
Foundations and TrendsR© in
Machine Learning
Vol. 6, No. 1 (2013) 1–143
c© 2013 F. Lindsten and T. B. Schön
DOI: 10.1561/2200000045

Backward Simulation Methods
for Monte Carlo Statistical Inference

By Fredrik Lindsten and Thomas B. Schön

Contents

1 Introduction 3

1.1 Background and Motivation 3

1.2 Notation and Definitions 5

1.3 A Preview Example 6

1.4 State-Space Models 9

1.5 Parameter Learning in SSMs 11

1.6 Smoothing Recursions 13

1.7 Backward Simulation in Linear Gaussian SSMs 15

1.8 Outline 18

2 Monte Carlo Preliminaries 20

2.1 Sequential Monte Carlo 20

2.2 Markov Chain Monte Carlo 27

3 Backward Simulation for State-Space Models 35

3.1 Forward Filter/Backward Simulator 36

3.2 Analysis and Convergence 43

3.3 Backward Simulation with Rejection Sampling 49

3.4 Backward Simulation with MCMC Moves 56

3.5 Backward Simulation for Maximum Likelihood Inference 62

4 Backward Simulation for

General Sequential Models 65

4.1 Motivating Examples 65

4.2 SMC Revisited 69

4.3 A General Backward Simulator 72

4.4 Rao–Blackwellized FFBSi 78

4.5 Non-Markovian Latent Variable Models 82

4.6 From State-Space Models to Non-Markovian Models 84

5 Backward Simulation in Particle MCMC 90

5.1 Introduction to PMCMC 90

5.2 Particle Marginal Metropolis–Hastings 92

5.3 PMMH with Backward Simulation 101

5.4 Particle Gibbs with Backward Simulation 105

5.5 Particle Gibbs with Ancestor Sampling 116

5.6 PMCMC for Maximum Likelihood Inference 121

5.7 PMCMC for State Smoothing 125

6 Discussion 127

Acknowledgments 131

Notations and Acronyms 132

References 134

Foundations and TrendsR© in
Machine Learning
Vol. 6, No. 1 (2013) 1–143
c© 2013 F. Lindsten and T. B. Schön
DOI: 10.1561/2200000045

Backward Simulation Methods
for Monte Carlo Statistical Inference

Fredrik Lindsten1 and Thomas B. Schön2

1 Division of Automatic Control, Linköping University, Linköping, 581 83,
Sweden, lindsten@isy.liu.se

2 Division of Automatic Control, Linköping University, Linköping, 581 83,
Sweden, schon@isy.liu.se

Abstract

Monte Carlo methods, in particular those based on Markov chains and

on interacting particle systems, are by now tools that are routinely

used in machine learning. These methods have had a profound impact

on statistical inference in a wide range of application areas where

probabilistic models are used. Moreover, there are many algorithms

in machine learning which are based on the idea of processing the data

sequentially, first in the forward direction and then in the backward

direction. In this tutorial, we will review a branch of Monte Carlo

methods based on the forward–backward idea, referred to as backward

simulators. These methods are useful for learning and inference in prob-

abilistic models containing latent stochastic processes. The theory and

practice of backward simulation algorithms have undergone a signifi-

cant development in recent years and the algorithms keep finding new

applications. The foundation for these methods is sequential Monte

Carlo (SMC). SMC-based backward simulators are capable of address-

ing smoothing problems in sequential latent variable models, such as

general, nonlinear/non-Gaussian state-space models (SSMs). However,

we will also clearly show that the underlying backward simulation idea

is by no means restricted to SSMs. Furthermore, backward simulation

plays an important role in recent developments of Markov chain Monte

Carlo (MCMC) methods. Particle MCMC is a systematic way of using

SMC within MCMC. In this framework, backward simulation gives us

a way to significantly improve the performance of the samplers. We

review and discuss several related backward-simulation-based methods

for state inference as well as learning of static parameters, both using

a frequentistic and a Bayesian approach.

1

Introduction

A basic strategy to address many inferential problems in machine

learning is to process data sequentially, first in the forward direc-

tion and then in the backward direction. Examples of this approach

are the well-known forward–backward algorithm for hidden Markov

models (HMMs) and the Rauch–Tung–Striebel smoother [119] for lin-

ear Gaussian state-space models. Moreover, two decades of research on

sequential Monte Carlo and Markov chain Monte Carlo have enabled

inference in increasingly more challenging models. Many developments

have been made in order to make use of the forward–backward idea

together with these Monte Carlo methods, providing inferential tech-

niques collectively referred to as backward simulation. This tutorial

provides a unifying view of these methods. In this introductory section

we review some relevant background materials and also derive a first

backward simulator for the special case of linear Gaussian state-space

models.

1.1 Background and Motivation

For over half a century, Monte Carlo methods have been recog-

nized as potent tools for statistical inference in complex probabilistic

3

4 Introduction

models; see [103] for an early discussion. A continuous development

and refinement of these methods have enabled inference in increasingly

more challenging models. A key milestone in this development was the

introduction of Markov chain Monte Carlo (MCMC) methods through

the inventions of the Metropolis–Hastings algorithm [71, 102] and the

Gibbs sampler [58]. Parallel to this, sequential importance sampling

[70] and sampling/importance resampling [122] laid the foundation of

sequential Monte Carlo (SMC). In its modern form, SMC was first

introduced in [64, 129]. During the 1990s, several independent develop-

ments were made by, among others, [77, 83]. Recently, SMC and MCMC

have been combined in a systematic manner through the developments

of pseudo-marginal methods [6, 11] and particle MCMC [3].

Backward simulation is a strategy which is useful as a Monte Carlo

method for learning of probabilistic models containing latent stochastic

processes. In particular, we will consider inference in dynamical sys-

tems, i.e., systems that evolve over time. Dynamical systems play a

central role in a wide range of scientific fields, such as signal pro-

cessing, automatic control, epidemiology and econometrics, to mention

a few.

One of the most widely used models of a dynamical system is the

state-space model (SSM), reviewed in more detail in Sections 1.4–1.6.

The structure of an SSM can be seen as influenced by the notion of

a physical system. At each time t, the system is assumed to be in a

certain state xt. The state contains all relevant information about the

system, i.e., if we would know the state of the system we would have

full insight into its internal condition. However, the state is typically

not known. Instead, we measure some quantity yt which depend on the

state in some way. Given a sequence of observations y1:T � (y1, . . . , yT),

we seek to draw inference about the latent state process x1:T (state

inference), as well as about unknown static parameters of the model

(parameter inference).

The class of SSMs will play a central role in this tutorial. Indeed,

many of the inferential methods that we will review have been

developed explicitly for SSMs. However, as will become apparent in

Sections 4 and 5, most of the methods are more general and can be

used for learning interesting models outside the class of SSMs.

1.2 Notation and Definitions 5

Backward simulation is based on the forward–backward idea. That

is, the data is processed first in the forward direction and then in the

backward direction. In the backward pass, the state process is simu-

lated backward in time, i.e., by first simulating xT , then xT−1 etc., until

a complete state trajectory x1:T is generated. This procedure gives us

a tool to address the state smoothing problem in models for which no

closed form solution is available. This is done by simulating multiple

backward trajectories from the smoothing distribution, i.e., condition-

ally on the observations y1:T , which can then be used for Monte Carlo

integration. State smoothing is of key relevance, e.g., to obtain refined

state estimates in offline settings. Furthermore, it lies at the core of

many parameter inference methods (see Section 1.5) and it can be used

to address problems in optimal control (see Section 4.1).

Backward simulation is also useful in MCMC, as a way of grouping

variables to improve the mixing of the sampler. A common way to con-

struct an MCMC sampler for an SSM is to sample the state variables xt,

for different t, one at a time (referred to as single-state sampling). How-

ever, since the states are often strongly dependent across time, this can

lead to poor performance. Backward simulation provides a mean of

grouping the state variables and sampling the entire trajectory x1:T
as one entity. As we will illustrate in Section 1.3, this can lead to a

considerable improvement upon the single-state sampler.

In Section 1.7 we will derive a first backward simulator for the

class of linear Gaussian state-space (LGSS) models. Apart from LGSS

models, exact backward simulation is tractable, basically only for finite

state-space HMMs (see also Section 4.1.1). The main focus in this tuto-

rial will be on models outside these restricted classes, for which exact

backward simulation is not possible. Instead, we will make use of SMC

(and MCMC) to enable backward simulation in challenging probabilis-

tic models, such as nonlinear/non-Gaussian SSMs, as well as more gen-

eral non-Markovian latent variable models.

1.2 Notation and Definitions

For any sequence {xk}k∈N and integers m ≤ n we write xm:n �
(xm, . . . , xn). We let ∧ be the minimum operator, i.e., a ∧ b �min(a,b).

6 Introduction

For a matrix A, the matrix transpose is written as AT. For two prob-

ability distributions µ1 and µ2, the total variation distance is given

by ‖µ1 − µ2‖TV � supA |µ1(A) − µ2(A)|. A Dirac point-mass located

at some point x′ is denoted as δx′(dx). We write X ∼ µ to mean that

the random variable X is either distributed according to µ, or sam-

pled from µ. The uniform probability distribution on the interval [a,b]

is written as U([a,b]). Cat({pi}ni=1), with
∑n

i=1 pi = 1, is the categor-

ical (i.e., discrete) probability distribution on the set {1, . . . , n}, with
probabilities {pi}ni=1. Finally, N (m,Σ) and N (x;m,Σ) are the Gaus-

sian (i.e., normal) probability distribution and density function, respec-

tively, with mean vector m, covariance matrix Σ and argument x.

1.3 A Preview Example

Before we continue with this section on background theory, we con-

sider an example to illustrate the potential benefit of using backward

simulation. A simple stochastic volatility SSM is given by,

xt+1 = axt + vt, vt ∼ N (0,q), (1.1a)

yt = et exp
(
1
2xt

)
, et ∼ N (0,1), (1.1b)

where the state process {xt}t≥1 is latent and observations are made

only via the measurement process {yt}t≥1. Similar models have been

used to generalize the Black–Scholes option pricing equation to allow

for the variance to change over time [27, 101]. The same model was used

by [30] to illustrate the poor mixing of a single-state Gibbs sampler; an

example which is replicated here.

For simplicity, we assume that the parameters a = 0.99 and q = 0.01

are known. We seek the density p(x1:T | y1:T), i.e., the conditional den-
sity of the state process x1:T given a sequence of observations y1:T
for some fixed final time point T . This conditional density is referred

to as the joint smoothing density (JSD). For the model under study,

the JSD is not available in closed form due to the nonlinear measure-

ment Equation (1.1b). To remedy this, we construct an MCMC method

to approximately sample from it. MCMC will be reviewed in more

detail in Section 2.2. However, the basic idea is to simulate a Markov

chain which is constructed in such a way that it admits the target

1.3 A Preview Example 7

distribution as limiting distribution. The sample path from the Markov

chain can then be used to draw inference about the target density

p(x1:T | y1:T).
As an initial attempt, we try a single-state Gibbs sampler. That is,

we sample each state xt conditionally on {x1:t−1,xt+1:T } (and the obser-

vations y1:T). At each iteration of the Gibbs sampler we thus simulate

according to,

x′1 ∼ p(x1 | x2:T ,y1:T);
...

x′t ∼ p(xt | x′1:t−1,xt+1:T ,y1:T);

...

x′T ∼ p(xT | x′1:T−1,y1:T).

