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Abstract— This paper presents a novel approach to the
estimation of a general class of dynamic nonlinear system
models. The main contribution is the use of a tool from
mathematical statistics, known as Fishers’ identity, to establish
how so-called “particle smoothing” methods may be employed
to compute gradients of maximum-likelihood and associated
prediction error cost criteria.

I. INTRODUCTION

The field of linear dynamic system identification is by
now quite mature. A comprehensive, unified and effective
framework has been developed for understanding the various
approaches which have proven effective [1–3]. This involves
noting the distinctions between model structure, estimation
criterion, and employed algorithm. Central to this is the
straightforward computability for linear systems of a mean
square optimal one-step ahead predictor via a Kalman or
Wiener filter.

The estimation of systems governed by nonlinear dynam-
ics is a much more open research topic, which continues
to attract significant attention [1, 4]. It is a challenging
problem, for which it has proven to be effective to restrict
attention to focused nonlinear structure subsets. Examples
include work targeted at Hammerstein–Wiener [5], Volterra
kernel [6], nonlinear ARMAX (NARMAX) [7] and neural
network structures [8].

Underlying this approach is the fact that for general
nonlinear model structures, the issue of computing one-
step ahead predictors is much less straightforward than in
the linear case. Targeting specific nonlinear sub-structures
provides one means for managing this difficulty.

Of key relevance to this issue has been the recent develop-
ment of sequential importance resampling (SIR) techniques,
which are more colloquially known as “particle filters” [9–
12]. These are techniques for obtaining approximate solu-
tions to the time and measurement update equations for
predictors for general nonlinear models.

This paper employs these SIR methods in order to address
the topic of parameter estimation for a rather general class
of nonlinear systems. The SIR techniques are used as an
approach for computing the prediction error criterion cost
for a given parameter value. Finding a parameter estimate
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then requires computing the minimum of this cost. In the
linear system case, this is routinely solved via a gradient-
based search approach [1, 13].

Unfortunately extending this technique to the nonlinear
case using SIR methods leads to a fundamental difficulty.
The gradient of the predictor with respect to the parameters
is not readily obtained via SIR algorithms. To address this
difficulty, in previous work the expectation–maximisation
(EM) algorithm has been examined as one approach to
avoiding the problem of computing predictor gradients [14,
15].

This paper proposes an alternate approach by noting that a
result from statistics, known as Fisher’s identity, provides a
means where the required gradients may be computed using
a particle smoother (as opposed to a particle filter).

II. PROBLEM FORMULATION

This paper considers the following general nonlinear state-
space model structure

xt+1 = ft(xt, ut, θ) + vt(θ), (1a)
yt = ht(xt, ut, θ) + et(θ). (1b)

Here, xt ∈ Rnx denotes the state variable, with ut ∈ Rnu

and yt ∈ Rny denoting (respectively) observed input and
output responses.

Furthermore, θ ∈ Rnθ is a vector of (unknown) parameters
that specifies the mappings ft(·) and ht(·) which may be
of arbitrary form, and hence nonlinear. Note that via the
subscript t, the functions ft and ht may also be time varying.

Finally, vt and et represent mutually independent vector
i.i.d. processes described by the probability density functions
(pdf’s) pv(·) and pe(·). These are assumed to be of known
form, but parameterized (e.g. mean and variance) by values
that can be absorbed into θ for estimation if necessary.

The problem studied here is the formation of an estimate
θ̂ of the parameter vector θ based on N measurements

UN , [u1, · · · , uN ], YN , [y1, · · · , yN ], (2)

of observed system input-output responses. In addressing this
problem, it will prove important to note that the model (1)
permits an alternative probabilistic description according to

xt+1 ∼ pθ(xt+1 | xt) = pv(xt+1 − ft(xt, ut, θ)), (3a)
yt ∼ pθ(yt | xt) = pe(yt − ht(xt, ut, θ)). (3b)

Note that here we have adopted a common practice of
streamlining notation by labeling different pdf’s with the
same identifier pθ, with the understanding that the arguments
determine what is intended.



III. MAXIMUM LIKELIHOOD AND PREDICTION ERROR
ESTIMATION

To address this estimation problem, this paper considers
the maximum-likelihood (ML) approach [1] that delivers θ̂ as
the value maximising the joint density (likelihood) pθ(YN )
of the observations:

θ̂ = arg max
θ∈Θ

pθ(y1, · · · , yN ), (4)

with Θ ⊆ Rnθ denoting a compact set of permissible values
of the unknown parameter θ.

