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Abstract

This thesis deals with the problem of detecting faults in an environment where the mea-
surements are affected by additive noise. To do this, a residual sensitive to faults is derived
and statistical methods are used to distinguish faults fromnoise. Standard methods for
fault detection compare a batch of data with a model of the system using thegeneralized
likelihood ratio. Careful treatment of the initial state of the model is quiteimportant, in
particular for short batch sizes. One method to handle this is the parity-space method
which solves the problem by removing the influence of the initial state using a projection.

In this thesis, the case where prior knowledge about the initial state is available is
treated. This can be obtained for example from aKalman filter. Combining the prior
estimate with a minimum variance estimate from the data batch results in a smoothed
estimate. The influence of the estimated initial state is then removed. It is also shown that
removing the influence of the initial state by an estimate from the data batch will result in
the parity-space method. To model slowly changing faults, an efficient parameterization
using Chebyshev polynomials is given.

The methods described above have been applied to anInertial Measurement Unit,
IMU . The IMU usually consists of accelerometers and gyroscopes, but hasin this work
been extended with a magnetometer. Traditionally, theIMU has been used to estimate po-
sition and orientation of airplanes, missiles etc. Recently, the size and cost has decreased
making it possible to useIMU :s for applications such as augmented reality and body mo-
tion analysis. Since a magnetometer is very sensitive to disturbances from metal, such
disturbances have to be detected. Detection of the disturbances makes compensation pos-
sible. Another topic covered is the fundamental question ofobservability for fault inputs.
Given a fixed or linearly growing fault, conditions for observability are given.

The measurements from theIMU show that the noise distribution of the sensors can be
well approximated with white Gaussian noise. This gives good correspondence between
practical and theoretical results when the sensor is kept atrest. The disturbances for
the IMU can be approximated using smooth functions with respect to time. Low rank
parameterizations can therefore be used to describe the disturbances. The results show
that the use of smoothing to obtain the initial state estimate and parameterization of the
disturbances improves the detection performance drastically.
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1
Introduction

NAVIGATION HAS ALWAYS BEEN a challenge to man. Inertial navigation systems,
INS, based on Newton’s first law, have been developed during the 20th century. The

basic components of anINS are gyroscopes and accelerometers for measuring angular
rate and linear acceleration. The orientation can be estimated by integrating the gyroscope

Figure 1.1: Gimbals

signals and the position by double-integrating the ac-
celerometer signals. However, the measurements from the
sensors contain noise which introduces drift in the estimates.
The smaller the noise the smaller the drift. The development
until the 1950s made the noise levels low enough to cross the
USA with an airplane, relying on anINS. At that time, the
sensors were mounted in gimbals (Figure 1.1) which main-
tained the orientation of the actual sensor. The gimbaled
sensors were large and heavy which limited their applicabil-
ity. During the later part of the 20th century microelectrome-
chanical systems,MEMS, were introduced. This enabled the
evolution of small silicon based accelerometers and gyro-
scopes that could be mounted rigidly onto the moving body,
that is, in strapdown configuration. Small units consisting
of accelerometers and gyroscopes are referred to as Inertial
Measurement Units,IMU .

If the IMU is held still (not accelerated), the orientation
can be obtained by integrating the gyroscope signals and the
drift can be compensated for by measuring the gravity vector. This approach will still give
drift around the gravity vector, which motivates the addition of a magnetometer (elec-
tronic compass). Measuring the magnetic field of Earth, a drift-free orientation estimate
can be obtained. However, the magnetic field of Earth is very weak and is easily dis-
turbed by magnetic objects. Such disturbances can be detected and compensated for by

1



2 1 Introduction

using measurements from other sensors. This type of detection problems are treated in
this thesis.

The small size and low power consumption of theMEMS-sensors have enabled the use
of IMU :s in new areas. AnIMU with added magnetometers is used to monitor human mo-
tion in Roetenberg (2006). Placing the sensors on differentparts of the body, movements
can be analyzed. Medical researchers can for example use this information to analyze gait
patterns and how the movements are affected by different disorders. Since the analyzed
persons are likely to move near metallic objects, detectionof magnetic disturbances is
essential.

Another application is to estimate position and orientation of a camera. Research
about this topic is performed in theEU-founded project Markerless real-time Tracking for
Augmented Reality Image Synthesis,MATRIS (MATRIS, Schön, 2006, Hol, 2005). The
position and orientation of the camera are important when the image is to be augmented
with virtual objects, a practice known as augmented reality. This can for example be
directions for how to assemble a car (see Figure 1.2) or virtual marker lines in a sporting
event. The position and orientation are today estimated by fusion of image andIMU data.
If reliable disturbance detection is used for a magnetometer, the accuracy of the estimate
would be improved by the addition of this sensor.

Figure 1.2: Augmented reality is used to give instructions for the assembling of a
car. Courtesy of Frauenhofer IGD.

There are now cell phones equipped withMEMS accelerometers and magnetometers,
see for example Figure 1.3. The accelerometers can be used for movement detection. If
the cell phone is not moving, there is no need to search for newbase stations and power is
saved. If both magnetometer and accelerometer are used, theorientation of the phone can
be determined. This opens up the possibility to control the menus by tilting the phone or
play advanced games. As cell phones today include both camera and high resolution color
screen, only the processor limits the ability for augmentedreality applications. Imagine
walking around the pyramids of Egypt, the phone downloads information about the site
since it knows its position. When pointing the camera against the pyramids, virtual work-
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ers from the ancient Egypt working with the construction of the pyramids are shown in the
screen. A story about how the pyramids were built can also be heard in the headphones.

Figure 1.3: Cell phone from Samsung with built in accelerometers and magnetome-
ters.

1.1 Problem Formulation

Using theIMU to estimate orientation, it is essential to detect movementand magnetome-
ter disturbances to not deteriorate the estimate. Thus, thedynamics of theIMU have to be
modeled to enable model-based fault detection.

Fault detection methods often use a residual showing the difference between the mea-
surement and the prediction from the model. However, measurements from real-world
applications are always contaminated with noise, which will give residuals that are non-
zero. Assuming that the noise distribution is known, a faultcan be detected if the deviation
from the known distribution can be statistically secured. The statistical decision between
fault/no fault can be made with a hypothesis test. One commonapproach to construct
residuals for fault detection is the parity-space method (Chow and Willsky, 1984), where
a batch of data is collected and compared with the model. However, nothing is assumed to
be known about the initial state of the system in the data batch. The parity space approach
solves this problem by using a projection that removes the initial state dependency. What
if prior information about the initial state is available, can this information be used as
well?

Faults are usually correlated in time. Considering the magnetic disturbances in the
introduction above, the disturbance (or fault) is caused bysomeone walking by a magnetic
object. Thus, the disturbance will not change as white noisebut will have a smooth profile.
The parameterization of such faults are discussed in the thesis.

The IMU extended with magnetometer can be used for orientation (attitude) estima-
tion as discussed in the introduction. The orientation estimate is disturbed if theIMU

is accelerated or the magnetometer is disturbed by a metallic object. Can these type of
disturbances be detected with the linear theory discussed above?



4 1 Introduction

A fundamental question in fault detection is whether a faultcan be observed by study-
ing the outputs of the system. Can explicit conditions for observability of faults be de-
rived?

1.2 Contributions

The main contributions of this thesis are:

• The smoothing approach to estimate the initial state of a data batch window, used
for generalized likelihood ratio,GLR, tests. This is treated in Chapter 4.

• The minimum variance estimate from a data batch is used to eliminate the initial
state for theGLR-test in Chapter 4. The resulting test is shown to be equal to the
parity space method.

• The efficient parameterization of incipient faults, presented in Section 2.2.

• The modeling and implementation of the methods above on anIMU and tests with
measurement data are described in Chapters 5, 6 and 7.

• Observability tests for linearly growing faults are treated in Chapter 3.

The smoothing approach and the fault parameterization are earlier published in the
following conference papers:

D. Törnqvist, F. Gustafsson, and I. Klein. GLR tests for fault detection over sliding
data windows. InProceedings of the 16th IFAC World Congress, Prague, Czech
Republic, July 2005.

D. Törnqvist and F. Gustafsson. Eliminating the initial state for the generalized likeli-
hood ratio test. InProceedings of IFAC Symposium SAFEPROCESS, Beijing, China,
Aug. 2006. To appear.

Outside the scope of this thesis, the following conference papers are published:

D. Törnqvist, E. Geijer Lundin, F. Gunnarsson, and F. Gustafsson. Transmission tim-
ing - a control approach to distributed uplink scheduling inWCDMA. In Proceedings
of American Control Conference, Boston, MA, USA, June 2004.

F. Gunnarsson, D. Törnqvist, E. Geijer Lundin, G. Bark, N. Wiberg, and E. Englund.
Uplink transmission timing in WCDMA. InProceedings of IEEE Vehicular Technol-
ogy Conference Fall, Orlando, FL, USA, Oct. 2003.

1.3 Outline

The thesis starts with the description of used models, estimation and detection theory in
Chapter 2. Conditions for the observability of faults are discussed in Chapter 3. Chapter 4
derives theGLR tests for fault detection, an example on aDC-motor is also given. The
dynamic model for anIMU is derived in Chapter 5. Measurement data from theIMU is
presented and analyzed in Chapter 6. TheGLR tests derived in Chapter 4 are then applied
to the measurements in Chapter 7. Conclusions and thoughts about further studies are
given in Chapter 8.



2
Estimation and Detection Theory

THE STATE OF A SYSTEMrefers to the information needed to get complete knowledge
about the behavior of the system at the moment. A common problem is to estimate

the state of the system from measurements. As an example of a system, consider the
economy of a country. Then we are able to measure company profits, salaries, stock
values etc to get knowledge about the economy of the country.There are also inputs such
as the interest rate given by the central bank and taxes decided by the state. If a model
of the economy is available, the state of the economy can be estimated and the future
economy can be predicted.

Another important task is change detection. In the economy example above, we might
be interested in monitoring the stock market. Is someone trading on information that is
not publicly available. If so, this would be a crime and should be investigated. With a
proper model of the stock market and enough measurements, abnormal behavior could be
detected using change detection methods.

2.1 System Descriptions

It is often of interest to describe the behavior of a system mathematically. If the behavior
of a system is known and it is known what affects it, the futurebehavior can be predicted
or simulated. It is often convenient to see what will happen with a system without really
trying it in practice. For instance, if you are working at a nuclear power plant and consider
to move the control rods, you might be interested if this onlywill lead to an increase
in the power production or if it also will cause a melt down of the plant. A system
description is also useful for control of a system. For example the controlling computer
of an autonomous airplane has to know how the airplane reactsto movements of the
rudders. The computer needs a mathematical model, whereas ahuman pilot has a mental
model built on years of experience.

5



6 2 Estimation and Detection Theory

The behavior of most physical systems can be mathematicallymodeled using differ-
ential equations. These equations can then be represented using different standard struc-
tures. This section will primarily focus on state space models, also extended to the case
where data batches are treated.

2.1.1 State Space Model

A fairly general description of a physical system is provided by the nonlinear state space
model

ẋ(t) = f
(
x(t), u(t), f(t), v(t)

)
, (2.1a)

y(t) = h
(
x(t), u(t), f(t), e(t)

)
, (2.1b)

wherex is the state of the system,u is the input signal,f is a fault,v ande are noises and
y is the measured signal. The functionsf(·) andh(·) are in general nonlinear functions.
This work primarily focuses on the class of models where these are linear functions, so
called linear systems. Linear systems are in general easierto handle and it therefore exist
more powerful results for them, see for instance Rugh (1996)and Kailath et al. (2000). To
handle nonlinear systems with linear theory, the nonlinearmodels are often approximated
with a linear model.

Linear Model

A time-varying linear state space model can be written as

ẋ(t) = A(t)x(t) + Bu(t)u(t) + Bf (t)f(t) + Bv(t)v(t), (2.2a)

y(t) = C(t)x(t) + Du(t)u(t) + Df (t)f(t) + e(t). (2.2b)

Discrete-time Linear Model

A computer can only handle discrete-time data, so measurements will be sampled in time.
Thus, the system model has to be sampled in order to describe the measurements. The
procedure of sampling systems is described in Rugh (1996). In the case of a piecewise
constant time-invariant linear system with piecewise constant input signal, the matrices
of the sampled system can be computed as

Ft = eA(t)T , (2.3a)

Gs
t =

T∫

0

eA(t)τ dτBs(t), (2.3b)

wheres ∈ {u, f, v}. For time discrete-time systems,t will be used denote the sample
rather than time. The discrete-time system can then be written as

xt+1 = Ftxt + Gu
t ut + Gf

t ft + Gv
t vt, (2.4a)

yt = Htxt + Hu
t ut + Hf

t ft + et. (2.4b)
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2.1.2 Autoregressive Models

A simple model for describing temporal dependencies in a signal is the autoregressive
model, AR-model. It describes how present values of the signal depends on previous
values as

yt = −a1yt−1 − · · · − anyt−n + et. (2.5)

Then:th orderAR-model in (2.5) can also be described using a state space model. Writing
it in observability canonical form, see for instance Kailath (1980), the equivalent state
space model becomes

xt+1 =










−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−an−1 0 0 · · · 1
−an 0 0 · · · 0










xt +










0
0
...
0
et










, (2.6a)

yt =
(
1 0 · · · 0

)
xt. (2.6b)

2.1.3 Batched Systems

It is sometimes convenient to describe the behavior of a system over a certain time win-
dow. The system can then be described in batched form, directly derived from the linear
state-space form. The batch form is often used in fault detection and diagnosis, see Chow
and Willsky (1984), Gertler (1998), Gustafsson (2001). Stack L signal values to define

the signal vectors likeY =
(
yT

t−L+1, . . . , y
T
t

)T
, for all signals. If the initial state in a

time window of lengthL is known, the outputs in that window can be computed as

Y = Otxt−L+1 + H̄u
t U + H̄f

t F + H̄v
t V + E, (2.7)

with the extended observability matrix

Ot =








Ht−L+1

Ht−L+2Ft−L+1

...
Ht

∏t−L+1
k=t−1 Fk








, (2.8)

which in the time invariant case will have the following form

O =








H
HF

...
HFL−1








. (2.9)

The matrices determining how the input signals affect the system is described by

H̄s
t =








Hs
t−L+1 0 · · · 0

Ht−L+2G
s
t−L+1 Hs

t−L+2 · · · 0
...

. . .
...

Ht

∏t−L+2
k=t−1 FkGs

t−L+1 · · · HtG
s
t−1 Hs

t








, (2.10)
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and in case of a time invariant system, they will have the formof a Toeplitz matrix

H̄s =








Hs 0 · · · 0
HGs Hs · · · 0

...
. . .

...
HFL−2Gs · · · HGs Hs








. (2.11)

It is often convenient to describe a model where the influenceof the input is removed.
Therefore define

Z , Y − H̄uU = Oxt−L+1 + H̄fF + H̄vV + E. (2.12)

The batched system can also be described as a function of the last state in the window
instead of the first one. This requires that the matrixF is invertible. In this form, all the
outputs can be computed as

Y = Γxt + H̃uU + H̃fF + H̃vV + E, (2.13)

where

Γ =








HF−(L−1)

...
HF−1

H








(2.14)

and

H̃s =








−HF−1Gs · · · −HF−(L−1)Gs 0
...

. . .
...

...
0 · · · −HF−1Gs 0
0 · · · 0 0








+






Hs · · · 0
...

. . .
...