This procedure will leave p(x1:T | y1:T) invariant (see Section 2.2 for

more on Gibbs sampling) and it results in a valid MCMC sampler.

The conditional densities p(xt | x1:t−1,xt+1:T ,y1:T) are not available in

closed form. However, for this model (Equation (1.1)), they are log-

concave and we can employ the efficient rejection sampling strategy by

[145] to sample exactly from these distributions.

The single-state Gibbs sampler will indeed converge to samples from

p(x1:T | y1:T). However, it is well recognized that single-state samplers

can suffer from poor mixing, due to the often strong dependencies

between consecutive state variables. That is, the convergence can be

slow in the sense that we need to iterate the above sampling scheme a

large number of times to get reliable samples.

To analyze this, we generate T = 100 samples from the model

(Equation (1.1)) and run the Gibbs sampler for 100000 iterations (in

each iteration, we loop over all the state variables for t = 1, . . . , T). The

first 10000 iterations are discarded, to avoid transient effects. We then

compute the empirical autocorrelation function (ACF) of the state x50,

which is given in Figure 1.1. As can be seen, the ACF decreases very

slowly, indicating a poorly mixing Gibbs kernel. This simply reflects

the fact that, when the state variables are highly correlated, the single-

state sampler will be inefficient at exploring the state-space. This is a

8 Introduction

10000 15000 20000

−1

−0.5

0

0.5

1

Iteration number

x
50

10000 15000 20000

−1

−0.5

0

0.5

1

Iteration number

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

Lag

A
C
F

Single−state Gibbs
PG−BS

Fig. 1.1 (Top left) Part of sample path for the single-state Gibbs sampler; (Top right)
Part of sample path for PGBS; (Bottom) Empirical ACF for x50 for the single-state Gibbs
sampler and for PGBS using N = 15 particles.

common and well-recognized problem when addressing the state infer-

ence problem for SSMs.

One way to remedy this is to group the variables and sample a full

state trajectory x1:T jointly. This is what a backward simulator aims

to accomplish. Grouping variables in a Gibbs sampler will in general

improve upon the mixing of the single-state sampler [97, Section 6.7],

and in practice the improvement can be quite considerable.

To illustrate this, we have included the ACF for a backward-

simulation-based method in Figure 1.1. Since the model (Equa-

tion (1.1)) is nonlinear, exact backward simulation is not possible.

Instead, the results reported here are from a backward simulator based

on SMC, using (only) N = 15 particles. The specific method that

we have used is denoted as particle Gibbs with backward simulation

(PGBS), and it will be discussed in detail in Section 5.4. For the PGBS,

1.4 State-Space Models 9

the ACF drops off much more rapidly, indicating a more efficient sam-

pler. Furthermore, a key property of PGBS is that, despite the fact

that it relies on a crude SMC approximation, it does not alter the sta-

tionary distribution of the Gibbs sampler, nor does it introduce any

additional bias. That is, PGBS will, just as the single-state Gibbs sam-

pler, target the exact JSD p(x1:T | y1:T). This property is known as

exact approximation, a concept that we will return to in Section 5.

1.4 State-Space Models

State-space models (SSMs) are commonly used to model time series and

dynamical systems. Additionally, many models that are not sequential

“by nature” can also be written on state-space form. It is a compre-

hensive and important class of models, and it serves as a good starting

point for introducing the concepts that will be discussed throughout

this tutorial.

We consider here discrete-time SSMs on a general state-space X.

The system state is a Markov process {xt}t≥1 on X, evolving according

to a Markov transition kernel F (dxt+1 | xt) and with initial distribution

ν(dx1). The state xt is assumed to summarize all relevant information

about the system at time t. However, the state process is latent and it is

observed only implicitly through the observations {yt}t≥1, taking values

in some set Y. Given xt, the measurement yt is conditionally indepen-

dent of past and future states and observations, and it is distributed

according to a kernel G(dyt | xt). A graphical model, illustrating the

conditional dependencies in an SSM, is given in Figure 1.2.

Fig. 1.2 Graphical model of an SSM. The white nodes represent latent variables and the
gray nodes represent observed variables.

10 Introduction

We shall assume that the observation kernel G admits a probability

density g w.r.t. some dominating measure, which we simply denote dy.

Such models are referred to as partially dominated. If, in addition,

the transition kernel F admits a density f and the initial distribution

ν admits a density µ, both w.r.t. some dominating measure dx, the

model is called fully dominated. In summary, a fully dominated SSM

can be expressed as,

xt+1 ∼ f(xt+1 | xt), (1.2a)

yt ∼ g(yt | xt), (1.2b)

and x1 ∼ µ(x1). Two examples of SSMs follow below.

Example 1.1 (Finite state-space hidden Markov model). A

finite state-space HMM, or simply HMM, is an SSM with X =

{1, . . . , K} for some finite K. The transition density (w.r.t. counting

measure) can be summarized in a K × K transition matrix Π, where

the (i,j)th entry is given by,

Πi,j = P (xt+1 = j | xt = i) = f(j | i).
Hence, f(j | i) denotes the probability of moving from state i at time

t, to state j at time t + 1.

Example 1.2(Additive noise model). In engineering applications,

SSMs are often expressed on functional form with additive noise,

xt+1 = a(xt) + vt,

yt = c(xt) + et,

for some functions a and c. Here, the noises vt and et are commonly

referred to as process noise and measurement noise, respectively. If the

noise distributions admit densities w.r.t. dominating measures, then

the model is fully dominated. The transition density is then given

by f(xt+1 | xt) = pvt(xt+1 − a(xt)) and similarly for the observation

density.

1.5 Parameter Learning in SSMs 11

Throughout this tutorial, we will mostly be concerned with fully

dominated SSMs and therefore do most of our derivations in terms of

probability densities. There are, however, several examples of interest-

ing models that are degenerate, i.e., that are not fully dominated. We

will return to this in the sequel and discuss how it affects the methods

presented in here.

1.5 Parameter Learning in SSMs

The basic inference problem for SSMs is typically that of state

inference, i.e., to infer the latent states given measurements from the

system. In fact, even when the actual task is to learn a model of the

system dynamics, state inference tends to play a crucial role as an inter-

mediate step of the learning algorithm. To illustrate this, assume that

the SSM (Equation (1.2)) is parameterized by some unknown parame-

ter θ ∈ Θ,

xt+1 ∼ fθ(xt+1 | xt), (1.3a)

yt ∼ gθ(yt | xt), (1.3b)

and x1 ∼ µθ(x1). Given a batch of measurements y1:T , we wish to draw

inference about θ. In the Bayesian setting, a prior distribution π(θ) is

assigned to the parameter and the learning problem amounts to com-

puting the posterior distribution p(θ | y1:T).
A complicating factor is that the likelihood p(y1:T | θ) in general

cannot be computed in closed form. To address this difficulty, it is

common to make use of data augmentation [136, 132]. That is, we target

the joint state and parameter posterior p(θ,x1:T | y1:T), rather than

the marginal posterior p(θ | y1:T). The latent states are thus viewed

as auxiliary variables. This opens up for using Gibbs sampling (see

Section 2.2), for instance by initializing θ[0] ∈ Θ and iterating;

(i) Draw x1:T [r] ∼ p(x1:T | θ[r − 1],y1:T);

(ii) Draw θ[r] ∼ p(θ | x1:T [r],y1:T).

Under weak assumptions, this procedure will generate a Markov chain

{θ[r],x1:T [r]}r≥1 with stationary distribution p(θ,x1:T | y1:T). Conse-

quently, the stationary distribution of the subchain {θ[r]}r≥1 will be the

12 Introduction

marginal parameter posterior distribution p(θ | y1:T). Note that Step (i)

of the above sampling scheme requires the computation of the JSD, for

a fixed value of the parameter θ. That is, we need to address an inter-

mediate smoothing problem in order to implement this Gibbs sampler.

Data augmentation is commonly used also in the frequentistic

setting. Assume that we, instead of the posterior distribution, seek

the maximum likelihood estimator (MLE),

θ̂ML = argmax
θ∈Θ

logpθ(y1:T), (1.4)

where pθ(y1:T) is the likelihood of the observed data for a given value

of the system parameter θ. Again, since the log-likelihood logpθ(y1:T)

is not available in closed form, direct maximization in Equation (1.4) is

problematic. Instead, we can make use of the expectation maximization

(EM) algorithm [33] (see also [100]). The EM algorithm is an iterative

method, which maximizes pθ(y1:T) by iteratively maximizing an auxil-

iary quantity,

Q(θ,θ′) =

∫
logpθ(x1:T ,y1:T)pθ′(x1:T | y1:T)dx1:T . (1.5)

The EM algorithm is useful when maximization of θ �→ Q(θ,θ′), for

fixed θ′, is simpler than direct maximization of the log-likelihood,

θ �→ logpθ(y1:T). The procedure is initialized at some θ[0] ∈ Θ and then

iterates between two steps, expectation (E) and maximization (M);

(E) Compute Q(θ,θ[r − 1]);

(M) Compute θ[r] = argmaxθ∈ΘQ(θ,θ[r − 1]).

The resulting sequence {θ[r]}r≥0 will, under weak assumptions, con-

verge to a stationary point of the likelihood pθ(y1:T) [148].

Using the conditional independence properties of an SSM, we can

write the complete data log-likelihood as

logpθ(x1:T ,y1:T)

= logµθ(x1) +
T∑
t=1

loggθ(yt | xt) +
T−1∑
t=1

logfθ(xt+1 | xt). (1.6)

1.6 Smoothing Recursions 13

From Equation (1.5), we note that the auxiliary quantity is defined as

the expectation of expression (1.6) under the JSD. Hence, to carry out

the E-step of the EM algorithm, we again need to address an interme-

diate smoothing problem for fixed values of the system parameters.

1.6 Smoothing Recursions

As noted above, the JSD is a quantity of central interest for learning and

inference problems in SSMs. It summarizes all the information about

the latent states which is available in the observations. Many densities

that arise in various state inference problems are given as marginals

of the JSD. There are a few that are of particular interest, which we

summarize in Table 1.1. To avoid a cluttered notation, we now drop the

(possible) dependence on an unknown parameter θ from the notation

and write the JSD as p(x1:T | y1:T).
As in Equation (1.6), the conditional independence properties of an

SSM implies that the complete data likelihood can be written as,

p(x1:T ,y1:T) = µ(x1)
T∏
t=1

g(yt | xt)
T−1∏
t=1

f(xt+1 | xt). (1.7)

The JSD is related to the above expression by Bayes’ rule,

p(x1:T | y1:T) = p(x1:T ,y1:T)∫
p(x1:T ,y1:T)dx1:T

. (1.8)

Despite the simplicity of this expression, it is of limited use in practice

due to the high-dimensional integration needed to compute the nor-

malization factor in the denominator. Instead, most practical methods

Table 1.1 Filtering and smoothing densities of particular interest.

