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Abstract

This thesis deals with the problem of detecting faults in mvirenment where the mea-
surements are affected by additive noise. To do this, awaks@nsitive to faults is derived
and statistical methods are used to distinguish faults fnomse. Standard methods for
fault detection compare a batch of data with a model of theegysising thegeneralized
likelihood ratia Careful treatment of the initial state of the model is quit@ortant, in
particular for short batch sizes. One method to handle thike parity-space method
which solves the problem by removing the influence of thédhdttate using a projection.

In this thesis, the case where prior knowledge about th&irstate is available is
treated. This can be obtained for example frorkaman filter Combining the prior
estimate with a minimum variance estimate from the datahbegsults in a smoothed
estimate. The influence of the estimated initial state ia tkenoved. It is also shown that
removing the influence of the initial state by an estimatenfthe data batch will result in
the parity-space method. To model slowly changing faulissfficient parameterization
using Chebyshev polynomials is given.

The methods described above have been applied tmemial Measurement Unit
IMU. Theimu usually consists of accelerometers and gyroscopes, buhhhs work
been extended with a magnetometer. Traditionallyjithe has been used to estimate po-
sition and orientation of airplanes, missiles etc. Regetiik size and cost has decreased
making it possible to use1u :s for applications such as augmented reality and body mo-
tion analysis. Since a magnetometer is very sensitive toirtiances from metal, such
disturbances have to be detected. Detection of the distadsamakes compensation pos-
sible. Another topic covered is the fundamental questicobsrvability for fault inputs.
Given a fixed or linearly growing fault, conditions for obg&bility are given.

The measurements from theu show that the noise distribution of the sensors can be
well approximated with white Gaussian noise. This givestgoarrespondence between
practical and theoretical results when the sensor is keptsit The disturbances for
the IMU can be approximated using smooth functions with respedtite.t Low rank
parameterizations can therefore be used to describe theliiaces. The results show
that the use of smoothing to obtain the initial state es&naaitd parameterization of the
disturbances improves the detection performance drigtica






Acknowledgments

First of all, | would like to thank my supervisor Professoeérik Gustafsson. We have
had many fruitful discussions, but | especially admire yaary of seeing possibilities
in everything and your positive way of thinking. Working Hawith a thesis is not al-
ways easy, but you know how to give comments that inspirethéuwork. Also my
co-supervisor Associate Professor Inger Klein has giveigooel support, thank you!

I would also like to thank Professor Lennart Ljung for dnadtime to the control
group and for creating a good atmosphere in the group. Ouetseg Ulla Salaneck also
deserves my gratitude for always arranging practical meaitea smooth way.

Various parts of this thesis have been proofread by Lic Dawehill, Lic Gustaf
Hendeby, Jeroen Hol, Lic Per-Johan Nordlund, Dr Thomas $ehd Lic Johan Sjoberg.
Your comments have been invaluable! | especially want takaustaf and Thomas for
your many comments and insightful ideas.

I would like to thank all the people at the department for tirgpa good atmosphere
and for discussing almost everything during the coffeelkse@here are three people that
started at department at the same time as me, Daniel, Gustdbhan. You have become
really good friends and | really appreciate both our redediscussions and spare-time
activities. Spending hours discussing audio cables reaihgs a new dimension into life.
:-) Also Henrik, Jeroen and Johanna have helped me to kilesgpare time, | enjoy your
company.

Our TpX-guru Gustaf Hendeby also deserves appreciation for iog#te template
this thesis is formatted in and for helping out witfigX-related questions.

This work was sponsored by Center for Industrial InformaflechnologyCENIIT,
and The Excellence Center in Computer Science and Systegisdeming in Linkdping,
ECSEL, which are hereby gratefully acknowledged.

My warmest thanks goes to my family for always believing inavham doing. The
support from you is very important to me!

Linkdping, May 2006
David Térnqvist

vii






1

Contents

Introduction 1
1.1 Problem Formulation . . . . . . ... ... . ... L 3
1.2 Contributions . . . . . . . .. . 4
1.3 Outline . . .. . . . e 4
Estimation and Detection Theory 5
2.1 SystemDescriptions . . . . . ... 5
2.1.1 StateSpaceModel . . ... .. ..o 6
2.1.2 AutoregressiveModels . . . . .. ... oL 7
2.1.3 BatchedSystems . .. ... ... ... ... ... ... ... 7
2.2 StructuredFaults . . . . . ... 8
2.3 Minimum Variance Estimation . . . . . ... ... ... ... ... 9
24 KalmanFilter . . . . . . ... 11
2.5 ExtendedKalmanFilter . . . . . .. .. ... .. oL 11
2.6 DetectionTheory . . . . . . . . .. . 12
2.6.1 SimpleHypothesisTesting . . . . . . ... ... ... ...... 13
2.6.2 Composite HypothesisTesting . . . . . ... ... ... .... 4 1
2.7 Appendix: Distributions . . . ... ... 16
2.7.1 GaussianDistribution. . . . .. ... oo 16
2.7.2 Chi-square Distribution . . . . . .. ... ... ... . ... 71
Fault Observability 19
3.1 Studied Systems . . . . . .. 19
3.1.1 NominalSystem . .. ... ... ... ... ... ... 19
3.1.2 AugmentedSystem . . ... ... ... ... oo 20
3.2 Observability for Augmented Systems . . . . ... ............ 20
3.2.1 General Augmented System . . . . ... ... L. 21

ix



Contents

3.2.2 System with Measurement Faults

3.2.3 Dynamicswith Additive Faults . . . . . . ... ... ..
3.3 Batched Systems with Linearly Growing Faults . . . . . . ...... ..

3.4 Summary

Initial State Estimation for GLR Tests

41 StudiedModel. . . .. .. . . ...
4.2 StateEstimation. . . .. ... . ... .. . . ... . . ... ..

4.2.1 Orthogonal Projection

4.2.2 Minimum Variance Estimation . . . . . ... ... ...

4.2.3 SmoothedEstimate . . . . ... ... ... .. .....
4.2.4 Partially Observable Systems . . . . .. ... ... ...
43 GLRTeSts . . . . . .

4.3.1 Parity Space Approach . . . .. .. ... L.
4.3.2 Minimum Variance Estimation . . . .. ... .. ....

4.3.3 Estimation by Smoothing. . . . . ... ... ...
4.3.4 Statistics . . . ...
44 Example . . . ...
441 Modeling . ... ... . . .
442 Simulations . . . ... ...

4.4.3 Fault detection

45 Conclusions . . . . . ...

Modeling and Estimation of IMU:s
5.1 Sensors
5.2 Modeling
5.2.1 Coordinate Systems
5.2.2 Dynamic Model
5.2.3 Measurements
5.2.4 Discrete-Time Dynamic Model
5.2.5 Linearization

5.3 Attitude Estimation . . . . . . . . .. ...

Measurement Data and Motion Modeling
6.1 Measurement Data

6.2 NoiseModel. . .. ... ... ... ...
6.3 Motion Model for IMU Held in Hand (UD2) . . . . . . ... ...

Disturbance Detection for IMU
7.1 IMU Model and Detection Algorithm

7.2 TestResults . . .. ... ... ..
7.2.1 Linearized Hypothesis Testing . . . . . ... ... ...
7.2.2 Linearized Hypothesis Testing with Fault Parameggion . . . .

7.3 DISCUSSION . . . . . .



Xi

8 Concluding Remarks 97
8.1 Conclusions . . . . . . . .. 97
8.2 FutureWork . . . . . . 98

A Prerequisites in Vector Kinematics and Mathematics 101
Al Cross-product . . . . . . .. 101
A.2 VectorRotation . . . . .. .. ... ... 101
A.3 DirectionCoSiNes . . . . . . . . .. 210

B Quaternion preliminaries 105
B.1 Operationsand Properties . . . . . . . ... ... .. ... . ... 105
B.2 Describing a Rotation with Quaternions . . . . ... ... ... ... 106
B.3 RotationMatrix . . . . . . .. ... 107
B.4 DynamiCs . . . . . . . 108

Bibliography 111



Xii Contents




Introduction

NAVIGATION HAS ALWAYS BEEN a challenge to man. Inertial navigation systems,
INS, based on Newton’s first law, have been developed during@tteczntury. The

basic components of ams are gyroscopes and accelerometers for measuring angular

rate and linear acceleration. The orientation can be ewgifizy integrating the gyroscope

signals and the position by double-integrating the ac-

celerometer signals. However, the measurements from the outer gimbal

sensors contain noise which introduces driftin the esesiatyner gimbal

The smaller the noise the smaller the drift. The development ,%

until the 1950s made the noise levels low enough to cross the
USA with an airplane, relying on ams. At that time, the

A
sensors were mounted in gimbals (Figure 1.1) which main- '
tained the orientation of the actual sensor. The gimbaled \
sensors were large and heavy which limited their applieabil ‘ O
ity. During the later part of the 20th century microelectem \
chanical systemsjems, were introduced. This enabled th
evolution of small silicon based accelerometers and gyro-
scopes that could be mounted rigidly onto the moving body,
that is, in strapdown configuration. Small units consisting
of accelerometers and gyroscopes are referred to as Inertia .
Measurement Unitsmu. precsion s

If the ImuU is held still (not accelerated), the orientation )
can be obtained by integrating the gyroscope signals and th&'gure 1.1: Gimbals
drift can be compensated for by measuring the gravity vedtuis approach will still give
drift around the gravity vector, which motivates the additof a magnetometer (elec-
tronic compass). Measuring the magnetic field of Earth, #-fide orientation estimate
can be obtained. However, the magnetic field of Earth is vesgknand is easily dis-
turbed by magnetic objects. Such disturbances can be ddtant compensated for by

éOTOf



2 1 Introduction

using measurements from other sensors. This type of detepgtbblems are treated in
this thesis.

The small size and low power consumption of thevs-sensors have enabled the use
of IMU:s in new areas. Amu with added magnetometers is used to monitor human mo-
tion in Roetenberg (2006). Placing the sensors on diffgrarts of the body, movements
can be analyzed. Medical researchers can for example sdefiliimation to analyze gait
patterns and how the movements are affected by differeatalss. Since the analyzed
persons are likely to move near metallic objects, deteatiomagnetic disturbances is
essential.

Another application is to estimate position and orientatidd a camera. Research
about this topic is performed in th®u-founded project Markerless real-time Tracking for
Augmented Reality Image SynthesisaTriS (MATRIS, Schon, 2006, Hol, 2005). The
position and orientation of the camera are important wherirtiage is to be augmented
with virtual objects, a practice known as augmented realithis can for example be
directions for how to assemble a car (see Figure 1.2) oralirharker lines in a sporting
event. The position and orientation are today estimatedibiph of image andvu data.

If reliable disturbance detection is used for a magnetomite accuracy of the estimate
would be improved by the addition of this sensor.

Figure 1.2: Augmented reality is used to give instructions for the asgimg of a
car. Courtesy of Frauenhofer IGD.

There are now cell phones equipped witaMs accelerometers and magnetometers,
see for example Figure 1.3. The accelerometers can be usetbf@ment detection. If
the cell phone is not moving, there is no need to search forlrass stations and power is
saved. If both magnetometer and accelerometer are useatj¢ngation of the phone can
be determined. This opens up the possibility to control tle@us by tilting the phone or
play advanced games. As cell phones today include both eeanerhigh resolution color
screen, only the processor limits the ability for augmemesdity applications. Imagine
walking around the pyramids of Egypt, the phone downloattsimation about the site
since it knows its position. When pointing the camera adaimespyramids, virtual work-
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ers from the ancient Egypt working with the constructionhaf pyramids are shown in the
screen. A story about how the pyramids were built can alscelaedhin the headphones.

Figure 1.3: Cell phone from Samsung with built in accelerometers andmatmne-
ters.

1.1 Problem Formulation

Using theiMu to estimate orientation, it is essential to detect moverardtmagnetome-
ter disturbances to not deteriorate the estimate. Thuslythamics of themu have to be
modeled to enable model-based fault detection.

Fault detection methods often use a residual showing tfereifce between the mea-
surement and the prediction from the model. However, measents from real-world
applications are always contaminated with noise, whichgiie residuals that are non-
zero. Assuming that the noise distribution is known, a feaift be detected if the deviation
from the known distribution can be statistically securele Btatistical decision between
fault/no fault can be made with a hypothesis test. One comappmoach to construct
residuals for fault detection is the parity-space methdwb@Cand Willsky, 1984), where
a batch of data is collected and compared with the model. Mexyaothing is assumed to
be known about the initial state of the system in the datahbdthe parity space approach
solves this problem by using a projection that removes titialistate dependency. What
if prior information about the initial state is availablearcthis information be used as
well?

Faults are usually correlated in time. Considering the retigrdisturbances in the
introduction above, the disturbance (or fault) is causesidmeone walking by a magnetic
object. Thus, the disturbance will not change as white rmis&ill have a smooth profile.
The parameterization of such faults are discussed in ttgésthe

TheIMu extended with magnetometer can be used for orientatioitu@e) estima-
tion as discussed in the introduction. The orientatiomeste is disturbed if themu
is accelerated or the magnetometer is disturbed by a neetddject. Can these type of
disturbances be detected with the linear theory discudsak:d
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A fundamental question in fault detection is whether a feait be observed by study-
ing the outputs of the system. Can explicit conditions foserability of faults be de-
rived?

1.2 Contributions

The main contributions of this thesis are:

e The smoothing approach to estimate the initial state of a datch window, used
for generalized likelihood ratiGG LR, tests. This is treated in Chapter 4.

e The minimum variance estimate from a data batch is used riaredte the initial
state for thesLR-test in Chapter 4. The resulting test is shown to be equdldo t
parity space method.

e The efficient parameterization of incipient faults, preserin Section 2.2.

e The modeling and implementation of the methods above amarand tests with
measurement data are described in Chapters 5, 6 and 7.

e Observability tests for linearly growing faults are trehie Chapter 3.

The smoothing approach and the fault parameterization aeiepublished in the
following conference papers:

D. Térnqvist, F. Gustafsson, and I. Klein. GLR tests for faldtection over sliding
data windows. InProceedings of the 16th IFAC World CongreBsague, Czech
Republic, July 2005.

D. Torngvist and F. Gustafsson. Eliminating the initiatstimr the generalized likeli-
hood ratio test. IlProceedings of IFAC Symposium SAFEPROCEBEjing, China,
Aug. 2006. To appear.

Outside the scope of this thesis, the following confereraqeeps are published:

D. Torngvist, E. Geijer Lundin, F. Gunnarsson, and F. Ggstai. Transmission tim-
ing - a control approach to distributed uplink schedulingM@DMA. In Proceedings
of American Control ConferencBoston, MA, USA, June 2004.

F. Gunnarsson, D. Térnqvist, E. Geijer Lundin, G. Bark, Nb&/g, and E. Englund.
Uplink transmission timing in WCDMA. IrProceedings of IEEE Vehicular Technol-
ogy Conference FalDrlando, FL, USA, Oct. 2003.

1.3 Outline

The thesis starts with the description of used models, esitm and detection theory in
Chapter 2. Conditions for the observability of faults argcdissed in Chapter 3. Chapter 4
derives theGLR tests for fault detection, an example oma-motor is also given. The
dynamic model for anmu is derived in Chapter 5. Measurement data fromithe is
presented and analyzed in Chapter 6. €he tests derived in Chapter 4 are then applied
to the measurements in Chapter 7. Conclusions and thoubbtg &urther studies are
given in Chapter 8.