In this paper, the input is assumed observed in a noise
free manner, and is not a random variable. Hence it does not
appear as an argument to the above density pθ, although the
form of that density will depend on it.

To compute (4), Bayes’ rule may be used to decompose
the joint density according to

pθ(y1, · · · , yN ) = pθ(y1)
N∏

t=2

pθ(yt|Yt−1). (5)

Accordingly, since the logarithm is a monotonic function, the
maximisation problem (4) is equivalent to the minimisation
problem

θ̂ = arg min
θ∈Θ

−Lθ(YN ), (6)

where Lθ(YN ) is the log-likelihood

Lθ(YN ) , log pθ(YN ) = log pθ(y1) +
N∑

t=2

log pθ(yt | Yt−1).

(7)
The mean square optimal one-step ahead predictor of yt

based on the model (1) is given by the conditional mean

ŷt|t−1(θ) = Eθ{yt | Yt−1} =
∫

yt pθ(yt | Yt−1) dyt (8)

and is related to yt according to

yt = ŷt|t−1(θ) + εt, (9)

where {εt} is a zero mean uncorrelated process [16]. Ac-
cordingly (7) may be expressed as

Lθ(YN ) = log pθ(y1) +
N∑

t=2

log pε(εt(θ)) (10)

where pε(·) is the density of εt, which we assume here to
be strongly stationary.

As N grows, the second term will dominate this expres-
sion, which will allow the ML estimate to be seen as a case
of the more general prediction error (PE) framework:

θ̂ = arg min
θ∈Θ

V (θ), V (θ) =
N∑

t=1

`(εt(θ)), (11)

where `(·) is an arbitrary and user-chosen positive function.
The choice `(·) = − log pε(·) then establishes the ML
estimate as an instance of the PE one. Possibly the most
common choice for `(·) is the “least squares” one

`(x) = xT x = ‖x‖2 (12)

which is also the one studied here. This situation (11)–(12)
is also an example of the ML approach, when εt is Gaussian.
Equally then, a PE method may be encompassed by an ML
approach with appropriate choice for the densities in the
model (1).

Both methods depend on knowledge of the prediction
density pθ(yt | Yt−1). In the linear and Gaussian case, a
Kalman filter can be employed. In the nonlinear case (1)
an alternate solution is required. This paper examines an
approach based on sequential importance resampling.

IV. SEQUENTIAL IMPORTANCE RESAMPLING (SIR)

By the law of total probability and the Markov nature of
the nonlinear model (1), the prediction density pθ(yt | Yt−1)
can be expressed as

pθ(yt | Yt−1) =
∫

pθ(yt | xt)pθ(xt | Yt−1) dxt. (13)

Additionally, by the definition of conditional probability

pθ(xt | Yt) =
pθ(xt, Yt)

pθ(Yt)

=
pθ(yt, Yt−1, xt)
pθ(Yt−1, xt)

· pθ(Yt−1, xt)
pθ(Yt−1)

· pθ(Yt−1)
pθ(Yt)

=
pθ(yt | xt) pθ(xt | Yt−1)

pθ(yt | Yt−1)
. (14)

Furthermore, again by the law of total probability and the
Markov nature of (1)

pθ(xt+1 | Yt) =
∫

pθ(xt+1 | xt) pθ(xt | Yt) dxt. (15)

Together (14) and (15) are the general so-called ’measure-
ment update’ and ’time update’ equations solving the general
nonlinear filtering problem, with (15) being an instance of
the Chapman–Kolmogorov equation.

Unfortunately, there are very few cases, such as the
linear Gaussian, and the discrete time, discrete state Hidden
Markov model situation for which (13)–(15) have closed
form solutions. The first one is widely known as the Kalman
filter.

More generally then, it is necessary to numerically eval-
uate (13)–(15). This is a significant challenge, primarily
since (13) and (15) imply the numerical evaluation of an
nx dimensional integral.