Density

Filteringa p(xt | y1:t)
Joint smoothing p(x1:T | y1:T)
Marginal smoothing (t ≤ T) p(xt | y1:T)
Fixed-interval smoothing (s < t ≤ T) p(xs:t | y1:T)
Fixed-lag smoothing (� fixed)a p(xt−�+1:t | y1:t)

a The filtering and fixed-lag smoothing densities are marginals of
the JSD at time t, p(x1:t | y1:t).

14 Introduction

(and in particular the ones discussed in this tutorial) are based on a

recursive evaluation of the JSD.

Again by using Bayes’ rule, we get the following two-step procedure,

p(x1:t | y1:t) = g(yt | xt)p(x1:t | y1:t−1)

p(yt | y1:t−1)
, (1.9a)

p(x1:t+1 | y1:t) = f(xt+1 | xt)p(x1:t | y1:t). (1.9b)

The above equations will be denoted as the forward recursion for the

JSD, since they evolve forward in time. Step (1.9a) is often referred

to as the measurement update, since the current measurement yt is

taken into account. Step (1.9b) is known as the time update, moving

the density forward in time, from t to t + 1.

An interesting fact about SSMs is that, conditioned on y1:T , the

state process {xt}Tt=1 is an inhomogeneous Markov process. Under weak

assumptions (see [23, Section 3.3.2] for details), the same holds true for

the time-reversed chain, starting at time T and evolving backward in

time according to the so-called backward kernel,

Bt(A | xt+1) � P (xt ∈ A | xt+1,y1:T). (1.10)

Note that the backward kernel is time inhomogeneous. In the general

case, it is not possible to give an explicit expression for the backward

kernel. However, for a fully dominated model, this can always be done,

and its density is given by

p(xt | xt+1,y1:T) =
f(xt+1 | xt)p(xt | y1:t)∫
f(xt+1 | xt)p(xt | y1:t)dxt . (1.11)

From the conditional independence properties of an SSM, it also holds

that p(xt | xt+1,y1:T) = p(xt | xt+1,y1:t).

Using the backward kernel, we get an alternative recursion for the

JSD, evolving backward in time,

p(xt:T | y1:T) = p(xt | xt+1,y1:t)p(xt+1:T | y1:T), (1.12)

starting with the filtering density at time T , p(xT | y1:T). This is known
as the backward recursion. At time t = 1, the JSD for the time interval

1, . . . , T is obtained.

1.7 Backward Simulation in Linear Gaussian SSMs 15

The backward kernel density at time t depends only on the

transition density f(xt+1 | xt) and on the filtering density p(xt | y1:t), a
property which is of key relevance. Hence, to utilise the backward recur-

sion (Equation (1.12)) for computing the JSD, the filtering densities

must first be computed for t = 1, . . . , T . Consequently, this procedure

is generally called forward filtering/backward smoothing.

1.7 Backward Simulation in Linear Gaussian SSMs

An important special case of Equation (1.2) is the class of linear Gaus-

sian state-space models. A functional representation of an LGSS model

is given by,

xt+1 = Axt + vt, vt ∼ N (0,Q), (1.13a)

yt = Cxt + et, et ∼ N (0,R). (1.13b)

Here, yt is an ny-dimensional vector of observations, xt is an

nx-dimensional state vector and the system matrices A and C are of

appropriate dimensions. The process and measurement noises are multi-

variate Gaussian with zero means and covariancesQ andR, respectively.

Example 1.3 (Partially or fully dominated SSM). Assume that

the measurement noise covariance R in Equation (1.13b) is full rank.

Then, the observation kernel is Gaussian and dominated by Lebesgue

measure. Hence, the model is partially dominated. If, in addition, the

process noise covariance Q in Equation (1.13a) is full rank, then the

transition kernel is also Gaussian and dominated by Lebesgue measure.

In this case, the model is fully dominated.

However, for singular Q the model is degenerate (i.e., not fully dom-

inated). Rank deficient process noise covariances arise in many appli-

cations, for instance if there is a physical connection between some of

the states (such as between position and velocity).

A fully dominated LGSS model can equivalently be expressed as in

Equation (1.2) with,

f(xt+1 | xt) = N (xt+1;Axt,Q), (1.14a)

g(yt | xt) = N (yt;Cxt,R). (1.14b)

16 Introduction

LGSS models are without doubt one of the most important and

well-studied classes of SSMs. There are basically two reasons for this.

First, LGSS models provide sufficiently accurate descriptions of many

interesting dynamical systems. Second, LGSS models are one of the few

model classes, simple enough to allow for a fully analytical treatment.

When addressing inferential problems for SSMs, we are often asked

to generate samples from the JSD, typically as part of an MCMC sam-

pler used to learn a model of the system dynamics, as discussed above.

For an LGSS model, the JSD is Gaussian and it can be computed using

Kalman filtering and smoothing techniques (see e.g., [80]). Hence, we

can make use of standard results for Gaussian distributions to gener-

ate a sample from p(x1:T | y1:T). This is possible for small T , but for

increasing T it soon becomes infeasible due to the large matrix inver-

sions involved.

To address this issue, it was recognized by [24, 56] that we can

instead use the backward recursion (Equation (1.12)). It follows that

the JSD can be factorized as,

p(x1:T | y1:T) =
(

T−1∏
t=1

p(xt | xt+1,y1:t)

)
p(xT | y1:T). (1.15)

Initially, we generate a sample from the filtering density at time T ,

x̃T ∼ p(xT | y1:T). (1.16a)

We then, successively, augment this backward trajectory by generating

samples from the backward kernel,

x̃t ∼ p(xt | x̃t+1,y1:t), (1.16b)

for t = T − 1, . . . , 1. After a complete backward sweep, the back-

ward trajectory x̃1:T is (by construction) a realization from the JSD

(Equation (1.15)).

To compute the backward kernel, we first run a forward filter to find

the filtering densities p(xt | y1:t) for t = 1, . . . , T . For an LGSS model,

this is done by a standard Kalman filter [81]. It follows that the filtering

densities are Gaussian according to,

p(xt | y1:t) = N (xt; x̂t|t,Pt|t), (1.17)

1.7 Backward Simulation in Linear Gaussian SSMs 17

for some tractable sequences of mean vectors {x̂t|t}t≥1 and covariance

matrices {Pt|t}t≥1, respectively. From Equation (1.14a), we note that

the transition density function is Gaussian and affine in xt. Using Equa-

tions (1.11) and (1.17) and standard results on affine transformations

of Gaussian variables, it then follows that

p(xt | xt+1,y1:t) = N (xt;µt,Mt), (1.18a)

with

µt = x̂t|t + Pt|tA
T(Q + APt|tA

T)−1(xt+1 − Ax̂t|t), (1.18b)

Mt = Pt|t − Pt|tA
T(Q + APt|tA

T)−1APt|t. (1.18c)

Note that, if more than one sample is desired, multiple backward tra-

jectories can be generated independently, without having to rerun the

forward Kalman filter. We illustrate the backward simulator in the

example below.

Example 1.4. To illustrate the possibility of generating samples from

the JSD using backward simulation, we consider a first-order LGSS

model,

xt+1 = 0.9xt + vt, vt ∼ N (0,0.1),

yt = xt + et, et ∼ N (0,1),

and x1 ∼ N (x1;0,10). We simulate T = 50 samples y1:T from the model.

Since the model is linear Gaussian, the marginal smoothing densities

p(xt | y1:T) can be computed by running a Kalman filter followed by

a Rauch–Tung–Striebel smoother [119]. However, we can also gener-

ate samples from the JSD p(x1:T | y1:T) by running a backward simula-

tor. We simulateM = 5000 independent trajectories {x̃j1:T }Mj=1, by first

running a Kalman filter and then repeating the backward simulation

procedure given by Equations (1.16) and (1.18) M times. Histograms

over the simulated states at three specific time points, t = 1, t = 25 and

t = 50, are given in Figure 1.3. As expected, the histograms are in close

agreement with the true marginal smoothing distributions.

The strategy given by Equation (1.16), i.e., to sequentially sample

(either exactly or approximately) from the backward kernel to gen-

erate a realization from the JSD, is what we collectively refer to as

18 Introduction

2 4 6 8 −4 −2 0 2 4 −4 −2 0 2 4

Fig. 1.3 Histograms of {x̃j
t}Mj=1 for t = 1, t = 25 and t = 50 (from left to right). The true

marginal smoothing densities p(xt | y1:T) are shown as black lines.

backward simulation. We will now leave the world of LGSS models.

In the remainder of this tutorial we address backward simulation for

general nonlinear/non-Gaussian models. In these cases, the backward

kernels will in general not be available in closed form. Instead, we will

rely on SMC approximations of the kernels to carry out the backward

simulation.

Before we leave this section, it should be noted that the backward

simulator for LGSS models derived here is provided primarily to illus-

trate the concept. For LGSS models, more efficient samplers exist, e.g.,

based on disturbance simulation. See [30, 47, 146] for further details

and extensions.

1.8 Outline

The rest of this tutorial is organized as follows. Section 2 reviews the

two main Monte Carlo methods that are used throughout SMC and

MCMC. The section is self-contained, but for obvious reasons it does

not provide an in-depth coverage of these methods. Several references

which may be useful for readers with no background in this area are

given in Section 2.

Section 3 addresses SMC-based backward simulation for SSMs.

The focus in this section is on smoothing in general nonlinear/non-

Gaussian SSMs. More precisely, we discuss algorithms for generating

1.8 Outline 19

state trajectories, approximately distributed according to the joint

smoothing distribution. These algorithms can be categorized as par-

ticle smoothers. Hence, readers with particular interest in smoothing

problems may want to focus their attention on this section. However,

smoothing is also addressed in Section 5 (see in particular Section 5.7),

and the methods presented there can be useful alternatives to the par-

ticle smoothers discussed in Section 3.

Section 4 generalizes the backward simulation idea to latent vari-

able models outside the class of SSMs. A general backward simulator

is introduced and we discuss its properties and the type of models for

which it is applicable. As a special case of the general backward simula-

tor, we derive a Rao–Blackwellized particle smoother for conditionally

linear Gaussian SSMs.

In Section 5, we discuss backward simulation in the context of so-

called particle MCMC (PMCMC) methods. The focus in this section

is on parameter inference, primarily in the Bayesian setting, but we

also discuss PMCMC for maximum-likelihood-based inference. As men-

tioned above, the smoothing problem is also addressed. Finally, in

Section 6 we conclude with a discussion about the various methods

reviewed throughout this tutorial and outline possible directions for

future work.

2

Monte Carlo Preliminaries

In this section, we review the two main Monte Carlo tools on which

the subsequent development is based; sequential Monte Carlo (SMC)

and Markov chain Monte Carlo (MCMC).

2.1 Sequential Monte Carlo

For general nonlinear non-Gaussian SSMs the backward kernel (Equa-

tion (1.10)) is not available on closed form. To address this issue, the

basic idea that will be employed is to use an SMC approximation of the

backward kernel. In this section, we review the basics of SMC applied

to SSMs, also referred to as particle filtering.

Since the focus of this tutorial is on backward simulation, and not

SMC, we will only present a basic SMC sampler and discuss some

of its important properties. For a more in-depth treatment, we refer

to one of the many tutorials and textbooks on the topic, see e.g.,

[10, 22, 38, 41, 66, 126]. A comprehensive collection of convergence

results for SMC can be found in [31]. It should be emphasized that the

backward simulators that are derived in the subsequent sections indeed

rely on SMC approximations of the backward kernels, but not directly

20

2.1 Sequential Monte Carlo 21

on how these approximations are generated. Hence, it is straightforward

to replace the basic sampler presented here with a more advanced SMC

method, if desired.