0 · · · Hs




 . (2.15)

Define, similarly to (2.12), a system with removed input as

Z̃ , Y − H̃uU = Γxt + H̃fF + H̃vV + E. (2.16)

A combination of the batched system models described in (2.7) and (2.13) can also
be used. If a state in the middle of the window is known, that isxt−n, the outputs are
described by

Y =

(
O
Γ

)

xt−n +

(
H̄u

H̃u

)

U +

(
H̄f

H̃f

)

F +

(
H̄v

H̃v

)

V + E. (2.17)

2.2 Structured Faults

The influence of a fault is often correlated in time and is changing much slower than white
noise. It is therefore natural to model the behavior of the fault with as few parameters as
possible. In this section, the fault is parameterized usingan orthogonal basis generated by
the Chebyshev polynomial. The Chebyshev polynomial is an orthogonal polynomial of
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a discrete variable, see Abramowitz and Stegun (1965), Rivlin (1974). The polynomial,
denotedΦn(t), is orthogonal in the interval0 ≤ t ≤ N − 1, wheret is an integer.
Moreover, the vector of lengthN

ΦT
n =






Φn(0)
...

Φn(N − 1)




 , (2.18)

is orthogonal to another vectorΦm whenn 6= m. The Chebyshev polynomial is defined
by the function

Φn(t) = n!∆n

[(
t
n

)(
t − N

n

)]

, (2.19)

where∆n is the difference operator defined as

∆f(t) = f(t + 1) − f(t), ∆n+1f(t) = ∆(∆nf(t)). (2.20)

The orthonormal vectorsΦn will be used as basis vectors for the fault. Denoting the
parameters withθt, the fault vector is modeled as

F = ΦT θt, (2.21)

where
ΦT =

(
ΦT

1 ΦT
2 · · ·

)
(2.22)

The regressors obtained have the form of a constant, linear,quadratic term and so on.
This means that a step fault can be described using a one dimensional basis and smooth
faults using a low dimensional basis. An example of a parameterized fault is given in
Example 2.1.

Example 2.1: Parameterized Fault

The output from a magnetometer (compass) is monitored. After some time, the mag-
netic field is disturbed by a magnetic object. This disturbance can be modeled using the
Chebyshev polynomial matrixΦT . To estimate the model parameters, the following loss
function is minimized

θ̂t = argmin
θt

‖F − ΦT θt‖2. (2.23)

For this example, the measurement data comes from a real process given by data set D1 in
Section 6.1. The fault is parameterized using three basis functions shown in Figure 2.1a.
The parameterized fault is shown in Figure 2.1b.

2.3 Minimum Variance Estimation

A common problem in signal processing is to estimate the state of the system given a
system model and measurement data. There are many differentapproaches to solve this
problem. There are both recursive and non-recursive methods which can yield unbiased
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Figure 2.1: The basis functions (a) are used to parameterize the fault from a magne-
tometer disturbance (b).

estimates of the state. Some of the methods also produce estimates with minimum vari-
ance. For linear estimators, they are then referred to as aBest Linear Unbiased Estimator,
BLUE. With the batched system representation from Section 2.1.3it is easy to write a
non-recursive minimum variance estimator.

For the estimation here, it is assumed that no fault affects the system, that isF = 0.
DenoteN , H̃vV+E and assume thatN is white Gaussian noise withCov(N) = S̃ ≻ 0.
The equation systemΓxt + N = Z̃ is known as thegeneral Gauss-Markoff linear model
(Björck, 1996). The parameters inxt can be estimated with minimum variance by solving
the generalized least squares problem

min
xt

(Γxt − Z̃)T S̃−1(Γxt − Z̃), (2.24)

see Björck (1996). This can be rewritten as the least squaresproblem

min
xt

‖S̃−1/2Γxt − S̃−1/2Z̃‖2, (2.25)

which has the solution
x̂t = (S̃−1/2Γ)†S̃−1/2Z̃, (2.26)

where⋆† denotes the Moore-Penrose pseudo inverse (see Golub and vanLoan (1996)).
The estimate will be distributed according to

x̂t ∼ N

(

xt, (Γ
T S−1Γ)−1

)

, (2.27)

whereN denotes the Gaussian distribution, see Section 2.7.1.
The initial state in the window can also be estimated with theframework described

above. Denote the covariance matrixS = Cov(H̄vV + E), then the initial state is esti-
mated by

x̂t−L+1 = (S−1/2O)†S−1/2Z ∼ N(xt−L+1, (OT S−1O)−1) (2.28)
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An intermediate state of the window can be estimated using the model in (2.17). This
estimate will then be referred to as asmoothed estimate, see Kailath et al. (2000).

2.4 Kalman Filter

The Kalman filter is a recursive filter for linear systems thatis aBLUE. The filter was first
presented in Kalman (1960) and is the most common estimator used. Many books give
a detailed description of the Kalman filter, see for example Kailath et al. (2000), Ander-
son and Moore (1979). The noise is assumed to be white, Gaussian and the covariance
matrices are given byE vtvt+τ = Qtδ(τ) andE etet+τ = Rtδ(τ). The Kalman filter
recursions are given in Algorithm 2.1. During the recursions, the error covariance for the
states are computed asPt.

Algorithm 2.1 Kalman Filter (KF)

An initial state,x̂0|−1 = x0, and an initial error covariance,P0|−1 = P0, is given. Then
the filter updates are given by

• Time update:

x̂t+1|t = Ftx̂t|t + Gu
t ut, (2.29a)

Pt+1|t = FtPt|tF
T
t + Gv

t QtG
v
t

T , (2.29b)

• Measurement update:

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1, (2.29c)

x̂t|t = x̂t|t−1 + Kt(yt − Htx̂t|t−1 − Hu
t ut), (2.29d)

Pt|t = (I − KtHt)Pt|t−1. (2.29e)

2.5 Extended Kalman Filter

To be able to use the Kalman filter framework also for a nonlinear system, the model has
to be linearized. Linearizing the system around the estimated trajectory and then applying
the Kalman filter gives the Extended Kalman Filter,EKF. Given the nonlinear system

xt+1 = f(xt, ut) + g(xt, ut)vt, (2.30a)

yt = h(xt, ut) + et, (2.30b)

the linear system is a first order Taylor-expansion around the latest state estimate,

f(xt) ≈ f(x̂t|t, ut) + Ft(xt − x̂t|t), (2.31a)

h(xt) ≈ h(x̂t|t−1, ut) + Ht(xt − x̂t|t−1), (2.31b)

g(xt) ≈ g(x̂t|t, ut) , Gv
t , (2.31c)
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where

Ft ,
∂f(x, u)

∂x

∣
∣
∣
∣
∣
(x,u)=(x̂t|t,ut)

and Ht ,
∂h(x, u)

∂x

∣
∣
∣
∣
∣
(x,u)=(x̂t|t−1,ut)

.

Using this linearization, the state trajectory can be estimated by theEKF in Algorithm 2.2.
Observe that optimality is not guaranteed by theEKF, but it usually performs good in
practice.

Algorithm 2.2 Extended Kalman Filter (EKF), see (Kailath et al., 2000, p. 340)

An initial state,x̂0|−1 = x0, and an initial error covariance,P0|−1 = P0, is given. Then
the filter updates are given by

• Time update:

x̂t+1|t = f(x̂t, ut) (2.32a)

Pt+1|t = FtPt|tF
T
t + Gv

t QtG
v
t

T (2.32b)

• Measurement update:

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1 (2.32c)

x̂t|t = x̂t|t−1 + Kt

(
yt − h(x̂t|t−1, ut)

)
(2.32d)

Pt|t = (I − KtHt)Pt|t−1 (2.32e)

2.6 Detection Theory

A common problem is to detect whether a change of some type hasoccurred. One im-
portant and common application is to detect a signal in noise. This is done everyday and
is essential in for example cell phones and other wireless devices. Other applications are
for example the area of fault detection. In an airplane, it can be a question of detecting if
a rudder gives the normal response, otherwise we have a faultwhich might be a leakage
in the hydraulic system controlling the rudder.

The detection problem is often formulated in a way that it is aquestion of deciding
between a number of hypotheses. To make the decision, measurement data from some
sensors and a model of the process is often provided. If thereare two hypotheses to decide
between, the problem is known as abinary hypothesis test. For the airplane example
mentioned above, this could be

H0 : Rudders work as normal,

H1 : The rudders are faulty,

where the hypothesesH0 andH1 usually are referred to asnull hypothesisandalterna-
tive hypothesisrespectively. Using sensor readings and the model of the airplane atest
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statisticcan be derived. The test statistic will have different distributions in case a fault
is present or not. If the distributions are completely knownin both cases, we will have a
simple hypothesis test. Otherwise, if some parameters are unknown, we have acomposite
hypothesis test.

2.6.1 Simple Hypothesis Testing

Consider the case where the binary variableθ = {θ0, θ1} is measured with additive noise
e which has a known distribution,

y = θ + e.

The hypothesis test

H0 : θ = θ0,

H1 : θ = θ1,

is an example of a simple hypothesis test if the parametersθ0 andθ1 are known. The
probability of the measurement can then be calculated depending on which hypothesis
that is assumed true. One approach to selection between the hypotheses is to select the
hypothesis that gives the highest probability for the measurement. Hence, ifp(y|H1) >
p(y|H0), the alternative hypothesis is decided. Another approach would be to be more
restrictive with causing an alarm, so the requirement for analarm is thatp(y|H1) >
γp(y|H0) whereγ > 1. This can also be expressed as a ratio between the probabilities,
the likelihood ratio

p(y|H1)

p(y|H0)
> γ.

In order to statistically describe these approaches, some definitions have to be made.

Definition 2.1. Some common terms in statistics are defined as

• False alarm (FA) is to decideH1 whenH0 is true.

• Miss (M) is to decideH0 whenH1 is true.

• Probability of false alarm (PFA); PFA = P (H1 |H0)

• Probability of miss (PM ); PM = P (H0 |H1)

• Probability of detection (PD); PD = P (H1 |H1) = 1 − PM

When designing a test to decide between the hypotheses, a trade-off between highPD

and lowPFA has to be made. If it is decided to havePFA on a certain level, what is
the optimal test? This question is answered by the Neyman-Pearson,NP, lemma, which
was first published in the articles Neyman and Pearson (1928a,b). Here, the lemma is
presented in Theorem 2.1. TheNP-lemma is referred to as theLikelihood Ratio Test,
LRT, and is the most powerful test for simple hypotheses. Most powerful means that it
maximizesPD, given aPFA.
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Theorem 2.1 (Neyman-Pearson lemma)
To maximizePD for a givenPFA = α decideH1 if

L(y) =
p(y|H1)

p(y|H0)
> γ, (2.33)

where the thresholdγ is given by

PFA =

∫

y:L(y)>γ

p(y|H0) dy = α. (2.34)

Proof: See (Kay, 1998, Appendix 3A).

2.6.2 Composite Hypothesis Testing

Consider the measurement

y = θ + e, (2.35)

where the measurement noisee has a known distribution butθ is unknown. The one-sided
hypothesis

H0 : θ = 0, (2.36)

H1 : θ > 0, (2.37)

will have an unknown parameter in the distribution ofy under the alternative hypothesis.
This test is therefore called a composite hypothesis test. It is sometimes possible to find
an optimal detector even for composite hypotheses. A detector that yields the highestPD

givenPFA for all values ofθ is known asUniformly Most Powerful, UMP. A two-sided
hypothesis test could be

H0 : θ = 0, (2.38)

H1 : θ 6= 0, (2.39)

where the alternative hypothesis has two test regions for the parameterθ. It can be shown
that aUMP test does not exist for a two-sided hypothesis test, see Kay (1998). Thus, in
those cases suboptimal detectors have to be implemented.

To construct a detector for a composite hypothesis test, there are two major ap-
proaches:

1. Marginalization or Bayesian approach. If the unknown parameter has a known
distribution it can be marginalized.

2. Generalized Likelihood Ratio Test,GLRT.

The approaches will be discussed in the following sections.
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Marginalization

Consider again the measurement
y = θ + e, (2.40)

wheree is noise with known distribution butθ is unknown. The hypotheses are

H0 : θ = θ0, (2.41a)

H1 : θ = θ1, (2.41b)

whereθ0 andθ1 are unknown. Now, there are unknown parameters in the distribution of
y for both hypotheses. The marginal density function ofy can be computed as

p(y|H0) =

∞∫

−∞

p(y|H0, θ0)p(θ0) dθ0, (2.42a)

p(y|H1) =

∞∫

−∞

p(y|H1, θ1)p(θ1) dθ1. (2.42b)

This can be thought of as computing the “expected distribution, p(y)”. Inserting this
density function in theLR test gives

L̃(y) =
p(y|H1)

p(y|H0)
. (2.43)

Generalized Likelihood Ratio

Another way of eliminating the unknown parameters in (2.41)is to use themaximum
likelihood estimateof the parameter. The parameters can then be calculated as

θ̂⋆ = arg max
θ⋆

p(y|θ⋆). (2.44)

The estimated parameters,θ̂⋆, are then inserted into the Likelihood Ratio test provided in
theNP-lemma which yields the Generalized Likelihood Ratio test,

L̂(y) =
p(y|θ̂1)

p(y|θ̂0)
. (2.45)

Even though theNP-test is optimal, theGLRT is not always optimal but often works well
in practice. It is shown in Lehmann (1986) thatGLRT is UMP among the tests that are
invariant.
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2.7 Appendix: Distributions

2.7.1 Gaussian Distribution

The most widely used distribution for random variables is the Gaussianor Normal dis-
tribution. Consider the stochastic variableX which is Gaussian distributed with meanµ
and varianceσ2, denoted

X ∼ N(µ, σ2).

The probability density function,PDF, for X is then

fX(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 . (2.46)

This means that the probability forX to have a value in the interval[a, b] is

P (a ≤ X ≤ b) =

b∫

a

fX(x) dx.

In a more general case,X is ann × 1 vector. The distribution of the Gaussian vector is
then represented by themultivariate GaussianPDF

fX(x) =
1

(2π)n/2 det1/2(S)
e−

1
2 (x−µ)T S−1(x−µ), (2.47)

whereµ is the mean vector andS is the positive definite covariance matrix. An example

of thePDF for a variable distributed with the parametersµ =
(
0 0

)T
andS = diag(1, 2)

is plotted in Figure 2.2.
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Figure 2.2: The multivariate Gaussian distribution with parametersµ = (0 0)T and
P = diag(1, 2).
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2.7.2 Chi-square Distribution

Squared Gaussian variables are common, especially in detection theory. Often are sums
of squared Gaussian residuals used as a test statistic and the result will then be chi-square
distributed if the residuals are white and Gaussian. If the residuals have zero mean, the
test statistic will have acentral chi-squaredistribution. In case of non-zero mean, the
distribution will be thenoncentral chi-square.

Central Chi-square

Sums of squared independent and identically distributed,IID , Gaussian variables with
zero mean will become chi-square distributed. That is,X =

∑ν
i=1 X2

i with Xi ∼ N(0, 1)
will be chi-square distributed withν degrees of freedom, denotedX ∼ χ2

ν . The probabil-
ity density function is

fX(x) =

{
1

2
ν
2 Γ( ν

2 )
x

ν
2−1e−

1
2x x > 0

0 x < 0
, (2.48)

whereΓ(u) is the Gamma function, which is defined as

Γ(u) =

∞∫

0

tu−1e−t dt. (2.49)

Noncentral Chi-square

When taking the sum of squaredIID Gaussian random variables with non-zero mean,
the distribution of the result will be represented by thenoncentral chi-square distribution.
Consider the case whereXi ∼ N(µi, 1), then the variableX =

∑ν
i=1 X2

i hasν degrees of
freedom and thenoncentrality parameterλ =

∑ν
i=1 µ2

i . The distribution ofX is denoted
X ∼ χ′2

ν (λ) and thePDF can be expressed as

fX(x) =

{
1
2

(
x
λ

) ν−2
4 I ν

2
−1(

√
λx)e−

1
2 (x+λ) x > 0

0 x < 0
, (2.50)

whereIr(u) is the modified Bessel function of the first kind and orderr. This function is
defined as

Ir(u) =

(
1
2u
)r

√
πΓ
(
r + 1

2

)

π∫

0

sin2r(θ)eu cos θ dθ. (2.51)
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3
Fault Observability

THE PURPOSE OF FAULT DETECTIONis to discover the presence of a fault and for
fault diagnosis to tell which fault is present. To get information about the system,

measurements are made. If it is possible to estimate the fault from the measurements,
fault detection and diagnosis becomes possible. This chapter derives tests that determine
if the fault can be estimated.