Sequential importance resampling (SIR) is an effective
approach for approximately solving (13)–(15). The essential
idea is to rely on the strong law of large numbers (SLLN).
More specifically, SIR generates a set indexed by i ∈
[1,M ] of randomly distributed “particles” x̃i

t and associated
“weights” wi

t such that

1
M

M∑
i=1

g(x̃i
t)w

i
t ≈

∫
g(x̃t)pθ(x̃t | Yt) dx̃t, (16)

where g is an arbitrary (Lebesgue measurable) function, and
M is a user chosen number of particles. The approximation
in (16) is based on the principle that by the SLLN, the sample
average of the random variables on the left of (16) converges



as M → ∞ to the expected value on the right of (16) with
probability one.

The required particles with appropriate random
distribution and associated weights can be simply generated
by the following particle filter algorithm [9–12].

Algorithm 4.1: Particle Filter
1) Initialize particles, {xi

0}M
i=1 ∼ pθ(x0) and set t = 1;

2) Generate new particles by drawing M i.i.d. samples
according to

x̃i
t ∼ pθ(x̃t|xi

t−1), i = 1, . . . ,M. (17)

3) Compute the importance weights {wi
t}M

i=1,

wi
t =

pθ(yt|x̃i
t)∑M

j=1 pθ(yt|x̃j
t )

, i = 1, . . . ,M. (18)

4) For each j = 1, . . . ,M draw a new particle xj
t with

replacement (resample) according to,

P(xj
t = x̃i

t) = wi
t, i = 1, . . . ,M. (19)

5) If t < N increment t 7→ t + 1 and return to step 2,
otherwise terminate.

Note that the step (17) is simple to implement. Via the
model (1a) it simply involves using an appropriate random
number generator to deliver a realisation from the density
pv , and then adding this to the evaluation of ft(xi

t−1, ut, θ).
Similarly, the step (18) is uncomplicated, since by (3b)

is simply involves the evaluation of the function pe with
appropriately chosen argument.

Finally, the step (19) is also simple. It is achieved by
drawing a realisation γj from a random number generator
that is uniformly distributed in the interval [0, 1], and then
choosing xj

t as the element x̃i
t corresponding to the largest

wi
t satisfying wi

t < γj .
Algorithm 4.1 together with the principle (16) and the

model (1) allows the one-step ahead predictor (8) to be
approximated as

ŷt|t−1(θ) = Eθ{ht(xt, ut, θ) | Yt} ≈
M∑
i=1

wi
tht(x̃i

t, ut, θ).

(20)

In turn, this allows the prediction error cost (11) or likelihood
(10) to be approximated.

Concentrating on the PE approach for a moment, attention
then turns to computing the minimiser θ̂. In the linear
system case, an iterative gradient-based search strategy is
the standard approach. This has the general form, whereby
an estimate θk of the minimiser θ̂ is refined to a better one
via the update

θk+1 = θk + µkpk, pk = Hkgk, (21a)

gk = V ′
N (θk) ,

d
dθ

VN (θ)
∣∣∣∣
θ=θk

. (21b)

Here, Hk is a positive definite matrix that delivers a search
direction pk by modifying the gradient direction, and µk is
a step length.

It is natural to consider applying this same strategy in the
nonlinear case. This requires computation of the gradient

V ′
N (θk) = −

N∑
t=1

d
dεt(θ)

`(εt(θk))
d
dθ

ŷt|t−1(θ)
∣∣∣∣
θ=θk

. (22)

Unfortunately, this raises a fundamental difficulty with the
particle filtering approach, since it involves a predictor (20)
for which the derivative with respect to θ is not computable.

This is because the particles x̃i
t depend on θ via (17)-(19)

in a random manner. The same problem in determining the
gradient L′

θ(YN ) arises in seeking a maximum likelihood
estimate via an equivalent argument.

The main contribution of this paper is to examine how de-
spite these difficulties, the likelihood gradient, and associated
prediction error cost gradient can, in fact, be computed by
particle methods. The key step is to employ what is known as
Fisher’s identity, which establishes that employing a particle
smoother rather than a filter allows the required gradient to
be evaluated.

V. FISHER’S IDENTITY

Fisher’s identity is a result from mathematical statis-
tics [19]. It is relevant to the study of likelihood functions
Lθ(X, YN ) that involve the postulated availability of extra
data X , in addition to the available data YN . Usually, the
rationale for considering this is that the maximum likelihood
estimation problem would be easier to solve if X was
available.