2.1.1 The Particle Filter

SMC methods are based on importance sampling and resampling tech-

niques to sequentially sample from a sequence of target densities. They

can be seen as combinations of the sequential importance sampling [70]

and the sampling/importance resampling [122] algorithms. The name

particle filter (PF) is often used interchangeably with SMC, though

here we reserve it for the case when the sequence of target densities is

given by p(x1:t | y1:t) for t = 1, 2,

In a standard importance sampler, targeting p(x1:t | y1:t), we gen-

erate N independent samples {xi1:t}Ni=1 from some proposal density

rt(x1:t | y1:t). These samples are then assigned importance weights,

wi
t =

p(xi1:t | y1:t)
rt(xi1:t | y1:t)

, (2.1)

for i = 1, . . . , N . The weights can only be computed up to proportional-

ity, since the normalization constant for the target density is unknown.

However, this is easily coped with by normalizing the weights to sum

to one. That is, we first compute the unnormalized importance weights

w̄i
t =

p(xi1:t,y1:t)

rt(x
i
1:t | y1:t)

, (2.2)

and then set wi
t = w̄i

t/
∑

l w̄
l
t.

Now, to allow for a sequential method, we construct the proposal

density so that it factorizes according to,

rt(x1:t | y1:t) = rt(xt | xt−1,yt)rt−1(x1:t−1 | y1:t−1)

= r1(x1 | y1)
t∏

s=2

rs(xs | xs−1,ys). (2.3)

Hence, we can draw a sample from the proposal xi1:t ∼ rt(x1:t | y1:t)
by first generating xi1 ∼ r1(x1 | y1), then xi2 ∼ r2(x2 | xi1,y2), etc. This

22 Monte Carlo Preliminaries

implies that the importance weights are given by,

wi
t =

p(xi1:t | y1:t)
rt(xi1:t | y1:t)

∝ g(yt | xit)f(xit | xit−1)

rt(xit | xit−1,yt)

p(xi1:t−1 | y1:t−1)

rt−1(xi1:t−1 | y1:t−1)
. (2.4)

Hence, if we define the weight function

Wt(xt−1,xt;yt) =
g(yt | xt)f(xt | xt−1)

rt(xt | xt−1,yt)
, (2.5)

the importance weights can be computed as

w̄i
t =Wt(x

i
t−1,x

i
t;yt)w

i
t−1, (2.6)

and wi
t = w̄i

t/
∑

l w̄
l
t. We thus obtain a sequential updating formula also

for the importance weights. The initial weight function at time t = 1

is given byW1(x1;y1) = g(y1 | x1)p(x1)/r1(x1 | y1). As indicated by the

notation, the proposal at time t is allowed to depend on both the pre-

vious state xt−1 and on the current observation yt. This is important

in practice, to be able to make good use of the available information

when designing the proposal.

In the SMC literature, the samples {xi1:t}Ni=1 are called particles

and the collection {xi1:t,wi
t}Ni=1 is referred to as a weighted particle sys-

tem. This weighted sample defines an empirical point-mass distribution

on Xt,

p̂N (dx1:t | y1:t) �
N∑
i=1

wi
tδxi

1:t
(dx1:t), (2.7)

which is an approximation of the target distribution. Equivalently, for

any test function ϕ : XT → R we can construct the estimator

ϕ̂N
t|t �

N∑
i=1

wi
tϕ(x

i
1:t) ≈ E[ϕ(x1:t) | y1:t]. (2.8)

This estimator is consistent, as N →∞, and a central limit theorem

holds (see e.g., [31, 87, 36]).

The procedure resulting from sampling according to Equation (2.3)

and computing the weights (Equation (2.6)) is the sequential impor-

tance sampler [70], dating back to the late 60’s. Though applicable for

short data lengths, a serious drawback with this method is that the

2.1 Sequential Monte Carlo 23

weight update (Equation (2.6)) is unstable. More precisely, the vari-

ance of the normalized importance weights increases over time [23,

p. 232], typically at an exponential rate. This has the effect that all

but one of the weights decreases to zero, and all emphasis is thus put

on one of the particles (recall that the weights are normalized to sum

to one). This does not come as a surprise, since we are in fact applying

an importance sampler in a space with dimension increasing with t. In

high dimensions, even what appears to be a small discrepancy between

the proposal and the target densities will result in poor performance of

the sampler (see e.g., [41] for an illustrative example).

A way to mitigate this problem was proposed by [129, 64], result-

ing in the first functional SMC sampler. The idea is to rejuvenate the

sample by replicating particles with high weights and discarding parti-

cles with low weights. This is done by resampling the particle system,

similar to the sampling/importance resampling method [122]. Since the

weighted particle system {xi1:t,wi
t}Ni=1 approximates the target accord-

ing to Equation (2.7), we can generate a new, unweighted set of par-

ticles by sampling independently from Equation (2.7). That is, we set

x̌j1:t = xi1:t with probability wi
t, for j = 1, . . . , N . The equally weighted

particle system {x̌j1:t, 1
N }Nj=1 can then be used to construct an estimator

similar to Equation (2.8),

ϕ̌N
t|t �

1

N

N∑
j=1

ϕ(x̌j1:t) ≈ E[ϕ(x1:t) | y1:t]. (2.9)

It should be noted that the resampling introduces some additional vari-

ance, so the estimator in Equation (2.9) will be dominated by the

estimator in Equation (2.8). However, when applied sequentially, the

resampling is critical since it allows us to put focus on the promising

particles and discard the improbable ones. We summarize the PF in

Algorithm 1.

A common choice in practice is to run the PF with rt(xt | xt−1,yt) =

f(xt | xt−1), i.e., we propose samples according to the transition density

function. This results in a vanilla method referred to as the bootstrap

filter. If possible, it is recommended to use a proposal density which

takes the current observation yt into account. The optimal proposal is

given by the conditional density rt(xt | xt−1,yt) = p(xt | xt−1,yt). This

24 Monte Carlo Preliminaries

Algorithm 1 Particle filter (all operations are for i = 1, . . . , N)

1: Draw xi1 ∼ r1(x1 | y1).
2: Compute w̄i

1 =W1(x
i
1;y1).

3: Normalize: set wi
1 = w̄i

1/
∑

l w̄
l
1.

4: for t ≥ 2 do

5: Resample with P (x̌it−1 = xjt−1) = wj
t−1.

6: Draw xit ∼ rt(xt | x̌it−1,yt) and set xi1:t = {x̌i1:t−1,x
i
t}.

7: Compute w̄i
t =Wt(x

i
t, x̌

i
t−1;yt).

8: Normalize: set wi
t = w̄i

t/
∑

l w̄
l
t.

9: end for

choice of proposal density will minimize the variance of the incremental

importance weights at time t [41]. Unfortunately, it is often the case

that this density is not available in practice, but various approximations

can be used instead.

The resampling scheme outlined above is known as multinomial

resampling. Alternative methods that introduce less variance exist, e.g.,

residual resampling [144, 98] and stratified resampling [83]. Further-

more, instead of resampling at every iteration, it is recommended to do

so only when there is need for it. For this cause, it is common to intro-

duce a measure of imbalance of the importance weights, such as the

effective sample size (ESS) [97, Section 2.5]. Resampling is then only

carried out when the ESS drops below some prespecified threshold.

Another modification of the resampling step is used in the auxiliary

particle filter (APF) by [116]. The idea is to use an adjusted proposal

distribution in the resampling step. This is accomplished by computing

a set of weights {wi
tν

i
t}Ni=1, and using these (after normalization) as

probabilities in the resampling. Here, the adjustment weights νit are

user defined. They allow us to, for instance, take the observation yt+1

into account when resampling the particles at time t. The fact that

we modify the proposal for the resampling is compensated for in the

importance weight computation. If the APF is run with an optimal

proposal kernel and with adjustment weights given by νit = p(yt+1 | xit),
the importance weights will be identically equal to one. In this case, the

filter is said to be fully adapted. See [116, 79, 37] for more information

about the APF and how the adjustment weights can be chosen.

2.1 Sequential Monte Carlo 25

2.1.2 Path Degeneracy

As pointed out in the previous section, the PF targets the sequence

of JSDs, p(x1:t | y1:t). By keeping track of the genealogy of the particle

filter, i.e., the ancestral dependence of the particles, we obtain weighted

particle trajectories {xi1:t,wi
t}Ni=1. These provide an approximation, not

only of the filtering distribution, but of the complete joint smoothing

distribution as in Equation (2.7) [83]. It thus appears as if the PF solves

the general state inference problem, since any smoothing density can

be attained from p(x1:t | y1:t) by marginalization. However, this is not

truly the case.

To see why, let s be some fixed time point and assume that we

apply a PF to approximate the marginal smoothing density p(xs | y1:t)
for t ≥ s. This is given straightforwardly from Equation (2.7) by simply

discarding everything except the sth time point from the particle trajec-

tories {xi1:t}Ni=1. Now, if t = s (i.e., we are in fact looking at the filtering

density) we have N unique particles in the point-mass approximation.

However, each time we resample the particle system, the unique num-

ber of particles at time s will decrease. This is in fact the purpose of the

resampling, to remove particles with small weights and duplicate par-

ticles with large weights. Consequently, for large enough t� s, all the

particles {xi1:t}Ni=1 will share a common ancestor at time s, due to the

consecutive resampling steps. This problem, known as path degeneracy,

is further illustrated in the example below.

Example 2.1 (Path degeneracy). A PF with N = 30 particles is

applied to a one-dimensional Gaussian random walk process measured

in Gaussian noise. At time t = 50 the JSD is targeted by a weighted

particle system {xi1:50,wi
50}30i=1. Figure 2.1 depicts the particle trajec-

tories. As can be seen, all particles share a common ancestor at time

s = 32.

Assume, for instance, that we are interested in the smoothed esti-

mate of the initial state, E[x1 | y1:50]. We thus construct an estimator,

x̂1|50 =
30∑
i=1

wi
50x

i
1,

26 Monte Carlo Preliminaries

5 10 15 20 25 30 35 40 45 50
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time

S
ta

te

Fig. 2.1 Particle trajectories at time t = 50. For any time s ≤ 32, all trajectories coincide.

but since xi1 are identical for all i = 1, . . . , 30, this is in effect a Monte

Carlo integration using a single sample. Hence, due to the path degen-

eracy, we cannot expect to obtain an accurate estimate of E[x1 | y1:50]
from the PF.

Path degeneracy arises as an effect of resampling, but it should

rather be thought of as a manifestation of a deeper problem, namely

the degeneracy of the importance weights. In the sequential importance

sampler, all weight will be put on a single sample for large enough t,

having a similar effect as path degeneracy. This issue is in fact to a

large extent mitigated by introducing resampling.

Due to path degeneracy, the PF is in practice used mostly for filter-

ing (hence the name) and fixed-lag smoothing. At time t or s � t, the

particle diversity is in general high, leading to accurate approximations

of the filtering and fixed-lag smoothing distributions. How SMC can be

used to address the marginal and joint smoothing problems will be the

topic of Section 3.