3.1 Studied Systems

The systems studied are time-invariant, time-discrete linear systems in state space form
as described in Section 2.1.1. Two special cases of this model structure are described. A
system without inputs is referred to as the nominal system. The other system has a fault
vector as input, but in order to estimate this input the faultvector is included in the state
vector. Hence the name, augmented system.

3.1.1 Nominal System

The following state-space model is referred to as the nominal system

xt+1 = Fxt + wt, (3.1a)

yt = Hxt + et, (3.1b)

wheredim(xt) = nx anddim(yt) = ny, that is,F is nx × nx andH is ny × nx.

19
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3.1.2 Augmented System

A state-space model with faults as inputs would have the form

xt+1 = Fxt + Gfft + wt, (3.2a)

yt = Hxt + Hfft + et, (3.2b)

wheredim(ft) = nf , that is,Gf is nx × nf andHf is ny × nf .
In order to estimate the faults, the faults are included in the state vector. The aug-

mented state vector is denotedx̄t =
(
xT

t fT
t

)T
. Including the fault in the state vector

implies that the dynamics of the fault has to be modeled. It ishere assumed that the
fault is changing according to the random walk process, which would yield the following
augmented model

x̄t+1 =

(
F Gf

0 I

)

x̄t + w̄t, (3.3a)

yt =
(
H Hf

)
x̄t + et, (3.3b)

wherew̄t is a noise vector. There can be several special cases of this model. For instance,
if Gf = 0 andHf = I only measurement faults are modeled. Limiting to faults on the
input side of the system,Gf = I andHf = 0.

3.2 Observability for Augmented Systems

The general definition of observability is given by Definition 3.1 and the tests for observ-
ability are given by Theorem 3.1 and 3.2. This section will derive explicit conditions
under which the augmented system (3.3) is observable, giventhat the pair{H, F} is
chosen such that the nominal system (3.1) is observable. Thesame problem arises in ap-
plications where biases in the measurements or dynamics areestimated. The problem is
studied in for example Chmielewski Jr. and Kalata (1995), Bembeneck et al. (1998).

Definition 3.1. A system (3.1) is said to beobservableif any initial statex0 can be
uniquely determined by the corresponding responsey.

Theorem 3.1
A system(3.1) is observable if and only if the matrix

O =








H
HF

...
HFnx








(3.4)

has full column rank.

Proof: The proof is given in most textbooks on linear systems, see for example Kailath
(1980).
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Theorem 3.2 (Popov-Belevitch-Hautus (PBH) Test)
A system(3.1) is observable if and only if the matrix

(
H

F − sI

)

(3.5)

has full column rank for alls.

Proof: See (Kailath, 1980, p. 137).

3.2.1 General Augmented System

Applying Theorem 3.2 for the augmented system (3.3), the observability is given by
checking the rank of





(
H Hf

)

(
F Gf

0 I

)

− sI



 =





H Hf

F − sI Gf

0 (1 − s)I



 . (3.6)

The rank should be checked for alls, hence divide the analysis into two partss 6= 1 and
s = 1. Whens 6= 1, the matrix(s − 1)I will have full rank and using row operations
(rank conserving) (3.6) can be rewritten as





H 0
F − sI 0

0 (1 − s)I



 . (3.7)

Thus, it is sufficient to check the rank of the matrix
(

H
F − sI

)

, (3.8)

which we know have full rank since the nominal system is observable. The other case
s = 1 gives the matrix





H Hf

F − I Gf

0 0



 , (3.9)

and thus the observability of the augmented system can be determined by checking the
rank of (

H Hf

F − I Gf

)

. (3.10)

3.2.2 System with Measurement Faults

This section will study the special case with measurement faults and no faults in the
dynamics, that is,Gf = 0. The faults will be assumed to be such thatHf has full column
rank. With these assumptions the rank condition for the augmented system is to check
whether (

H Hf

F − I 0

)

(3.11)
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has full column rank. An interesting observation is that ifF has no eigenvalues1, that is,
no pure integrations, a sufficient condition for observability is thatHf has full (column)
rank.

Full column rank of the matrixB is equivalent to

Bx = 0 ⇔ x = 0. (3.12)

To obtain a result whenF includes pure integrations, study
(

H Hf

F − I 0

)(
x
f

)

=

(
Hx + Hff
(F − I)x

)

= 0 ⇔
(

x
f

)

= 0. (3.13)

The lower block is zero if and only ifx is an eigenvector ofF with eigenvalue1. Hence,
a necessary and sufficient condition for the augmented system to be observable is that

Hx 6∈ R(Hf ) for all x such that Fx = x 6= 0, (3.14)

which can also be expressed as

R(HU) ∩R(Hf ) = ∅, (3.15)

where the columns ofU consist of the eigenvectors ofF with eigenvalue1. (Note that
Hx 6= 0 since otherwiseOx = 0 in contradiction to the assumption that the nominal
system is observable.) Put in another way, the fault must enter the measurements orthog-
onally to the integrating part of state space.

Observations

Some observations based on the discussion above:

• As long as the studied system does not contain any pure integration, that is,Fx = x
has no solution apart fromx = 0, any fault is allowed ifHf has full rank.

• With an integration in the system the problem is more difficult:

– If Hf has full row rank the augmented system is not observable, seethe re-
quirement in (3.15).

– The fault terms may not look the same in the measurements as inthe integrated
state, or the system is not observable. It is impossible to tell the difference
between the initial state and fault, as the effect on the system is the same.

3.2.3 Dynamics with Additive Faults

Now consider the case of additive faults only in the dynamics, that is,Hf = 0. The
augmented system is observable if and only if

(
H 0

F − I Gf

)

. (3.16)

For the continued discussion, the following result relatedto the test for full column
rank is useful.
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Lemma 3.1
The matrix

(
A
B

)

(3.17)

has full column rank if and only ifN (A) ∩ N (B) = ∅.

Proof: The matrix in (3.17) has full column rank if and only if∄s 6= 0 such that

(
A
B

)

u =

(
Au
Bu

)

= 0. (3.18)

Obtaining rank deficiency implies thatAu = 0 andBu = 0 for the sameu and hence
must have a common null space. The requirement for full column rank is therefore non-
intersecting null spaces ofA andB as written in the lemma.

In order to determine observability of the augmented system, it is interesting to know
under which circumstances (3.16) has full column rank. FromLemma 3.1, we conclude
that it is enough to consider the null space of (3.16). Rank deficiency can only be obtained
when the following equation has a nonzero solution

(
H 0

F − I Gf

)(
x
f

)

=

(
Hx

(F − I)x + Gff

)

= 0 (3.19)

The top row can only be zero forx in the null space ofH , hence it is enough to study
suchx. Therefore, form a matrixU which has a basis for the null space ofH as columns.
Then, the second row of (3.19) can be written as

(F − I)Us + Gff = 0, (3.20)

wheres is an arbitrary vector. For this equation to have a solution,the matrices(F − I)U
andGf have to share image spaces. The requirement for observability can then be written
as

R
(
(F − I)U

)
∩R(Gf ) = ∅. (3.21)

The interpretation of this is explained below. Consider a statext that is in the null
space ofH and is thus not directly observable in the measurements. Consider now how
this state changes in a time update. The change can be written

xt+1 − xt = (F − I)xt + Gff, (3.22)

the requirement in (3.21) states that the change introducedby the dynamics of the system
must be orthogonal to the influence by the disturbance. That is, it must be possible to
distinguish between contributions to the state that comes from parts of the state space not
directly measured and contributions from a disturbance.
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3.3 Batched Systems with Linearly Growing Faults

An alternative, but completely analogous, view of the discussion above can be obtained
considering systems of batched signals described in Section 2.1.3. Consider batched sig-
nals over a window of lengthL, then the system can be described as

Y = Oxt−L+1 + H̄fF + H̄vV + E. (3.23)

The matrixO will equal the observability matrix given in Theorem 3.1 andsince the
nominal system is assumed to be observable, it will have fullcolumn rank. If the unknown
disturbance can be parameterized as

F = ΦT θt (3.24)

andH̄θ , H̄fΦT , the system can be rewritten as

Y =
(
O H̄θ

)
(

xt−n

θt

)

+ H̄vV + E. (3.25)

To determine observability of this augmented system, the length of the window has to be
equal to the number of states, that isL = nx + nθ.

If it is assumed that the fault is changing linearly, that isft = ct + m. Then, the fault
can be parameterized as in (3.24) with

ΦT =






1 t
...

...
1 t + L − 1




 . (3.26)

Now computingH̄θ with L = nx + nθ = nx + 2 gives

H̄θ =









Hf 0 · · · 0

HGf Hf . . .
...

...
. . .

. . .
...

HFnxGf HFnx−1Gf · · · Hf














1 t
...

...
1 t + nx + 1




 =










Hf tHf

HGf + Hf tHGf + (t + 1)Hf

H(F + I)Gf + Hf tHFGf + (t + 1)HGf + (t + 2)Hf

...
...

H
∑nx

i=0 F iGf + Hf H
∑nx

i=0(t + i)Fnx−iGf + (t + nx + 1)Hf










. (3.27)

The observability of the augmented system is determined by the rank of
(
O H̄θ

)
. (3.28)

Simple row and column operations preserves rank. To simplify the matrix, first substract
the first row from the second, then the second from the third and so on. Then, substract



3.4 Summary 25

t times the second column from the third column. Simultaneously done below is again
substracting the first row from the second, then the second from the third and so on.

(
O H̄θ

)
∼










H Hf tHf

H(F − I) HGf tHGf + Hf

HF (F − I) HFGf tHFGf + HGf + Hf

...
...

...
HFnx(F − I) HFnxGf tHFnxGf + H

∑nx−1
i F i + Hf










∼










H Hf 0
H(F − I) HGf Hf

H(F − I)2 H(F − I)Gf HGf

...
...

...
HFnx−1(F − I)2 HFnx−1(F − I)Gf HFnx−1Gf










=





(
H Hf 0

H(F − I) HGf Hf

)

O
(
(F − I)2 (F − I)Gf Gf

)



 (3.29)

Now, to determine if (3.29) has full column rank it suffices tosee if the rows have non-
intersecting null spaces according to Lemma 3.1. SinceO has full column rank, it is
sufficient to look at the matrix





H Hf 0
H(F − I) HGf Hf

(F − I)2 (F − I)Gf Gf



 . (3.30)

3.4 Summary

This section has derived explicit tests for observability of faults with certain dynamics.
The test for constant fault dynamics (moving as a random walk) is provided by checking
the rank of (

H Hf

F − I Gf

)

. (3.31)

For the special cases that there are only measurement faultsor only additive faults in the
dynamics, there are interpretations given for the test requirements (see Section 3.2.2 and
3.2.3).

For the case of linearly growing faults, the batched system description is used to derive
observability tests. The faults are observable, given thatthe following matrix has full rank





H Hf 0
H(F − I) HGf Hf

(F − I)2 (F − I)Gf Gf



 . (3.32)
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4
Initial State Estimation for GLR Tests

A STANDARD APPROACH TOmodel-based change detection is to first compute a resid-
ual from a batch of data based on the model, and then check if this residual is signif-

icantly different from zero, see Basseville and Nikiforov (1993), Gustafsson (2001). For
state-space models as considered here, the initial state affects the residual significantly,
and its influence has to be removed. The unknown initial statecan be approached in the
following ways:

• Using a projection that removes the influence of initial conditions as done in the
classical parity space approach (Basseville and Nikiforov, 1993, Chow and Willsky,
1984, Ding et al., 1999, Gertler, 1997, 1998).

• Using prior knowledge of the initial state obtained with a causal Kalman filter on
past data preceding the data batch under consideration (Willsky and Jones, 1976).
This gives a correct state estimate if the fault was not already present at that time.

• Using a minimum variance estimator (that is, anti-causal Kalman filter) on the data
in the batch, which gives the correct state distribution if there is no fault in the
batch.

• Using a smoothed estimate by combining an estimate from the data batch with the
prior knowledge of the initial state.

The last two approaches are presumingly new, published by the author in Törnqvist
and Gustafsson (2006). However, it will be shown that the third approach is iden-

tical to the first one. The anti-causal estimate is rather to be seen as a tool to derive the
smoothed estimate, which will be shown to give the best performance in simulations.

A fault entering a system does often not change arbitrarily like white noise. It rather
follows a smooth profile which could be parameterized in an efficient way. The param-
eterizations of the fault using a low-rank orthogonal basiswill be shown to increase the
performance significantly.

27
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4.1 Studied Model

The class of models studied in this chapter can be either timevarying or time invariant lin-
ear models. The systems are described with stacked models asdescribed in Section 2.1.3

Y = Ox + H̄uU + H̄fF + H̄vV + E. (4.1)

The system is assumed to be observable, that is,O has full column rank. For non-
observable or partially observable system, see Section 4.2.4. The influence of the known
input signal can always be eliminated and therefore define

Z , Y − H̄uU = Ox + H̄fF + H̄vV + E. (4.2)

The fault is modeled with the low dimensional parametrization as described in Section 2.2

F = ΦT θt ⇒ H̄θ , H̄fΦT . (4.3)

4.2 State Estimation

There are several ways of estimating the initial state of thetime window. Given the data
in the window, the simplest way is to make an orthogonal projection of the measure-
ments onto the signal space as described in Section 4.2.1. Another approach would be
to consider the noise distribution and to make an oblique projection in order to obtain
a minimum variance estimate, which is outlined in Section 4.2.2. A third way could be
to combine one of the estimates above with a prior estimate from for instance a Kalman
filter. This is described in Section 4.2.3.

4.2.1 Orthogonal Projection

A system (4.2) without faults is described by

Z = Ox + H̄vV + E. (4.4)

The least squares estimate of the initial state, without using the knowledge about noise
covariances, is to use

x̂ = O†Z. (4.5)

Here,⋆† denotes the Moore-Penrose pseudo inverse (see Golub and vanLoan (1996)).
This estimate is unbiased since

E x̂ = EO†Z = E
(
x + O†(H̄vV + E)

)
= x, (4.6)

observe thatO†O = I since the system is assumed to be observable and henceO has full
column rank. In presence of faults, the expected value wouldbe

E x̂ = EO†Z = x + O†H̄θθt. (4.7)

Using the estimator in (4.5), the influence of the initial state on the output is given by

Ox̂ = OO†
︸︷︷︸

,PO

Z, (4.8)
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wherePO denotes the orthogonal projection onto the column space ofO, which follows
by the following projection properties:

• A matrixP is a projector if and only if

P2 = P . (4.9)

• An orthogonal projector,PA, ontoR(A) can be derived as

PA = AA†. (4.10)

For proofs of the properties above see (Meyer, 2000, p. 387, 435).

4.2.2 Minimum Variance Estimation

The estimator derived in Section 4.2.1 gives an unbiased estimate of the initial statex.
An estimator that also gives minimum variance for the estimation error was derived in
Section 2.3. The estimate of the initial state is given by

x̂ = (S−1/2O)†S−1/2Z. (4.11)

This estimate will be distributed according to

x̂ ∼ N

(

x + (S−1/2O)†S−1/2H̄θθt, (OT S−1O)−1
)

. (4.12)

The basis forx in the measurement space isO, so estimating the termOx can be per-
formed as

Ox̂ = O(S−1/2O)†S−1/2

︸ ︷︷ ︸

,P

Z, (4.13)

whereP is an oblique projection ontoR(O) alongR
(
S1/2(S−1/2O)⊥

)
according to

Lemma 4.1.