Estimation and Detection Theory

THE STATE OF A sYsTEMrefers to the information needed to get complete knowledge
about the behavior of the system at the moment. A common @moid to estimate
the state of the system from measurements. As an exampleystens consider the
economy of a country. Then we are able to measure companyspredilaries, stock
values etc to get knowledge about the economy of the cougre are also inputs such
as the interest rate given by the central bank and taxeseatbbig the state. If a model
of the economy is available, the state of the economy can trmasd and the future
economy can be predicted.

Another important task is change detection. In the econotayngle above, we might
be interested in monitoring the stock market. Is someortirnigson information that is
not publicly available. If so, this would be a crime and shibloé investigated. With a
proper model of the stock market and enough measurements;rahl behavior could be
detected using change detection methods.

2.1 System Descriptions

It is often of interest to describe the behavior of a systertheraatically. If the behavior
of a system is known and it is known what affects it, the futbebavior can be predicted
or simulated. It is often convenient to see what will happéth & system without really
trying it in practice. For instance, if you are working at ataar power plant and consider
to move the control rods, you might be interested if this onmllf lead to an increase
in the power production or if it also will cause a melt down bétplant. A system
description is also useful for control of a system. For exientipe controlling computer
of an autonomous airplane has to know how the airplane reaatsovements of the
rudders. The computer needs a mathematical model, whereasan pilot has a mental
model built on years of experience.
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The behavior of most physical systems can be mathematicetjeled using differ-
ential equations. These equations can then be represesiteddifferent standard struc-
tures. This section will primarily focus on state space niedEso extended to the case
where data batches are treated.

2.1.1 State Space Model

A fairly general description of a physical system is prodd the nonlinear state space
model

a(t) = f(x(t), u(t), f(t),v(1)), (2.1a)
y(t) = h(@(t), u(t), f(1),e(t)), (2.1b)

wherez is the state of the system,is the input signalf is a fault,u ande are noises and

y is the measured signal. The functiofis) andh(-) are in general nonlinear functions.
This work primarily focuses on the class of models wheredlag linear functions, so

called linear systems. Linear systems are in general eadi@ndle and it therefore exist
more powerful results for them, see for instance Rugh (18868)ailath et al. (2000). To

handle nonlinear systems with linear theory, the nonlineadels are often approximated
with a linear model.

Linear Model
A time-varying linear state space model can be written as

i(t) = A(t)z(t) + B (t)u(t) + B (t) f(t) + B® (t)v(t), (2.2a)
y(t) = C(t)x(t) + DU(t)u(t) + DI (t) f(t) + e(t). (2.2b)

Discrete-time Linear Model

A computer can only handle discrete-time data, so measuntsmal be sampled in time.
Thus, the system model has to be sampled in order to desbtebméasurements. The
procedure of sampling systems is described in Rugh (1996dhd case of a piecewise
constant time-invariant linear system with piecewise tamtsinput signal, the matrices
of the sampled system can be computed as

F, = AT (2.3a)
T
sz:/eA“VdTBS@L (2.3b)

0

wheres € {u, f,v}. For time discrete-time systemswill be used denote the sample
rather than time. The discrete-time system can then beanrits

T = Fay + Glug + G fi + Gluy, (2.4a)
Yt = HtIEt + HZL’U,t —+ Htfft + e;. (24b)
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2.1.2 Autoregressive Models

A simple model for describing temporal dependencies in aaig the autoregressive
model, AR-model. It describes how present values of the signal dependoprevious
values as

Yt = —Q1Yt—1 — - — AplYt—n + €¢. (2.5)
Then:th orderarR-model in (2.5) can also be described using a state space nvgdeng
it in observability canonical form, see for instance Kdil§1980), the equivalent state
space model becomes

—aq 1 0 0 0
—az 0 1 0 0
Tgp1 = : N A R E (2.6a)
—ap—1 0 O 1 0
—a, 0 0 0 e
=1 0 - 0)z. (2.6b)

2.1.3 Batched Systems

It is sometimes convenient to describe the behavior of a&sysiver a certain time win-
dow. The system can then be described in batched form, igtived from the linear
state-space form. The batch form is often used in fault éieteand diagnosis, see Chow
and Willsky (1984), Gertler (1998), Gustafsson (2001).ckta signal values to define

the signal vectors lik& = (y/ ,.,,... ,ytT)T, for all signals. If the initial state in a
time window of lengthl. is known, the outputs in that window can be computed as
Y = Oy 41 + HPU + H{F + H'V +E, (2.7)
with the extended observability matrix
Hi 141
Hy_poF 141
Ot = : ) (28)
t;L+1
Hy | ="y Fi
which in the time invariant case will have the following form
H
HF
0= . . (2.9)
}IﬁL—l
The matrices determining how the input signals affect ttetesy is described by
HtS—L+1 0 T 0
_ Hy p42Gi_1 4 HY 140 o 0
s = e e . (2.10)

t—L+2 s s s
H, k=t—1 Fth—L+1 T HGi{_, H;
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and in case of a time invariant system, they will have the fofrm Toeplitz matrix

) HGs  H® - 0
e — _ _ _ (2.11)
HFL=2G* ... HG® H*

It is often convenient to describe a model where the influexidée input is removed.
Therefore define

ZAY - H'U = Oxi_41 + H'F + H'V 4+ E. (2.12)

The batched system can also be described as a function efsthetate in the window
instead of the first one. This requires that the maftiis invertible. In this form, all the
outputs can be computed as

Y =Ty + H'U + H'F + H'V 4+ E, (2.13)
where
HFf(Lfl)
r— : (2.14)
HF-!
H
and
_gF-'Gs ... _gE-L-Dgs
HF-'G HF G5 0 oo 0
H® = : " :1G S+ . |, (215)
0 . —HF!G* 0 '

Define, similarly to (2.12), a system with removed input as
Z2Y - H'U=Tx2+H/F+ H'V +E. (2.16)

A combination of the batched system models described i) éhd (2.13) can also
be used. If a state in the middle of the window is known, that,is,, the outputs are
described by

Y= (?) T+ (ZZ) U+ (Z;) F+ (g) V+E. (2.17)

2.2 Structured Faults

The influence of a fault is often correlated in time and is diagmuch slower than white
noise. It is therefore natural to model the behavior of thétfaith as few parameters as
possible. In this section, the fault is parameterized uaimgrthogonal basis generated by
the Chebyshev polynomial. The Chebyshev polynomial is @mogional polynomial of
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a discrete variable, see Abramowitz and Stegun (1965)irRi¥B74). The polynomial,
denoted®,,(¢), is orthogonal in the intervéd < ¢ < N — 1, wheret is an integer.
Moreover, the vector of lengthy

ol = : , (2.18)
P, (N —1)

is orthogonal to another vectdr,,, whenn # m. The Chebyshev polynomial is defined

by the function
() = nlA" K;) (t ;Nﬂ , (2.19)

whereA™ is the difference operator defined as

AF() = FlE+1) = F(B),  A™LF(E) = A(A" (). (2.20)

The orthonormal vector®,, will be used as basis vectors for the fault. Denoting the
parameters witld;, the fault vector is modeled as

F=oT¢, (2.21)
where
o = (o @oF .- (2.22)

The regressors obtained have the form of a constant, ligeadratic term and so on.
This means that a step fault can be described using a one simnahbasis and smooth
faults using a low dimensional basis. An example of a pararizetd fault is given in
Example 2.1.

—— Example 2.1: Parameterized Fault |

The output from a magnetometer (compass) is monitored. r Afiene time, the mag-
netic field is disturbed by a magnetic object. This distudeacan be modeled using the
Chebyshev polynomial matrig”. To estimate the model parameters, the following loss
function is minimized

0, = argmin ||F — 70, |°. (2.23)

0:

For this example, the measurement data comes from a reagergoven by data set D1 in
Section 6.1. The fault is parameterized using three basigifins shown in Figure 2.1a.
The parameterized fault is shown in Figure 2.1b.

2.3  Minimum Variance Estimation

A common problem in signal processing is to estimate the sibthe system given a
system model and measurement data. There are many difegypraaches to solve this
problem. There are both recursive and non-recursive mstimbich can yield unbiased
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—-0.252

_y — - — - Parameterized fault
0.4 - -0.253 Real fault
\ - /
0.2 N Pite /A -0.254
\ -~ 4
0 N -7 L,/ -0.255
A N - - s
-0.2 Y e 1 -0.256
- ~ ~ - _ -
—04t 7 @ | -0.257
P o
-0.6 o |1 -0.258
-0.8 - - - : -0.259
2 4 6 8 10 2 4 6 8 10
Time [samples] Time [samples]
(a) Fault basis (b) Parameterized fault

Figure 2.1: The basis functions (a) are used to parameterize the fault & magne-
tometer disturbance (b).

estimates of the state. Some of the methods also produosagssi with minimum vari-
ance. For linear estimators, they are then referred taBesalinear Unbiased Estimator
BLUE. With the batched system representation from Section 21s3easy to write a
non-recursive minimum variance estimator.

For the estimation here, it is assumed that no fault afféesystem, that i = 0.
DenoteN £ H"V +E and assume that is white Gaussian noise withov(N) = S > 0.
The equation systeiiz, + N = Z is known as thgyeneral Gauss-Markoff linear model
(Bjorck, 1996). The parameters:in can be estimated with minimum variance by solving
the generalized least squares problem

min(Tz, — 2)' S~ (T — Z), (2.24)

Tt

see Bjorck (1996). This can be rewritten as the least squaodtem

min ||S~Y/2Tz, — S7Y27)?, (2.25)

Tt

which has the solution ~ _ -
& = (ST 8-1/27, (2.26)

where« denotes the Moore-Penrose pseudo inverse (see Golub ardsan(1996)).
The estimate will be distributed according to

&y~ N (xt, (FTS—lr)—l), (2.27)

whereN denotes the Gaussian distribution, see Section 2.7.1.

The initial state in the window can also be estimated withfthenework described
above. Denote the covariance matfix= Cov(H"V + E), then the initial state is esti-
mated by

#ropp1 = (STPO)STVPZ ~ N(y 41, (OTS1O) ) (2.28)
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An intermediate state of the window can be estimated usiagrthdel in (2.17). This
estimate will then be referred to asaoothed estimatsee Kailath et al. (2000).

2.4 Kalman Filter

The Kalman filter is a recursive filter for linear systems ieatBLUE. The filter was first
presented in Kalman (1960) and is the most common estimatat. uMany books give
a detailed description of the Kalman filter, see for exampdd¢h et al. (2000), Ander-
son and Moore (1979). The noise is assumed to be white, Gauard the covariance
matrices are given b vivi 1, = Q:9(7) andEeery, = Rid(7). The Kalman filter
recursions are given in Algorithm 2.1. During the recursidhe error covariance for the
states are computed &.

Algorithm 2.1 Kalman Filter KF)
An initial state,o_; = xo, and an initial error covariancéy, _; = F, is given. Then
the filter updates are given by

e Time update:

Bepape = Frye + Gy, (2.29a)
Py = B Py B+ GIQUGYT, (2.29b)

e Measurement update:

Ky = Py H (H Py H + Ry)™, (2.29c¢)
Ty = Bype—1 + Ki(ye — Heypp—1 — Hi'ug), (2.29d)
Py = (I — K¢Hy)Pyjy—y. (2.29¢)

2.5 Extended Kalman Filter

To be able to use the Kalman filter framework also for a nowlirsystem, the model has
to be linearized. Linearizing the system around the es@thtxajectory and then applying
the Kalman filter gives the Extended Kalman FiliekF. Given the nonlinear system

Tiy1 = f(@e,ue) + g(ze, ur)ve, (2.30a)
yr = h(we, ue) + e, (2.30b)
the linear system is a first order Taylor-expansion arouaddtest state estimate,
F(@e) = f(@ye,ue) + Fi(ay — 2q), (2.31a)
h(xs) = W@y, ue) + He(ze — Tyjp—1), (2.31b)
9(s) = g(dg4, ) = GY, (2.31c)
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where

F 2 Of (x,u) and H, 2 Oh(z,u)

ox ox

(a:,u):(a?,,‘,,,ut) (Ivu):(it\t—lvut)

Using this linearization, the state trajectory can be ettt by theekF in Algorithm 2.2.
Observe that optimality is not guaranteed by ther, but it usually performs good in
practice.

Algorithm 2.2 Extended Kalman FiltergkF), see (Kailath et al., 2000, p. 340)
An initial state,zo—; = xo, and an initial error covariancéy,_,; = F, is given. Then
the filter updates are given by

e Time update:

Toy1pe = (T4, ue) (2.32a)
Py = FtPt\tFtT + GG (2.32b)
e Measurement update:
Ky = Py H} (H,Pyy—1H] + Ry)™" (2.32¢)
Tojr = Toje—1 + Ke(ye — h(@ege—1,ue)) (2.32d)
Py = (I — KiHy) Py (2.32¢e)

2.6 Detection Theory

A common problem is to detect whether a change of some typedwasred. One im-
portant and common application is to detect a signal in ndiés is done everyday and
is essential in for example cell phones and other wirelegiceg. Other applications are
for example the area of fault detection. In an airplane,iitloa a question of detecting if
a rudder gives the normal response, otherwise we have afaidh might be a leakage
in the hydraulic system controlling the rudder.

The detection problem is often formulated in a way that it guastion of deciding
between a number of hypotheses. To make the decision, ne@asot data from some
sensors and a model of the process is often provided. If #rersvo hypotheses to decide
between, the problem is known asbary hypothesis testFor the airplane example
mentioned above, this could be

Ho: Rudders work as normal
Hi: The rudders are faulty

where the hypothesé&g, and?{, usually are referred to awull hypothesisandalterna-
tive hypothesigespectively. Using sensor readings and the model of tipéaaie atest



2.6 Detection Theory 13

statisticcan be derived. The test statistic will have different disitions in case a fault
is present or not. If the distributions are completely knawboth cases, we will have a
simple hypothesis tesbtherwise, if some parameters are unknown, we ha@igosite
hypothesis test

2.6.1 Simple Hypothesis Testing

Consider the case where the binary varidbte {6,, 0; } is measured with additive noise
e which has a known distribution,

y=0+e.
The hypothesis test
HO . 9 = 90,
Hl . 9 = 91,

is an example of a simple hypothesis test if the paraméteed; are known. The
probability of the measurement can then be calculated dipgron which hypothesis
that is assumed true. One approach to selection betweerypo¢hieses is to select the
hypothesis that gives the highest probability for the mezmment. Hence, if(y| H1) >
p(y| Ho), the alternative hypothesis is decided. Another approamiidvbe to be more
restrictive with causing an alarm, so the requirement foakanm is thatp(y| H;) >
~vp(y| Ho) wherey > 1. This can also be expressed as a ratio between the proteshilit
thelikelihood ratio

pylH) >

p(y[ Ho)

In order to statistically describe these approaches, safieitions have to be made.