2.2 Markov Chain Monte Carlo 27

2.2 Markov Chain Monte Carlo

Another comprehensive class of Monte Carlo methods is MCMC. In

this section, we review some of the basic concepts of MCMC that are

of key relevance. For further reading, see the tutorial papers [2, 128] or

one of the many textbooks, e.g., [20, 97, 120].

2.2.1 Markov Chains and Limiting Distributions

MCMC methods allow us to approximately generate samples from an

arbitrary target distribution f(z) on some space Z. More precisely,

an MCMC sampler will simulate a Markov chain, or Markov process,

{z[r]}r≥0 which is constructed in such a way that the limiting distribu-

tion of the chain is given by f(z). The sample path of the Markov chain

can then be used to draw inference about the target distribution. For

instance, the target can be the JSD p(x1:T | y1:T), which means that

MCMC can be used as an alternative to SMC for addressing the state

inference problem. However, we will primarily make use of MCMC in

a different way, either as a component of SMC or vice versa. Hence, in

this section, the methods are presented in a general setting, which is

specialized to different scenarios in the consecutive sections.

A Markov chain {z[r]}r≥0 is completely specified by its initial distri-

bution µ(z) and its transition kernelK(z′ | z) (for simplicity, we assume

that there exists a dominating measure and express all distributions in

terms of their probability densities). Here, K(z′ | z) encodes the prob-

ability density for the consecutive state of the chain, denoted as z′,

given that the current state is z. That is, the chain can be simulated

according to z[0] ∼ µ(z) and z[r] ∼ K(z′ | z[r − 1]) for r = 1, 2, As

an example, the state process {xt}t≥1 of the SSM (Equation (1.2)) is a

Markov chain. However, the view on this process is quite different, as

{xt}t≥1 is thought of as the internal state of a physical system evolving

over time. On the contrary, the Markov chain {z[r]}r≥0 generated in

an MCMC sampler is simulated as part of an inferential method, and

it does not have a physical interpretation in the same sense.

The Markov chains encountered in MCMC have, by construction,

a special stability property, namely that of a stationary distribution.

That is, there exist some distribution g such that, if z[r] is marginally

28 Monte Carlo Preliminaries

distributed according to g, then so is z[r + 1] (and therefore all z[m]

for m ≥ r). If g is a stationary distribution for the Markov kernel K,

then we say that K leaves g invariant. Furthermore, if the marginals

of the chain approach the stationary distribution (in total variation),

it is referred to as the limiting distribution of the chain. An impor-

tant consequence of this convergence property is that the sample path

average,

1

R

R∑
r=0

ϕ(z[r]), (2.10)

converges almost surely to the expectation Eg[ϕ(z)] =
∫
ϕ(z)g(z)dz.

This result, known as the ergodic theorem (see e.g., [120, Section 6.6]),

ensures that the Markov chain can be used to compute Monte Carlo

estimators of expectations under the stationary distribution.

There are two properties of the chain that are sufficient for a sta-

tionary distribution to be also a limiting distribution; irreducibility and

aperiodicity. The Markov chain is said to be g-irreducible if, for any ini-

tial state, it has positive probability of entering any set which has a

positive probability under g. The chain is periodic if, with probability 1,

certain subsets only can be visited at regularly spaced intervals. If the

chain is not periodic, it is said to be aperiodic. For an irreducible and

aperiodic chain with stationary distribution g, the marginals converge

to the stationary distribution.

Theorem 2.1. Let {z[r]}r≥0 be a g-irreducible and aperiodic Markov

chain with stationary distribution g. Then, for g-almost all starting

points,

‖L(z[r] ∈ ·) − g(·)‖TV → 0,

as r→∞, where L(z[r] ∈ ·) is the marginal distribution of z[r] and

‖ · ‖TV is the total variation norm.

Proof. See [134, Theorem 1].

Stronger forms of convergence are also common in the MCMC

literature, such as geometric ergodicity and uniform ergodicity. It is

2.2 Markov Chain Monte Carlo 29

also possible to establish central limit theorems for the estimator in

Equation (2.10). There is by now a well-developed theory on Markov

chains, safeguarding the theoretical validity of MCMC methods, see

e.g., [104, 120, 134].

2.2.2 Metropolis–Hastings Algorithm

A sample path from a Markov chain with a specific limiting distribu-

tion can be used to compute estimators according to Equation (2.10).

However, since we are interested in computing expectations under a

given target distribution f(z), it remains to construct the chain so that

f(z) is its limiting distribution. To accomplish this, we have freedom in

the choice of transition kernel K(z′ | z), as long as the kernel is chosen

in such a way that it is possible to simulate the Markov chain.

A property which is sufficient for f(z) to be a stationary distribution

of the chain is that the kernel satisfies detailed balance,

f(z)K(z′ | z) = f(z′)K(z | z′) for (z,z′) ∈ Z2. (2.11)

Based on this criterion, it is possible to construct a Markov kernel

with the correct stationary distribution using an accept/reject proce-

dure. This results in the Metropolis–Hastings (MH) algorithm [102, 71],

which is the main tool in the MCMC toolbox.

The idea behind the MH algorithm is to generate samples from

some arbitrary proposal kernel q(z′ | z). The simulation is followed by

an accept/reject decision to make sure that detailed balance holds for

the given target distribution. The MH acceptance probability, for a

move from z to z′, is given by

ρ(z,z′) = 1 ∧ f(z
′)

f(z)

q(z | z′)
q(z′ | z) , (2.12)

where a ∧ b = min(a,b). That is, with z[r − 1] being the previous state

of the Markov chain at iteration r, we proceed by sampling a candidate

value z′ ∼ q(z′ | z[r − 1]). With probability ρ(z[r − 1],z′), the sample is

accepted and we set z[r] = z′. Otherwise, the sample is rejected and we

set z[r] = z[r − 1]. It is interesting to note that the acceptance proba-

bility depends on the target density only through the ratio f(z′)/f(z).

30 Monte Carlo Preliminaries

Algorithm 2 Metropolis–Hastings sampler

1: Set z[0] arbitrarily.

2: for r ≥ 1 do

3: Draw z′ ∼ q(z′ | z[r − 1]).

4: With probability

ρ(z[r − 1],z′) = 1 ∧ f(z′)

f(z[r − 1])

q(z[r − 1] | z′)
q(z′ | z[r − 1])

,

set z[r] = z′, otherwise set z[r] = z[r − 1].

5: end for

Hence, it is possible to run the MH algorithm even when the normaliz-

ing constant of the target density is unknown, which is key to its appli-

cability in practice. The MH sampler is summarized in Algorithm 2.

The transition kernel given by the sampling procedure above is,

K(dz′ | z) = ρ(z,z′)q(dz′ | z) + (1 − η(z))δz(dz′), (2.13)

with η(z) =
∫
ρ(z,z′)q(z′ | z)dz′. It can be verified that this kernel sat-

isfies the detailed balance condition (Equation (2.11)). Consequently,

f(z) is a stationary distribution of the chain. Under additional, mild,

assumptions (basically, positivity of the proposal kernel), it can also

be verified that the chain is irreducible and aperiodic, which by

Theorem 2.1 implies that f(z) is the limiting distribution of the Markov

chain.

In practice, the choice of the proposal kernel is critical. If the pro-

posal is not chosen appropriately, the average acceptance probability

can be very low. This results in that the chain gets “stuck” at the

same value for many iterations. We say that the chain suffers from

poor mixing. Furthermore, a high acceptance probability does not nec-

essarily imply good mixing. Indeed, a proposal kernel which only makes

small, local moves can yield a high acceptance probability, but at the

same time a very poor exploration of the state-space. To construct

a proposal kernel with good mixing properties is particularly chal-

lenging in high dimensions. To address this issue, sophisticated pro-

posal mechanisms have been developed for the MH algorithm. One

approach is to construct a proposal kernel based on the simulation of

2.2 Markov Chain Monte Carlo 31

a Hamiltonian dynamical system, leading to the so-called Hamiltonian

Monte Carlo method [44] (see also [109]). See [61, 78, 124] for applica-

tions and extensions of this method. Another approach is to make use

of SMC within MCMC, which is the idea that underlies the particle

MCMC framework [3]. These methods will be discussed in more detail

in Section 5.

2.2.3 Gibbs Sampling

The Gibbs sampler [58, 57] is an MCMC method of particular interest.

It can be seen as a special case of the MH algorithm. However, it differs

both in terms of basic methodology and historical motivation. Assume

that the random variable of interest can be partitioned according to

z = {z1, . . . , zp}, where the zis can be either uni- or multidimensional.

A Markov kernel is then constructed by sampling each component from

its full conditional under f , i.e.,

z′i | z1, . . . , zi−1, zi+1, . . . , zp ∼ fi(zi | z1, . . . , zi−1, zi+1, . . . , zp). (2.14)

The sampling procedure given above leaves f(z) invariant, i.e., if z

is distributed according to f , then so is {z1, . . . , zi−1, z
′
i zi+1, . . . , zp}.

Hence, sampling each of the components in this manner, either in a

deterministic or in a random order, defines a Markov kernel on Z, with

stationary distribution f(z). Since only the conditionals f1, . . . , fp are

used in the sampling procedure, all of the simulations can be univari-

ate (or low-dimensional), even for high-dimensional problems, which

is a key property of the Gibbs sampler. We summarize the method in

Algorithm 3.

The specific parameterization that is used in the construction of

a Gibbs sampler can have very significant effects on its performance,

see e.g., [72, 121]. If the individual components z1, . . . , zp are strongly

dependent, sampling from the full conditionals can lead to insignificant

updates of the components, resulting in a poorly mixing Gibbs sampler.

An example of this phenomena, which is of particular interest to the

present work, is single-state Gibbs sampling for SSMs. Assume that the

target distribution is the JSD p(x1:T | y1:T). A natural parameterization

for a Gibbs sampler is to draw the individual states at different time

32 Monte Carlo Preliminaries

Algorithm 3 Gibbs sampler (deterministic scan)

1: Set z[0] arbitrarily.

2: for r ≥ 1 do

3: Sample according to

z1[r] ∼ f1(z1 | z2[r − 1], . . . , zp[r − 1]).

...

zi[r] ∼ fi(zi | z1[r], . . . , zi−1[r], zi+1[r − 1], . . . , zp[r − 1]).

...

zp[r] ∼ fp(zp | z1[r], . . . , zp−1[r]).

4: end for

points from their full conditional, i.e.,

x′t ∼ p(xt | x1:t−1,xt+1:T ,y1:T), (2.15)

for t = 1, . . . , T . This leads to the single-state sampler which was used

in the illustrating example in Section 1.3. As was experienced in this

example, the resulting Gibbs sampler can suffer from very poor mixing.

The reason is that there is often a strong dependence between consec-

utive states in an SSM. Hence, when x′t is sampled, the resulting value

will be in close agreement with the conditioning on xt−1 and xt+1,

resulting in small updates at each iteration.