Lemma 4.1
The matrix

P = O(S−1/2O)†S−1/2 (4.14)

is an oblique projection onto the spaceR(O) along the spaceR
(
S1/2(S−1/2O)⊥

)
.

Proof: The matrixP is a projection since it is idempotent, i.e.,PP = P , see (4.9). The
dimension ofP is n × n and a basis in its image space has rankp, then a basis for the
null space has to have dimensionn − p. The proof will show thatO is a basis in the
image space and therefore must have rankp. It is also shown thatS1/2(S−1/2O)⊥ is in
the nullspace ofP and have rankn − p.

The projection has the propertyPO = O and sinceO has full column rankrank(P) ≥
rank(O). An upper bound on the rank ofP is given by

rank(P) ≤ min(rank(O), rank(S−1/2O), rank(S−1/2)) = rank(O), (4.15)
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where the fact that the pseudo-inverse does not change the rank is used and that

rank(S−1/2O) = rank(O) − dimN (S−1/2) ∩R(O) = rank(O). (4.16)

Thus,rank(P) = rank(O) andO must span the image space ofP . Then,rank(O) =
rank(S−1/2O) = p.

Another property ofP is thatPS1/2(S−1/2O)⊥ = 0. To show this, study

PS1/2(S−1/2O)⊥ = O(S−1/2O)†(S−1/2O)⊥. (4.17)

Now, take theSVD

S−1/2O =
(
U1 U2

)
(

Σ 0
0 0

)(
V T

1

V T
2

)

. (4.18)

Then,(S−1/2O)† = V1Σ
−1UT

1 and(S−1/2O)⊥ = U2U
T
2 . SinceU1 andU2 are orthog-

onal, it is clear thatPS1/2(S−1/2O)⊥ = 0. Thus,S1/2(S−1/2O)⊥ must be in the space
thatP projects along and is a basis in that space if the rank isn − p. With the same
argument as in (4.16), it is clear thatrank(S1/2(S−1/2O)⊥) = rank((S−1/2O)⊥) and
the orthogonal complement of a matrix of rankp must have rankn − p.

4.2.3 Smoothed Estimate

It is a common situation in signal processing to have severalestimates of the same vari-
able. To get a common estimate using the information in all estimates are often referred
to as thesensor fusion problem, see for instance Gustafsson (2001).

In this case, it is assumed that an estimate,x̂(1), from a prior or Kalman filter is
available. The estimate is assumed to be Gaussian distributed as

x̂(1) ∼ N(x, P (1)). (4.19)

Then, the smoothed initial state is estimated by forming thejoint state estimate of (4.11)
and (4.19) by the standard sensor fusion formula. Denote theestimate from (4.11) with
x̂(2) and its covariance withP (2), then

x̂ = P
(

P (1)−1
x̂(1) + P (2)−1

x̂(2)
)

, (4.20)

where

P ,

(

P (1)−1
+ P (2)−1

)−1

. (4.21)

The expected value of this estimate is derived using (4.12) and (4.19)

E x̂ = P (P (1)−1
+ P (2)−1

)
︸ ︷︷ ︸

=I

x + PP (2)−1
(S−1/2O)†S−1/2H̄θθt

= x + POT S−1H̄θθt (4.22)

Note thatCov(x̂) = P < P (2) which means that the covariance of the estimate is de-
creased when prior information is used.
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4.2.4 Partially Observable Systems

In order to estimate the initial state of the system (4.1) it has to be observable, that is, all
states will have a unique influence in the output. When sensors get faulty and therefore
cannot be used, the observability may be lost. However, it isoften possible to observe a
subspace of the state space and the system can therefore be partially observable. In order
to handle such a system in the framework described above, theobservable subspace has
to be determined. It is given by theSVD

O = U1ΣV T
1 , (4.23)

whereU1 spans the observable subspace. The statex̄ , ΣV T
1 x (dim(x̄) < dim(x)) is

now an observable state. The system (4.1) can then be rewritten as

Y = U1x̄ + H̄uU + H̄fF + H̄vV + E. (4.24)

Now, all methods described above can be used withO exchanged forU1. When a prior
estimate of the original estimate is available, as in Section 4.2.3, the state estimate and its
covariance have to be transformed as

ˆ̄x(1) = ΣV T
1 x̂(1) (4.25)

P
(1)
ˆ̄x(1) = ΣV T

1 P (1)V1Σ. (4.26)

4.3 GLR Tests

Fault detection is here considered as detecting whether thefault is zero or not. This
approach corresponds to the hypothesis test

H0 : θt = 0 (4.27a)

H1 : θt 6= 0. (4.27b)

This section will derive different test statistics based onthe Generalized Likelihood Ratio,
GLR, for the hypothesis test above, see also Section 2.6.2. To perform this test, the initial
state in the window has to be estimated using for instance themethods in Section 4.2.
Using the estimate from the orthogonal projection is identified as the parity space method
and is described in Section 4.3.1. If the minimum variance estimate is used the test will
also reduce to the parity space method, see Section 4.3.2. Finally, the smoothed estimate
is used in Section 4.3.3.

4.3.1 Parity Space Approach

The parity space method is a widely used method to find a residual for fault detection.
It was first described in Chow and Willsky (1984), but is described and used in many
publications for example Basseville and Nikiforov (1993),Ding et al. (1999), Gertler
(1997, 1998).

Here, the parity space equations are derived by estimating the initial state by an or-
thogonal projection as in Section 4.2.1. The prediction error is here computed as

ε = Z −Ox̂ = (I − PO)Z = PO⊥Z. (4.28)
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The projector can be computed as

PO⊥ = BO⊥ BT
O⊥ , (4.29)

whereBO⊥ is an orthonormal basis forR(O⊥).

Residual

Since the prediction error is computed by a rank deficient projection, the information
in the prediction error can be represented by a vector of lower dimension. This low-
dimensional vector is here denoted the residual. Note thatBT

O⊥ BO⊥ = I due to orthog-
onality and that the dimension is the rank of the projection in (4.29). The residual can be
written as

r = BT
O⊥ ε = BT

O⊥ BO⊥ BT
O⊥ Z = BT

O⊥ Z, (4.30)

which has the covariance

Cov(r) = BT
O⊥ S BO⊥ . (4.31)

The normalized residual is then

r̄ = (BT
O⊥ S BO⊥)−1/2 BT

O⊥
︸ ︷︷ ︸

,W̄ T
1

Z. (4.32)

Test Statistic

In the hypothesis test, (4.27), the question is whether the fault is zero or not. This can be
rearranged to a hypothesis test based on the residual as

H0 : r̄ ∼ N(0, I) (4.33a)

H1 : r̄ ∼ N(W̄T
1 H̄θθt, I). (4.33b)

To decide between the hypotheses, aGLR test will be performed with test statistic

L = 2 log

(

supθt
p(r̄ − W̄T

1 H̄θθt)

p(r̄)

)

= sup
θt

2 log

1
(2π)n/2 e−

1
2‖r̄−W̄ T

1 H̄θθt‖
2
2

1
(2π)n/2 e−

1
2 ‖r̄‖2

2

= sup
θt

−‖r̄ − W̄T
1 H̄θθt‖2

2 + ‖r̄‖2
2, (4.34)

wheren denotes the dimension of̄r. This function is maximized forθt = (W̄T
1 H̄θ)†r̄,

which gives

L = −‖r̄ − W̄T
1 H̄θ(W̄T

1 H̄θ)†
︸ ︷︷ ︸

P
W̄T

1
H̄θ

r̄‖2
2 + ‖r̄‖2

2 = r̄TPW̄ T
1 H̄θ r̄. (4.35)
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4.3.2 Minimum Variance Estimation

The prediction error can be computed in minimum variance sense with the state estimate
from (4.13) as

ε = Z −Ox̂ = (I − P)Z. (4.36)

The matrixI − P is the complementary projector toP , see Meyer (2000), which has the
SVD

I − P =
(BS1/2(S−1/2O)⊥ BS−1O

)
(

Σ 0
0 0

)(
BT
O⊥

BO
T

)

= BS1/2(S−1/2O)⊥ ΣBT
O⊥ .

(4.37)
whereB⋆ is an orthogonal basis inR(⋆). The construction of theSVD can be done
using the result of Lemma 4.1. To construct the residual, thedimension ofε should be
reduced to the rank ofI − P . By inspection of (4.37), the natural premultiplier would be
Σ−1BS1/2(S−1/2O)⊥

T . Since

Σ−1BS1/2(S−1/2O)⊥
T (I − P) = BT

O⊥ , (4.38)

the residual will be
r = BT

O⊥ Z. (4.39)

This coincides with the residual in the parity-space approach and the hypothesis test there-
fore coincides with the one in Section 4.3.1.

4.3.3 Estimation by Smoothing

The prediction error is formed using the smoothed estimate from (4.20) as

ε = Z −Ox̂ = O(x − x̂) + H̄θθt + H̄vV + E, (4.40)

then the expected value of the prediction error is obtained using (4.22) as

E ε = −OPOT S−1H̄θθt + H̄θθt =
(

I −OPOT S−1
)

︸ ︷︷ ︸

,W T
2

H̄θθt. (4.41)

To construct the test statistic, it is desirable to haveε as a function of the measurements,
Z, and the state estimate from the Kalman filter,x̂(1). Thus,

ε = Z −Ox̂ = Z −OP
(

P (1)−1
x̂(1) + P (2)−1

x̂(2)
)

=
(

I −OPP (2)−1
(S−1/2O)†S−1/2

)

Z −OPP (1)−1
x̂(1)

= WT
2 Z −OPP (1)−1

x̂(1) (4.42)

and the covariance is

Cov(ε) = WT
2 SW2 + OPP (1)−1

P
︸ ︷︷ ︸

,Q

OT =
(
WT

2 O
)
(

S 0
0 Q

)(
W2

OT

)

. (4.43)
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It is important to note that the matrixWT
2 is time varying due to the dependence of the

covariance of the Kalman filter estimate. However, the Kalman filter will become station-
ary and then the covariance converges to a matrix which can becomputed by solving the
Riccati equation.

Lemma 4.2
Assume thatS and Q are both positive definite matrices, then the matrix in(4.43) is
positive definite.

Proof: If (4.43) is a positive definite matrix, the following must hold

xT
(
WT

2 O
)
(

S 0
0 Q

)(
W2

OT

)

x > 0 ∀x 6= 0. (4.44)

Since it is known thatS andQ are positive definite, it suffices to show that

xT
(
WT

2 O
)
6= 0 ∀x 6= 0. (4.45)

The matrixWT
2 can be written asI−OM whereM is an arbitrary matrix. Ifx ∈ N (OT )

andx 6= 0 then
xT
(
WT

2 O
)

=
(
xT 0

)
6= 0. (4.46)

If x /∈ N (OT ) andx 6= 0 then

xT
(
WT

2 O
)

=
(
xT − xTOM xTO

)
6= 0 (4.47)

since at least the second element is nonzero. Thus, we have shown that there is nox 6= 0
such that (4.45) is invalidated.

SinceQ = PP (1)−1
P whereP (1) andP are positive definite matrices,Q is also

positive definite. Then, according to Lemma 4.2, the covariance ofε is positive definite
and thus invertible. The normalized residual can thereforebe expressed as

r̄ = Cov(ε)−1/2ε = Cov(ε)−1/2WT
2

︸ ︷︷ ︸

,W̄ T
2

Z − Cov(ε)−1/2OPP (1)−1
x̂(1). (4.48)

Test Statistic

Using the normalized residual (4.48), the hypothesis test (4.27) can be written as

H0 : r̄ ∼ N(0, I) (4.49a)

H1 : r̄ ∼ N(W̄T
2 H̄θθt, I). (4.49b)

This yields the log-likelihood ratio

L = sup
θt

log
e−

1
2‖r̄−W̄ T

2 H̄θθt‖
2
2

e−
1
2 ‖r̄‖2

2

= sup
θt

−
(

‖r̄ − W̄T
2 H̄θθt‖2

2 − ‖r̄‖2
2

)

, (4.50)

which is maximized forθt = (W̄T
2 H̄θ)†r̄. Then

L = −
(

‖(I − W̄T
2 H̄θ(W̄T

2 H̄θ)†
︸ ︷︷ ︸

P
W̄T

2
H̄θ

)r̄‖2
2 − ‖r̄‖2

2

)

= r̄TPW̄ T
2 H̄θ r̄ (4.51)
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4.3.4 Statistics

To choose suitable thresholds for the test statistics above, it is necessary to compute
their distributions. While having Gaussian noise, the teststatistics will be chi-square
distributed variables, see Section 2.7.2. For a thorough review of statistics in signal pro-
cessing, see Kay (1998). The normalized residual is distributed as

r̄ ∼ N(W̄T
⋆ H̄θθt, I), (4.52)

where⋆ is 1 or 2 (depending on method) andθt = 0 under the null hypothesis (4.27a).
The test statistic is then distributed as the noncentral chi-square distribution

L = r̄TPW T
⋆ H̄θ r̄ ∼ χ′2

ν (λ) (4.53)

whereν = rank(WT
⋆ H̄θ) and

λ = (WT
⋆ H̄θθt)

TPW T
⋆ H̄θWT

⋆ H̄θθt = (WT
⋆ H̄θθt)

T WT
⋆ H̄θθt. (4.54)

Observe thatλ = 0 in the fault-free case and then the test statistic is distributed according
to the central chi-square distributionL ∼ χ2

ν . The threshold is then chosen from the
chi-square distribution so that the fault-free hypothesisis rejected erroneously only with
a small probability.

4.4 Example

To show the performance of the fault detection algorithms, aDC-motor has been simu-
lated. TheDC-motor can have a fault which is interpreted as a torque disturbance or a
fault in the voltage supply.

4.4.1 Modeling

The continuous-time transfer function from input voltage to axle angle is

G(s) =
1

s(s + 1)
. (4.55)

Using the state variablesx1 (angle) andx2 (angular velocity), a sampled version of the
DC-motor can be written as

xt+1 = Fxt + Guut + Gfft + Gwwt (4.56a)

yt = Hxt + et, (4.56b)

with the system matrices

F =

(
1 1 − e−T

0 e−T

)

, Gu =

(
T − (1 − e−T )

1 − e−T

)

,

Gw = Gf = Gu, H =
(
1 0

)
,

wherewt ∼ N

(

0,
(

π
180

)2
)

, et ∼ N

(

0,
(

π
180

)2
)

and the sample interval used isT =

0.4 s.
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4.4.2 Simulations

In the simulation, the system has been simulated for 200 samples in time with the unit step
as input. After 100 fault-free samples, a constant fault is introduced with the magnitude of
2π
180 , which is present until the last sample. The fault can be seenas a torque disturbance
which causes a drop in the angular velocity,x2, and a slope change in the angle,x1. With
this setup, 2000 Monte Carlo (MC) simulations have been carried out. One instance of
the state trajectory realizations is shown in Figure 4.1 where also the fault-free trajectory
is shown using the same noise realization. The drop in angular velocity when the fault
is present can be seen in Figure 4.1b. The angle, which is measured, has a small change
in the slope which is hardly noticeable in Figure 4.1a. The fault detection method using
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Figure 4.1: Plots of the state trajectories with and without fault influence for the
DC-motor in (4.56).

smoothing, includes a time-varying term dependent on the estimation covariance from
the Kalman filter. After a transient period the Kalman filter will become stationary which
means that the estimation covariance converges. Figure 4.2shows

√
tr P (1), a measure

of the state covariance,P (1). Note thatP (1) converges already after approximately 15
samples and the smoothing method can then be considered timeinvariant.