Definition 2.1. Some common terms in statistics are defined as
e False alarmga) is to decideH; whenHj is true.
e Miss (M) is to decideH, whenH; is true.
e Probability of false alarmRp4); Pra = P(H1 | Ho)
e Probability of miss Pas); Py = P(Ho | H1)
e Probability of detection®p); Pp = P(H1|H1) =1— Py

When designing a test to decide between the hypothesesdeadfBbetween highp
and low Pr 4 has to be made. If it is decided to hafe 4 on a certain level, what is
the optimal test? This question is answered by the NeymansBenpP, lemma, which
was first published in the articles Neyman and Pearson (1628&lere, the lemma is
presented in Theorem 2.1. Thee-lemma is referred to as thiekelihood Ratio Test
LRT, and is the most powerful test for simple hypotheses. Mostepful means that it
maximizesPp, given aPr 4.
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Theorem 2.1 (Neyman-Pearson lemma)
To maximizePp for a givenPr, = o decideH if

p(y|H1)
L(y) = > 7, 2.33
W= i) 7 239
where the threshold is given by
Prpa = / p(y| Ho) dy = «. (2.34)
y:L(y)>v
Proof: See (Kay, 1998, Appendix 3A). O
2.6.2 Composite Hypothesis Testing
Consider the measurement
y=0+e, (2.35)

where the measurement noiskas a known distribution biétis unknown. The one-sided
hypothesis

Ho: 0=0, (2.36)
Hi: 60>0, (2.37)

will have an unknown parameter in the distributionyaiinder the alternative hypothesis.
This test is therefore called a composite hypothesis tes.sbmetimes possible to find
an optimal detector even for composite hypotheses. A dutdtit yields the highestp
given Pr 4 for all values off) is known asUniformly Most Powerful ump. A two-sided
hypothesis test could be

Ho: 6=0, (2.38)

Hi: 6#0, (2.39)
where the alternative hypothesis has two test regions éop#inametef. It can be shown
that aump test does not exist for a two-sided hypothesis test, see k288). Thus, in
those cases suboptimal detectors have to be implemented.

To construct a detector for a composite hypothesis testethee two major ap-
proaches:

1. Marginalization or Bayesian approach. If the unknownapaeter has a known
distribution it can be marginalized.

2. Generalized Likelihood Ratio Test| RT.

The approaches will be discussed in the following sections.
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Marginalization

Consider again the measurement
y=~0+e, (2.40)

wheree is noise with known distribution butis unknown. The hypotheses are
Ho : 0= 90, (2413)
Hl : 0= 91, (241b)
wheref, andf, are unknown. Now, there are unknown parameters in the loligion of
y for both hypotheses. The marginal density functiony cn be computed as

o0

p(yl Ho) = /P(?J|H0790)P(90)d90, (2.42a)

— 00

o0

p(y|H1) = /p(y|H1,91)p(91)d91. (2.42b)

— 00

This can be thought of as computing the “expected distdioytp(y)”. Inserting this
density function in theR test gives

= plylHy)
L) = o)

: (2.43)

Generalized Likelihood Ratio

Another way of eliminating the unknown parameters in (2.41jo use themaximum
likelihood estimateof the parameter. The parameters can then be calculated as

0, = arg max p(y|0s). (2.44)
0,

The estimated parameteés, are then inserted into the Likelihood Ratio test provided i
theNP-lemma which yields the Generalized Likelihood Ratio test,

= 2 2.
o) p(ylbo) (249

Even though theip-test is optimal, thesLRT is not always optimal but often works well
in practice. It is shown in Lehmann (1986) thatRT is UMP among the tests that are
invariant.
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2.7 Appendix: Distributions

2.7.1 Gaussian Distribution

The most widely used distribution for random variables s @aussiaror Normal dis-
tribution. Consider the stochastic variablewhich is Gaussian distributed with mean
and variance?, denoted

X ~ N(u, 0?).

The probability density functiorrDF, for X is then

fx(z) = e~ 7z (@=w?, (2.46)

This means that the probability fof to have a value in the interval, b] is

b
P(aSXSb):/fX(:r)dz.

In a more general cas&; is ann x 1 vector. The distribution of the Gaussian vector is
then represented by theultivariate GaussiarDF

1

—3(x—p) TS (x—p)
(2m)n/2 detl/Q(S)e 7 (2.47)

Ix(x) =

wherey is the mean vector ansl is the positive definite covariance matrix. An example

of thepDFfor a variable distributed with the parameters- (0 O)T andS = diag(1, 2)
is plotted in Figure 2.2.

Figure 2.2: The multivariate Gaussian distribution with parameters (0 0) and
P =diag1, 2).
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2.7.2 Chi-square Distribution

Squared Gaussian variables are common, especially intietelceory. Often are sums
of squared Gaussian residuals used as a test statisticeresthit will then be chi-square
distributed if the residuals are white and Gaussian. If #sduals have zero mean, the
test statistic will have &entral chi-squarélistribution. In case of non-zero mean, the
distribution will be thenoncentral chi-square

Central Chi-square

Sums of squared independent and identically distributed, Gaussian variables with
zero mean will become chi-square distributed. Thakisz >°7_, X? with X; ~ N(0, 1)
will be chi-square distributed with degrees of freedom, denot&d~ 2. The probabil-
ity density function is

L ~ r57le73% >0
fx(x) =1 220(5) ; (2.48)
0 <0

wherel'(u) is the Gamma function, which is defined as

(o]

[(u) = /t“ileftdt. (2.49)

0

Noncentral Chi-square

When taking the sum of square Gaussian random variables with non-zero mean,
the distribution of the result will be represented by tm#central chi-square distribution
Consider the case whei& ~ N(y;,1), thenthe variabl& = >, X? hasv degrees of
freedom and theoncentrality parametey = >, 1u7. The distribution ofX is denoted

X ~ x2()\) and therDF can be expressed as

frlo) = {% (5) 7 Iy (Ve 1) 0 (2.50)

0 r<0’

wherel,.(u) is the modified Bessel function of the first kind and ordefhis function is
defined as

_ (iu)r [ s 21 u cos 6
I (u) = Ny /sm (0)e de. (2.51)
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Fault Observability

HE PURPOSE OF FAULT DETECTIONS to discover the presence of a fault and for
fault diagnosis to tell which fault is present. To get infation about the system,
measurements are made. If it is possible to estimate theffanh the measurements,
fault detection and diagnosis becomes possible. This ehdptives tests that determine
if the fault can be estimated.

3.1 Studied Systems

The systems studied are time-invariant, time-discresalirsystems in state space form
as described in Section 2.1.1. Two special cases of this hstrdeture are described. A

system without inputs is referred to as the nominal systehe dther system has a fault
vector as input, but in order to estimate this input the faatitor is included in the state

vector. Hence the name, augmented system.

3.1.1 Nominal System

The following state-space model is referred to as the norsisiem

Tip1 = Fxy + W, (313.)
yr = Hxy + ey, (3.1b)

wheredim(z;) = n, anddim(y;) = n,, thatis,F is n, x n, andH isn, x n.

19
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3.1.2 Augmented System

A state-space model with faults as inputs would have the form

241 = Foy + GT fy + wy, (3.2a)
yt:H$t+Hfft+et; (3.2b)

wheredim(f;) = ny, thatis,G' isn, x ny andH7 isn, x n;.

In order to estimate the faults, the faults are included & dtate vector. The aug-
mented state vector is denoted= (] ftT)T. Including the fault in the state vector
implies that the dynamics of the fault has to be modeled. heee assumed that the
fault is changing according to the random walk process, wvhiculd yield the following
augmented model

_ F G .
Ti41 = <0 I > T + Wt, (33&)
ye=(H H)Z, +e, (3.3b)

wherew, is a noise vector. There can be several special cases ofdluisInt-or instance,
if G/ = 0andH/ = I only measurement faults are modeled. Limiting to faultsro t
input side of the systent; = I andH/ = 0.

3.2 Observability for Augmented Systems

The general definition of observability is given by Definiti.1 and the tests for observ-
ability are given by Theorem 3.1 and 3.2. This section wiltivke explicit conditions
under which the augmented system (3.3) is observable, dghegnthe pair{ H, F'} is
chosen such that the nominal system (3.1) is observablesdme problem arises in ap-
plications where biases in the measurements or dynamiestireated. The problem is
studied in for example Chmielewski Jr. and Kalata (1995mBeneck et al. (1998).

Definition 3.1. A system (3.1) is said to bebservablédf any initial statex, can be
uniquely determined by the corresponding respanse

Theorem 3.1
A systen{3.1)is observable if and only if the matrix

H
HF
0= . (3.4)
HF"
has full column rank.

Proof: The proofis given in most textbooks on linear systems, seeXample Kailath
(1980). O
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Theorem 3.2 (Popov-Belevitch-HautusKBH) Test)
A systen(3.1)is observable if and only if the matrix

H
() @5
has full column rank for alk.

Proof: See (Kailath, 1980, p. 137). O

3.2.1 General Augmented System

Applying Theorem 3.2 for the augmented system (3.3), theefbility is given by
checking the rank of

(H HY) H HI
(<F Gf> B 1) = (Fs] Gt ) : (3.6)
o 1) ° 0  (1—s)1I

The rank should be checked for ajJlhence divide the analysis into two pasts 1 and
s = 1. Whens # 1, the matrix(s — 1)I will have full rank and using row operations
(rank conserving) (3.6) can be rewritten as

H 0
F—sI 0 . 3.7)
0 (1—9)I
Thus, it is sufficient to check the rank of the matrix
H
( P I) , (3.8)
which we know have full rank since the nominal system is olmdgle. The other case
s = 1 gives the matrix
H HI
F-I1 G|, (3.9)
0 0
and thus the observability of the augmented system can leendieied by checking the
rank of ;
H H
<FI Gf>' (3.10)

3.2.2 System with Measurement Faults

This section will study the special case with measuremauntsfaand no faults in the
dynamics, that iz = 0. The faults will be assumed to be such ti&t has full column
rank. With these assumptions the rank condition for the arged system is to check

whether ;
H H
(F I 0 > (3.11)
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has full column rank. An interesting observation is that'ihas no eigenvaluds that is,
no pure integrations, a sufficient condition for obserigbis that H/ has full (column)
rank.

Full column rank of the matrix3 is equivalent to

Br=0 < x=0. (3.12)

To obtain a result whe#' includes pure integrations, study

(" W) G)=(G0) =0 = ()= o

The lower block is zero if and only if is an eigenvector of” with eigenvaluel. Hence,
a necessary and sufficient condition for the augmentedraytstée observable is that

Hz ¢ R(H') forall z suchthat Fa =z #0, (3.14)
which can also be expressed as
R(HU)NR(H') =0, (3.15)

where the columns off consist of the eigenvectors &f with eigenvaluel. (Note that
Hz # 0 since otherwis&)z = 0 in contradiction to the assumption that the nominal
system is observable.) Put in another way, the fault mustr¢né measurements orthog-
onally to the integrating part of state space.

Observations
Some observations based on the discussion above:

e Aslong as the studied system does not contain any pure attegythatisF'z = «
has no solution apart from = 0, any fault is allowed ifZ/ has full rank.

e With an integration in the system the problem is more difficul

— If H' has full row rank the augmented system is not observablehseee-
quirementin (3.15).

— The fault terms may not look the same in the measurementslasintegrated
state, or the system is not observable. It is impossibleltahte difference
between the initial state and fault, as the effect on theegy$s the same.

3.2.3 Dynamics with Additive Faults

Now consider the case of additive faults only in the dynaiieat is, H/ = 0. The
augmented system is observable if and only if

(FH ; C?f> . (3.16)

For the continued discussion, the following result relatethe test for full column
rank is useful.
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Lemma 3.1
The matrix

(g) (3.17)

has full column rank if and only iV (A) N N(B) = (.

Proof: The matrix in (3.17) has full column rank if and onlyfi§ # 0 such that

(g) u= (gg) =0. (3.18)

Obtaining rank deficiency implies thatu = 0 and Bu = 0 for the sameu and hence
must have a common null space. The requirement for full coluenk is therefore non-
intersecting null spaces of and B as written in the lemma. O

In order to determine observability of the augmented systeisinteresting to know
under which circumstances (3.16) has full column rank. Ftemma 3.1, we conclude
that it is enough to consider the null space of (3.16). Raffikidacy can only be obtained
when the following equation has a nonzero solution

(FHI Cgf) (;) - ((FII)j;[z:er fo) =0 (3.19)

The top row can only be zero far in the null space of{, hence it is enough to study
suchz. Therefore, form a matrik’ which has a basis for the null spaceféfas columns.
Then, the second row of (3.19) can be written as

(F-DNUs+Gf =0, (3.20)

wheres is an arbitrary vector. For this equation to have a solutioamatriceg " — I)U
andG/ have to share image spaces. The requirement for obsetyahiti then be written
as

R((F—DU)NR(GT) = 0. (3.21)

The interpretation of this is explained below. Consideradest, that is in the null
space offf and is thus not directly observable in the measurementssi@@nnow how
this state changes in a time update. The change can be written

T —xp = (F — Dy + G f, (3.22)

the requirement in (3.21) states that the change introdogdide dynamics of the system
must be orthogonal to the influence by the disturbance. Ehat must be possible to
distinguish between contributions to the state that comues parts of the state space not
directly measured and contributions from a disturbance.
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3.3 Batched Systems with Linearly Growing Faults

An alternative, but completely analogous, view of the déston above can be obtained
considering systems of batched signals described in $e2tio3. Consider batched sig-
nals over a window of length, then the system can be described as

Y =Ox_141 + H'F+ HV +E. (3.23)

The matrix O will equal the observability matrix given in Theorem 3.1 asidce the
nominal system is assumed to be observable, it will haveéllimn rank. If the unknown
disturbance can be parameterized as

F = o7, (3.24)

andH? £ A/ 37, the system can be rewritten as

Y= (0 A <x‘fe‘") + H'V +E. (3.25)
t

To determine observability of this augmented system, thgtleof the window has to be
equal to the number of states, thafis= n, + ng.

If it is assumed that the fault is changing linearly, thaf,is= ¢t + m. Then, the fault
can be parameterized as in (3.24) with

1 t
o7 = | : : : (3.26)
1 t+L-1

Now computingf? with L = n, + ng = n, + 2 gives

_ _ 1 t
70 HGS HY P . . _
: RE 1 t4ng+1
HFr=Gf HFEr—1qf ... HI
HY tH'
HGT + HY tHGT + (t+ 1)H/
H(F +D)Gf + HS tHFGY + (t+ HG! + (t+2)HT | (3.27)

HY ' F'GI+ H HY 2w (t+ i) Fr'Gf + (t +n, + 1)HS
The observability of the augmented system is determineti&yank of
(0 HY). (3.28)

Simple row and column operations preserves rank. To signglég matrix, first substract
the first row from the second, then the second from the thicisanon. Then, substract
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t times the second column from the third column. Simultanbodisne below is again
substracting the first row from the second, then the secamd fhe third and so on.

H HY tHf
H(F—1) HGY tHG! + HY
(© A%~ HF(F—-1) HFG/S tHFG! + HGS + HY N

HF"(F-1I) HF"=G!/ tHF“=G/ +HY "' Fi+H/

H i 0
H(F —1) HG! i

H(F —1I)? H(F -Gt HGT
HF~YF-1)? HF“"YF-1)G/ HF"%~'Gf
H Hf 0
H(F-I) HG' H' (3.29)
O(F-1? (F-1)Gf GY)

Now, to determine if (3.29) has full column rank it sufficesste if the rows have non-
intersecting null spaces according to Lemma 3.1. Sifickas full column rank, it is
sufficient to look at the matrix

H HYf 0
(H(F 1) HG/ Hf) . (3.30)

(F-1)?* (F-DIG/ Gf

3.4 Summary

This section has derived explicit tests for observabilityaults with certain dynamics.
The test for constant fault dynamics (moving as a randomwsilgrovided by checking

the rank of ;
H H
<F 7 Gf> . (3.31)

For the special cases that there are only measurementdawidy additive faults in the
dynamics, there are interpretations given for the testirements (see Section 3.2.2 and
3.2.3).