Since in fact, X is not available, as a fallback to resorting
to Lθ(YN ), another possibility is to use an approximation
Q(θ, θk) for Lθ(X, YN ) which is formed by taking its
conditional mean:

Q(θ, θk) , Eθk
{Lθ(X, YN ) | YN} (23a)

=
∫

Lθ(X, YN )pθk
(X|YN ) dX. (23b)

Fisher’s identity establishes equality between the gradient of
this approximation Q(θ, θk) and the gradient of the available
likelihood Lθ(YN ).

Lemma 5.1:

d
dθ
Q(θ, θk)

∣∣∣∣
θ=θk

=
d
dθ

Lθ(YN )
∣∣∣∣
θ=θk

. (24)

Proof: The proof is available in the literature [19],
but is reproduced here in the interests of a self contained



presentation.

d
dθ
Q(θ, θk) =

d
dθ

∫
log pθ(X, YN )pθk

(X | YN )dX

=
∫

p′θ(X, YN )
pθ(X, YN )

pθk
(X | YN )dX

=
∫

d
dθ

[pθ(YN )pθ(X | YN )]
pθk

(X | YN )
pθ(X, YN )

dX

=
∫

p′θ(YN )pθ(X | YN )
pθk

(X | YN )
pθ(X, YN )

dX +∫
pθ(YN )p′θ(X | YN )

pθk
(X | YN )

pθ(X, YN )
dX

=
∫

p′θ(YN )
pθ(YN )

pθk
(X | YN )dX +∫

p′θ(X | YN )
pθ(X | YN )

pθk
(X | YN )dX

=
d
dθ

log pθ(YN ) +∫
d
dθ

pθ(X | YN )
pθk

(X | YN )
pθ(X | YN )

dX.

Evaluating both sides at θ = θk then delivers the result.
The result is typically used for theoretical analysis of the
Expectation-Maximisation (EM) algorithm [19].

However, in this paper it provides a means for computing
the gradient L′(θ) by providing an alternative formulation
for it.

VI. GRADIENT COMPUTATION VIA PARTICLE
SMOOTHING

In this paper, the unavailable data X will be taken as a
record of the underlying state vector in the model (1)

X = XN , [x1, x2, · · · , xN ]. (25)

Using this, Bayes’ rule and the Markov property results in

Lθ(XN , YN ) = log pθ(YN |XN ) + log pθ(XN )

= log pθ(x1) +
N−1∑
t=1

log pθ(xt+1|xt) +
N∑

t=1

log pθ(yt|xt).

(26)

Taking the conditional expectation of both sides of this
expression then delivers the function Q(θ, θk) defined by
(23a) according to

Q(θ, θk) = I1 + I2 + I3, (27)

where

I1 =
∫

log pθ(x1)pθk
(x1|YN ) dx1, (28a)

I2 =
N−1∑
t=1

∫ ∫
log pθ(xt+1|xt)pθk

(xt+1, xt|YN ) dxt dxt+1,

(28b)

I3 =
N∑

t=1

∫
log pθ(yt|xt)pθk

(xt|YN ) dxt. (28c)

Computing Q(θ, θk) therefore requires knowledge of den-
sities such as pθk

(xt|YN ) and pθk
(xt+1, xt|YN ) associated

with a nonlinear smoothing problem. Additionally, integrals
with respect to these must be evaluated.

These requirements can be met by the following particle
smoothing algorithm [20].

Algorithm 6.1: Basic Particle Smoother
1) Run the particle filter (Algorithm 4.1) and store the

filtered particles {x̃i
t}M

i=1 and their weights {wi
t}M

i=1,
for t = 1, . . . , N .

2) Initialise the smoothed weights to be the terminal
filtered weights {wi

t} at time t = N ,

wi
N |N = wi

N , i = 1, . . . ,M. (29)

and set t = N − 1.
3) Compute the smoothed weights {wi

t|N}
M
i=1 using the

filtered weights {wi
t}M

i=1 and particles {x̃i
t, x̃

i
t+1}M

i=1

via the formulae

wi
t|N = wi

t

M∑
k=1

wk
t+1|N

pθ(x̃k
t+1|x̃i

t)
vk

t

, (30)

vk
t ,

M∑
i=1

wi
t pθ(x̃k

t+1|x̃i
t). (31)

4) Update t 7→ t− 1. If t > 0 return to step 3, otherwise
terminate.