4.4.3 Fault detection

Fault detection on the simulated data has been made both withand without making use of
the known fault structure. Since the fault is a step disturbance, a basis of dimension one
can be used to describe its behavior. For fault detection a sliding window of 8 samples is
used and for the smoothed method the Kalman filter estimate from previous data is used
as well. For the discussions below, some definitions have to be made. The alarm rate is
calculated as

ar(t) =
# L(t) > γ

# MC-simulations
, (4.57)
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Figure 4.2:
√

tr P (1) is used as a measure of the state estimation covariance.

whereL(t) is the test statistic andγ the threshold for detection. The probability of detec-
tion, PD, is defined as the alarm rate during presence of fault. Probability of false alarm,
PFA, is defined as the alarm rate during fault-free periods.

A. No Knowledge about Fault Structure

First, the fault detection methods are used without assuming knowledge about the struc-
ture of the fault. The results can be seen in Figures 4.3a–4.3c. The average over the
MC-simulations of the test statistics ((4.35) and (4.51)) is shown in Figure 4.3a. Note
that the difference in average during the fault-free part between the methods is due to
different degrees of freedom of the test statistic. The parity space method has 6 degrees
of freedom whereas the smoothed method has 7. The alarm rate versus time is shown
in Figure 4.3b. The false alarm rate has been set to 1% and it and the actual alarm rate
during the fault-free parts of the simulation corresponds to this value. The method with
smoothing outperforms the parity space approach, but the comparison is unfair since the
estimation is based on a different amount of data. In Figure 4.3c, the Receiver Operation
Characteristics (ROC) is plotted. TheROC-curve shows how the probability of detection
for a fault varies versus the probability of false alarm. Guessing corresponds to a the
straight line betweenPFA = PD. In this case the values forPD is estimated one window
after the entrance of the fault. This is done since the Kalmanfilter estimate, used in the
smoothed method, will be influenced by the fault afterward. More aboutROC-curves can
be found in Kay (1998).

B. Using the Structure of the Faults

Secondly, the structure of the fault is used to enhance the fault detectability. Since it is
here assumed that the fault is a step, a one dimensional basisfunction is used to describe
the fault. It is discussed in Section 4.3.4 that the average of the test statistics should equal
the degrees of freedom for the test statistic. Due to the parameterization, the degree of
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freedom is 1 and the effect of this can be seen in Figure 4.3a where the averages of the
test statistics ((4.35) and (4.51)) are 1 in the fault-free part. The lower average during the
fault-free part makes the relative increase to the faulty part larger and the probability of
detection is therefore higher than without structure. Figure 4.3b shows that the probability
of detection is considerably increased for both methods dueto the use of the fault struc-
ture. TheROC-curves in Figure 4.3c have therefore also shifted towards higher detection
rates.
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Figure 4.3: The averages of the test statistics(4.35)and (4.51)are given in (a), the
alarm rate in (b) and a plot of theROC curve in (c). A and B denote with and without
using the structure of the fault respectively.

4.5 Conclusions

This chapter studied the initial state dependency for theGLR test for fault detection based
on a batch of data. Previous approaches are either based on eliminating the initial state by
projection (the parity space approach) or by using a prior computed from passed data (the
sliding window approach). The minimum variance estimate ofthe initial state from the
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data batch is derived. This, in itself, is shown in Section 4.3.2 to be algebraically identical
to the parity space approach. However, in combination with the sliding window approach,
it opens up the possibility to form a smoothed estimate. It isdemonstrated in simulations
that this improved performance considerably. Another contribution is to point out how a
smooth parameterization of the fault profile can improve detection performance.
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5
Modeling and Estimation of IMU:s

IN MANY SITUATIONS , the attitude and position of a system is of interest. For example,
navigation and positioning of airplanes and cars are a mature research area today. Most

systems rely partly on satellite navigation equipment, such as the Global Positioning Sys-
tem, GPS, and map-aided navigation systems that recognize the terrain, see for instance
Bergman (1999), Karlsson (2005). To obtain complete position and attitude information,
this information has to be combined with an inertial navigation system. This system con-
tains three dimensional accelerometers and gyroscopes, and is sometimes referred to as
an Inertial Measurement Unit,IMU .

Another application where anIMU is used is positioning of film cameras. The position
of the camera has to be known in order to put virtual objects inthe scene, which is known
as augmented reality. The measurement from theIMU is combined with information from
the image and in this way position and orientation can be obtained (Schön, 2006, Hol,
2005).

Human motion analysis is another area whereIMU :s are used. There are scientists
who wants to get a better understanding of the walking process and therefore studies how
different body parts are rotated and accelerated. Athletesanalyzes their movements in
order to improve their performance while avoiding injury, see Luinge (2002), Roetenberg
et al. (2005).

5.1 Sensors

The measurements in Chapter 6.1 are made with anIMU from Xsens Technologies, see
(Xsens Technologies B.V.). ThisIMU , see Figure 5.1, consists of a three dimensional ac-
celerometer, gyroscope and magnetometer (compass). All these sensors are based on the
technology microelectromechanical systems,MEMS. That means they are small silicon
based sensors of the strapdown type, that is, rigidly mounted onto the moving body. This

41
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is in contrast to the old gimbaled gyroscopes and accelerometers, which always had the
attitude of the fixed coordinate system. For a thorough review of strapdown inertial nav-
igation and micro machined sensors, see Titterton and Weston (1997), Gardner (1994).

Figure 5.1: The IMU MTi from Xsens Technologies which is used for the experi-
ments in this thesis.

Traditional accelerometers used a mass-spring-damper-system to measure the accel-
erations. The extension of the spring in steady state is proportional to the acceleration.
The sensor used here is manufactured by Analog Devices (ADXL203) and has a mea-
surement range of±1.7g. Although it is silicon based, the principle is the same as for the
mass-spring-damper-system. A silicon mass is suspended with silicon springs between
two fixed silicon plates. To read out the acceleration, the ratio of the capacitance between
the fixed plate and the mass on both sides is used. (Gardner, 1994, Analog Devices)

The gyroscope is also manufactured by Analog Devices, modelnumber ADXRS300.
The gyroscope is a so called resonator gyroscope which is based on a vibrating silicon
structure. There is a capacitive pickoff that senses Coriolis forces, which are dependent
on the angular velocity.

The magnetometer is a Honeywell HMC1023, which is a magneto-resistive sensor. A
magneto-resistive sensor is composed of thin plates in which the current lines are rotated
depending on the magnetic field. The rotation of the current lines gives an increase in
friction and the magnetic field can thereby be measured. (Gardner, 1994, Honeywell
Solid State Electronics Center)

5.2 Modeling

The model describing theIMU consists of two parts: one describing how its body is
moving (dynamic model) and one describing the measurements(measurement model).
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To describe the behavior of theIMU two coordinate systems are used, one fixed to the
earth and one fixed in the IMU.

5.2.1 Coordinate Systems

To describe a moving body system, two coordinate systems areused. One system, that
is fixed to the world (Earth), referred to as the W-system, andone that is following the
moving body, referred to as the B-system. Theoretically, the measurements from theIMU

is made in a fixed inertial coordinate system. The rotation ofthe Earth introduces Coriolis
forces, but since these effects are small, they are neglected here. Figure 5.2 illustrates
the coordinate systems. The relation between the coordinate systems is described in two
steps. First, the translation from the origin of the W-system to the origin of the B-system
is described with the vectorp. Second, the rotation (or attitude) from the W-system to the
B-system is described by the unit quaternionqbw and the corresponding rotation matrix
R(qbw). Unit quaternions can be used to describe attitude numerically more robust than
with for example Euler angles. For more information about quaternions, see Appendix B.

ew
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z
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y
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z

p

Figure 5.2: The two coordinate systems describing the moving body system. The
orthogonal unit vectors(eb

x, eb
y, e

b
z) are moving with the body and the orthogonal unit

vectors(ew
x , ew

y , ew
z ) are fixed.

5.2.2 Dynamic Model

The translation between the W-system and the B-systemp is also called the position
of the body. The dynamic model need to have the positionp and the rotationqbw as
states. Since the accelerations of the B-system are measured, these have to be mod-
eled as states as well as the velocityvw. The state vector can then be chosen asx =
(
pwT vwT awT qbw

T
)T

, wherepw is translation from the W-system to the B-system,
vw is the velocity vector of the B-system relative to the W-system (described in the W-
system),aw is acceleration of the B-system relative to the W-system (described in the
W-system),qbw is the unit quaternion describing the orientation of the B-system.
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The dynamics of the translation is easy, namely

ṗw = vw

v̇w = aw.

Since nothing is known about the derivative of the acceleration, this is modeled as noise,

ȧw = v1,

wherev1 is process noise. The rotation of the B-system relative to the W-system is de-
scribed using the unit quaternion,qbw. The dynamics of the unit quaternion is derived in
appendix B and the derivative is given in (B.26). The result is

q̇bw =
1

2
S(ωb

bw)qbw, (5.1)

whereωb
bw denotes the angular velocity of the B-system relative to theW-system de-

scribed in the B-system andS is a matrix which is dependent linearly on the elements
in ωb

bw. The angular velocityωb
bw is measured by the gyroscopes and should therefore

be modeled as a state which is measured. However, to reduce the dimension of the state
space and avoid the nonlinearity which would have been introduced then, the measure-
ment of the angular velocity is used as an input in the dynamics. This approach would
only be theoretical correct ifωb

bw could be measured without noise. However, since the
measurement noise from the gyroscopes,v2, is small, the approximation done here is to
useωb

bw + v2 as angular velocity.

q̇bw ≈ 1

2
S(ωb

bw + v2)qbw (5.2)

Using (B.26)
S(ωb

bw + v2)qbw = S(ωb
bw)qbw + S′(qbw)v2,

whereS′(⋆) is defined in (B.26). Then, (5.2) can be written as

q̇bw ≈ 1

2
S(ωb

bw)qbw +
1

2
S′(qbw)v2. (5.3)

Thus, the total dynamic model is given by







ṗw

v̇w

ȧw

q̇bw







=







0 I 0 0
0 0 I 0
0 0 0 0
0 0 0 1

2S(ωb
bw)







︸ ︷︷ ︸

A







pw

vw

aw

qbw







+







0 0
0 0
I 0
0 1

2S′(qbw)







︸ ︷︷ ︸

B

(
v1

v2

)

. (5.4)

5.2.3 Measurements

The sensors that are available in the system are gyroscopes,accelerometers and magne-
tometers (compass). The measurements from the gyroscopes are, as discussed above,
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directly incorporated in the dynamics and are therefore notdescribed in the measurement
equations.

The accelerometers measures both the free acceleration of the body and the earth
gravitational field described in the B-system. The measurement equation can therefore be
written as

ya,t = ab
t − gb + ea,t = R(qbw)(aw

t − gw)
︸ ︷︷ ︸

,ha(qbw,aw
t )

+ea,t, (5.5)

whereR(⋆) is the rotation matrix given in (B.21),a is the free acceleration,g is the gravity
vector andea is the measurement noise.

The reading from the magnetometer is a normalized vector,n̄b
np, given in the B-system

and pointing along the earth magnetic field. When using an ordinary compass, the read-
ing will be two dimensional giving the heading towards the magnetic North Pole. Since
this measurement is three dimensional, information is alsogiven about the magnetic in-
clination. The inclination, also called dip angle, is the angle between the earth’s tangent
plane and the magnetic field vector. The magnetic inclination depends on the position on
earth and is0◦ at the magnetic equator and90◦ at the magnetic poles. The inclination in
Linköping, Sweden, is about70◦. The heading information will of course be less accu-
rate when the inclination approaches90◦. For more information about the earth magnetic
field, see (National Geomagnetism Program).

Since the earth magnetic field is very weak, it can easily be disturbed by an electric
motor or ferromagnetic objects such as beams or other iron constructions. Such a distur-
bance can be represented by an unknown vector, here denoteddm,t. The measurement
equation can thus be written as

ym,t = n̄b
np + dm,t + em,t = R(qbw)n̄w

np
︸ ︷︷ ︸

,hm(qbw)

+dm,t + em, (5.6)

whereR(⋆) is the rotation matrix given in (B.21),̄nnp is the normalized earth magnetic
field vector andem is the measurement noise.

The total measurement equation becomes

y =

(
ya

ym

)

= h(qbw, aw
t ) +

(
0
I

)

︸︷︷︸

,Hd

dm,t + et. (5.7)

5.2.4 Discrete-Time Dynamic Model

The dynamic model (5.4) is divided into two parts. One containing the translational dy-
namics of the B-system and the other one the attitude dynamics. The first part contains
the statespw, vw andaw and the second partqbw. To simplify the notation and stress the
time dependencyqbw is denotedqt from now on.
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Translational Dynamics

For the translational part of the system, the noise inputs tothe system are assumed to be
constant between the sampling intervals. Then the discretetime system can be written as





pw
t+1

vw
t+1

aw
t+1



 = F





pw
t

vw
t

aw
t



+ Gvvt, (5.8)

where

F = eAT and Gv =

T∫

0

eAtB dt.

The matrices in (5.8) can be evaluated to

F =





I T I T 2

2 I
0 I T I
0 0 I



 and Gv =





T 3

6 I
T 2

2 I
T I



 .

Attitude Dynamics

The part of the system (5.4) describing the attitude is the last state,qbw. The following
derivations have been made in discussion with Schön (2005).Assume that the angular
velocityωb

bw is constant during the sampling intervals, that is

ωb
bw(t) = ωb

bw,k, whenkT ≤ t < (k + 1)T.

Making this assumption, the attitude dynamics becomes timeinvariant during the sam-
pling interval. Hence, considering the noise free dynamic model (5.1), the discrete time
model is given by

qt+1 = e
1
2S(ωb

bw,t)T qt. (5.9)

To simplify calculations, the terme
1
2S(ωb

bw,t)T has to be rewritten. Starting with the series
expansion, we set

e
1
2S(ωb

bw,t)T =

∞∑

n=0

(
1
2S(ωb

bw,t)T
)n

n!
=

∞∑

n=0

(
T

2

)n
1

n!
S(ωb

bw,t)
n. (5.10)

The matrixS(ωb
bw,t) has an interesting property, namely

S(ωb
bw,t)

2 = −‖ωb
bw,t‖2I. (5.11)

Using this result and the series expansion for the cosine, the even part of the series expan-
sion (5.10) can be written as

∞∑

n=0

(
T

2

)2n
1

(2n)!
(−1)nS(ωb

bw,t)
2n = cos

(

‖ωb
bw,t‖T
2

)

I (5.12)
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Using knowledge about the series expansion of sine, the odd part can be written as

∞∑

n=0

(
T

2

)2n+1
1

(2n + 1)!
S(ωb

bw,t)
2n+1

=
T

2
S(ωb

bw,t)

∞∑

n=0

(
T

2

)2n
1

(2n + 1)!
(−1)n

‖ωb
bw,t‖2n+1

‖ωb
bw,t‖

=
T

2
S(ωb

bw,t)
sin
(

‖ωb
bw,t‖T/2

)

‖ωb
bw,t‖

. (5.13)

Combining the odd and even parts of the series expansion, theunit quaternion dynamics
can be written as

qt+1 =







cos

(

‖ωb
bw,t‖T
2

)

I4 +

sin

(
‖ωb

bw,t‖T

2

)

‖ωb
bw,t‖

S(ωb
bw,t)







qt. (5.14)

If the sample rate is high enough so that the product‖ωb
bw,t‖T is small, the small angle

approximations can be used to simplify the dynamic equationto

qt+1 =

(

I4 +
T

2
S(ωb

bw,t)

)

qt. (5.15)

Now, reintroducing the measurement noise onωb
bw,t, (5.15) can be written as

qt+1 =

(

I4 +
T

2
S(ωb

bw,t)

)

︸ ︷︷ ︸

,Ft

qt +
T

2
S′(qt)

︸ ︷︷ ︸

,Gv
t

vt. (5.16)

5.2.5 Linearization

To estimate the state trajectory using theEKF and to use linear theory for fault detec-
tion, the system must be linearized. TheEKF is described in Section 2.5. The dynamic
equations (5.8) and (5.16) are already linear time-varyingequations, but the measurement
equation is nonlinear. It is therefore linearized with a first order Taylor series. Starting
with the accelerometer part of the measurement equation, itcan be approximated as

ya,t = ha(qt) + ea,t ≈ ha(q̂t|t−1) + Ha,t(qt − q̂t|t−1) + ea,t, (5.17)

where

Ha,t =
∂ha(q)

∂q

∣
∣
∣
∣
∣
q=q̂t|t−1

. (5.18)

The magnetometer part of the measurement equation is approximated as

ym,t = hm(qt, a
w
t ) + em,t

≈ hm(q̂t|t−1) + Hm
t (qt − q̂t|t−1) + Hd,tdm,t + em,t, (5.19)
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where

Hm
t =

∂hm(q)

∂q

∣
∣
∣
∣
∣
q=q̂t|t−1

.