For the case of linearly growing faults, the batched systeseidption is used to derive
observability tests. The faults are observable, giventtietollowing matrix has full rank

H HY 0
(H(F 1) HG/ Hf) . (3.32)

(F-1)* (F-1IG/ Gf
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Initial State Estimation for GLR Tests

A STANDARD APPROACH TOmodel-based change detection is to first compute a resid-
ual from a batch of data based on the model, and then chedk iisidual is signif-
icantly different from zero, see Basseville and Nikiford®93), Gustafsson (2001). For
state-space models as considered here, the initial sfetetsathe residual significantly,
and its influence has to be removed. The unknown initial statebe approached in the
following ways:

e Using a projection that removes the influence of initial ddods as done in the
classical parity space approach (Basseville and Nikifot8@3, Chow and Willsky,
1984, Ding et al., 1999, Gertler, 1997, 1998).

e Using prior knowledge of the initial state obtained with aisal Kalman filter on
past data preceding the data batch under consideratiotskdnd Jones, 1976).
This gives a correct state estimate if the fault was not dirgmesent at that time.

e Using a minimum variance estimator (that is, anti-causafri@a filter) on the data
in the batch, which gives the correct state distributiorhére is no fault in the
batch.

e Using a smoothed estimate by combining an estimate fromdteelzhtch with the
prior knowledge of the initial state.

The last two approaches are presumingly new, publishedégukhor in Térnqvist
and Gustafsson (2006). However, it will be shown that thedtpproach is iden-
tical to the first one. The anti-causal estimate is rathertgden as a tool to derive the
smoothed estimate, which will be shown to give the best perdmce in simulations.

A fault entering a system does often not change arbitrakig/white noise. It rather
follows a smooth profile which could be parameterized in dicieht way. The param-
eterizations of the fault using a low-rank orthogonal baglsbe shown to increase the
performance significantly.

27
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4.1 Studied Model

The class of models studied in this chapter can be eithent@mgng or time invariant lin-
ear models. The systems are described with stacked modéé¢seasbed in Section 2.1.3

Y = Oz + HU + H/F + HV +E. (4.1)

The system is assumed to be observable, tha®ifias full column rank. For non-
observable or partially observable system, see Sectiod.4The influence of the known
input signal can always be eliminated and therefore define

Z2Y - H'U= Oz + H'F+ HV 4+ E. (4.2)
The fault is modeled with the low dimensional parametrizatis described in Section 2.2

F=2&"9, = H° 2 A", (4.3)

4.2 State Estimation

There are several ways of estimating the initial state otithe window. Given the data
in the window, the simplest way is to make an orthogonal mite of the measure-
ments onto the signal space as described in Section 4.2.4ath&napproach would be
to consider the noise distribution and to make an obliquéeption in order to obtain

a minimum variance estimate, which is outlined in Sectich2. A third way could be

to combine one of the estimates above with a prior estimata for instance a Kalman
filter. This is described in Section 4.2.3.

4.2.1 Orthogonal Projection
A system (4.2) without faults is described by
Z = Oz + H"V +E. (4.4)

The least squares estimate of the initial state, withoutgifie knowledge about noise
covariances, is to use
i =07z (4.5)

Here,« denotes the Moore-Penrose pseudo inverse (see Golub aricbaan1996)).
This estimate is unbiased since

E:=EO'Z=E(z+O'(H'V+E)) ==, (4.6)

observe tha®'© = I since the system is assumed to be observable and i&has full
column rank. In presence of faults, the expected value woeld

E:=EO'Z=2z+0TH%,. 4.7
Using the estimator in (4.5), the influence of the initiakstan the output is given by
Oi =007, (4.8)
N~

Ay

L2Po



4.2 State Estimation 29

whereP» denotes the orthogonal projection onto the column spacg, efhich follows
by the following projection properties:

e A matrix P is a projector if and only if

P2 ="P. (4.9)

e An orthogonal projectof? 4, ontoR(A) can be derived as

Py = AAT. (4.10)
For proofs of the properties above see (Meyer, 2000, p. 380). 4

4.2.2 Minimum Variance Estimation

The estimator derived in Section 4.2.1 gives an unbiasechat of the initial stater.
An estimator that also gives minimum variance for the edionaerror was derived in
Section 2.3. The estimate of the initial state is given by

&= (S7120)t 571/, (4.11)
This estimate will be distributed according to
&~ N (17 +(S~120)ts712 10, (OTS*O)*). (4.12)

The basis forz in the measurement space@ so estimating the terr@®z can be per-
formed as
Oi = O(S~120)ts-1/27, (4.13)

2p

where? is an oblique projection ont®(0) alongR (S'/2(S~1/20)*) according to
Lemma4.1.

Lemma4.1
The matrix
P =0(S"120)ts1/2 (4.14)

is an oblique projection onto the spa@©) along the spac® (S'/2(5~1/20)+).

Proof: The matrixP is a projection since it is idempotent, i.@P = P, see (4.9). The
dimension ofP is n x n and a basis in its image space has ranthen a basis for the
null space has to have dimensian- p. The proof will show thatO is a basis in the
image space and therefore must have rank is also shown thas'/?(S=1/20)* isin
the nullspace oP and have rank — p.

The projection has the prope®®O = O and since& has full column rankank(P) >
rank(Q). An upper bound on the rank @f is given by

rank(P) < min(rank(O), rank(S~Y20), rank(S~/?)) = rank(0),  (4.15)
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where the fact that the pseudo-inverse does not changertkésrased and that
rank(S~Y20) = rank(0) — dimN(S™Y2) N R(O) = rank(0). (4.16)
Thus,rank(P) = rank(O) and© must span the image spacef Then,rank(0) =

rank(S~1/20) = p.
Another property ofP is thatP.S1/2(S~1/20)+ = 0. To show this, study

PSYV2(S120)E = 0(S~120)(S1/20)*t. (4.17)
Now, take thesvD
N Y 0\ /vT
ST120 = (U Us) <0 0> <V;T) (4.18)

Then,(S~/20)t = £~ 1UT and(S~1/20)+ = U,UJ . SincelU; andU, are orthog-
onal, itis clear thaPS'/2(S~1/20)+ = 0. Thus,S'/2(S~1/20) must be in the space
that P projects along and is a basis in that space if the rankisp. With the same
argument as in (4.16), it is clear thatnk(S'/?(S~1/20)%) = rank((S~'/20)*) and
the orthogonal complement of a matrix of rgmknust have rank — p. O

4.2.3 Smoothed Estimate

Itis a common situation in signal processing to have seestnates of the same vari-
able. To get a common estimate using the information in dineges are often referred
to as thesensor fusion problepsee for instance Gustafsson (2001).

In this case, it is assumed that an estimaté), from a prior or Kalman filter is
available. The estimate is assumed to be Gaussian distilast

&V ~ N(z, PY). (4.19)

Then, the smoothed initial state is estimated by formingdire state estimate of (4.11)
and (4.19) by the standard sensor fusion formula. Denotegtimate from (4.11) with
#(2) and its covariance wit®(?), then

3= P(P(l)_lzi:(l) + P<2>‘1fc<2>), (4.20)

where )

pa (P(l)_l + P<2>‘1) . (4.21)
The expected value of this estimate is derived using (4.4@)Y4.19)
Ei=pPPO " 4 p@ Yy pp@7!

=1

(S~120)ts=1/2 1%,

=z +POTS 1H%, (4.22)

Note thatCov(i) = P < P(?) which means that the covariance of the estimate is de-
creased when prior information is used.
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4.2.4 Partially Observable Systems

In order to estimate the initial state of the system (4.1p# to be observable, that is, all
states will have a unique influence in the output. When sarget faulty and therefore
cannot be used, the observability may be lost. Howeveraften possible to observe a
subspace of the state space and the system can thereforgibkypabservable. In order
to handle such a system in the framework described abovebervable subspace has
to be determined. It is given by tts/D

O =U,xV7, (4.23)

whereU; spans the observable subspace. The stateX V" z (dim(Z) < dim(z)) is
now an observable state. The system (4.1) can then be Ewaist

Y = U1z + H*U + H'F + H'V +E. (4.24)

Now, all methods described above can be used @itexchanged fot/;. When a prior
estimate of the original estimate is available, as in Sacti@.3, the state estimate and its
covariance have to be transformed as

W =ypy W (4.25)
P =2y POYE. (4.26)

4.3 GLR Tests

Fault detection is here considered as detecting whethefatlieis zero or not. This
approach corresponds to the hypothesis test

Ho: 0, =0 (4.27a)
Hy: 0 #0. (4.27D)

This section will derive different test statistics basedt@Generalized Likelihood Ratio,
GLR, for the hypothesis test above, see also Section 2.6.2. fforpethis test, the initial
state in the window has to be estimated using for instancenihods in Section 4.2.
Using the estimate from the orthogonal projection is ideadias the parity space method
and is described in Section 4.3.1. If the minimum variant¢ienade is used the test will
also reduce to the parity space method, see Section 4.3.&ll\the smoothed estimate
is used in Section 4.3.3.

4.3.1 Parity Space Approach

The parity space method is a widely used method to find a rakfdu fault detection.
It was first described in Chow and Willsky (1984), but is désed and used in many
publications for example Basseville and Nikiforov (199Bjng et al. (1999), Gertler
(1997, 1998).

Here, the parity space equations are derived by estimdtmdnitial state by an or-
thogonal projection as in Section 4.2.1. The predictioords here computed as

e=7—-0i=(-Po)L="Po.L. (4.28)
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The projector can be computed as
Pos = Bo. BL. | (4.29)

whereB . is an orthonormal basis fa (O+).

Residual

Since the prediction error is computed by a rank deficienjeptmn, the information
in the prediction error can be represented by a vector of i@immension. This low-
dimensional vector is here denoted the residual. NoteH@atBoL = [ due to orthog-
onality and that the dimension is the rank of the projectio(4i.29). The residual can be
written as

r=Bhe=Bb. Boi BoLZ=B5.17, (4.30)

which has the covariance
Cov(r) = B5. SBou . (4.31)

The normalized residual is then

7= (B5. SBp.) Y?*BL. 7. (4.32)

L
cwr

Test Statistic

In the hypothesis test, (4.27), the question is whetherahk is zero or not. This can be
rearranged to a hypothesis test based on the residual as

Ho: 7~ N(0,1) (4.33a)
Hy: 7~ NWIH®S,,T). (4.33b)

To decide between the hypotheses|& test will be performed with test statistic

1 _o—3lr=wlHE 03
(271-)77./2
=sup2log T

04 (27\')"/2

= szlpfllf — Wi H |5+ 1713, (4.34)

JREEYETE

r— WL H
L=2 10g (Supet p(Tp(F) 1 t))

wheren denotes the dimension af This function is maximized fof, = (W H?)'r,
which gives

L=—|jr=WFHC (W H) 7|3+ ||7]3 = 77 Py o, (4.35)
N———— e —

Pwrao
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4.3.2 Minimum Variance Estimation

The prediction error can be computed in minimum variancesevith the state estimate
from (4.13) as
e=72Z-0z=(-P)Z. (4.36)

The matrix] — P is the complementary projector 1, see Meyer (2000), which has the
SVD

Y 0\ (Bhe T
I - P - (831/2(5—1/20)4 BS*IO) 0 0 BOT - 851/2(571/20)L EBOL .

(4.37)
where B, is an orthogonal basis ifR(x). The construction of thesvb can be done
using the result of Lemma 4.1. To construct the residualdiheension of: should be
reduced to the rank df — P. By inspection of (4.37), the natural premultiplier woulel b
271831/2(5‘—1/20)LT. Since

2_1831/2(571/20)LT(I - P) - BgL, (438)

the residual will be
r=Bh. Z. (4.39)

This coincides with the residual in the parity-space apgh@and the hypothesis test there-
fore coincides with the one in Section 4.3.1.

4.3.3 Estimation by Smoothing

The prediction error is formed using the smoothed estinrata {4.20) as
e=7-0i=0(—1)+ H%;+ H'V +E, (4.40)
then the expected value of the prediction error is obtairstugu(4.22) as

Ec = —OPOTS 1[%, + A%, = (1 - OPOTS*l) ‘e, (4.41)

AwT
=Wy

To construct the test statistic, it is desirable to haws a function of the measurements,
7, and the state estimate from the Kalman filt&t). Thus,

e=Z-0i=17- OP(P“)”@(U + P<2>’1@<2>)
= (1-0PP@ (571 20)t s )z — OPPD G
—wiz-oPPO ;) (4.42)
and the covariance is

-1 S 0 Wo
Cov(e) = WS SWy + O PPV " POT = (wy 0) (0 Q) (OT) . (4.43)
£Q
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It is important to note that the matri¥) is time varying due to the dependence of the
covariance of the Kalman filter estimate. However, the Kalifilger will become station-
ary and then the covariance converges to a matrix which caofputed by solving the
Riccati equation.

Lemma 4.2
Assume thatS and @ are both positive definite matrices, then the matri{4m3)is
positive definite.

Proof: If (4.43) is a positive definite matrix, the following mustido

S 0\ [(Ws
2T (WQT (’)) (0 Q> <(’)T) x>0 VY #£0. (4.44)
Since it is known thaf and@ are positive definite, it suffices to show that
" (WE O)#0 Vz#0. (4.45)

The matrixW can be written ag— OM whereM is an arbitrary matrix. If: € A'(O7)
andx # 0 then

" (W 0)= (2T 0)#£0. (4.46)
If z ¢ N(OT) andz # 0 then
o' (W 0) = (a7 —2TOM 270) #0 (4.47)

since at least the second element is nonzero. Thus, we hew shat there is na # 0
such that (4.45) is invalidated. O

SinceQ = PPMW ™' P where P() and P are positive definite matrices) is also
positive definite. Then, according to Lemma 4.2, the covagaofe is positive definite
and thus invertible. The normalized residual can therdberexpressed as

7 = Cov(e)™/2c = Cov(e) V2w 7 — Cov(s)_l/Q(’)PP(l)fliz(l). (4.48)
—_——

Test Statistic
Using the normalized residual (4.48), the hypothesis %e&f7( can be written as
Ho: 7~ N(0,I) (4.49a)
Hy: 7~ NOWLHOO,, ). (4.49Db)
This yields the log-likelihood ratio
e slIlF =W H0.13

L = suplog

o, o5 I7I3

=swp—(|lr = WI 03 - |I713),  (4.50)

t

which is maximized fot, = (W H?)Tr. Then
L= = W B WL EOP3 = 1713) = 7" Pwgaor  (4.52)
| S —

Pwrao
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4.3.4 Statistics

To choose suitable thresholds for the test statistics ghibve necessary to compute
their distributions. While having Gaussian noise, the statistics will be chi-square
distributed variables, see Section 2.7.2. For a thorougibweof statistics in signal pro-
cessing, see Kay (1998). The normalized residual is digtibas

7~ NWTH G, 1), (4.52)

wherex is 1 or 2 (depending on method) add= 0 under the null hypothesis (4.27a).
The test statistic is then distributed as the noncentrasgbare distribution

L =7"Pyrger ~ X7 (A) (4.53)
wherev = rank(WTI H?) and
A= (WIH0) PyyrgeWIH 0, = (W] H0,)" W] H 0, (4.54)

Observe thahk = 0 in the fault-free case and then the test statistic is disteidh according
to the central chi-square distributidh ~ y2. The threshold is then chosen from the
chi-square distribution so that the fault-free hypothésigjected erroneously only with
a small probability.