This delivers particles and weights, which via the same
SLLN based argument outlined in relation to the particle
filter and leading to (16), allows the approximation

1
M

M∑
i=1

g(x̃i
t)w

i
t|N ≈

∫
g(x̃t)pθ(x̃t | YN ) dx̃t. (32)

Applied to (27)–(28), this principle provides the approxima-
tion

dQ(θ, θk)
dθ

=
dI1

dθ
+

dI2

dθ
+

dI3

dθ
, (33)

where

dI1

dθ
≈

M∑
i=1

wi
1|N

d
dθ

log pθ(x̃i
1), (34a)

dI3

dθ
≈

N∑
t=1

M∑
i=1

wi
t|N

d
dθ

log pθ(yt|x̃i
t), (34b)

dI2

dθ
≈

N∑
t=1

M∑
i=1

M∑
j=1

wij
t|N

d
dθ

log pθ(x̃
j
t+1|x̃i

t). (34c)

An essential point here is that the particle smoother is
used to compute an expectation with respect to densities
parameterized by θk. Hence, the weights wi

t|N and the
particles x̃i

t depend on θk, but they do not depend on θ.
Hence forming the derivative involves computing only the
derivative of the functional form of pθ with respect to θ.



More specifically, via (3)

d
dθ

log pθ(x̃
j
t+1|x̃i

t) =
d
dθ

log pv(x̃j
t+1 − ft(x̃i

t, ut, θ)),

(35a)
d
dθ

log pθ(yt|x̃i
t) =

d
dθ

log pe(yt − ht(x̃i
t, ut, θ)). (35b)

For commonly occurring densities pv and pe, these deriva-
tives will have simple forms. For example, for the Gaussian
situation vt ∼ N (0, σ2

v), et ∼ N (0, σ2
e), the gradients (35)

reduce to (in the most simple case when σ2
v , σ2

e are known
and hence not included in θ)

d
dθ

log pθ(x̃
j
t+1|x̃i

t) =
1
σ2

v

d
dθ

ft(x̃i
t, ut, θ), (36a)

d
dθ

log pθ(yt|x̃i
t) =

1
σ2

e

d
dθ

ht(x̃i
t, ut, θ). (36b)

In this situation, the functional forms of f and h in the
nonlinear model structure (1) then dictate the simplicity or
otherwise of determining the cost function gradient.

VII. ALGORITHM DEFINITION

The developments of the previous sections are summarised
in the resulting algorithm.

Algorithm 7.1: Gradient-based Estimation Algorithm
1) Set k = 0, and initialise θ0 as an estimate for θ̂

satisfying (6);
2) Using the current iteration θk to parametrize the non-

linear system model (1), run the associated particle
smoother Algorithm 6.1, which in turn requires the
particle filter Algorithm 4.1.

3) Use the associated particles {x̃i
t} and weights {wi

t|N}
to compute the gradient

pk = − d
dθ

Lθ(YN )
∣∣∣∣
θ=θk

= − d
dθ
Q(θ, θk)

∣∣∣∣
θ=θk

(37)

via (33)–(35);
4) Use this gradient to update the estimate θk of θ̂ via the

user-chosen variant of the gradient based search (21a);
5) Compute the associated cost increment

∆k = |Lθk+1(YN )− Lθk
(YN )| (38)

via the particle filtering approximation (20) substituted
into (6)–(7);

6) If ∆k > δ, with δ > 0 being some user defined
threshold, then set k 7→ k + 1 are return to step 2.
Otherwise, terminate and deliver the estimate θ̂ = θk.

VIII. SIMULATION EXAMPLE

This section considers estimation of the following nonlin-
ear and time varying system.

xt+1 = axt + b
xt

1 + x2
t

+ c cos(1.2t) + νt, (39a)

yt = dx2
t + et, (39b)[

νt

et

]
∼ N

([
0
0

]
,

[
q 0
0 r

])
(39c)

where the true parameters are

θ? = [a?, b?, c?, d?, q?, r?] = [0.5, 25, 8, 0.05, 0, 0.1] . (40)

This example has been chosen for study due to it being ac-
knowledged as a challenging estimation problem in previous
studies [20, 21].