To form the linearized system, a new measurement variable iscomputed with known
information as

ỹt , yt −
(

ha(q̂t|t−1)
hm(q̂t|t−1)

)

+

(
Ha

t

Hm
t

)

q̂t|t−1 =

(
Ha

t

Hm
t

)

qt +

(
0
I

)

dm,t + et. (5.20)

Then the linearized system can now be written as

qt+1 = Ftqt + Gv
t vt (5.21a)

ỹt =

(
Ha

t

Hm
t

)

︸ ︷︷ ︸

,Ht

qt +

(
0
I

)

︸︷︷︸

,Hd
t

dm,t + et. (5.21b)

The Jacobians in the measurement equation (5.21b) are

Ha
t = 2g





−q2 q3 −q0 q1

q1 q0 q3 q2

q0 −q1 −q2 q3



 (5.22)

and

H
m
t

T
=

0

B

B

@

nxq0 + nyq3 − nzq2 −nxq3 + nyq0 + nzq1 nxq2 − nyq1 + nzq0

nxq1 + nyq2 + nzq3 nxq2 − nyq1 + nzq0 nxq3 − nyq0 − nzq1

−nxq2 + nyq1 − nzq0 nxq1 + nyq2 + nzq3 nxq0 + nyq3 − nzq2

−nxq3 + nyq0 + nzq1 −nxq0 − nyq3 + nzq2 nxq1 + nyq2 + nzq3

1

C

C

A

, (5.23)

where the magnetic field vector in the W-system has the following coordinates̄nf
np =

(
nx ny nz

)T
.

5.3 Attitude Estimation

In order to use the accelerometers for attitude informationthe direction of the gravity field
is used. However, it is impossible to distinguish between the acceleration of the body and
the gravitational acceleration only using accelerometers. Therefore, we assume that the
body is not accelerated or that the acceleration is so small that it can be approximated
by noise. The noise generated by movements of the sensor can also be modeled, see
Section 6.2. The measurement equation due to the accelerometers then becomes

ya
t = −gb + ea = −R(qt)g

w + ea
t , (5.24)

wheregb andgw are the gravitational acceleration in the B-system and the W-system
respectively andea

t is measurement noise. The rotation matrixR(qbw) is given in (B.21)

and sincegw =
(
0 0 −g

)T
the measurement equation can be written as

ya
t = g





2(q1q3 − q0q2)
2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3



+ ea
t , (5.25)
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whereg ≈ 9.82 is the constant of gravity.
Attitude estimation is done with anEKF. An additional normalization step for the unit

quaternion is needed after both time update and measurementupdate. That is, add the
operation

q̂ := q̂/‖q̂‖
after each update.
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6
Measurement Data and Motion

Modeling

THE WORK WITH REAL-WORLD applications requires extensive amounts of measur-
ing. This section provides illustrative data sets which shows the characteristics of

the sensors in theIMU .

6.1 Measurement Data

To show the performance of the disturbance detection algorithms described in previous
chapter and to show the characteristics of the sensors, somemeasurement data is col-
lected. The data is collected under different circumstances, for example when the sensor
is lying still, is slowly rotated, with and without disturbances. The datasets are presented
in Table 6.1.

Table 6.1: Data sets collected using the IMU.

Data Set Disturbance Movement
UD1 Undisturbed Lying still
D1 Magnetometer disturbance Lying still
D2 Light magnetometer disturbanceLying still
UD2 Undisturbed Holding still in hand
UD3 Undisturbed Rotated aroundeb

x

D3 Magnetometer disturbance Rotated aroundeb
x

D4 Acceleration disturbance Moved without rotation

The purpose of the first data set, UD1, is to explore the noise characteristics of the
sensors. TheIMU is here lying still on a table and data is collected during 9 seconds
with a sampling rate of 100 Hz. The orientation of the sensor is set so that theeb

z-axis is
pointing outwards from the earth along the gravity field (perpendicular to the table). The

51
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acceleration measurements from the undisturbed data set UD1 are plotted in Figure 6.1a.
Note that gravity is observed as a positive acceleration since only real forces acting on
the sensor can be observed. The force observed is thus the normal force given by the
table rather than gravity. Furthermore, the confidence ellipsoids of the measurements are
quite circular indicating that the noise has low spatial correlation between the compo-
nents. The confidence ellipsoids are plotted on the distance3σ which, if the distribution
is Gaussian, means that 1.1% of the measurements should be outside of this ellipsoid.
The magnetometer readings are presented in Figure 6.1b. Also these confidence ellip-
soids are circular and thus indicate low spatial correlation between the components in the
magnetometer readings.
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Figure 6.1: Accelerometer (a), magnetometer (b) and gyroscope (c) measurements,
all from data set UD1. The ellipses represent confidence ellipsoids on the distance
3σ.

The disturbed data set, D1, also represents a case where theIMU is lying still on a
table, like in data set UD1. However, in this set, the magnetometer is disturbed by a
metal object approaching the sensor. The metal object is here represented by a pair of
scissors and the closest distance is approximately 5 cm. As can be seen in Figure 6.2a,
the acccelometer readings are similar to the ones given in data set UD1. The magnetome-
ter readings should nominally be a Gaussian cloud around onepoint, but the disturbance
makes them follow a trajectory given in Figure 6.2b. Each component of the magnetome-
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ter measurement is plotted separately in Figure 6.3. Note that the profile of the disturbance
is a rather smooth function which will be used in the disturbance detection later.
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Figure 6.2: Accelerometer (a), magnetometer (b) and gyroscope (c) measurements,
all from data set D1.

The experiment setup for data set D2 is similar to D1. The difference is that the
disturbance is much weaker. The disturbance was also here caused by a pair of scissors,
but the closest distance was approximately 30 cm. The components of the magnetometer
reading are plotted in Figure 6.4.

In applications, it is not often the case that theIMU is lying still on a table. For
instance, in one application it is carried around by a person(Roetenberg et al., 2005). To
illustrate the influence of human motion on the sensor readings, data set UD2 is collected
when the sensor is handheld and the person holding it is trying to hold it still. Figure 6.5
shows the measurements, the characteristics of these are discuessed in Section 6.2.

Having seen data from the relatively still measurements in data set UD2, next step is
to make a rotation. Data set UD3 is collected when theIMU is rotated around theeb

x-axis.
The accelerometer and magnetometer readings form a circle as shown in Figure 6.6.

In data set D3, the setup is similar to UD3, but the magnetometer is disturbed by a
scissor. The accelerometer readings are unaffected as seenin Figure 6.7a, but the magne-
tometer is severely disturbed which can be seen in Figure 6.7b.

The data set D4 has been collected when theIMU is accelerated. The orientation of
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Figure 6.3: The components of the disturbed magnetometer readings in data set D1.
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Figure 6.4: The components of the disturbed magnetometer readings in data set D2.
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Figure 6.5: Accelerometer (a), magnetometer (b) and gyroscope (c) measurements
from data set UD2. The ellipses represent confidence ellipsoids on the distance3σ.
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Figure 6.6: Accelerometer measurements (a), magnetometer measurements (b) and
gyroscope measurements (c) from data set UD3.
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Figure 6.7: Accelerometer measurements (a), magnetometer measurements (b) and
gyroscope measurements (c) from data set D3. Observe that the point of view for the
magnetometer is different from the others in order to show the disturbance.
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the sensor is kept constant while it is accelerated along axis eb
x. The time plot of the

accelerometer readings are shown in Figure 6.8.
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Figure 6.8: The disturbed accelerometer measurements from data set D4.
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6.2 Noise Model

In this section, the noise is studied and noise models are built when necessary. To ex-
amine the noise characteristics of the sensors, the measurements from data set UD1 are
examined. The measurement equations are given by (5.5) and (5.6). Also the measure-
ments from the gyroscope are treated in this section even though this measurement is an
input to the model. Since there are no rotation, physical acceleration or disturbance in
data set UD1, the measurements will only contain noise and a constant contribution from
gravity and the earth magnetic field. The measurement data was previously presented in
Figure 6.1. Here, the auto covariance functions of the measurements are shown in Fig-
ure 6.9. The measurement noise is close to white since the covariance functions show
small correlation in time. The spatial distribution of the measurements is close to Gaus-
sian as can be seen in Figure 6.10. The noise characteristicsof the accelerometer can thus
be concluded as

ea,t ≈ N(0, Ra)

E(ea,te
T
a,t−τ ) ≈ Raδ(τ),

whereRa is estimated from the data to be

R̂a = 10−4





0.4524 −0.1873 0.1594
−0.1873 0.3617 −0.0900
0.1594 −0.0900 0.7855



 (6.1)

and is diagonal dominant. The noise characteristics of the magnetometer can be con-
cluded as

em,t ≈ N(0, Rm)

E(em,te
T
m,t−τ ) ≈ Rmδ(τ),

whereRm is estimated from the data to be

R̂m = 10−5





0.1025 −0.0015 0.0122
−0.0015 0.0707 −0.0049
0.0122 −0.0049 0.0865



 (6.2)

and is also diagonally dominant. Also for the gyroscope, thenoise can be approximated
with the following model

eω,t ≈ N(0, Qω)

E(eω,te
T
ω,t−τ) ≈ Qωδ(τ),

whereQω is estimated to be

Q̂ω = 10−4





0.5713 0.0004 −0.0167
0.0004 0.7255 0.0308
−0.0167 0.0308 0.9364



 . (6.3)
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Figure 6.9: Auto covariance for the measurements from data set UD1. Accelerom-
eter, magnetometer and gyroscope measurements are presented.
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Figure 6.10: Histograms for the measurements from data set UD1. Accelerometer,
magnetometer and gyroscope measurements are presented, together with a Gaussian
approximation.
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6.3 Motion Model for IMU Held in Hand (UD2)

Human motion is seen in data set UD2, where a person is trying to hold theIMU at rest
by hand. Since it is hard to keep the sensor completely at rest, the motion of the hand will
affect the measurements. This can be modeled as a stochasticprocess, that is, colored
noise. First, consider the case where the motion is modeled as white Gaussian noise as in
Section 6.2. Then, the covariance matrices estimated from data set UD2 becomes

R̂a =





0.0053 0.0025 0.0003
0.0025 0.0049 −0.0018
0.0003 −0.0018 0.0069



 (6.4a)

R̂m = 10−4





0.2064 0.2053 0.0339
0.2053 0.2757 0.0514
0.0339 0.0514 0.0170



 (6.4b)

Q̂ω = 10−3





0.2192 −0.1136 −0.0485
−0.1136 0.6585 −0.0131
−0.0485 −0.0131 0.5778



 . (6.4c)

As was seen in Figure 6.5a, where the acceleration measurements were plotted, these
have greater covariance compared to data set UD1. The spatial correlation still seems
to be quite low since the covariance ellipses are fairly circular. The magnetometer mea-
surements, shown in Figure 6.5b, also have greater covariance compared to data set UD1.
Here, the covariance matrices are not circular, indicatingthat there are spatial correlation
between the components of the sensor. Trying to hold the sensor still by hand, it is easy to
drift a little bit in attitude. This will give a linear trend in the accelerometer and magne-
tometer measurement. These are therefore removed before computing the autocorrelation
function of the measurements, which are shown in Figure 6.11. It can be seen that the
accelerometer and gyroscope readings are fairly white whereas the magnetometer read-
ings are strongly correlated in time. The distributions of the measurements, plotted in
Figure 6.12, show that the accelerometer measurements are close to Gaussian whereas at
least one of the magnetometer components seems non-Gaussian. The conclusion drawn
from this is that the movements in the accelerometer measurements can be approximated
by white Gaussian noise, whereas the magnetometer measurements needs to be dynami-
cally modeled.

The natural choice of model structure for the magnetometer measurements is an au-
toregressive,AR, model since only a time series of data is available. TheAR-model can
be written as

yt =
1

1 + a1q−1 + a2q−2
et. (6.5)

Before modeling, average and linear trends are removed fromdata. For model order se-
lection, the fit (see Ljung (2006)) for the output to the 5 stepahead prediction is evaluated.
For theeb

x andeb
y axes it does not seem possible to gain much by choosing a modelof

higher order than 2. The model fit obtained is slightly more than 40%. The situation for
theeb

z-axis is different and it is hard to get good fit with any model order. One possible
reason for this difference could be that the person holding the IMU is shaking more in the
eb

x, eb
y-plane than in theeb

z direction. This can also be seen in Figure 6.6b. The estimated
model parameters are presented in Table 6.2 with model fit forthe 5 step prediction.
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Figure 6.11: Auto covariance for the measurements from data set UD2.
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Figure 6.12:Distributions for the measurements from data set UD2.

Table 6.2: Noise model parameters, estimated from magnetometer measurements in
data set UD2.

Axis a1 a2 Model fit Poles
eb

x −0.6494 −0.3348 43.16% 0.9882, −0.3388
eb

y −0.6268 −0.3589 40.92% 0.9895, −0.3627
eb

z −0.4794 −0.3339 −4.90% 0.8653, −0.3859
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TheAR-model can also be written as a state space model, the observability canonical
form (see Section 2.1.2) is

xt+1 =

(
−a1 1
−a2 0

)

xt +

(
0
et

)

(6.6a)

y =
(
1 0

)
xt. (6.6b)

The auto correlation functions for theAR-model residuals are shown in Figure 6.13 where
it can be seen that they are fairly white. Compare with the plots in Figure 6.11 to see the
difference by using a movement model. The distributions of the residuals are shown in
Figure 6.14, using the motion model these can be approximated as white and Gaussian.
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Figure 6.13: Auto correlation functions for the magnetometer residualsusing mo-
tion model.
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Figure 6.14: The distributions of the residuals for the magnetometer, using motion
model.
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7
Disturbance Detection for IMU

THE MAGNETOMETER IS USEDto measure the earth magnetic field which is very weak.
If the sensor is close to a ferromagnetic object or another magnetic field it is, as said

before, easily disturbed. Such a disturbance must be detected to avoid erroneous attitude
estimation. The accelerometer is affected both by gravity and body accelerations. For
attitude estimation, the direction of the gravity vector isused. Body accelerations are
therefore seen as disturbances that must be detected.

7.1 IMU Model and Detection Algorithm

This section will give a summary of the attitude model used for disturbance detection
on the magnetometers and accelerometers. The total derivation of the model is given in
Chapter 5. The linearized state space model is given by

qt+1 =

(

I4 +
T

2
S(ωb

bw,t)

)

︸ ︷︷ ︸

,Ft

qt +
T

2
S′(qt)

︸ ︷︷ ︸

,Gv
t

vt (7.1a)

ỹt =

(
ỹ1,t

ỹ2,t

)

=

(
Ha

t

Hm
t

)

︸ ︷︷ ︸

,Ht

qt + I
︸︷︷︸

,Hd
t

(
da,tdm,t

)
+ et, (7.1b)

where the matricesHa
t andHm

t are given by (5.22) and (5.23) and

S(ωb
bw,t) =







0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0







, (7.2)
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whereωb
bw,t =

(
ωx ωy ωz

)T
. The set of sensors,S, are then{ỹ1,t, ỹ2,t} which will

be used in the detection filter algorithm. The batched form discussed in Section 2.1.3 will
have the following form

Ỹ = Otxt−L+1 + H̄u
t U + H̄d

t D + H̄v
t V + E. (7.3)

The linearization is done around a predicted trajectory, that is, given an estimate of the
initial state in the window the trajectory is predicted in the window only using (7.1a).