4.4 Example

To show the performance of the fault detection algorithmscanotor has been simu-
lated. Thebc-motor can have a fault which is interpreted as a torque diance or a
fault in the voltage supply.

4.4.1 Modeling

The continuous-time transfer function from input voltagaxkle angle is

1
G(s) = Gl

Using the state variables, (angle) andrs (angular velocity), a sampled version of the
DC-motor can be written as

(4.55)

Toy1 = Foy + Gluy + GF fy + GPw, (4.56a)
yr = Hxy + ey, (4.56Db)
with the system matrices
(1 1-¢eT w (T—(1—-eT)
F<0 e T >’ ¢ < 1—e T ’
Gv =Gl =a", H=(1 0),

wherew; ~ N (0, (1%0)2), er ~ N (0, (%0)2) and the sample interval usedds =
0.4s.
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4.4.2 Simulations

In the simulation, the system has been simulated for 200 kexrptime with the unit step

as input. After 100 fault-free samples, a constant fautitioduced with the magnitude of
%, which is present until the last sample. The fault can be asemtorque disturbance
which causes a drop in the angular velocity, and a slope change in the angle, With

this setup, 2000 Monte Carle€) simulations have been carried out. One instance of
the state trajectory realizations is shown in Figure 4.1re/fadso the fault-free trajectory

is shown using the same noise realization. The drop in angelacity when the fault

is present can be seen in Figure 4.1b. The angle, which isurezishas a small change
in the slope which is hardly noticeable in Figure 4.1a. Thdtfdetection method using

X1 x2
80 P
y 1
70 P
Z
60 > 0.8
50 S
2 2 06
£ 40 E
3
30 2o4
20
10 faulty 0.2 faulty
— — —fault free — — —fault free
0 - - . 0 - - -
0 50 100 150 200 0 50 100 150 200
Time Time
(@) (b)

Figure 4.1: Plots of the state trajectories with and without fault infiae for the
DC-motor in (4.56)

smoothing, includes a time-varying term dependent on thienason covariance from
the Kalman filter. After a transient period the Kalman filtel Wwecome stationary which
means that the estimation covariance converges. Figurshé®sv'tr P(1), a measure
of the state covariancé?(!). Note thatP(") converges already after approximately 15
samples and the smoothing method can then be considerethtiar@nt.

4.4.3 Fault detection

Fault detection on the simulated data has been made botlamdtvithout making use of
the known fault structure. Since the fault is a step distuckeaa basis of dimension one
can be used to describe its behavior. For fault detectioidimglwindow of 8 samples is
used and for the smoothed method the Kalman filter estimate firevious data is used
as well. For the discussions below, some definitions have tméde. The alarm rate is
calculated as

B #L(E) >~

~ #MC-simulations

ar(t) (4.57)
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Figure 4.2: vtr P s used as a measure of the state estimation covariance.

whereL(t) is the test statistic angthe threshold for detection. The probability of detec-
tion, Pp, is defined as the alarm rate during presence of fault. Pilitlyadf false alarm,
Pr 4, is defined as the alarm rate during fault-free periods.

A. No Knowledge about Fault Structure

First, the fault detection methods are used without assgikmowledge about the struc-
ture of the fault. The results can be seen in Figures 4.3a—4TBe average over the
Mc-simulations of the test statistics ((4.35) and (4.51))heven in Figure 4.3a. Note
that the difference in average during the fault-free pattveen the methods is due to
different degrees of freedom of the test statistic. Thetpapace method has 6 degrees
of freedom whereas the smoothed method has 7. The alarmeegasvtime is shown
in Figure 4.3b. The false alarm rate has been set to 1% andl ithenactual alarm rate
during the fault-free parts of the simulation corresporadhts value. The method with
smoothing outperforms the parity space approach, but thgpadson is unfair since the
estimation is based on a different amount of data. In Figue,4he Receiver Operation
CharacteristicsoC) is plotted. Theroc-curve shows how the probability of detection
for a fault varies versus the probability of false alarm. &sieg corresponds to a the
straight line betwee®r 4 = Pp. In this case the values f@?p is estimated one window
after the entrance of the fault. This is done since the Kalfiln estimate, used in the
smoothed method, will be influenced by the fault afterwardr&abourRoc-curves can
be found in Kay (1998).

B. Using the Structure of the Faults

Secondly, the structure of the fault is used to enhance thiedatectability. Since it is

here assumed that the fault is a step, a one dimensionalfbastfon is used to describe
the fault. It is discussed in Section 4.3.4 that the averdtfeeaest statistics should equal
the degrees of freedom for the test statistic. Due to thenpatexization, the degree of
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freedom is 1 and the effect of this can be seen in Figure 4.Zaemihe averages of the
test statistics ((4.35) and (4.51)) are 1 in the fault-frag.prhe lower average during the
fault-free part makes the relative increase to the faulty laager and the probability of
detection is therefore higher than without structure. Fegli3b shows that the probability
of detection is considerably increased for both methodstdtiee use of the fault struc-
ture. Theroc-curves in Figure 4.3c have therefore also shifted towaiglsen detection
rates.
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Figure 4.3: The averages of the test statist({ds35)and (4.51)are given in (a), the
alarm rate in (b) and a plot of tteoC curve in (c). A and B denote with and without
using the structure of the fault respectively.

45 Conclusions

This chapter studied the initial state dependency foGthr test for fault detection based
on a batch of data. Previous approaches are either baseidnimeging the initial state by
projection (the parity space approach) or by using a priormated from passed data (the
sliding window approach). The minimum variance estimatéhefinitial state from the
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data batch is derived. This, in itself, is shown in Sectid2ito be algebraically identical
to the parity space approach. However, in combination wigrsliding window approach,
it opens up the possibility to form a smoothed estimate. deisionstrated in simulations
that this improved performance considerably. Anothergoution is to point out how a

smooth parameterization of the fault profile can improvedn performance.
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Modeling and Estimation of IMU:s

I N MANY SITUATIONS, the attitude and position of a system is of interest. Fongxa,

navigation and positioning of airplanes and cars are a reaégearch area today. Most
systems rely partly on satellite navigation equipmenthsascthe Global Positioning Sys-
tem, GPs and map-aided navigation systems that recognize thdrtesee for instance
Bergman (1999), Karlsson (2005). To obtain complete pmsiind attitude information,
this information has to be combined with an inertial navigasystem. This system con-
tains three dimensional accelerometers and gyroscopéss aometimes referred to as
an Inertial Measurement Unityiu.

Another application where amu is used is positioning of film cameras. The position
of the camera has to be known in order to put virtual objectsérscene, which is known
as augmented reality. The measurement fromntueis combined with information from
the image and in this way position and orientation can beidta(Schon, 2006, Hol,
2005).

Human motion analysis is another area where:s are used. There are scientists
who wants to get a better understanding of the walking psoaed therefore studies how
different body parts are rotated and accelerated. Athletetyzes their movements in
order to improve their performance while avoiding injured_uinge (2002), Roetenberg
et al. (2005).

5.1 Sensors

The measurements in Chapter 6.1 are made withvanfrom Xsens Technologies, see
(Xsens Technologies B.V.). Thisiu, see Figure 5.1, consists of a three dimensional ac-
celerometer, gyroscope and magnetometer (compass).eskthensors are based on the
technology microelectromechanical systemgMs. That means they are small silicon
based sensors of the strapdown type, that is, rigidly malornéo the moving body. This

41
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is in contrast to the old gimbaled gyroscopes and acceldmBs)avhich always had the
attitude of the fixed coordinate system. For a thorough vewaestrapdown inertial nav-
igation and micro machined sensors, see Titterton and Wg&@07), Gardner (1994).

Figure 5.1: The IMU MTi from Xsens Technologies which is used for the axpe
ments in this thesis.

Traditional accelerometers used a mass-spring-damgségrayto measure the accel-
erations. The extension of the spring in steady state isgotigmal to the acceleration.
The sensor used here is manufactured by Analog Devices (ADX).and has a mea-
surementrange af1.7 g. Although it is silicon based, the principle is the sameoasife
mass-spring-damper-system. A silicon mass is suspendadsiicon springs between
two fixed silicon plates. To read out the acceleration, thie &f the capacitance between
the fixed plate and the mass on both sides is used. (Gardier, ABalog Devices)

The gyroscope is also manufactured by Analog Devices, mudaber ADXRS300.
The gyroscope is a so called resonator gyroscope which &db@s a vibrating silicon
structure. There is a capacitive pickoff that senses Qerfotces, which are dependent
on the angular velocity.

The magnetometer is a Honeywell HMC1023, which is a magredistive sensor. A
magneto-resistive sensor is composed of thin plates intwthie current lines are rotated
depending on the magnetic field. The rotation of the curri@ess| gives an increase in
friction and the magnetic field can thereby be measured. di@ar 1994, Honeywell
Solid State Electronics Center)

5.2 Modeling

The model describing thevu consists of two parts: one describing how its body is
moving (dynamic model) and one describing the measurenfar@asurement model).
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To describe the behavior of th&u two coordinate systems are used, one fixed to the
earth and one fixed in the IMU.

5.2.1 Coordinate Systems

To describe a moving body system, two coordinate systemasa®@. One system, that
is fixed to the world (Earth), referred to as the W-system, amel that is following the
moving body, referred to as the B-system. Theoreticallynteasurements from theu

is made in a fixed inertial coordinate system. The rotatiahefEarth introduces Coriolis
forces, but since these effects are small, they are nedléetee. Figure 5.2 illustrates
the coordinate systems. The relation between the cooedgyatems is described in two
steps. First, the translation from the origin of the W-syrste the origin of the B-system
is described with the vecter Second, the rotation (or attitude) from the W-system to the
B-system is described by the unit quaternigp and the corresponding rotation matrix
R(gw)- Unit quaternions can be used to describe attitude nunilgrivare robust than
with for example Euler angles. For more information abottgnions, see Appendix B.

<
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Figure 5.2: The two coordinate systems describing the moving body BystEhe
orthogonal unit vector@?,, e}, ¢?) are moving with the body and the orthogonal unit

vectors(e? e, e) are fixed.

xTIrTY Tz

5.2.2 Dynamic Model

The translation between the W-system and the B-sygidmalso called the position
of the body. The dynamic model need to have the positiand the rotationy,,, as
states. Since the accelerations of the B-system are melaghese have to be mod-
eled as states as well as the veloaity. The state vector can then be chosem:as

(pv™ vt gt qbwT)T, wherep® is translation from the W-system to the B-system,
v™ is the velocity vector of the B-system relative to the W-syst(described in the W-
system),a™ is acceleration of the B-system relative to the W-systensddeed in the
W-system),,, is the unit quaternion describing the orientation of theyBtem.
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The dynamics of the translation is easy, namely

"IJJ:,U’IJJ

¥ = a".

Since nothing is known about the derivative of the accellemathis is modeled as noise,

v = v,
wherew; is process noise. The rotation of the B-system relative ¢dthsystem is de-
scribed using the unit quaterniop,,. The dynamics of the unit quaternion is derived in
appendix B and the derivative is given in (B.26). The result i

o = 5 5(h ), 5.1)
wherew}, denotes the angular velocity of the B-system relative toWhsystem de-
scribed in the B-system an§l is a matrix which is dependent linearly on the elements
in w? . The angular velocity?, is measured by the gyroscopes and should therefore
be modeled as a state which is measured. However, to redeickniension of the state
space and avoid the nonlinearity which would have beendnuired then, the measure-
ment of the angular velocity is used as an input in the dynamildis approach would
only be theoretical correct if?, could be measured without noise. However, since the
measurement noise from the gyroscopgsis small, the approximation done here is to
usewp, + v2 as angular velocity.

1
55 (Whey + V2)qow (5.2)

q.bw ~

Using (B.26)
S(wgw + UQ)wa = S(wgw)qbw + S/(wa)vz,

whereS’(x) is defined in (B.26). Then, (5.2) can be written as

. 1 1
Gbw = §S(wlla)w>wa + 55/(%111)02- (53)

Thus, the total dynamic model is given by

Y 070 0 pe 0 0
oo | oo o v 0 0 "
av |~ lo oo o ao | Tl 0 <v2)' (®.4)
b 00 0 3SWh)) \aw 0 15 (qow)
—_———
A B

5.2.3 Measurements

The sensors that are available in the system are gyroscapeserometers and magne-
tometers (compass). The measurements from the gyroscopeasadiscussed above,
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directly incorporated in the dynamics and are thereforelestribed in the measurement
equations.

The accelerometers measures both the free acceleratidre dfady and the earth
gravitational field described in the B-system. The measergmquation can therefore be
written as

Yar = a) — "+ ear = R(qyw)(al’ — ") +eat, (5.5)
—_———

éha (qbw 7a‘1L,U)

whereR(x) is the rotation matrix given in (B.219,is the free acceleratiop,is the gravity
vector ance, is the measurement noise.

The reading from the magnetometeris a normalized ve@igr,given in the B-system
and pointing along the earth magnetic field. When using amarg compass, the read-
ing will be two dimensional giving the heading towards thegmetic North Pole. Since
this measurement is three dimensional, information is gigen about the magnetic in-
clination. The inclination, also called dip angle, is thglkenbetween the earth’s tangent
plane and the magnetic field vector. The magnetic inclimadiepends on the position on
earth and i9)° at the magnetic equator afd° at the magnetic poles. The inclination in
Linkdping, Sweden, is abod)°. The heading information will of course be less accu-
rate when the inclination approach®¥s. For more information about the earth magnetic
field, see (National Geomagnetism Program).

Since the earth magnetic field is very weak, it can easily baidied by an electric
motor or ferromagnetic objects such as beams or other irnstagctions. Such a distur-
bance can be represented by an unknown vector, here defigtedThe measurement
equation can thus be written as

ym,t = ﬁzp + dm,t + em,t = R(qbw)ﬁgp +dm,t + €m, (56)
———
Lhom (gbw)

whereR(x) is the rotation matrix given in (B.21},,, is the normalized earth magnetic
field vector and:,,, is the measurement noise.