Two important techniques, used to improve the mixing of the Gibbs

sampler, are grouping and collapsing. To illustrate these concepts,

assume that the variable of interest is partitioned into three parts,

z = {z1,z2,z3}. The basic Gibbs sampler would then, at each iteration,

simulate according to

z′1 ∼ f1(z1 | z2,z3), z′2 ∼ f2(z2 | z′1,z3), z′3 ∼ f3(z3 | z′1,z′2).
Grouping, or blocking, amounts to sample a group of variable, say

{z2,z3}, jointly. That is, we simulate according to

z′1 ∼ f1(z1 | z2,z3), {z′2,z′3} ∼ f2,3(z2,z3 | z′1).

2.2 Markov Chain Monte Carlo 33

This corresponds to a reparameterization of the Gibbs sampler, with

only two components instead of three. If z2 and z3 are strongly

dependent, sampling them jointly can result in much larger updates,

improving the mixing of the basic Gibbs sampler.

Collapsing is another word for marginalization. In the simplest case,

one component of the model, say z3, is marginalized in all the steps of

the sampler. That is, we simulate according to

z′1 ∼ f̄1(z1 | z2), z′2 ∼ f̄2(z2 | z′1),
where f̄i, i = 1, 2, are the full conditionals under the marginal distribu-

tion f̄(z1,z2) =
∫
f(z1,z2,z3)dz3. This corresponds to a standard Gibbs

sampler, targeting the marginal distribution f̄ instead of f .

Perhaps more interestingly, the Gibbs sampler does not have to be

fully collapsed, as above, to attain an improvement in mixing. In a par-

tially collapsed Gibbs sampler, we marginalize a certain variable only in

some of the Gibbs steps. For instance, we could simulate according to

z′1 ∼ f1(z1 | z2,z3), z′2 ∼ f̄2(z2 | z′1), z′3 ∼ f3(z3 | z′1,z′2).
This partially collapsed Gibbs sampler results in a valid MCMC

method, with stationary distribution f(z1,z2,z3). Again, if z2 and z3
are strongly dependent, sampling z2 unconditionally on z3 enables a

larger update, which in turn results in a larger update also of z3.
1

However, care needs to be taken when constructing a partially col-

lapsed sampler, since the order of the Gibbs steps in fact can affect

the stationary distribution. If, for instance, we would collapse all the

Gibbs steps to a maximum degree and sample each of the variables z1,

z2 and z3 from their respective marginals under f , then we would lose

all correlation between the variables. A more intricate example of an

improperly collapsed sampler is,

z′1 ∼ f̄1(z1 | z2), z′2 ∼ f2(z2 | z′1,z3), z′3 ∼ f3(z3 | z′1,z′2).
This sampling scheme is seemingly similar to the one above, but this

latter scheme does not leave f(z1,z2,z3) invariant. Again, the reason is

1 In fact, in this specific example, the partially collapsed Gibbs sampler is equivalent to the
grouped Gibbs sampler.

34 Monte Carlo Preliminaries

that the sampler does not take the dependences between the variables

into account in a correct way. To see why this is the case and how to

construct a properly collapsed Gibbs sampler, see [137].

Grouping and collapsing will in general improve the mixing prop-

erties of the Gibbs sampler (see [97, Section 6.7]). In practice, the gain

can be quite considerable. In the motivating example in Section 1.3,

we pointed out that a backward simulator aims at sampling the state

sequence x1:T jointly from the JSD, instead of resorting to single-state

sampling of the individual state components. In light of the above dis-

cussion, we see that the backward simulator thus is a way of grouping

the state variables to alleviate the strong dependencies between con-

secutive states.

A different technique which can also be useful is to reparameter-

ize the model by making a change of variables. If the new variables

are chosen in a way which decreases the posterior interdependence,

then the mixing of the Gibbs sampler can be improved; see [114] and

Section 4.6.3.

To be able to implement the Gibbs samplers described above, we

need to be able to sample from all the involved conditionals under the

target distribution f . While this is indeed possible for many interesting

problems, it is not always the case. To alleviate this, one possibility is to

use a mixed strategy, in which Gibbs steps are used whenever possible

and MH steps are used for the intractable conditionals. Since the MH

sampler leaves its target distribution invariant, each step of the mixed

sampler will leave f invariant, resulting in a valid MCMC kernel. This

approach is sometimes referred to as Hastings-within-Gibbs.

3

Backward Simulation for State-Space Models

SMC provides an approximation of the joint smoothing distribu-

tion, given by Equation (2.7). However, as discussed in Section 2.1.2,

path degeneracy makes this approximation unreliable for anything but

filtering or fixed-lag smoothing with a short enough lag. In the present

section, we will see how the joint smoothing problem can be addressed

by complementing the forward filter with a second recursion, evolv-

ing in the time-reversed direction. In particular, we will make use of

SMC to enable backward simulation for general SSMs, allowing us to

generate samples approximately distributed according to the JSD.

A related approach is the two-filter smoother [17], which is based

on one filter moving forward in time and one filter moving backward

in time. When the two filters meet “in the middle”, the information is

merged, enabling computation of smoothed estimates. This approach

will not be considered here, and for further reading on SMC implemen-

tations of the two-filter smoother we refer to [18, 51].

35

36 Backward Simulation for State-Space Models

3.1 Forward Filter/Backward Simulator

As was recognized in Section 1.7, it is possible to make use of the back-

ward recursion (Equation (1.12)) to generate samples from the JSD.

The key ingredient is the backward kernel. Let us assume that the

model under study is fully dominated. The backward kernel density is

then given by Equation (1.11). As previously pointed out, this expres-

sion depends explicitly on the filtering density p(xt | y1:t). The basic

idea, underlying the particle-based forward filter/backward simulator

(FFBSi) [62, 40], is to make use of a PF to approximate the backward

kernel.

Assume that we have recorded a sequence of observations y1:T up

to some final time point T . Assume also that we have applied a PF to

this batch of data. For each time t = 1, . . . , T we thus have a weighted

particle system {xit,wi
t}Ni=1 approximating the filtering distribution at

time t,

p̂N (dxt | y1:t) �
N∑
i=1

wi
tδxi

t
(dxt). (3.1)

These approximations are given by marginalization of Equation (2.7),

or, put differently, by discarding everything from the particle trajec-

tories except for the last time point. Using Equation (3.1) in Equa-

tion (1.11), we obtain an approximation of the backward kernel,

B̂N
t (dxt | xt+1) �

N∑
i=1

wi
tf(xt+1 | xit)∑

lw
l
tf(xt+1 | xlt)

δxi
t
(dxt). (3.2)

It is important to note that the particles {xit,wi
t}Ni=1 that are used to

approximate the filtering distribution in Equation (3.1) are those that

were generated at time t in the PF. Hence, there is in general a rich

diversity of particles in this system, and the approximations in Equa-

tions (3.1) and (3.2) do not suffer (directly) from path degeneracy. This

is also the reason for why FFBSi can succeed where the PF fails. Even

though the PF results in a degenerate approximation of the JSD, it

can generally provide accurate approximations of the filtering distribu-

tions, which is all that is needed to compute an approximation of the

backward kernel.

3.1 Forward Filter/Backward Simulator 37

We can now make use of Equations (3.1) and (3.2) to generate a

backward trajectory by sampling (cf. Equation (1.16)),

x̃T ∼ p̂N (dxT | y1:T), (3.3a)

x̃t ∼ B̂N
t (dxt | x̃t+1), (3.3b)

for t = T − 1, . . . , 1. The backward trajectory x̃1:T is an approximate

realization from p(x1:T | y1:T). How close the distribution of x̃1:T is to

the JSD, clearly depends on how accurate the PF approximations in

Equations (3.1) and (3.2) are. The convergence properties of FFBSi

will be the topic of Section 3.2.2.

Sampling according to Equation (3.3a) simply consists of drawing

among the filter particles at time T with P (x̃T = xiT) = wi
T . Similarly,

the empirical backward kernel has finite support and it can be writ-

ten as

B̂N
t (dxt | x̃t+1) =

N∑
i=1

w̃i
t|T δxi

t
(dxt), (3.4)

where we have defined the smoothing weights

w̃i
t|T =

wi
tf(x̃t+1 | xit)∑

lw
l
tf(x̃t+1 | xlt)

. (3.5)

Hence, to sample according to Equation (3.3b), we evaluate the smooth-

ing weights {w̃i
t|T }Ni=1 and draw among the forward filter particles at

time t with P (x̃t = xit) = w̃i
t|T . Note that, in general, x̃t will differ from

the ancestor particle of x̃t+1, resulting in an increased particle diversity.

We emphasize that Equation (3.2) relies on the assumption that the

model under study is fully dominated. Applying backward simulation

to degenerate (non fully dominated) models, turns out to be much more

tricky. We will return to this issue in Section 4.

When using FFBSi to address the smoothing problem, we typically

generate multiple backward trajectories {x̃j1:T }Mj=1, by repeating the

backward simulation (Equation (3.3))M times. Hence, conditionally on

the forward filter particles, the collection {x̃j1:T }Mj=1 are i.i.d. samples.

The conditional distribution of these samples will be given explic-

itly in Section 3.2.1. The backward trajectories define an unweighted

38 Backward Simulation for State-Space Models

Algorithm 4 FFBSi [62]

Input: Forward filter particle systems {xit,wi
t}Ni=1 for t = 1, . . . , T .

Output: Backward trajectories {x̃j1:T }Mj=1.

1: Sample independently {bT (j)}Mj=1 ∼ Cat
({wi

T }Ni=1

)
.

2: Set x̃jT = x
bT (j)
T for j = 1, . . . , M .

3: for t = T − 1 to 1 do

4: for j = 1 to M do

5: Compute w̃i,j
t|T ∝ wi

tf(x̃
j
t+1 | xit) for i = 1, . . . , N .

6: Normalize the smoothing weights {w̃i,j
t|T }Ni=1 to sum to one.

7: Draw bt(j) ∼ Cat
(
{w̃i,j

t|T }Ni=1

)
.

8: Set x̃jt = x
bt(j)
t and x̃jt:T = {x̃jt , x̃jt+1:T }.

9: end for

10: end for

point-mass approximation of the joint smoothing distribution,

p̃M(dx1:T | y1:T) � 1

M

M∑
j=1

δ
x̃j
1:T

(dx1:T). (3.6)

Clearly, this approximation can also be used to approximate any

marginal or fixed-interval smoothing distribution.

We summarize the FFBSi in Algorithm 4, and illustrate the back-

ward simulation procedure in Example 3.1 below.

Example 3.1 (Backward simulation). We illustrate the backward

simulation process on a toy example. In Figure 3.1, we show the particle

trajectories generated by a forward PF in a one-dimensional problem.

The dots show the particle positions for the N = 4 particles over T = 5

time steps and their sizes represent the particle weights. The dots are

connected, to illustrate the ancestral dependence of the particles. All

particles at time t = 5 share a common ancestor at time t = 3, i.e., the

particle paths are degenerate.

In Figure 3.2 we illustrate the simulation of one backward trajectory.

In the upper left plot, the backward trajectory is initialized by sampling

3.1 Forward Filter/Backward Simulator 39

1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time

S
ta

te

Fig. 3.1 Particle trajectories for N = 4 particles over T = 5 time steps after a completed
forward filtering pass. The sizes of the dots represent the particle weights.