If the fault is parameterized, it is assumed that the profile of the disturbance is a
smooth function with respect to time. Thus, the disturbancecould be parameterized as
in Section 2.2. Each dimension in the disturbance vector is modeled separately, sōHdi

t

denotes the stacked system matrix for dimensioni. This matrix is built up as (2.10) but
using thei:th column ofH . The stacked system can now be written as

Ỹ = Otxt−L+1 +

nd∑

i=1

H̄di

t Di + H̄v
t V + E, (7.4)

whereDi =
(

di
t−L+1

T
, . . . , di

t
T
)T

. Each component of the disturbance is then modeled
as

di
t = φT

i,tθi. (7.5)

The influence of the disturbances can now be described as

nd∑

i=1

H̄di

t Di =
(

H̄d1

t · · · H̄dnd

t

)

diag
(
φT

1,t · · ·φT
nd,t

)

︸ ︷︷ ︸

,H̄θ






θ1

...
θnd






︸ ︷︷ ︸

,Θ

. (7.6)

In the tests in Section 7.2, a third order basis is chosen for the fault. A plot of the basis
functions are shown in Example 2.1, Figure 2.1a.

The state estimation filter, including the disturbance detection, can be described as in
Algorithm 7.1. The fault parameterization, described above can either be used or not in
step 3.

7.2 Test Results

The detection method presented in Section 7.1 is evaluated on the data sets presented in
Section 6.1. The algorithm is tested both with and without parameterization of the faults.

7.2.1 Linearized Hypothesis Testing

The detection filter described in Algorithm 7.1 without fault parameterization is used
throughout this section. The window length is 10 samples andthe threshold for detection
is set to a confidence level of 1 %.
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Algorithm 7.1 Detection Filter

1. Time update according to theEKF in Algorithm 2.2.

2. Measurement update using non-disturbed sensors. This isdone according to the
EKF in Algorithm 2.2, but the measurement equation is limited tothe set of non-
disturbed sensors,S. That is

y =







...
hi(qt)

...







, i ∈ S. (7.7)

3. Detection of disturbed sensors. Detection is done eitheraccording to the parity
space method described in Section 4.3.1 or using the smoothing approach in Sec-
tion 4.3.3. The setS is updated accordingly.

Data set UD1

The first test is done on the undisturbed data set UD1. In orderto tune the detection
filter, the noise covariances of the sensors have to be known.The noise covariances are
estimated in Section 6.2 and given by (6.1), (6.2) and (6.3).Note that the noise of the
gyroscope is treated as process noise since the gyroscope signal is modeled as an input.
Using these noise covariances, the test statistic for the magnetometer is shown in Fig-
ure 7.1 and the accelerometer in Figure 7.2. The test statistic for the parity space method
and smoothing method has 26 and 30 degrees of freedom respectively. The degrees of
freedom should theoretically be the average of the Chi-square distributed test statistic, see
discussion in Section 4.3.4. The averages for the test applied to the magnetometer and
accelerometer correspond well to the theoretical values which can be seen in Table 7.1.

Table 7.1: Test statistic data for data set UD1,µ is the theoretical average,µ̂ the
obtained average andh the threshold for detection.

Sensor Method µ µ̂ h
Magnetometer parity 26 26.75 45.6
Magnetometer smoothing 30 30.47 50.9
Accelerometer parity 26 25.28 45.6
Accelerometer smoothing 30 28.68 50.9
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Figure 7.1: The test statistics for the magnetometer in data set UD1. Theaverages
are 26.75 for parity space and 30.47 for smoothing.
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Figure 7.2: The test statistics for the accelerometer in data set UD1. The averages
are 25.28 for parity space and 28.68 for smoothing.
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Data set D1

A strong magnetometer disturbance is present in data set D1,otherwise the setup is the
same as in data set UD1. The influence of the disturbance on thetest statistic of the
magnetometer can be seen in Figure 7.3. It can be noted that the test statistic for the
smoothing method reacts more than for the parity space method. This is partly because
the effective window for the smoothing method is larger thanfor parity space. Using a
Kalman filter estimate of the state in combination with the data in the window, as done
in the smoothing method, can be seen as a way of extending the window. See also the
discussion in Section 4.4.3. The use of the Kalman filter estimate can also be a drawback.
During the period of disturbance, the estimation of the states can only be done using
the accelerometer. Since this implies only partial observability of the states, there will
be a drift in the estimate of the unobservable part. The effect of this drift can be seen
in Figure 7.3, where the test statistic is greater than its theoretical average even after the
disturbance has disappeared. The accelerometer has no disturbance and that is also shown
by the test statistics presented in Figure 7.4.

0 100 200 300 400 500 600 700 800 900
10

0

10
2

10
4

10
6

T
es

t s
ta

t

Parity space

 

 
Test stat
Theoretical avg
Threshold

0 100 200 300 400 500 600 700 800 900
10

0

10
2

10
4

10
6

T
es

t s
ta

t

Smoothing

 

 
Test stat
Theoretical avg
Threshold

Figure 7.3: The test statistics for the magnetometer in data set D1.



70 7 Disturbance Detection for IMU

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

T
es

t s
ta

t

Parity space

 

 
Test stat
Theoretical avg
Threshold

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

T
es

t s
ta

t

Smoothing

 

 
Test stat
Theoretical avg
Threshold

Figure 7.4: The test statistics for the accelerometer in data set D1.
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Data set D2

The data set D2 has a weaker disturbance on the magnetometer.The test statistics for the
magnetometer is shown in Figure 7.5. The parity space methodhas problems detecting the
disturbance with the given window length. Using the smoothing method, the disturbance
becomes visible. The test statistic for the accelerometer is unaffected as can be seen in
Figure 7.6.
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Figure 7.5: The test statistics for the magnetometer in data set D2.
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Figure 7.6: The test statistics for the accelerometer in data set D2.
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Data set UD2

For the data set UD2, the IMU is held still by hand. The movements introduced by the
person holding the IMU are modeled as white Gaussian noise and the covariance matrices
estimated from the data is given in (6.4). Interesting to note is that the cross covariances
are big, especially for the gyroscopes and the magnetometer. Using these covariance
matrices, the test statistics for the magnetometer can be seen in Figure 7.7. The averages
of the test statistics can be seen in Table 7.2 and it can be noted that they are much lower
than the theoretical values. It was however seen in Section 6.2 that the noise for the
magnetometer was poorly modeled with white Gaussian noise.This modeling error is
likely to cause the deviations from the theoretical thresholds.

Table 7.2: Test statistic data for data set UD2,µ is the theoretical average,µ̂ the
obtained average andh the threshold for detection.

Sensor Method µ µ̂ h
Magnetometer parity 26 10.24 45.6
Magnetometer smoothing 30 14.93 50.9
Accelerometer parity 26 18.20 45.6
Accelerometer smoothing 30 23.72 50.9
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Figure 7.7: The test statistics for the magnetometer in data set UD2. Theaverages
are 10.8 for parity space and 21.1 for smoothing.
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Figure 7.8: The test statistics for the accelerometer in data set UD2. The averages
are 20.5 for parity space and 28.5 for smoothing.
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Data set UD3

For data set UD3, the IMU is rotated by hand around axiseb
x. The test statistics for the

magnetometer and accelerometer can be seen in Figure 7.9 and7.10 respectively. It can
be seen that the test statistic both for parity space and smoothing for the magnetometer
is above the theoretical average during the rotation period(sample 100–550). This dis-
crepancy is partly due to linearization errors since the linearization is very sensitive to
erroneous state estimates. It is also due to alignment errors of the magnetometer, see the
discussion in Section 7.3. The test statistic for the accelerometer is also above the theo-
retical mean during the rotation. This is because it is hard not to shake the sensor during
hand-held rotation. Due to these errors in the fault-free case, the thresholds are set to 100
and 500 for the magnetometer and accelerometer respectively.
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Figure 7.9: The test statistics for the magnetometer in data set UD3.
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Figure 7.10: The test statistics for the accelerometer in data set UD3.
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Data set D3

Data set D3 is collected when the IMU is rotated by hand aroundaxis eb
x and during

the rotation, the magnetometer is disturbed. The thresholds used are the same as for
data set UD3 since the conditions (except the disturbance) are similar. The test statistic
for the magnetometer is shown in Figure 7.11. It can be seen that the disturbance is
detected by the parity space method and that the test statistic gets a higher value than
for the undisturbed case (UD3). The smoothing method has a higher value of the test
statistic during the disturbance period. The test statistics for the accelerometer is shown
in Figure 7.12 and it can be seen here as well that the movements of the IMU increases
during the rotation period (sample 100–600).
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Figure 7.11:The test statistics for the magnetometer in data set D3.
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Figure 7.12:The test statistics for the accelerometer in data set D3.
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Data set D4

The data set D4 is again hand-held measurements but containsno rotations. The IMU is
here accelerated along theeb

x-axis. The test statistic for the magnetometer can be seen in
Figure 7.13 and is clearly not disturbed. The test statistics for the accelerometer is shown
in Figure 7.14. It can be seen that the disturbance is detected both with parity space and
smoothing.
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Figure 7.13:The test statistics for the magnetometer in data set D4.



80 7 Disturbance Detection for IMU

0 100 200 300 400 500 600 700 800 900

10
1

10
2

10
3

10
4

T
es

t s
ta

t

Parity space

 

 
Test stat
Theoretical avg
Threshold

0 100 200 300 400 500 600 700 800 900

10
1

10
2

10
3

10
4

T
es

t s
ta

t

Smoothing

 

 
Test stat
Theoretical avg
Threshold

Figure 7.14:The test statistics for the accelerometer in data set D4.
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7.2.2 Linearized Hypothesis Testing with Fault Parameteri zation

In this section, the fault is parameterized as described in Section 7.1. A third order model
is used to describe the disturbance in each dimension. Each sensor, having three dimen-
sions, will then have a ninth order model. The Chi-square distributed test statistic will
then have 9 degrees of freedom which also should be the average, see Section 2.7.2. The
window length is 10 samples and the threshold for detection is set to a confidence level of
1 %.

The first test is done on data set UD1, where the sensor is undisturbed. The test
statistics for the magnetometer can be seen in Figure 7.15. The averages for the test
statistics are 9.28 and 9.75 for parity space and smoothing respectively, which correspond
quite good to the theoretical value. The test statistics forthe accelerometer are shown in
Figure 7.16. The averages are somewhat larger, 10.39 and 10.87.

Table 7.3: Test statistic data for data set UD1,µ is the theoretical average,µ̂ the
obtained average andh the threshold for detection.

Sensor Method µ µ̂ h
Magnetometer parity 9 9.28 21.66
Magnetometer smoothing 9 9.75 21.66
Accelerometer parity 9 10.39 21.66
Accelerometer smoothing 9 10.87 21.66
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Figure 7.15: The test statistics for the magnetometer in data set UD1 using a third
order basis in each dimension. The averages are 9.28 for parity space and 9.75 for
smoothing.
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Figure 7.16: The test statistics for the accelerometer in data set UD1 using a third
order basis in each dimension. The averages are 10.39 for parity space and 10.87 for
smoothing.
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Data set D1

The results for the disturbed data set D1 can be seen in Figure7.17 and 7.18 for the
magnetometer and accelerometer respectively. It is interesting to note that the value of
the test statistics for the magnetometer during the disturbance are equally large as when
the disturbance is not parameterized (see Figure 7.3). Thismeans that the model of the
disturbance is a good description of the real disturbance since the part of the signal not
described by the model is projected away. During the undisturbed periods, the average is
lowered to approximately1/3 compared to not using parameterization. A bigger ratio be-
tween disturbed and undisturbed periods increases the power of the test. The test statistic
for the accelerometer indicates no disturbances.
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Figure 7.17: The test statistics for the magnetometer in data set D1 usinga third
order basis in each dimension.



84 7 Disturbance Detection for IMU

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

T
es

t s
ta

t

Parity space

 

 
Test stat
Theoretical avg
Threshold

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

T
es

t s
ta

t

Smoothing

 

 
Test stat
Theoretical avg
Threshold

Figure 7.18: The test statistics for the accelerometer in data set D1 using a third
order basis in each dimension.
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Data set UD2

The IMU is held still by hand in data set UD2. The test statistics using a third order
parameterization for disturbances are shown in Figure 7.19and 7.20 for the magnetometer
and accelerometer respectively. It can be seen that both test statistics for the magnetometer
is lowered to approximately1/2 by using the fault parameterization, compare to Table 7.2.
The average for the accelerometer is just slightly lowered which indicates that the fault
model parameterizes the noise. This could probably be avoided choosing a longer time
window for the detection algorithm.

Table 7.4: Test statistic data for data set UD2,µ is the theoretical average,µ̂ the
obtained average andh the threshold for detection.

Sensor Method µ µ̂ h
Magnetometer parity 9 4.81 21.66
Magnetometer smoothing 9 7.60 21.66
Accelerometer parity 9 15.82 21.66
Accelerometer smoothing 9 20.01 21.66
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Figure 7.19: The test statistics for the magnetometer in data set UD2 using a third
order basis in each dimension.
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Figure 7.20: The test statistics for the accelerometer in data set UD2 using a third
order basis in each dimension.
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Data set D2

The test statistics from data set D2, which have a lighter disturbance, are presented in
Figure 7.21 and 7.22. The magnetometer disturbance is hard to detect with the parity
space method, but is well detected by the smoothing method. If the test statistic for the
smoothing method is compared to the unparameterized test inFigure 7.5, it can be seen
that the value in presence of fault is the same whereas the average during fault-free periods
are lowered. The accelerometer is undisturbed which is reflected in the tests.
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Figure 7.21: The test statistics for the magnetometer in data set D2 usinga third
order basis in each dimension.



88 7 Disturbance Detection for IMU

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

T
es

t s
ta

t

Parity space

 

 
Test stat
Theoretical avg
Threshold

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

T
es

t s
ta

t

Smoothing

 

 
Test stat
Theoretical avg
Threshold

Figure 7.22: The test statistics for the accelerometer in data set D2 using a third
order basis in each dimension.
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Data set UD3

Data set UD3 is measured during a rotation of the IMU around theeb
x-axis. The test statis-

tics are shown in Figure 7.23 and 7.24. The comments in Section 7.2.1 for this data set are
valid even here. The test reacts to changes in the magnetic field due to alignment errors
and to acceleration induced by the person rotating the IMU. To avoid drift in the state
estimates, the threshold are set to 100 for the magnetometerand 500 for the magnetome-
ter. Using the theoretical thresholds would lead to detection which prevents measurement
updates from the sensor. Since the system is not observable without both sensors, to long
periods without measurement updates would lead to drift in the state estimates.
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Figure 7.23: The test statistics for the magnetometer in data set UD3 using a third
order basis in each dimension.
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Figure 7.24: The test statistics for the accelerometer in data set UD3 using a third
order basis in each dimension.
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Data set D3

The conditions for data set D3 are similar to UD3, except thatthe magnetometer is dis-
turbed in D3. The test statistics using third order basis functions are shown in Figure 7.25
and 7.26 for the magnetometer and accelerometer respectively. If the test statistics is com-
pared to the unparameterized tests (Figure 7.11 and 7.12) itcan be seen that the averages
are lower during fault-free periods, but remains unchangedduring the faulty period.
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Figure 7.25: The test statistics for the magnetometer in data set D3 usinga third
order basis in each dimension.
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Figure 7.26: The test statistics for the accelerometer in data set D3 using a third
order basis in each dimension.
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Data set D4

In data set D4, the orientation is kept fixed but the IMU is accelerated for a short period of
time. The test statistics for the magnetometer are shown in Figure 7.27. It can be seen that
the magnetometer is not disturbed and that the average of thetest statistics are lower than
the unparameterized. The test statistics for the accelerometer are presented in Figure 7.28.
The acceleration disturbances are clearly seen but the average during fault-free periods is
not lowered. This indicates, as said earlier, that the noisecan be parameterized by the
fault model.
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Figure 7.27: The test statistics for the magnetometer in data set D4 usinga third
order basis in each dimension.
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Figure 7.28: The test statistics for the accelerometer in data set D4 using a third
order basis in each dimension.
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7.3 Discussion

First consider the data sets where theIMU lies still, that is, data set UD1, D1 and D2. For
those data sets, faults could be detected both with parity space and smoothing. However,
the smoothing method gives a greater residual during faultyperiods since the effective
window (the number of samples the initial state is estimatedfrom) is much bigger. It
could also be seen that fault parameterization gives a loweraverage of the test statistic
during fault-free periods, but the value during fault remains the same. This gives a greater
power of the test.