The total measurement equation becomes

m

a w 0
Yy = (y ) = h(qbwv Qy ) + <I) dm,t + €. (57)
~

LpHd

5.2.4 Discrete-Time Dynamic Model

The dynamic model (5.4) is divided into two parts. One caritgy the translational dy-
namics of the B-system and the other one the attitude dyrsariige first part contains
the state®™, v* anda™ and the second pagt,,. To simplify the notation and stress the
time dependency,,, is denoted;; from now on.
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Translational Dynamics

For the translational part of the system, the noise inputiésystem are assumed to be
constant between the sampling intervals. Then the distireéesystem can be written as

Piy1 Pt
vy | = F v | + G, (5.8)
aiy a;’

where

T
F=¢4T and G'= /eAtht.
0

I 11 T r
F=10 I TI and GY = T;]
0 0 I TI

Attitude Dynamics

The part of the system (5.4) describing the attitude is teedtate,,,. The following
derivations have been made in discussion with Schon (20883ume that the angular
velocityw?  is constant during the sampling intervals, that is

Wiy (t) = Why p,  WhenkT < ¢ < (k+ 1)T.
Making this assumption, the attitude dynamics becomes itiweriant during the sam-
pling interval. Hence, considering the noise free dynamiciet (5.1), the discrete time
model is given by
1 b
Grr1 = €25 T, (5.9)

5(

To simplify calculations, the termz S “w.)T has to be rewritten. Starting with the series

expansion, we set

oo lS(wb )T " 0o n
1g(wh 2 bw,t T 1 n
At T _ 3 % -y (5) —S(eh, )" (6.10)
n=0 : n=0 ’

The matrixS(wfjwyt) has an interesting property, namely
S(wll;w,t)z = _ngw,tH2I' (511)

Using this result and the series expansion for the cosiees\tan part of the series expan-
sion (5.10) can be written as

00 2n b
S (3) G- Slebu™ = cos <M) rooew

n=0
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Using knowledge about the series expansion of sine, the ada@an be written as

- T 2t 1 b 2n+1
Z (5) ms(wbw,t)

n=0
. o Nt [ ks
= —S(wh > D"
75603 (3) GV
v sin (e, 7/2)
= ES(wbw,t) b (5.13)
Hwbw,t”

Combining the odd and even parts of the series expansionnihguaternion dynamics
can be written as

b

teary ()

qi+1 = | cos 2’ I + Hwb T S(wa,t) qi- (5.14)
bw,t

If the sample rate is high enough so that the produgt, ,[|7" is small, the small angle
approximations can be used to simplify the dynamic equation

T
di+1 = (14 + Es(wll;w,t)) di- (515)

Now, reintroducing the measurement noise.4p ,, (5.15) can be written as

T T
Qi1 = (14 + 55(wgw,t)) @ + 55'(%)%- (5.16)
~——
LR, =Gy

5.2.5 Linearization

To estimate the state trajectory using ther and to use linear theory for fault detec-
tion, the system must be linearized. TierF is described in Section 2.5. The dynamic
equations (5.8) and (5.16) are already linear time-vargopgations, but the measurement
equation is nonlinear. It is therefore linearized with atfosder Taylor series. Starting
with the accelerometer part of the measurement equatioanibe approximated as

Yat = ha(qt) + €at = ha(Geje—1) + Hat (Gt — Geje—1) + €ats (5.17)
where
Ohg,
H,, = ha(9) . (5.18)
dq )
9=qt|t—1

The magnetometer part of the measurement equation is apmated as

Ym,t = hin Qs af’) + em
~ P (Geje—1) + Hi" (g0 — Geje—1) + Haedmt + emye,  (5.19)
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where
Ohum(q)
dq

H" =

q=Aq¢|t—1
To form the linearized system, a new measurement variabdergputed with known
information as

~ A hll(q/\ttl)) (Hta) ~ (Hél) (0)
- - ~ + m — Hm + [ d”L + et .20
Yt Yt (hm (qt‘t_l) Ht qt|t—1 ’ qt it €t (5 2 )

Then the linearized system can now be written as

g1 = g + G (5.21a)
_ oy 0
yt = (an) Qt + (I) dm7t + Ct. (521b)
N—— N~
£H, 2Hd

The Jacobians in the measurement equation (5.21b) are

—q2 Q3 —qo 1
H=29 &1 @ @ ¢ (5.22)
q0 —q1 —q2 (g3

and

Nzqo + Nyqs —Nzq2  —Nzq3 + NyGo +N2q1  Nzq2 — Nyq1 + N2qo

T = Nzq1 + Nyq2 + N-q3 Nzq2 — Nyq1 +Nzgo  Nzq3 — NyGo — N=q1 (5.23)
—Neq2 + Nyqr —N=qo  Nazq1 +Nyq2 +N2q3  Nwqo + Nygs —N2q2 |’
—MNzq3 + Nyqo + N2q1  —NxGo — NyqG3 +Nzq2  Nzq1 + Nyq2 +N2q3

where the magnetic field vector in the W-system has the fdrﬂgwoordinates‘sz =

(nm Ty nZ)T

5.3 Attitude Estimation

In order to use the accelerometers for attitude informatierdirection of the gravity field
is used. However, it is impossible to distinguish betweerdatceleration of the body and
the gravitational acceleration only using accelerometérgerefore, we assume that the
body is not accelerated or that the acceleration is so simatlit can be approximated
by noise. The noise generated by movements of the sensors@mie modeled, see
Section 6.2. The measurement equation due to the accelenmiieen becomes

yi =—g" +eqa = —R(q:)g" + e}, (5.24)

whereg® and g are the gravitational acceleration in the B-system and thgy¥tem
respectively and¢ is measurement noise. The rotation maffify;., ) is given in (B.21)

and sincgy® = (0 0 fg)T the measurement equation can be written as

2(q193 — 9092)
yr =9 | 2(22q3 +qq) | +ef, (5.25)
@-E-B+ad
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whereg = 9.82 is the constant of gravity.

Attitude estimation is done with a&kF. An additional normalization step for the unit
guaternion is needed after both time update and measurempdate. That is, add the
operation

q:=q/4ll
after each update.
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Measurement Data and Motion
Modeling

THE WORK WITH REAL-WORLD applications requires extensive amounts of measur-
ing. This section provides illustrative data sets whichvehthe characteristics of
the sensors in theau.

6.1 Measurement Data

To show the performance of the disturbance detection dlgos described in previous
chapter and to show the characteristics of the sensors, smasurement data is col-
lected. The data is collected under different circumstgnioe example when the sensor
is lying still, is slowly rotated, with and without disturbees. The datasets are presented
in Table 6.1.

Table 6.1: Data sets collected using the IMU.

Data Set | Disturbance Movement

uD1 Undisturbed Lying still

D1 Magnetometer disturbance Lying still

D2 Light magnetometer disturbangelying still

ub2 Undisturbed Holding still in hand
ubD3 Undisturbed Rotated around’

D3 Magnetometer disturbance Rotated around’,

D4 Acceleration disturbance Moved without rotation

The purpose of the first data set, UD1, is to explore the ndiseacteristics of the
sensors. Themu is here lying still on a table and data is collected during €osels
with a sampling rate of 100 Hz. The orientation of the senset so that the?-axis is
pointing outwards from the earth along the gravity field fardicular to the table). The
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acceleration measurements from the undisturbed data sklplotted in Figure 6.1a.
Note that gravity is observed as a positive acceleratiocesonly real forces acting on
the sensor can be observed. The force observed is thus theahfarce given by the
table rather than gravity. Furthermore, the confidencpsaids of the measurements are
quite circular indicating that the noise has low spatialrefation between the compo-
nents. The confidence ellipsoids are plotted on the distamaehich, if the distribution

is Gaussian, means that 1.1% of the measurements shouldsideoaf this ellipsoid.
The magnetometer readings are presented in Figure 6.1lo. thdése confidence ellip-
soids are circular and thus indicate low spatial correfaltietween the components in the
magnetometer readings.

(c) Gyroscope

Figure 6.1: Accelerometer (a), magnetometer (b) and gyroscope (c)unements,
all from data set UD1. The ellipses represent confidenceseliils on the distance
30.

The disturbed data set, D1, also represents a case whenauhis lying still on a
table, like in data set UD1. However, in this set, the magmeter is disturbed by a
metal object approaching the sensor. The metal object & tegresented by a pair of
scissors and the closest distance is approximately 5 cm.aAde seen in Figure 6.2a,
the acccelometer readings are similar to the ones givertinsga UD1. The magnetome-
ter readings should nominally be a Gaussian cloud aroungboim¢, but the disturbance
makes them follow a trajectory given in Figure 6.2b. Each gonent of the magnetome-
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ter measurementis plotted separately in Figure 6.3. Natdtle profile of the disturbance
is a rather smooth function which will be used in the distmd®detection later.

(a) Accelerometer (b) Magnetometer

(c) Gyroscope

Figure 6.2: Accelerometer (a), magnetometer (b) and gyroscope (c)umnements,
all from data set D1.

The experiment setup for data set D2 is similar to D1. Theediffice is that the
disturbance is much weaker. The disturbance was also hasedd#y a pair of scissors,
but the closest distance was approximately 30 cm. The coemgsiof the magnetometer
reading are plotted in Figure 6.4.

In applications, it is not often the case that thveu is lying still on a table. For
instance, in one application it is carried around by a pe(Rmetenberg et al., 2005). To
illustrate the influence of human motion on the sensor regjitlata set UD2 is collected
when the sensor is handheld and the person holding it isgttgitnold it still. Figure 6.5
shows the measurements, the characteristics of thesesareedsed in Section 6.2.

Having seen data from the relatively still measurementsia det UD2, next step is
to make a rotation. Data set UD3 is collected whenithe is rotated around the), -axis.
The accelerometer and magnetometer readings form a cg&leavn in Figure 6.6.

In data set D3, the setup is similar to UD3, but the magnetenistdisturbed by a
scissor. The accelerometer readings are unaffected agsEgure 6.7a, but the magne-
tometer is severely disturbed which can be seen in Figute 6.7

The data set D4 has been collected whenithe is accelerated. The orientation of
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Figure 6.3: The components of the disturbed magnetometer readingsdrsdaD1.
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Figure 6.4: The components of the disturbed magnetometer readingsdrsdaD?2.
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(c) Gyroscope

Figure 6.5: Accelerometer (a), magnetometer (b) and gyroscope (c)uneagnts
from data set UD2. The ellipses represent confidence eifipsm the distancéo.
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(a) Accelerometer (b) Magnetometer

(c) Gyroscope

Figure 6.6: Accelerometer measurements (a), magnetometer measusefbpand
gyroscope measurements (c) from data set UD3.
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(a) Accelerometer (b) Magnetometer

(c) Gyroscope

Figure 6.7: Accelerometer measurements (a), magnetometer measusefbpand
gyroscope measurements (c) from data set D3. Observe ghaoit of view for the
magnetometer is different from the others in order to shandisturbance.
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the sensor is kept constant while it is accelerated alongxi The time plot of the
accelerometer readings are shown in Figure 6.8.

I I I I I I I I
0 100 200 300 400 500 600 700 800 900

EXETY WNW“M\/J\/M/\/WWWWMWMMWW

0 100 200 300 400 500 600 700 800 900
Time

Figure 6.8: The disturbed accelerometer measurements from data set D4.
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6.2 Noise Model

In this section, the noise is studied and noise models atevoloén necessary. To ex-
amine the noise characteristics of the sensors, the measnte from data set UD1 are
examined. The measurement equations are given by (5.5)5a8)d @Also the measure-
ments from the gyroscope are treated in this section evamgththis measurement is an
input to the model. Since there are no rotation, physicatlecation or disturbance in
data set UD1, the measurements will only contain noise amhstant contribution from
gravity and the earth magnetic field. The measurement daggvesiously presented in
Figure 6.1. Here, the auto covariance functions of the nreasents are shown in Fig-
ure 6.9. The measurement noise is close to white since therieoee functions show
small correlation in time. The spatial distribution of theasurements is close to Gaus-
sian as can be seen in Figure 6.10. The noise charactedbtles accelerometer can thus
be concluded as

ea.,t ~ N(OvRa)

E(ea,teg,t—r) ~ Rad(T),

whereR,, is estimated from the data to be
0.4524 —0.1873 0.1594

R,=10"*|-0.1873 0.3617 —0.0900 (6.1)
0.1594 —0.0900 0.7855

and is diagonal dominant. The noise characteristics of tagmatometer can be con-
cluded as

em,t ~ N(07 Rm)
~ R,,0(T),

E(em-,teﬁ,t—T)

whereR,, is estimated from the data to be

A 0.1025 —0.0015 0.0122
R, =107° [ —=0.0015 0.0707 —0.0049 (6.2)
0.0122  —0.0049  0.0865

and is also diagonally dominant. Also for the gyroscopenibise can be approximated
with the following model

ew,t ~ N(O, Qw)
E(ew,teg,t—r) ~ Qui(7),
whereQ@,, is estimated to be

) 0.5713  0.0004 —0.0167
Q. =10"*[ 0.0004 0.7255 0.0308 | . (6.3)
—0.0167 0.0308  0.9364
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Figure 6.9: Auto covariance for the measurements from data set UD1. |Acoe-
eter, magnetometer and gyroscope measurements are présent
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6.3 Motion Model for IMU Held in Hand (UD2)

Human motion is seen in data set UD2, where a person is trgimgid theimu at rest
by hand. Since it is hard to keep the sensor completely atthesinotion of the hand will
affect the measurements. This can be modeled as a stocpestiess, that is, colored
noise. First, consider the case where the motion is modsladhae Gaussian noise as in
Section 6.2. Then, the covariance matrices estimated faimskt UD2 becomes

R 0.0053  0.0025  0.0003
R, =10.0025 0.0049 —0.0018 (6.4a)
0.0003 —0.0018  0.0069

) 0.2064 0.2053 0.0339
Ry =10"%10.2053 0.2757 0.0514 (6.4b)
0.0339 0.0514 0.0170

) 0.2192 —0.1136 —0.0485
Q. =103 [ —0.1136 0.6585 —0.0131|. (6.4c)
—0.0485 —0.0131  0.5778

As was seen in Figure 6.5a, where the acceleration measatemere plotted, these
have greater covariance compared to data set UD1. The Ispatialation still seems
to be quite low since the covariance ellipses are fairlyudac The magnetometer mea-
surements, shown in Figure 6.5b, also have greater coear@mpared to data set UD1.
Here, the covariance matrices are not circular, indicatiag there are spatial correlation
between the components of the sensor. Trying to hold thesstil by hand, it is easy to
drift a little bit in attitude. This will give a linear trendhithe accelerometer and magne-
tometer measurement. These are therefore removed befoputing the autocorrelation
function of the measurements, which are shown in Figure.6lttdéan be seen that the
accelerometer and gyroscope readings are fairly white @gdsethe magnetometer read-
ings are strongly correlated in time. The distributionsted measurements, plotted in
Figure 6.12, show that the accelerometer measurementtoaeeto Gaussian whereas at
least one of the magnetometer components seems non-Gausk&conclusion drawn
from this is that the movements in the accelerometer meamnts can be approximated
by white Gaussian noise, whereas the magnetometer meamueneeds to be dynami-
cally modeled.

The natural choice of model structure for the magnetometssurements is an au-
toregressiveAr, model since only a time series of data is available. ARemodel can

be written as )

T Tvagtag 2"
Before modeling, average and linear trends are removed diata For model order se-
lection, the fit (see Ljung (2006)) for the output to the 5 stBpad prediction is evaluated.
For thee’, andeg axes it does not seem possible to gain much by choosing a robdel
higher order than 2. The model fit obtained is slightly moantd0%. The situation for
the eb-axis is different and it is hard to get good fit with any modeder. One possible
reason for this difference could be that the person holdiegmu is shaking more in the

b, eb-plane than in the® direction. This can also be seen in Figure 6.6b. The estinate

xr Yy
model parameters are presented in Table 6.2 with model fih&5 step prediction.

Yt (6.5)
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Figure 6.12: Distributions for the measurements from data set UD2.

Table 6.2: Noise model parameters, estimated from magnetometer megasnts in
data set UD2.