Fig. 3.2 Backward simulation of a single backward trajectory. See the text for details.

from the forward filter particles at time t = 5. The probability of sam-

pling a particle xiT is given by its importance weight wi
T . The initialized

backward trajectory is shown as a square. The particle weights at t = 4

are thereafter recomputed according to Equation (3.5). The smoothing

weights {w̃i
t|T }Ni=1 are shown as circles, whereas the filter weights are

illustrated with dots. Another particle is then drawn and appended to

the backward trajectory. In the upper right and lower left plots, the tra-

jectory is augmented with new particles at t = 3 and t = 2, respectively.

Finally, in the lower right plot, a final particle is appended at t = 1,

forming a complete backward trajectory x̃1:5. Observe that the gener-

ated backward trajectory differs from the ancestral line of the forward

40 Backward Simulation for State-Space Models

filter particle as shown in Figure 3.1. The procedure can be repeated

as many times as needed (using the same forward filter particles), to

generate a collection of backward trajectories.

The backward trajectories are conditionally i.i.d. and the particle

diversity among the trajectories {x̃j1:T }Mj=1 will thus in general be larger

than that among the forward filter trajectories {xi1:T }Ni=1, since the lat-

ter suffer from path degeneracy. However, an interesting question to ask

is the following. Assume that we generate only a single backward trajec-

tory x̃1:T . Assume also that we extract a single trajectory xk1:T from the

PF, by sampling once from the empirical distribution (Equation (2.7))

at time T . Then, will the distribution of x̃1:T be closer to the true JSD,

than the distribution of xk1:T ?

The answer to this question is not obvious in the general case. Intu-

itively, we might think that the answer is yes, since x̃1:T is sampled

by a forward/backward smoothing procedure, whereas xk1:T is sampled

by a forward-only procedure. However, at least when the underlying

SMC sampler is a bootstrap PF, this turns out not to be the case, as

is stated in the following proposition due to [113].

Proposition 3.1. Assume that the weighted particle system

{xi1:T ,wi
T }Ni=1 is generated by a bootstrap particle filter. Let k be sam-

pled with P (k = i) = wi
T and let x̃1:T be generated by a backward sim-

ulator. Then, P (xk1:T ∈ A) = P (x̃1:T ∈ A) for any set A.

Proof. See [113, Proposition 5].

Hence, the backward simulation procedure should be thought of as

a way to reduce the correlation between the degenerate forward filter

trajectories, rather than as a way to actually improve the quality of the

individual trajectories.

As can be seen in Algorithm 4 (page 38), to generate M backward

trajectories, the smoothing weights need to be computed for index i

ranging from 1 to N and index j ranging from 1 to M . Hence, the

computational complexity of the algorithm is O(NM). The number of

3.1 Forward Filter/Backward Simulator 41

backward trajectories M , generated by Algorithm 4, is arbitrary. How-

ever, to obtain accurate approximations of the smoothing distributions

of interest, it is clear thatM needs to be fairly large. The computational

complexity of Algorithm 4 may therefore be prohibitive. One option is

to make use of parallel architectures, e.g., graphics processing units.

Algorithm 4, and in fact most backward simulators, is particularly well

suited for parallel implementation, since the backward trajectories can

be generated independently. In Section 3.3, we will discuss alternative

methods for reducing the computational complexity of the algorithm.

The FFBSi is illustrated in the example below, which also provides

some additional insight into how to reason about the design parameters

N and M .

Example 3.2(FFBSi). We consider a standard nonlinear time-series

model previously used by, among others, Andrade Netto et al. [111],

Gordon et al. [64] and Godsill et al. [62]. The model is given by,

xt+1 = 0.5xt + 25
xt

1 + x2t
+ 8cos(1.2t) + vt,

yt = 0.05x2t + et,

with vt ∼ N (0,σ2v), et ∼ N (0,σ2e) and x1 ∼ N (0,5). We take σ2v = 10

and σ2e = 1 and generate T = 100 observations y1:T from the system.

The smoothing distribution for this model is distinctively bimodal when

σe < σv, rendering state inference problematic.

To address the joint smoothing problem, we apply the FFBSi of

Algorithm 4 to generateM backward trajectories. A bootstrap PF with

N particles is used in the forward direction. To see how the performance

is affected by different numbers of particles and backward trajectories,

we run the FFBSi several times on the same data, with different values

for N and M .

To evaluate the performance, we compute the posterior mean esti-

mates x̃N,M
t|T = 1

M

∑M
j=1 x̃

j
t for each smoother, for t = 1, . . . , T . We then

compute the root-mean-square error (RMSE) relative to the true1

1To obtain a ground truth estimate, we run an FFBSi with 100000 forward filter particles
and 50000 backward trajectories, yielding very accurate results.

42 Backward Simulation for State-Space Models

0
200

400
600

800
1000

0

1000

2000

3000

10
−1

10
0

10
1

Fig. 3.3 Averaged RMSE values (log-scale), for different combinations of N and M .

posterior means,

ε(N,M) =

√√√√ 1

T

T∑
t=1

(
x̃N,M
t|T − E[xt | y1:T]

)2
.

Since the RMSE is defined relative to the true posterior mean, we

expect ε(N,M)→ 0 as N →∞ and M →∞ (see Section 3.2.2). We

run the smoothers on a grid of values of N and M , with N ranging

from 10 to 3000 and with M ranging from 10 to 1000. Furthermore,

we use 500 independent runs at each grid point and average the RMSE

values, to reduce the effects of randomness. The results are reported in

Figure 3.3.

As expected, the error is decreasing with both N and M . It is

interesting to note, however, that the dependence on N is much more

pronounced than the dependence onM . Even for a very modest number

of backward trajectories (M = 10), the error can be reduced a fair bit

by just increasing N . This is not the case if we instead fix N = 10 and

only increase M .

These results can be explained by the fact that the FFBSi relies

heavily on the empirical backward kernel (Equation (3.2)). Since this

3.2 Analysis and Convergence 43

only depends on the forward filter, it is clear that we need to take N

large to obtain an accurate approximation of the kernel. Conditionally

on the forward filter particles, Algorithm 4 generates M i.i.d. backward

trajectories. If the distribution of these trajectories, which only depends

on N , is “close enough” to the true JSD, a modest number of samples

can be sufficient to obtain accurate posterior estimates.

The results in Figure 3.3 suggests that we can try to find an optimal

trade-off between M and N for a given computational time. However,

the results can vary between different models. Also, in this example,

we have only considered estimating the posterior means E[xt | y1:T]. For
other test functions, the results may also differ. Furthermore, for the

FFBSi of Algorithm 4, the computational cost scales rather predictively

as MN . However, as we will see in Section 3.3, there are alternative

implementations of the FFBSi with smaller computational costs, which

on the other hand are harder to predict. Hence, it can be difficult to

find an optimal trade-off, even if a graph such as in Figure 3.3 would be

available. However, as a rule of thumb, it is better to put most effort on

the forward filter to obtain accurate backward kernel approximations,

i.e., to take N >M .

3.2 Analysis and Convergence

In this section we discuss the relationship between the FFBSi and a

method referred to as forward filter/backward smoother (FFBSm). As

we will see, analyzing the FFBSm is useful in order to assess conver-

gence properties for FFBSi and to better understand the properties of

the method.

3.2.1 Forward Filter/Backward Smoother

So far, we have seen how the empirical backward kernel (Equa-

tion (3.2)) can be used to simulate backward trajectories, approxi-

mately distributed according to the JSD. From these trajectories, we

obtained an approximation of the joint smoothing distribution given by

Equation (3.6). However, an alternative way to address the smoothing

problem is to simply plug the approximation in Equation (3.2) into the

44 Backward Simulation for State-Space Models

backward recursion (Equation (1.12)). Contrary to the backward simu-

lator, this will result in a deterministic approximation of the smoothing

distribution, conditionally on the forward filter particles. This method

is referred to as the forward filter/backward smoother (FFBSm).

FFBSm was introduced for marginal smoothing in [39] and thus

predates the FFBSi. The computational complexity for FFBSm is at

least quadratic in the number of particles. For FFBSi, it is possible to

obtain a lower computational cost (see Section 3.3), making it the pre-

ferred method of choice (among these two) for most models. However,

the two methods are closely related and, as noted above, by studying

the FFBSm we can gain additional insight into the properties of FFBSi.

We start by reviewing the marginal FFBSm by [39]. This method

aims at computing the marginal smoothing densities p(xt | y1:T) for

t = 1, . . . , T . These densities are given recursively, backward in time, by

p(xt | y1:T) =
∫
p(xt | xt+1,y1:t)p(xt+1 | y1:T)dxt+1. (3.7)

Assume that we have obtained a weighted particle system

{xit+1,ω
i
t+1|T }Ni=1, targeting p(xt+1 | y1:T). At the final time point,

this is given by the PF since the filtering distribution and the

marginal smoothing distribution coincide at time T , i.e., ωi
t|T = wi

T

for i = 1, . . . , N . Plugging the empirical distribution defined by this

particle system, and the approximation of the backward kernel (Equa-

tion (3.2)), into Equation (3.7) results in

p̂NFFBSm(dxt | y1:T) �
N∑
j=1

ωj
t+1|T

N∑
i=1

wi
tf(x

j
t+1 | xit)∑

lw
l
tf(x

j
t+1 | xlt)

δxi
t
(dxt)

=

N∑
i=1

ωi
t|T δxi

t
(dxt), (3.8)

where we have defined the smoothing weights,

ωi
t|T � wi

t

N∑
j=1

ωj
t+1|T

f(xjt+1 | xit)∑
lw

l
tf(x

j
t+1 | xlt)

, (3.9)

for i = 1, . . . , N . The smoothing weights defined above are self-

normalized, in the sense that they sum to one by construction.

3.2 Analysis and Convergence 45

We have added “FFBSm” explicitly in the notation to emphasize

that the approximation of the marginal smoothing distribution given

by Equation (3.8) is not the same as we would get by marginalization

of the PF approximation (Equation (2.7)). Note, however, that the

FFBSm reuses the forward filter particles {xit}Ni=1, but updates the

importance weights of these particles to target the marginal smoothing

distribution, rather than the filtering distribution.

The computational complexity of the marginal FFBSm is O(N2),

which can be seen from the weight expression (Equation (3.9)). It is

possible to apply the same approach to approximate any fixed interval

distribution or the joint smoothing distribution, albeit at an increased

computational cost. For the joint smoothing distribution, we make use

of the following factorization of the JSD,

p(x1:T | y1:T) =
(

T−1∏
t=1

p(xt | xt+1,y1:t)

)
p(xT | y1:T), (3.10)

following from Equation (1.12). By plugging the empirical filter and

backward kernel approximations into this expression, we get

p̂NFFBSm(dx1:T | y1:T)

�
N∑

i1=1

· · ·
N∑

iT=1

(
T−1∏
t=1

wit
t f(x

it+1

t+1 | xitt)∑
lw

l
tf(x

it+1

t+1 | xlt)

)
wiT
T︸ ︷︷ ︸

�ω1:T |T (i1,...,iT)

δ
x
i1
1 ···xiT

T

(dx1:T).

(3.11)

The expression above defines a point-mass distribution on XT , and the

cardinality of its support is NT . The meaning of the distribution can

be understood in the following way. For each time t = 1, . . . , T , the

particles {xit}Ni=1 generated by the PF is a set in X of cardinality N .

