danelljan et al. This is done in order to reduce the dimensionality of the
translation and scale estimation filters. This reduced dimensionality (from 31
to 11 and 31 to 1 respectively) significantly reduces the computational burden
while maintaining the performance.

Discriminative Correlation Filters create a classifier h by specifying a desired
output y at a given input  and minimizing the error for the classifier h for the
input 2. With the commonly used approximation [8,16,17] for multidimensional
features the error function becomes:

d d
e=[| Y hlxal —ylP AR (1)
=1 1=1

The % denotes circular correlation, while the A is a small regularization factor.
This optimization can be efficiently solved in the Fourier domain with the closed
form solution: _
. Yy X!

S XRXk 4
where H,Y, X denotes the Fourier transform of the respective variables, and X
the complex conjugate. The classifier is updated using linear interpolation for
each frame yielding a compact and efficient appearance representation. Further
details and derivations can be found in [8,16,17].

In a new frame a position estimate is computed from the filter response over
a patch. The new position P corresponds to the pixel in the patch with the
highest value.

In cases of tracker drift the model will typically be corrupted by gradually
adapting to the background instead of the target. Initially this will give an offset
from the true target position that gradually moves away from the correct position
over time. When taking the possibility of drift into account the tracker’s position
estimate P, could be modeled as:

Py = P+ N (by, o) (3)

where the true position P is perturbed by noise from A (b, ok ) that represents
the current tracker drift as a time-varying bias b;, and the variance of the position
estimate oy, is approximately constant over time.

(2)
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3.2 Person Detection

Our system uses an SVM with HOG features as image representation, as pro-
posed by [10]. The classifier is evaluated in a sliding window manner over a scale
pyramid. The scale pyramid is computed with the current target size estimate
in the center. The SVM model is trained on the INRIA dataset [10], augmented
with a few example frames collected by our UAV. In order to reduce the num-
ber of scales for the detection prior information of the targets size is taken into
account. When no prior information about target size and position is available,
the detector is run over a full scale-space pyramid of the image.

The detector outputs a large number of detections for each target, spread
over a range of scales and positions. While each detection has a confidence, it is
not guaranteed that the detection with the highest confidence is the correct one.

Once the detector has been evaluated over a new frame, all detections with
confidence below a certain threshold are removed. For the remaining detections a
weighted average is computed using a Gaussian centered on the current position
estimate. This gives the detector estimate Pgo; of the targets position as:

Pyey = P +N(07 Udet) (4)

Here, unlike in 3 the detector does not have a time-varying bias, as the model is
not updated online. However the variance for the detector oqet is typically much
larger than oyy.

3.3 Our Fusion Framework

We combine information from the tracker and the detector in two ways. First
the position and size estimated by both the tracker and the detector is combined
by a Kalman filter in order to produce a more robust measure than either one
individually.

Secondly the reliability of both the model-free tracker and the detector is
monitored in order to correct for tracker drift. Additionally the reliability esti-
mates are used to update the observation noise for the Kalman filter continu-
ously. Finally, when the tracker proves reliable for a longer period of time, a
snapshot of the appearance model is stored in order to re-detect the target if it
is lost.

The state vector for the Kalman filter is:

Kstate = [P:cvpyva] (5)

where P, P, correspond to the top-left corner of the tracked bounding box, and
Py, to the width of the box. As the bounding box has a fixed ratio between width
and height only the width is needed to represent the bounding box size.

3.4 State Monitoring

The current reliability of both the detector and the tracker is estimated contin-
uously. This is done in order to detect corruption in the on-line learning compo-
nent, and to set the observation noise for both inputs into the Kalman filter.
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From the proposed observation models 3 and 4, a principled approach for
detecting model drift can be derived. Since the detector is unbiased but noisy, the
time varying bias b; caused by the tracker drifting can be detected by comparing
the position estimates over time. If the tracker maintains high confidence, but
with a consistent offset in the estimated position relative to the detector, it is
likely that the appearance model used by the tracker has begun to drift away
from the center of the target. Due to the noisy position estimate provided by the
detector it is difficult to obtain an accurate estimate of the tracker bias. Instead
of producing a correct estimate of the bias, the tracker model is restarted on the
current best estimated position.

A rough estimate of the tracker’s confidence in the current prediction can be
obtained from the height of the correlation peak. In order to correctly re-identify
a lost target snapshots of the tracker model is stored periodically. The current
model is considered reliable only if the score peak has been higher than some
threshold ¢, for more than 100 consecutive frames.

Using this confidence information it is possible to detect situations when the
tracked person is no longer in view for the tracker, such as occlusions. In these
situations the confidence of the tracker will typically drop very low, but begin to
increase as the model adapts to the occluding object. After sufficient time the
confidence will be higher than typical when tracking an articulated human. At
the same time the detector will consistently fail to give any detections. In such
cases the system will flag for loss of target and switch into re-detection mode.
When in this mode the detector scans the full image, until a reliable detection is
made. Previously stored models are evaluated on the detection, if one matches
sufficiently well tracking will resume.

Kalman Filter Observation Noise. The observation noise for the Kalman
filter for both the detector and tracker is updated in each new frame. For the
tracker the noise is set relative to the height of the peak. In practice only two
settings for the observation noise are used: If the peak is above some threshold
Tiow the observation noise is set to a low value, otherwise it is set to a high one.

For the detector it is possible to use the spread of detections to estimate
the variance oget. While it is possible to use the variance directly to set the
observation noise, this would discard important information gathered over time.
Instead the observation noise is weighted based on how well the detections have
matched with the combined estimate over a short time window.