Axis |

as | Model fit | Poles

el

z
%
eZ

—0.6494
—0.6268
—0.4794

—0.3348 | 43.16% 0.9882, —0.3388
—0.3589 | 40.92% 0.9895, —0.3627
—0.3339 | —4.90% | 0.8653, —0.3859
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TheArR-model can also be written as a state space model, the obdgyvaanonical
form (see Section 2.1.2) is

—ay 1 0
Tey1 = (Z; 0) v + (Et) (6.62)

Y= (1 0) Ty (6.6b)

The auto correlation functions for t&-model residuals are shown in Figure 6.13 where
it can be seen that they are fairly white. Compare with thésgloFigure 6.11 to see the
difference by using a movement model. The distributionshefriesiduals are shown in
Figure 6.14, using the motion model these can be approxthestevhite and Gaussian.

1 1 1
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Figure 6.13: Auto correlation functions for the magnetometer residuaisg mo-
tion model.
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Figure 6.14: The distributions of the residuals for the magnetometéngusiotion
model.



64

6 Measurement Data and Motion Modeling




Disturbance Detection for IMU

HE MAGNETOMETER IS USEDt0 measure the earth magnetic field which is very weak.
If the sensor is close to a ferromagnetic object or anothgnmaiic field it is, as said
before, easily disturbed. Such a disturbance must be eéetéztavoid erroneous attitude
estimation. The accelerometer is affected both by grawvity laody accelerations. For
attitude estimation, the direction of the gravity vectouised. Body accelerations are
therefore seen as disturbances that must be detected.

7.1 IMU Model and Detection Algorithm

This section will give a summary of the attitude model useddisturbance detection
on the magnetometers and accelerometers. The total deniatthe model is given in
Chapter 5. The linearized state space model is given by

T T
Qt+1 = <I4 + §S(Wzl>)w,t)> qe + 55/(%) vt (7.1a)
N——
Ap, 2ay
. U1t HY
= (1) = I (datdm , 7.1b
IS
N—— LHd
£H,

where the matrice#/* and H;* are given by (5.22) and (5.23) and

0 —wy —wy —w,
We 0 w, —Ww

S (W) oy w0 w | (7.2)
W, Wy Wy 0
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wherewp, , = (wz  wy w.)". The set of sensors;, are then{§, , 7, } which wil
be used in the detection filter algorithm. The batched forsouised in Section 2.1.3 will
have the following form

Y = Oy 41 + H'U+ HD 4+ H'V + E. (7.3)

The linearization is done around a predicted trajecto i, given an estimate of the
initial state in the window the trajectory is predicted ir tiiindow only using (7.1a).

If the fault is parameterized, it is assumed that the profil¢he disturbance is a
smooth function with respect to time. Thus, the disturbasmgd be parameterized as
in Section 2.2. Each dimension in the disturbance vectorddeted separately, si’
denotes the stacked system matrix for dimengiofhis matrix is built up as (2.10) but
using thei:th column of H. The stacked system can now be written as

ng . ) B
Y =0w i1+ H'D + H'V+E, (7.4)
i=1
whereDD* = (dLLH v di ) . Each component of the disturbance is then modeled
as
dy = (/53:1:91‘- (7.5)

The influence of the disturbances can now be described as

01
nd . ) B - )
ZHf]D)l = (Hgl1 - HE “) diag(of -0, ) | ¢ |- (7.6)
1=1 a ond
20 N ,
20

In the tests in Section 7.2, a third order basis is choserhiofault. A plot of the basis
functions are shown in Example 2.1, Figure 2.1a.

The state estimation filter, including the disturbance déia, can be described as in
Algorithm 7.1. The fault parameterization, described abo&n either be used or not in
step 3.

7.2 Test Results

The detection method presented in Section 7.1 is evaluatédeodata sets presented in
Section 6.1. The algorithm is tested both with and withouapeeterization of the faults.

7.2.1 Linearized Hypothesis Testing

The detection filter described in Algorithm 7.1 without faphrameterization is used
throughout this section. The window length is 10 samplesthedhreshold for detection
is set to a confidence level of 1 %.
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Algorithm 7.1 Detection Filter

1. Time update according to thexF in Algorithm 2.2.

2. Measurement update using non-disturbed sensors. THnis according to the
EKF in Algorithm 2.2, but the measurement equation is limitedhte set of non-
disturbed sensors,. That is

y=|hia)|. ies 7.7)

3. Detection of disturbed sensors. Detection is done etloeording to the parity
space method described in Section 4.3.1 or using the snmgpdipiproach in Sec-
tion 4.3.3. The sef is updated accordingly.

Data set UD1

The first test is done on the undisturbed data set UD1. In dalérne the detection

filter, the noise covariances of the sensors have to be kndWe.noise covariances are
estimated in Section 6.2 and given by (6.1), (6.2) and (6\B)te that the noise of the
gyroscope is treated as process noise since the gyrosappz & modeled as an input.
Using these noise covariances, the test statistic for thgnetameter is shown in Fig-
ure 7.1 and the accelerometer in Figure 7.2. The test stdtistthe parity space method
and smoothing method has 26 and 30 degrees of freedom rigghecThe degrees of

freedom should theoretically be the average of the Chitsqdiatributed test statistic, see
discussion in Section 4.3.4. The averages for the testexppdi the magnetometer and
accelerometer correspond well to the theoretical valuésiwtan be seen in Table 7.1.

Table 7.1: Test statistic data for data set UDL,is the theoretical averagg, the
obtained average aridthe threshold for detection.

Sensor | Method | p | & | h

Magnetometer parity 26 | 26.75| 45.6
Magnetometern smoothing| 30 | 30.47| 50.9
Accelerometer| parity 26 | 25.28| 45.6

Accelerometer] smoothing| 30 | 28.68 | 50.9
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Figure 7.1: The test statistics for the magnetometer in data set UD1.aVbeages
are 26.75 for parity space and 30.47 for smoothing.
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Figure 7.2: The test statistics for the accelerometer in data set UDg. dilerages
are 25.28 for parity space and 28.68 for smoothing.
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Data set D1

A strong magnetometer disturbance is present in data sevtbérwise the setup is the
same as in data set UD1. The influence of the disturbance oteshestatistic of the
magnetometer can be seen in Figure 7.3. It can be noted thaesh statistic for the
smoothing method reacts more than for the parity space methis is partly because
the effective window for the smoothing method is larger tf@nparity space. Using a
Kalman filter estimate of the state in combination with théada the window, as done
in the smoothing method, can be seen as a way of extendingittuow. See also the
discussion in Section 4.4.3. The use of the Kalman filterestt can also be a drawback.
During the period of disturbance, the estimation of theestatan only be done using
the accelerometer. Since this implies only partial obdahta of the states, there will
be a drift in the estimate of the unobservable part. The efiethis drift can be seen
in Figure 7.3, where the test statistic is greater than gstétical average even after the
disturbance has disappeared. The accelerometer has mdodiste and that is also shown
by the test statistics presented in Figure 7.4.
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Figure 7.3: The test statistics for the magnetometer in data set D1.
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Figure 7.4: The test statistics for the accelerometer in data set D1.
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Data set D2

The data set D2 has a weaker disturbance on the magnetoifteteest statistics for the
magnetometer is shown in Figure 7.5. The parity space métasgroblems detecting the
disturbance with the given window length. Using the smaajhinethod, the disturbance
becomes visible. The test statistic for the acceleromstanaffected as can be seen in
Figure 7.6.
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Figure 7.5: The test statistics for the magnetometer in data set D2.
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Figure 7.6: The test statistics for the accelerometer in data set D2.
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Data set UD2

For the data set UD2, the IMU is held still by hand. The movetsi@rtroduced by the
person holding the IMU are modeled as white Gaussian nogé&@covariance matrices
estimated from the data is given in (6.4). Interesting tensthat the cross covariances
are big, especially for the gyroscopes and the magnetométeing these covariance
matrices, the test statistics for the magnetometer candseisd-igure 7.7. The averages
of the test statistics can be seen in Table 7.2 and it can leel tioat they are much lower
than the theoretical values. It was however seen in Sectidrin@t the noise for the
magnetometer was poorly modeled with white Gaussian ndiggs modeling error is
likely to cause the deviations from the theoretical thrédéo

Table 7.2: Test statistic data for data set UDZ2,is the theoretical averagg, the
obtained average aridthe threshold for detection.

Sensor | Method | p | & | h

Magnetometen parity 26 | 10.24| 45.6
Magnetometery smoothing| 30 | 14.93| 50.9
Accelerometer| parity 26 | 18.20| 45.6

Accelerometer; smoothing| 30 | 23.72| 50.9
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Figure 7.7: The test statistics for the magnetometer in data set UD2.aVBeages
are 10.8 for parity space and 21.1 for smoothing.
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Figure 7.8: The test statistics for the accelerometer in data set UD2. dllerages
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Data set UD3

For data set UD3, the IMU is rotated by hand around a%isThe test statistics for the
magnetometer and accelerometer can be seen in Figure 7REhdespectively. It can
be seen that the test statistic both for parity space and thingdfor the magnetometer
is above the theoretical average during the rotation pgsachple 100-550). This dis-
crepancy is partly due to linearization errors since thediization is very sensitive to
erroneous state estimates. It is also due to alignmentssofdhe magnetometer, see the
discussion in Section 7.3. The test statistic for the acogieter is also above the theo-
retical mean during the rotation. This is because it is hatdashake the sensor during
hand-held rotation. Due to these errors in the fault-freecthe thresholds are set to 100
and 500 for the magnetometer and accelerometer respgctivel
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Figure 7.9: The test statistics for the magnetometer in data set UD3.
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Figure 7.10: The test statistics for the accelerometer in data set UD3.
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Data set D3

Data set D3 is collected when the IMU is rotated by hand arcaxisle’, and during
the rotation, the magnetometer is disturbed. The threshadgd are the same as for
data set UD3 since the conditions (except the disturbameegimilar. The test statistic
for the magnetometer is shown in Figure 7.11. It can be seantlie disturbance is
detected by the parity space method and that the test stagets a higher value than
for the undisturbed case (UD3). The smoothing method haglaehivalue of the test
statistic during the disturbance period. The test stafidtir the accelerometer is shown
in Figure 7.12 and it can be seen here as well that the moveméttte IMU increases
during the rotation period (sample 100-600).
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Figure 7.11: The test statistics for the magnetometer in data set D3.
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Figure 7.12: The test statistics for the accelerometer in data set D3.
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Data set D4

The data set D4 is again hand-held measurements but contanasations. The IMU is
here accelerated along thg-axis. The test statistic for the magnetometer can be seen in
Figure 7.13 and is clearly not disturbed. The test statigticthe accelerometer is shown

in Figure 7.14. It can be seen that the disturbance is detédth with parity space and
smoothing.
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Figure 7.13: The test statistics for the magnetometer in data set D4.
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Figure 7.14: The test statistics for the accelerometer in data set D4.
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7.2.2 Linearized Hypothesis Testing with Fault Parameteri  zation

In this section, the fault is parameterized as describe@atién 7.1. A third order model
is used to describe the disturbance in each dimension. Eados having three dimen-
sions, will then have a ninth order model. The Chi-squar&ibiged test statistic will
then have 9 degrees of freedom which also should be the a/esag Section 2.7.2. The
window length is 10 samples and the threshold for detecticei to a confidence level of
1%.

The first test is done on data set UD1, where the sensor isturtasl. The test
statistics for the magnetometer can be seen in Figure 7.1 aVerages for the test
statistics are 9.28 and 9.75 for parity space and smoothspectively, which correspond
quite good to the theoretical value. The test statisticsferaccelerometer are shown in
Figure 7.16. The averages are somewhat larger, 10.39 a8d.10.

Table 7.3: Test statistic data for data set UDL,is the theoretical averagg, the
obtained average aridthe threshold for detection.

Sensor | Method | 1 | i | h
Magnetometen parity 9 |9.28 | 21.66
Magnetometen smoothing| 9 | 9.75 | 21.66
9
9

Accelerometern parity 10.39| 21.66
Accelerometery smoothing 10.87 | 21.66
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Figure 7.15: The test statistics for the magnetometer in data set UDQusihird
order basis in each dimension. The averages are 9.28 fay gpdce and 9.75 for
smoothing.
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Figure 7.16: The test statistics for the accelerometer in data set UD1gusithird
order basis in each dimension. The averages are 10.39 for gaace and 10.87 for
smoothing.
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Data set D1

The results for the disturbed data set D1 can be seen in Figgtiieand 7.18 for the
magnetometer and accelerometer respectively. It is isti@geto note that the value of
the test statistics for the magnetometer during the diangb are equally large as when
the disturbance is not parameterized (see Figure 7.3). mbans that the model of the
disturbance is a good description of the real disturbanueesihe part of the signal not
described by the model is projected away. During the undistliperiods, the average is
lowered to approximately/3 compared to not using parameterization. A bigger ratio be-
tween disturbed and undisturbed periods increases therpd\ree test. The test statistic
for the accelerometer indicates no disturbances.
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Figure 7.17: The test statistics for the magnetometer in data set D1 wsithgrd
order basis in each dimension.
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Figure 7.18: The test statistics for the accelerometer in data set DIgusithird
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Data set UD2

The IMU is held still by hand in data set UD2. The test statsstising a third order
parameterization for disturbances are shown in Figure&@ntid.20 for the magnetometer
and accelerometer respectively. It can be seen that batégistics for the magnetometer
is lowered to approximatell/2 by using the fault parameterization, compare to Table 7.2.
The average for the accelerometer is just slightly loweraétkvindicates that the fault
model parameterizes the noise. This could probably be adaitioosing a longer time
window for the detection algorithm.

Table 7.4: Test statistic data for data set UDZ,is the theoretical averagg, the
obtained average aridthe threshold for detection.

Sensor | Method | p | 4 | h

Magnetometer parity 9| 4.81 | 21.66
Magnetometen smoothing| 9 | 7.60 | 21.66
Accelerometer| parity 9 | 15.82| 21.66

Accelerometery smoothing| 9 | 20.01| 21.66
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Figure 7.19: The test statistics for the magnetometer in data set UD2jusithird
order basis in each dimension.
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Figure 7.20: The test statistics for the accelerometer in data set UD#yussithird
order basis in each dimension.