The data sets where theIMU is held in hand are UD2, UD3, D3 and D4. New covari-
ance matrices were estimated for the analysis of these data sets since the movements of the
sensor introduced unmodeled disturbances. The covariancematrices were estimated from
the raw measurements. However, the magnetometer will only react on attitude changes
which also will be seen through the gyroscope signals. Sincethe connection between gy-
roscope and magnetometer is modeled the covariance will be estimated to large. Looking
at the test statistics for the magnetometer in data set UD2 (Figure 7.7 and 7.19), it can
be seen that the average is much lower than the theoretical threshold. This is caused by
the overestimated covariance. Regarding the accelerometer, real disturbances in form of
physical acceleration is introduced when theIMU is held in hand. These disturbances are
more realistic to model as an increased covariance matrix. When using the fault model,
the average of the test statistic becomes significantly greater than the theoretical value
(Figure 7.20). This is due to that the shakings of theIMU is modeled by the parameteri-
zation, see also Figure 7.29.

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

Time

 

 
Parameterized fault
Real fault

Figure 7.29: An example of the parameterization of acceleration measurements
from data set UD2.

When rotating the sensor (data set UD3, D3) more unmodeled disturbances are intro-
duced. Disturbances are detected on the magnetometer when the sensor is rotated. This
can be due to modeling/linearization errors but probably mostly on alignment errors. The



96 7 Disturbance Detection for IMU

IMU has an internal model of the sensor which essentially is

ym,t = A−1u, (7.8)

whereu is the raw sensor data andA is an alignment matrix. Temperature models are
omitted here. The alignment matrix is used to compensate forthe case where the com-
ponents in the magnetometer are nonorthogonal. Small errors in this matrix would give
different strength of the magnetic field depending on the rotation of the sensor. Data set
UD3 is collected in the middle of a soccer field to avoid disturbances from magnetic ob-
jects. Even then, the norm of the magnetic field vector changes when the sensor is rotated
(see Figure 7.30). A possible cause of this could be an erroneous alignment matrix. Also
for the accelerometer, faults are detected when the sensor is rotated even though the sen-
sor should not be accelerated (see Figures 7.10 and 7.24). This is explained by the fact
that it is hard to rotate the sensor by hand without also moving it.

0 200 400 600 800
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1.015
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Figure 7.30: Norm of the magnetometer measurements during roation (dataset
UD3), it should nominally be 1.

Another observation made during measurements is that the magnetic field is very
inhomogeneous indoors. Changing the position of theIMU also changes the magnitude
of the magnetic field vector. High frequency accelerations of the sensor also tend to
disturb the magnetometer. For example moving the sensor along a non-smooth surface
will give high-frequency acceleration due to the friction.During these circumstances the
magnetometer is clearly disturbed.



8
Concluding Remarks

A TTITUDE AND POSITIONING ESTIMATES subject to disturbances are discussed in
the introduction. The thesis has discussed how these disturbances and other faults

can be detected. This chapter will conclude the results discussed in the thesis and point
toward future directions of research.

8.1 Conclusions

The use of statistical tests for fault detection with batched data sets have been discussed
in the thesis. Estimating the initial state in the batch by minimum variance estimation
from data in the batch have been shown to be identical to parity space. It was also shown
that using prior knowledge about the initial state in the data batch increases the detection
performance. The prior estimate are in the examples here obtained by Kalman filtering
of data preceding the data batch. However, if the preceding data contain faults, the test
statistic will be influenced even during fault-free periods(see Chapter 7). Hence, the
reliability to the prior should be decreased after a fault isdetected.

The fault parameterization introduced in Section 2.2 provides a low order description
of smooth faults. This increases the power of theGLR-test (discussed in Chapter 4) which
results in a higher probability of detection.

The methods discussed above are implemented for disturbance detection of anIMU .
The IMU is modeled using unit quaternions to represent the orientation. Movements (ac-
celeration disturbance) and magnetometer disturbances are detected, in order not to affect
the estimated orientation. The noise distribution of the sensors are well approximated
with white Gaussian noise which gives good correspondence between practical and the-
oretical results when the sensor is kept at rest. By rotatingthe IMU , alignment errors of
the sensor as well as linearization errors become visible. To avoid false alarms and drift
of the estimate, the thresholds then has to be higher than thetheoretical values.
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The observability of a fault inputs is discussed in Chapter 3. The special cases of
constant and linearly increasing faults are treated and theconditions for observability are
derived. Interpretations are given for the case of constantfaults.

8.2 Future Work

There are many interesting questions to continue with in thearea of fault detection and
fault diagnosis, some of the questions raised during this work are:

• The smoothing approach to fault detection introduced in Chapter 4 may be possible
to rewrite recursively. One possible way of doing this mightbe to use a Kalman
smoother, but this introduces extra states in the filter. Would this be a possible
approach and does it lower the computational complexity?

• The detection problem with applications toIMU disturbances are originally a non-
linear problem that is linearized to suit the methods presented here. One interesting
extension would be to compare the results using nonlinear detection theory.

• Particle filters used for fault detection is a rather unexplored area. Can this be a
good way of handling nonlinear systems, such as theIMU?

• The observability test for constant (random walk) faults and linearly growing faults
are derived in Chapter 3. For constant faults, interpretations of the conditions were
given. Can intuitive interpretations be derived even for linearly growing faults? It
would also be interesting to apply this theory to a real-world example.
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A
Prerequisites in Vector Kinematics

and Mathematics

A.1 Cross-product

Note the following properties of the cross-product

u× v = −v × u (A.1)

a(u × v) = (au) × v = u × (av) (A.2)

u× (v + w) = (u × v) + (u × w) (A.3)

u · (v × w) = v · (w × u) = w · (u × v) (A.4)

u× (v × w) = v(w · u) − w(u · v). (A.5)

Note also that it is possible to write the cross-product as a matrix multiplication, i.e.,
for the 3-dimensional case

u × v = −





0 u3 −u2

−u3 0 u1

u2 −u1 0









v1

v2

v3



 . (A.6)

A.2 Vector Rotation

The vectoru is rotated aroundn as shown in Figure A.1. The new vectorv can be
described as

v = ON + NW + WV =

= (u · n)n +
u − (u · n)n

|u − (u · n)n| |NV | cosµ
︸ ︷︷ ︸

|NW |

+
u × n

|u| sin φ
︸ ︷︷ ︸

WV
|WV |

|NV | sinµ
︸ ︷︷ ︸

|WV |

, (A.7)
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whereON denotes the vector that points fromO to N and so on. Note that

|NV | = |NU | = |u− (u · n)n| = |u| sin φ.

Then,
v = (1 − cosµ)n(n · u) + cosµu− sin µ(n × u), (A.8)

which is often referred to as therotation formula.

u

vn

φ

µ

O

N

V

UW

Figure A.1: The vectoru is rotated aroundn.

A.3 Direction Cosines

To describe the direction of a vector in a unique way, the direction cosines is a useful
tool. The anglesα, β andγ in Figure A.2 are used. The cosine of the angles will be the
projections onto the basis axes. It is possible to describe the direction ofn using only two
angles, this is the case when using spherical coordinates asin right part of Figure A.2.
The problem with this description is that a vector pointing in the direction offz can have
any angleρ, which is clearly not a unique description.

Observe the following property of the direction cosines. The theorem of Pythagoras
can be written

|n|2 cos2 α + |n|2 cos2 β + |n|2 cos2 γ = |n|2.
This yields that

cos2 α + cos2 β + cos2 γ = 1. (A.9)
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Figure A.2: Describing the vectorn can be done using the direction anglesα, β and
γ (left) or using only two angles (right).
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B
Quaternion preliminaries

THE QUATERNIONS WERE INVENTEDby Sir William Rowan Hamilton as a way to
extend the imaginary numbers, see Hamilton (1844). The unitquaternion have later

shown to be a useful tool for attitude representations. A comprehensive description of
unit quaternions is given by Kuipers (1999) and a nice surveyof attitude representations
is given by Shuster (1993). A good primer on unit quaternionsfor attitude representations
of airplanes is given by Stevens and Lewis (2003).

B.1 Operations and Properties

The quaternion is a four-tuple with the elementsq0, . . . , q3. It can also be viewed as a
vector consisting of the scalarq0 and the vectorq.

q =







q0

q1

q2

q3







=

(
q0

q

)

. (B.1)

Multiplication of two quaternions denoted with⊙ is defined as

p ⊙ q =

(
p0

p

)

⊙
(

q0

q

)

=

(
p0q0 − p · q

p0q + q0p + p × q

)

. (B.2)
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The quaternions have the following properties:

p ⊙ q 6= q ⊙ p (B.3)

norm(q) =

3∑

i=0

q2
i (B.4)

norm(p ⊙ q) = norm(p) · norm(q) (B.5)

(p ⊙ q) ⊙ r = p ⊙ (q ⊙ r) (B.6)

q−1 =

(
q0

q

)−1

=

(
q0

−q

)

(B.7)

(qa ⊙ qb)
−1 = q−1

b ⊙ q−1
a . (B.8)

B.2 Describing a Rotation with Quaternions

Consider the vector

q =

(
cos δ
sin δn

)

, (B.9)

which describes a rotation around the unit vectorn. This unit vector can be described as
in Section A.3 with the directional cosines

n =





cosα
cosβ
cos γ



 . (B.10)

Note that
qT q = cos2 δ + sin2 δ(cos2 α + cos2 β + cos2 γ) = 1, (B.11)

which is also a necessity for the quaternion in order to represent a rotation. The variable
δ is a measure of the rotation angle as we will see later.

There are two ways of visually describing a rotation. Eithera vector is rotated around
another vector or the coordinate frame is rotated around a vector, see Figure B.1. When a
vector is rotated the transformation gives the new vector coordinates in the frame which
remains fixed. When the frame is rotated the vector coordinates are transformed to the
new frame. Mathematically, the difference is only the sign of the rotation angle.

To rotate the vectoru aroundn, (A.8) and Figure A.1 can be used. Observe that
the vector rotation is done counterclockwise, which could equally be seen as rotating the
coordinate frame clockwise. This rotation can be done usingquaternion algebra. Ifq
represents a rotation aroundn, the rotated vector can be described as

v = q−1 ⊙ u ⊙ q, (B.12)

where

v =

(
0
v

)

and u =

(
0
u

)

. (B.13)

An alternative description is to use

v = q ⊙ u ⊙ q−1. (B.14)
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x

y

µ

u

v

x

y

x
′

y
′

µ

u

Figure B.1: In the left figure, a vector is rotated counterclockwise withangleµ. In
the right figure, the coordinate frame is rotated clockwise with angleµ.

With this representation vector rotation becomes clockwise and coordinate frame rotation
counterclockwise. However, in this work, (B.12) is viewed as the standard rotation.

The result of the quaternion multiplication in (B.12) is

v =

(
q · uq0 − (q0u− q × u) · q

(q · u)q + q0(q0u− q × u) + (q0u − q × u) × q

)

, (B.15)

which simplifies to (note the use of (A.5) for the last term in the second row)

v =

(
0

2(q · u)q + (q2
0 − q · q)u − 2q0q × u

)

. (B.16)

If (B.9) is used, this can be rewritten as

v =

(
0

2 sin2 δn(n · u) + (cos2 δ − sin2 δ)u− 2 cos δ sin δ(n × u)

)

. (B.17)

This should be compared with (A.8), since the second row should give the same result.
If δ = µ/2 and some trigonometric identities are applied the results are equal. Thus,
insertingδ = µ/2 in (B.9), the unit quaternion

q =

(
cos(µ/2)
sin(µ/2)n

)

(B.18)

describes a counterclockwise vector rotation or a clockwise coordinate frame rotation
aroundn with angleµ.

Observe that rotating first withqa and then withqb can be done in one step by rotating
by qa ⊙ qb. Using (B.8) this is easily seen since

q−1
b ⊙ (q−1

a ⊙ u ⊙ qa) ⊙ qb = (qa ⊙ qb)
−1 ⊙ u ⊙ (qa ⊙ qb). (B.19)

B.3 Rotation Matrix

It is possible to rewrite the quaternion multiplication in (B.12) as a matrix multiplication.
Rewriting (B.16) on the form of

(
0
v

)

=

(
0

R(q)u

)

(B.20)
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using (A.6) yields

R(q) =





(q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) (q2
0 − q2

1 − q2
2 + q2

3)



 .

(B.21)
This is also described in (Kuipers, 1999, p. 158).

B.4 Dynamics

Consider a moving body system. The description of the rotation between the F-system
(fixed system) and the B-system (body system) will then contain some dynamics. In order
to derive the dynamic equations, the time derivative of the elements of the unit quaternion
will be calculated.

Let qbf (t) represent the rotation of the B-system with respect to the F-system at time
t. Furthermore, let the instantaneous angular velocity of the B-system be in the direction
of the unit vector̂sb, with magnitudeω, which is represented in the B-system. Then, the
unit quaternionδqbf describes the rotation aroundŝb during the small time intervalδt.
Using small angles approximation and (B.18) this can be written as

δqbf (δt) ≈
(

1
ŝ
bωδt/2

)

. (B.22)

Then, the rotated unit quaternion can be represented as

qbf (t + δt) = qbf (t) ⊙ δqbf (δt). (B.23)

The derivative ofqbf (t) can then be written as

dqbf (t)

dt
= lim

δt→0

qbf (t + δt) − qbf (t)

δt
= lim

δt→0

qbf (t) ⊙ (δqbf (δt) − Iq)

δt
=

= lim
δt→0

qbf (t) ⊙
(

δqbf (δt)

δt
− Iq

δt

)

=
1

2
qbf (t) ⊙

(
0

ŝ
bω

)

=
1

2
qbf (t) ⊙ ωb

bf , (B.24)

whereIq represents the unit quaternion andωb
bf represents the angular velocity of the

B-system relative to the F-system expressed in the B-system. Decompose the unit quater-
nions as

qbf =







q0

q1

q2

q3







=

(
q0

q

)

and ωb
bf =







0
ωx

ωy

ωz







=

(
0
ω

)

. (B.25)

Then, the quaternion multiplication in (B.24) can be written as a matrix multiplication
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with help of (B.2), (A.6) and (A.1).

q̇bf (t) =
1

2
qbf (t) ⊙ ωb

bf =
1

2

(
−q · ω

q0ω + q × ω

)

=

=
1

2







−(q1ωx + q2ωy + q3ωz)

q0ω −





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0









q1

q2

q3











=

=
1

2







0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0







︸ ︷︷ ︸

S(ωb
bf )







q0

q1

q2

q3







=

=
1

2







−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0







︸ ︷︷ ︸

,S′(qbf )





ωx

ωy

ωz



 (B.26)
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