The final detector observation noise is set according to:

d, = )’ (6)
where Winaten is set high if the combined output has matched well during a short
time window, and d. is the distance from the current position estimate to the
current detection. The d. parameter mainly reduces the weight if the detector
has very strong responses on some background object.
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4 Dataset

We provide a dataset of four sequences for long-term UAV tracking. The
sequences are recorded with the UAV flown manually, with the pilot instructed
to keep the target in view. Each sequence features a different person to track.
The main goal of our dataset is to capture longer sequences than is typically
used in visual tracking, while representing UAV specific difficulties well. Since
all sequences are recorded using a flying UAV the camera is continuously mov-
ing, with some sudden jerks as the UAV repositions. We call this new dataset
‘Terra’ after the lab where it was recorded. A description of the difficulties in
each sequence is in Table 1.

4.1 Data Acquisition System

The LinkQuad is a versatile autonomous Micro Aerial Vehicle. The platform’s
airframe is characterized by a modular design which allows for easy reconfigu-
ration to adopt to a variety of applications. Thanks to a compact design (below
70 cm tip-to-tip) the platform is suitable for both indoor and outdoor use.

Ty
e

Fig. 3. Example frames from some challenging situations in our dataset. From the Sit-
ting sequence. When the tracked person sits down the deformations are severe enough
that most object detectors will fail.

Fig. 4. The Linkquad UAV used to record our dataset. This configuration features a
PointGrey camera and an Intel-NUC motherboard for running the vision system on
board.
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Table 1. An overview of the sequences included in our dataset. The first column has
the sequence name, the following four columns the degree of some difficulties in each
sequence. The final column the number of frames in each sequence.

Occlusions Scale changes | Viewpoint changes | Pose change length
Occlusionl | Short full occlusion Significant Significant Always upright | 3610
Occlusion2 | Full and partial Limited None Sits in chair 3156
Sitting Long full occlusion Significant Minor Sits in chair 3177
Walking Long partial occlusion | Limited Significant Always upright | 4854

LinkQuad is equipped with in-house designed flight control board - the
LinkBoard. The LinkBoard has a modular design and this allows for adjust-
ing the required computational power depending on mission requirements. In
the full configuration, the LinkBoard weighs 30 g, has very low power consump-
tion and has a footprint smaller than a credit card. The system is based on two
ARM-Cortex micro controllers running at 72 MHz which implement the core
flight functionalities.

The LinkBoard includes a three-axis accelerometer, three rate gyroscopes,
and absolute and differential pressure sensors for estimation of the altitude and
the air speed, respectively. The LinkBoard features a number of interfaces which
allow for easy extension and integration of additional equipment.

The configuration used during the recording of the dataset was a Firefly MV
FMVU-03MTC camera from Point Grey Research connected to an on board
Intel NUC i5 computer. A photo of the configured LinkQuad is in Fig. 4.

4.2 Challenges

The sequences feature some difficulties well represented in visual tracking
datasets, such as very long term partial occlusions, periodic full occlusions and
jerky camera movement. One sequence has the tracked person sitting down
for a period, one has multiple humans crossing each other in the image. In
all sequences additional humans are present in the background. An additional
difficulty is that the sequences are far longer than the ones commonly used,
at 3400-4900 frames, while in most datasets sequences with more than 1000
frames are rare, and most are approximately 300-400 frames. Finally two of the
sequences contain significant pose changes for the humans. A summary of each
sequence is in Table 1.
Some example frames of challenging situations are presented in Fig. 3.

5 Experiments

We evaluate our proposed tracker and detector fusion on our own dataset. The
results are reported as overlap and precision plots.
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5.1 Evaluation Methodology

While the VOT [1-3] method of evaluating trackers provides an unbiased esti-
mate of tracker accuracy for short term trackers, the automatic restarting present
in the toolkit makes it unsuited for evaluation of long-term trackers with an auto-
matic recovery mechanism. Instead we use a simpler metric of computing the
bounding box overlap with the ground

We also include two short term tracker variants, the KCF [17] and the ACT
[16] tracker. For both short term trackers the implementations used are those
from the VOT 2014 challenge.

5.2 Results

We compare the performance of our proposed system using the tracker-detector
fusion, with two baseline variants. The results for all methods is presented in
Fig.5. The first baseline is based only on the pre-trained detector run over the
image as described in Sect.3.2. The best detection is used as input into the
Kalman filter in each frame. The output from the Kalman filter becomes the
bounding box estimate for each frame. The tracker only method uses the same
online learning visual tracker as the full system, but without the detector com-
ponent. Resets of the tracker model are handled by observing the tracker confi-
dence score only. Should the confidence drop to a low enough level the tracker
is restarted.

Terra dataset

Proposed

Tracker
Detector
KCF
ACT

0.4 0.6 0.8 1.0
Threshold

Fig. 5. The overlap for all frames with ground truth in the Terra dataset. The tracker-
detector fusion clearly outperforms compared methods.

Interestingly using only the online tracker with a restart heuristic in case
to low confidence yields better performance than the detection based method.
This can likely be attributed to the purely detector based method having a not-
insignificant possibility to get stuck on background objects. The KCF and ACT
methods are based only on model-free trackers, and as such are very prone to
drifting off the target and getting stuck on the background.
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6 Conclusions and Future Work

Combining the output of a model-free tracker and a pre-trained object detector
provides a significant increase in robustness for long-term tracking on UAVs.
The proposed fusion method successfully combines the long-term reliability of
a pre-trained detector with the precision of an online learned tracker, while
maintaining real-time performance on a UAV platform. Possible future work
include extending the dataset to a wider range of situations and humans, and
making the system capable of tracking multiple targets at once.
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