7.2 Test Results 87

Data set D2

The test statistics from data set D2, which have a lighteaudisince, are presented in
Figure 7.21 and 7.22. The magnetometer disturbance is baddtect with the parity
space method, but is well detected by the smoothing mettdte ktest statistic for the
smoothing method is compared to the unparameterized t€sgime 7.5, it can be seen
that the value in presence of fault is the same whereas thagesduring fault-free periods
are lowered. The accelerometer is undisturbed which isateflien the tests.
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Figure 7.21: The test statistics for the magnetometer in data set D2 wsithgrd
order basis in each dimension.
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Figure 7.22: The test statistics for the accelerometer in data set Dusithird
order basis in each dimension.
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Data set UD3

Data set UD3 is measured during a rotation of the IMU arourd{kaxis. The test statis-
tics are shown in Figure 7.23 and 7.24. The comments in Se¢tih1 for this data set are
valid even here. The test reacts to changes in the magnétidfie to alignment errors
and to acceleration induced by the person rotating the IMbJavioid drift in the state
estimates, the threshold are set to 100 for the magnetoaredes00 for the magnetome-
ter. Using the theoretical thresholds would lead to deteatihich prevents measurement
updates from the sensor. Since the system is not observéhl@sboth sensors, to long
periods without measurement updates would lead to drifiénstate estimates.
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Figure 7.24: The test statistics for the accelerometer in data set UD&usithird
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Data set D3

The conditions for data set D3 are similar to UD3, except thatmagnetometer is dis-
turbed in D3. The test statistics using third order basistions are shown in Figure 7.25
and 7.26 for the magnetometer and accelerometer resggctibe test statistics is com-
pared to the unparameterized tests (Figure 7.11 and 7.4&) ibe seen that the averages
are lower during fault-free periods, but remains unchartygthg the faulty period.
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Figure 7.25: The test statistics for the magnetometer in data set D3 wsithgrd
order basis in each dimension.
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Figure 7.26: The test statistics for the accelerometer in data set D3usithird

order basis in each dimension.
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Data set D4

In data set D4, the orientation is kept fixed but the IMU is émxaged for a short period of
time. The test statistics for the magnetometer are showigur&7.27. It can be seen that
the magnetometer is not disturbed and that the average té#shstatistics are lower than
the unparameterized. The test statistics for the accektmrare presented in Figure 7.28.
The acceleration disturbances are clearly seen but thageeluring fault-free periods is
not lowered. This indicates, as said earlier, that the ncésebe parameterized by the
fault model.
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Figure 7.27: The test statistics for the magnetometer in data set D4 wsithgrd
order basis in each dimension.
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Figure 7.28: The test statistics for the accelerometer in data set D4usithird
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7.3 Discussion

First consider the data sets where the lies still, that is, data set UD1, D1 and D2. For
those data sets, faults could be detected both with paritgespnd smoothing. However,
the smoothing method gives a greater residual during fqaétyods since the effective
window (the number of samples the initial state is estimditeth) is much bigger. It
could also be seen that fault parameterization gives a lewerage of the test statistic
during fault-free periods, but the value during fault rensathe same. This gives a greater
power of the test.

The data sets where thieu is held in hand are UD2, UD3, D3 and D4. New covari-
ance matrices were estimated for the analysis of these elataisce the movements of the
sensor introduced unmodeled disturbances. The covanmat&es were estimated from
the raw measurements. However, the magnetometer will @agtron attitude changes
which also will be seen through the gyroscope signals. Simeeonnection between gy-
roscope and magnetometer is modeled the covariance wifitbeaged to large. Looking
at the test statistics for the magnetometer in data set URRI(E 7.7 and 7.19), it can
be seen that the average is much lower than the theoretieshtbld. This is caused by
the overestimated covariance. Regarding the acceleromedé disturbances in form of
physical acceleration is introduced when thi® is held in hand. These disturbances are
more realistic to model as an increased covariance matrixehising the fault model,
the average of the test statistic becomes significantlytgreéhan the theoretical value
(Figure 7.20). This is due to that the shakings of the is modeled by the parameteri-
zation, see also Figure 7.29.

0.25

— - — - Parameterized fault}/

Real fault

0.2¢

0.15}

0.1y

0.05}

Time

Figure 7.29: An example of the parameterization of acceleration measeings
from data set UD2.

When rotating the sensor (data set UD3, D3) more unmodestdrances are intro-
duced. Disturbances are detected on the magnetometer iaaersor is rotated. This
can be due to modeling/linearization errors but probablgtig@n alignment errors. The
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IMU has an internal model of the sensor which essentially is
Ym,t = Ay, (7.8)

whereu is the raw sensor data amtlis an alignment matrix. Temperature models are
omitted here. The alignment matrix is used to compensatthéocase where the com-
ponents in the magnetometer are nonorthogonal. Smallseimdhis matrix would give
different strength of the magnetic field depending on thation of the sensor. Data set
UD3 is collected in the middle of a soccer field to avoid disances from magnetic ob-
jects. Even then, the norm of the magnetic field vector chamgdpen the sensor is rotated
(see Figure 7.30). A possible cause of this could be an estgn@lignment matrix. Also
for the accelerometer, faults are detected when the sehsotated even though the sen-
sor should not be accelerated (see Figures 7.10 and 7.2#) isTéxplained by the fact
that it is hard to rotate the sensor by hand without also ntpitin

1.025
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1.015¢

1.01}

1.005}

0.995 : : : :
0 200 400 600 800
Time
Figure 7.30: Norm of the magnetometer measurements during roation &tdta
UD3), it should nominally be 1.

Another observation made during measurements is that tlgmetia field is very
inhomogeneous indoors. Changing the position ofithe also changes the magnitude
of the magnetic field vector. High frequency acceleratiohthe sensor also tend to
disturb the magnetometer. For example moving the sensogaamon-smooth surface
will give high-frequency acceleration due to the frictidduring these circumstances the
magnetometer is clearly disturbed.



Concluding Remarks

TTITUDE AND POSITIONING ESTIMATES subject to disturbances are discussed in
the introduction. The thesis has discussed how these bizstaes and other faults
can be detected. This chapter will conclude the resultsidged in the thesis and point
toward future directions of research.

8.1 Conclusions

The use of statistical tests for fault detection with battHata sets have been discussed
in the thesis. Estimating the initial state in the batch byimum variance estimation
from data in the batch have been shown to be identical toypspice. It was also shown
that using prior knowledge about the initial state in theadzdtch increases the detection
performance. The prior estimate are in the examples hesnaat by Kalman filtering

of data preceding the data batch. However, if the precedatg contain faults, the test
statistic will be influenced even during fault-free periddee Chapter 7). Hence, the
reliability to the prior should be decreased after a faultetected.

The fault parameterization introduced in Section 2.2 piesia low order description
of smooth faults. This increases the power ofthe&-test (discussed in Chapter 4) which
results in a higher probability of detection.

The methods discussed above are implemented for distuglaieiection of anmu.
Theimu is modeled using unit quaternions to represent the orientalMovements (ac-
celeration disturbance) and magnetometer disturbaneatesected, in order not to affect
the estimated orientation. The noise distribution of thesees are well approximated
with white Gaussian noise which gives good correspondeateden practical and the-
oretical results when the sensor is kept at rest. By rotdtiegvu, alignment errors of
the sensor as well as linearization errors become visitideavdid false alarms and drift
of the estimate, the thresholds then has to be higher thaheleetical values.
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The observability of a fault inputs is discussed in ChaptefTBe special cases of
constant and linearly increasing faults are treated anddhditions for observability are
derived. Interpretations are given for the case of constauis.

8.2 Future Work

There are many interesting questions to continue with inatiea of fault detection and
fault diagnosis, some of the questions raised during thikwace:

e The smoothing approach to fault detection introduced ing#ad may be possible
to rewrite recursively. One possible way of doing this migbtto use a Kalman
smoother, but this introduces extra states in the filter. Mthis be a possible
approach and does it lower the computational complexity?

e The detection problem with applicationsiteu disturbances are originally a non-
linear problem that is linearized to suit the methods preesthere. One interesting
extension would be to compare the results using nonlingactien theory.

e Particle filters used for fault detection is a rather unesgdoarea. Can this be a
good way of handling nonlinear systems, such asnhe?

e The observability test for constant (random walk) faultd kmearly growing faults
are derived in Chapter 3. For constant faults, interpretatof the conditions were
given. Can intuitive interpretations be derived even foeéirly growing faults? It
would also be interesting to apply this theory to a real-di@stample.
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Prerequisites in Vector Kinematics
and Mathematics

A.1 Cross-product

Note the following properties of the cross-product

uxv=-vxu (A1)
a(ux v) = (au) x v=ux (av) (A.2)
ux (v4+w)=(uxv)+(uxw) (A.3)
u-(vxw)=v-(wxu=w-(uxv) (A.4)
ux (vxw)=v(w-u)—w(u-v). (A.5)

Note also that it is possible to write the cross-product asfiimmmultiplication, i.e.,
for the 3-dimensional case

0 u3  —Uo U1
uxv=—|—us 0 Uy vy | . (A.6)
U9 —U1 0 U3

A.2 Vector Rotation

The vectoru is rotated aroundh as shown in Figure A.1. The new vectorcan be
described as

v=0ON+NW+WV =

_(u- %
=(u-n)n+ u-(u-nn [NV |cosp+ u INV|sinp, (A7)
[u—(u-n)nj— —2  |u|sing ———
|INW| o wv
WVvT

101



102 A Prerequisites in Vector Kinematics and Mathematics

whereON denotes the vector that points frathto NV and so on. Note that
INV|=|NU|=|u- (u-n)n| = |u|sin¢.

Then,
v = (1 —cosp)n(n-u)+ cospu — sin u(n x u), (A.8)

which is often referred to as thetation formula

Figure A.1: The vecton is rotated around.

A.3 Direction Cosines

To describe the direction of a vector in a unique way, thedtivae cosines is a useful
tool. The anglesy, 5 and~ in Figure A.2 are used. The cosine of the angles will be the
projections onto the basis axes. Itis possible to desdnibdirection ot using only two
angles, this is the case when using spherical coordinatesraght part of Figure A.2.
The problem with this description is that a vector pointinghie direction off, can have
any anglep, which is clearly not a unique description.

Observe the following property of the direction cosinese Tieorem of Pythagoras
can be written

In|? cos? & + |n|? cos? B+ |n|* cos? v = |n|?.

This yields that
cos? a4 cos® B + cos?y = 1. (A.9)
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=

fa

Figure A.2: Describing the vectasi can be done using the direction angless and
~ (left) or using only two angles (right).
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Quaternion preliminaries

HE QUATERNIONS WERE INVENTEDby Sir William Rowan Hamilton as a way to
T extend the imaginary numbers, see Hamilton (1844). Thequiternion have later
shown to be a useful tool for attitude representations. Aprefmensive description of
unit quaternions is given by Kuipers (1999) and a nice suofettitude representations
is given by Shuster (1993). A good primer on unit quaternfonattitude representations
of airplanes is given by Stevens and Lewis (2003).

B.1 Operations and Properties

The quaternion is a four-tuple with the elemeggs. .., ¢s. It can also be viewed as a
vector consisting of the scalag and the vectoy.

do
q1 q0

1 a2 (Q) (B.1)

q3

Multiplication of two quaternions denoted with is defined as
bo q0 Pogo —P-9q

©q= © = . B.2
rer=(5)2(8) = (uaVon o) @2
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The quaternions have the following properties:

POG#FqOp (B.3)

3
normig) = » q; (B.4)

1=0
norm(p ® ¢) = norm(p) - norm(q) (B.5)
(PO Or=po(¢or) (B.6)

-1

@ e
(WoOw) =g og! (B.8)

B.2 Describing a Rotation with Quaternions

cos 0
= (sin5n) ’ (B.9)

which describes a rotation around the unit veetoiT his unit vector can be described as
in Section A.3 with the directional cosines

Consider the vector

cos «
n=|cosf|. (B.10)
cosy
Note that
q%q = cos® § + sin® §(cos? o 4 cos® B + cos? y) = 1, (B.11)

which is also a necessity for the quaternion in order to isgmea rotation. The variable
0 is a measure of the rotation angle as we will see later.

There are two ways of visually describing a rotation. Eitheector is rotated around
another vector or the coordinate frame is rotated around®reee Figure B.1. When a
vector is rotated the transformation gives the new vectoraioates in the frame which
remains fixed. When the frame is rotated the vector cooréiate transformed to the
new frame. Mathematically, the difference is only the sifithe rotation angle.

To rotate the vecton aroundn, (A.8) and Figure A.1 can be used. Observe that
the vector rotation is done counterclockwise, which coujdaly be seen as rotating the
coordinate frame clockwise. This rotation can be done ugumgternion algebra. I§
represents a rotation aroundthe rotated vector can be described as

v=¢tOuoyg, (B.12)

v = (3) and u = (3) . (B.13)

An alternative description is to use

where

vzq@u@gil. (B.14)
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Figure B.1: In the left figure, a vector is rotated counterclockwise vaittglep. In
the right figure, the coordinate frame is rotated clockwigté angley..

With this representation vector rotation becomes clockwisd coordinate frame rotation
counterclockwise. However, in this work, (B.12) is viewexthe standard rotation.
The result of the quaternion multiplication in (B.12) is

q-ug — (gu—qgxu)-q
= : B.15

! ((q-u)q+qo(qouq><u)+(qouq><u)><q) (8.15)
which simplifies to (note the use of (A.5) for the last termtie second row)

0
= . B.16
b (2(q-u)q+(q3—q-q)u—2qoq><u) (B.16)
If (B.9) is used, this can be rewritten as

0
oo <2 sin? én(n - u) + (cos? § — sin® §)u — 2 cos § sin (n x u)> . (B17)

This should be compared with (A.8), since the second row lshgive the same result.
If § = p/2 and some trigonometric identities are applied the resuétsegual. Thus,
insertingd = 1/2 in (B.9), the unit quaternion

= (COS(“/Q) > (B.18)

sin(u/2)n
describes a counterclockwise vector rotation or a clockwisordinate frame rotation
aroundn with angleg.
Observe that rotating first witf, and then withy, can be done in one step by rotating
by ¢, ® q». Using (B.8) this is easily seen since

0 0@ Ouew O =(0.00) " 0ud (g6 a). (B.19)

B.3 Rotation Matrix

It is possible to rewrite the quaternion multiplication BL{2) as a matrix multiplication.
Rewriting (B.16) on the form of

(?f) - ( R((;)u) (B.20)
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using (A.6) yields

(qg + Q% - q% - q%) 2(¢]1Q2 + QOQB) 2((]1(]3 - QOQQ)
R(@)=| 2(me2—qa) (@B—-G+6—a) 209203+ qoq)
2(q1g3 + q0q2) 2(g2q3 — qoq1) (a5 —dF — @5 +43)

(B.21)
This is also described in (Kuipers, 1999, p. 158).

B.4 Dynamics

Consider a moving body system. The description of the mtabietween the F-system
(fixed system) and the B-system (body system) will then dostame dynamics. In order
to derive the dynamic equations, the time derivative of taments of the unit quaternion
will be calculated.

Let g, ¢ (t) represent the rotation of the B-system with respect to tegdtem at time
t. Furthermore, let the instantaneous angular velocity @Bfsystem be in the direction
of the unit vectoi®, with magnitudev, which is represented in the B-system. Then, the
unit quaternioniq,; describes the rotation arousl during the small time intervait.
Using small angles approximation and (B.18) this can be@rias

1
0500 ~ (43,5072 - (8.22)
Then, the rotated unit quaternion can be represented as

Qof(t+0t) = quy(t) © dquy (0t). (B.23)

The derivative ofy, ¢ (t) can then be written as

o5 (1) © (9gvy (91) — Iy)

dgoy(t) _ o st +6) — a5 (D)

dt 5t—0 ot - 61151310 ot -
, Sqop(ot) I 1 0 1
= lim ¢,y () © (# = 5—1 =50 O (g, | = 50s(1) O wiy, (B.24)

where, represents the unit quaternion anglf represents the angular velocity of the
B-system relative to the F-system expressed in the B-sydb@mompose the unit quater-
nions as

qo 0
_ q1 ) b Wy o 0
oy = ol = (q> and wy; = oy | = <w> . (B.25)
qs Wz

Then, the quaternion multiplication in (B.24) can be writi@s a matrix multiplication
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with help of (B.2), (A.6) and (A.1).
. 1 b 1 —q-w
_(qlwz + qawy + q3ws)
1 0 —w. wy Q1 B
2 gw—| w. 0 —w||@||
—Wy Wy 0 q3
0 —wy —wy —w, qo
_lfw: O W,  —wy a | _
2 wy —w. 0wy @ |
Wz Wy —Wg 0 q3
S(ng)
*qfh *gz *qQB Wa
o —g3 2
= w B.26
B3 Qo —q v )
Wy
—q2 g1 qo

25 (qvf)
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