To test the effectiveness of Algorithm 7.1 in estimating
this system, a Monte Carlo study was performed using 160
different data realisations YN of length N = 100. For
each of these cases, an estimate θ̂ was computed using
1000 iterations of Algorithm 7.1 with initialisation θ0 chosen
randomly, but such that each entry of θ0 lay in an interval
equal to 50% of the corresponding entry in the true parameter
vector θ?. In all cases M = 100 particles were used.

Using these choices, each computation of θ̂ using Algo-
rithm 7.1 took an average of 9 seconds to complete on a 3
GHz quad-core Xeon running Mac OS 10.6.

The results of this Monte Carlo examination are provided
in Table I, where the rightmost column gives the sample
mean of the parameter estimate across the Monte Carlo trials
plus/minus the sample standard deviation.

Parameter True Estimated
a 0.5 0.50± 0.0018
b 25.0 25.0± 0.66
c 8.0 8.00± 0.086
d 0.05 0.05± 0.0017
q 0 5.96× 10−5 ± 9.1× 10−5

r 0.1 0.10± 0.0005

TABLE I
True and estimated parameter values for the system (39) using

Algorithm 7.1; The right column shows that mean value and standard

deviations using 160 Monte–Carlo runs, of which 47 were discarded due

to capture in local minima.

While this indicates that Algorithm 7.1 yields a consistent
estimator of (39) it is important to note that 47 of the 160
trials were not included in Table I due to capture in local
minima. This was defined according to the relative error test
|(θ̂i − θ?

i )/θ?
i )| > 0.1 for any i’th component. The authors

consider 47/160 a relatively high proportion of failures.
In relation to this, the authors have previously studied the

estimation of (39) in [15]. That work considers an alternate
estimation technique based on the Expectation Maximisation
(EM) algorithm. The performance of that approach on the
same data sets, and with the same initialisations θ0 is profiled
in Table II.

These results are also indicative of a consistent estimator.
Importantly though, only 23 of the 160 trials were not
included in the calculations of Table II due to capture in local
minima as defined above. This illustrates some robustness of
the EM algorithm to local minima capture, which has been
observed in other applications of that algorithm [22, 23].

However, compared to Algorithm 7.1, the EM algorithm is
more computationally demanding, and required on average
58 seconds to compute an estimate using the same hardware.



The relationship between gradient search iterates θk de-
livered by Algorithm 7.1 and the EM algorithm iterates are
further profiled in Figure 1. There it is assumed that all
except the b and q parameters are known so that θ = [b, q]T .
This allows the likelihood Lθ(YN ) to be plotted as a surface,
on which is overlaid the trajectory of the iterates θk obtained
by Algorithm 7.1 in blue, and the EM algorithm in black.

In this case, both arrive at the global maximum of the
likelihood function, but by different paths. Interestingly, the
EM algorithm is more aggressive in early stages, and both
methods eventually approach the global maximum via nearly
identical paths and step lengths.

These aspects of differing robustness, differing computa-
tional load, yet similar final paths suggest a hybrid approach,
in which the EM algorithm is initially employed, hopefully
to obtain robustness against local minima capture, and then
Algorithm 7.1 is employed in the latter stages to lower
the overall computational load. It is worth noting that the
properties of hybrid EM/gradient search approaches is a topic
of study within the statistics literature [24].

Parameter True Estimated
a 0.5 0.50± 0.0024
b 25.0 24.9± 1.17
c 8.0 7.98± 0.15
d 0.05 0.05± 0.003
q 0 3.0× 10−8 ± 2.5× 10−8

r 0.1 0.12± 0.0003

TABLE II
True and estimated parameter values for the system (39) using the

EM-algorithm based method developed in [15]; The right column shows

that mean value and standard deviations using 160 Monte–Carlo runs, of

which 23 were discarded due to capture in local minima.

Fig. 1. The log-likelihood plotted as a function of the two parameters b and
q. Overlaying this are the parameter estimates θk = [bk, qk]T produced
by iterations of the EM algorithm (black) and the gradient search based
Algorithm 7.1 (blue).

IX. CONCLUSION

This paper has developed an algorithm for the estimation
of a general class of non-linear systems using gradient based
search. Initial simulation results suggest that its main utility
may lie as the final stage of a hybrid approach that couples
it with the EM algorithm.
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