By picking one particle from each time point, we obtain a particle

trajectory, i.e., a point in XT ,

(xi11 , . . . , x
iT
T) ∈ XT . (3.12)

By letting all of the indices i1, i2, . . . , iT range from 1 to N , we get in

totalNT such trajectories. The empirical distribution (Equation (3.11))

assigns, to each such trajectory, an importance weight ω1:T |T (i1, . . . , iT).

46 Backward Simulation for State-Space Models

Clearly, Equation (3.11) is impractical for any real problem of inter-

est, since the computation of the weights is an O(NT) operation, both

in terms of computational complexity and storage. However, Expres-

sion (3.11) provides an interesting connection between FFBSm and

FFBSi.

From the construction of the backward simulator (Equation (3.3)),

it follows that FFBSi generates i.i.d. draws from the distribution in

Equation (3.11), conditionally on the forward filter particles. We thus

make the following observation. Let ϕ : XT → R be some test function,

of which we seek to compute the expectation under the JSD, E[ϕ(x1:T) |
y1:T]. By Equation (3.11), the FFBSm estimator is given by,

ϕ̂N
FFBSm =

N∑
i1=1

· · ·
N∑

iT=1

ω1:T |T (i1, . . . , iT)ϕ(x
i1
1 , . . . ,x

iT
T). (3.13)

This estimator is, unfortunately, also intractable. However, the FFBSi

approximation (Equation (3.6)) provides an unbiased estimator of

Equation (3.13), i.e.,

ϕ̂N
FFBSm = E

[
ϕ̃M
FFBSi

∣∣ {xit,wi
t}Ni=1, t = 1, . . . , T

]
, (3.14)

where ϕ̃M
FFBSi =

1
M

∑M
j=1ϕ(x̃

j
1:T). Here, the expectation is taken w.r.t.

the random components of the backward simulation, conditionally on

all the random variables generated by the forward filter. That is, the

expectation in Equation (3.14) is given by a summation over the back-

ward trajectory indices, corresponding exactly to Expression (3.13).

From Equation (3.14), we see that the FFBSm estimator can be

seen as a Rao–Blackwellization of the FFBSi estimator (see e.g., [90]).

Put the other way around, FFBSi is an “anti-Rao–Blackwellization” of

FFBSm. Rao–Blackwellization usually aims at reducing the variance

of an estimator, but generally at the cost of increased computational

complexity. Here, we go the other way, and (significantly) reduce the

complexity of the FFBSm estimator by instead employing FFBSi, albeit

at the cost of a slight increase in variance.

3.2.2 Convergence of FFBSm and FFBSi

The close connection between FFBSm and FFBSi is useful in order to

transfer convergence results from the former method to the latter. In

3.2 Analysis and Convergence 47

this section, a few key results from [35] are reviewed. For simplicity,

we assume M = N throughout this section. Let ‖ϕ‖∞ = supx |ϕ(x)|
and osc(ϕ) = sup(x,x′) |ϕ(x) − ϕ(x′)| be the supremum and oscillator

norms, respectively. Let
D−→ denote convergence in distribution. We

make the following assumption on bounds on the likelihood and the

weight function.

(A1) For any 1 ≤ t ≤ T ,

• g(yt | ·) > 0 and ‖g(yt | ·)‖∞ <∞.
• ‖Wt(·, · ;yt)‖∞ <∞ whereWt(xt,xt−1;yt) is defined in Equa-

tion (2.5).

We start with a deviation inequality for FFBSm.

Theorem 3.2 (Exponential deviation inequality for FFBSm).

Assume (A1). Then there exist constants c1,T and c2,T > 0 such that

for all N , ε > 0 and all bounded measurable functions ϕ : XT → R,

P (|ϕ̂N
FFBSm − E[ϕ(x1:T) | y1:T]| ≥ ε) ≤ c1,T exp(−c2,TNε2/osc2(ϕ)).

Proof. See [35, Theorem 5].

The exponential deviation inequality of Theorem 3.2 can be more or

less directly extended to FFBSi by using the identity in Equation (3.14).

Corollary 3.3 (Exponential deviation inequality for FFBSi).

Assume (A1). Then there exist constants c1,T and c2,T > 0 such that

for all N , ε > 0 and all bounded measurable functions ϕ : XT → R,

P (|ϕ̃N
FFBSi − E[ϕ(x1:T) | y1:T]| ≥ ε) ≤ c1,T exp(−c2,TNε2/osc2(ϕ)).

Proof. See [35, Corollary 6].

48 Backward Simulation for State-Space Models

Hence, when using FFBSi to compute an expectation, the proba-

bility that the Monte Carlo error exceeds some value ε is bounded by

a function decreasing exponentially fast with the number of particles.

Among other things, this non-asymptotic result implies almost sure

convergence of the estimator ϕ̃N
FFBSi.

In the asymptotic regime, it is also possible to establish a central

limit theorem (CLT) with rate
√
N . To do so, we make an additional

assumption on the transition density function and the proposal density.

(A2) ‖f(· | ·)‖∞ <∞ and, for any 1 ≤ t ≤ T , ‖rt(· | · ,yt)‖∞ <∞.

A CLT can now be stated for FFBSm.

Theorem 3.4(CLT for FFBSm). Assume (A1) and (A2). Then, for

any bounded measurable function ϕ : XT → R,
√
N(ϕ̂N

FFBSm − E[ϕ(x1:T) | y1:T]) D−→N (0,Γ1:T |T [ϕ]),

where Γ1:T |T [ϕ] is defined in [35, Equation (48)].

Proof. See [35, Theorem 8].

Similar to above, we can extend the CLT to the FFBSi by using the

relation in Equation (3.14).

Corollary 3.5(CLT for FFBSi). Assume (A1) and (A2). Then, for

any bounded measurable function ϕ : XT → R,
√
N(ϕ̃N

FFBSi − E[ϕ(x1:T) | y1:T])
D−→N (0,Var(ϕ(x1:T) | y1:T) + Γ1:T |T [ϕ]),

where Γ1:T |T [ϕ] is defined in [35, Equation (48)].

Proof. See [35, Corollary 9].

The asymptotic variance for the FFBSi estimator contains an addi-

tional term, compared to the FFBSm estimator. This is in agreement

with what we can expect from Equation (3.14). However, as pointed

3.3 Backward Simulation with Rejection Sampling 49

out above, the increase in variance is compensated for by a significant

reduction in computational complexity.

Additional convergence results are derived in [35], e.g., time uniform

bounds for marginal smoothing estimators. Non-asymptotic deviation

inequalities for FFBSi estimators of smoothed additive functionals are

given in [45].

3.3 Backward Simulation with Rejection Sampling

The particle smoothers considered above have quadratic computational

complexity, which can be prohibitive for many practical applications.

FFBSi requires O(MN) operations and the computational cost of

FFBSm is (at least) O(N2).

There exist several different approaches to reduce the compu-

tational complexity of various particle smoothers, based on both

numerical approximations and algorithmic modifications. In [84],

so-called N -body methods are used to derive a marginal FFBSm with

O(N logN) complexity. The same approach can be used also for FFBSi.

These methods impose additional approximations, though the tolerance

can usually be specified beforehand. Similar N -body methods have also

been used in [85, 89] to compute exact joint maximum a posteriori esti-

mates of the state trajectory in O(N logN) computational complexity.

There have also been developments based on the two-filter algo-

rithm [18]. In its original formulation, this method is quadratic in the

number of particles. However, Fearnhead et al. [51] have proposed a

modified two-filter algorithm with linear complexity. In [49], quasiran-

dom numbers are used for particle smoothing resulting in a method,

albeit with quadratic complexity, but at the same time with a quadratic

decrease in variance (at least for one-dimensional systems).

In this section, we will see how the computational complexity of

FFBSi can be reduced, without introducing any further approxima-

tions, by using rejection sampling (RS).

3.3.1 Rejection Sampling

The basic idea that we will explore is to make use of a rejection sampler

within the FFBSi algorithm, as suggested by [35]. The key insight is

50 Backward Simulation for State-Space Models

that we do not need to evaluate all the smoothing weights {w̃i
t|T }Ni=1 to

be able to sample from the empirical backward kernel (Equation (3.4)).

To convince ourselves that there indeed is room for improvement, note

that in the FFBSi in Algorithm 4 on page 38 we evaluate N smoothing

weights on line 5, draw a single sample from the categorical distri-

bution on line 7 and then discard all the weights. Instead of making

an exhaustive evaluation of the categorical distribution, we can sam-

ple from it using RS. For this to be applicable, we assume that the

transition density function is bounded from above,

f(xt+1 | xt) ≤ ρ, (xt, xt+1) ∈ X2, (3.15)

which is true for many models arising in practical applications.

At time t, we wish to sample an index bt(j), corresponding to the

forward filter particle which is to be appended to the jth backward

trajectory. The target distribution is categorical over the index space

{1, . . . , N}, with probabilities {w̃i,j
t|T }Ni=1 (which we have not computed

yet). As proposal, we take another categorical distribution over the

same index space, with (known) probabilities {wi
t}Ni=1. That is, we pro-

pose samples based on the filter weights, rather than on the smoothing

weights.

Assume that a sample index I(j) is proposed for the jth backward

trajectory. To compute the acceptance probability, we consider the ratio

between the target and the proposal distributions. Using the definition

of the smoothing weights (Equation (3.5)) we get,

w̃
I(j),j
t|T

w
I(j)
t

=
f(x̃jt+1 | xI(j)t)∑
lw

l
tf(x̃

j
t+1 | xkt)

∝ f(x̃jt+1 | xI(j)t) ≤ ρ. (3.16)

This implies that the sample should be accepted with probability

f(x̃jt+1 | xI(j)t)/ρ (see e.g., [13, Section 11.1.2]). The rejection sampling-

based FFBSi (RS-FFBSi) is given in Algorithm 5. We also provide

MATLAB code in Listing 3.1.

The rationale for using RS is that in the limit N →∞, the compu-

tational cost will be linear in the number of particles. This is formalized

in the following proposition, due to [35].

3.3 Backward Simulation with Rejection Sampling 51

Algorithm 5 Rejection sampling FFBSi [35]

Input: Forward filter particle systems {xit,wi
t}Ni=1 for t = 1, . . . , T .

Output: Backward trajectories {x̃j1:T }Mj=1.

1: Sample independently {bT (j)}Mj=1 ∼ Cat
({wi

T }Ni=1

)
.

2: Set x̃jT = x
bT (j)
T for j = 1, . . . , M .

3: for t = T − 1 to 1 do

4: L← {1, . . . , M}.
5: while L is not empty do

6: n← card(L).

7: δ← ∅.
8: Sample independently {I(k)}nk=1 ∼ Cat({wi

t}Ni=1).

9: Sample independently {U(k)}nk=1 ∼ U([0, 1]).
10: for k = 1 to n do

11: if U(k) ≤ f(x̃L(k)t+1 | xI(k)t)/ρ then

12: bt(L(k))← I(k).

13: δ← δ ∪ {L(k)}.
14: end if

15: end for

16: L← L \ δ.
17: end while

18: Set x̃jt = x
bt(j)
t and x̃jt:T = {x̃jt , x̃jt+1:T } for j = 1, . . . , M .

19: end for

Proposition 3.6. Assume Equation (3.15). Let M = N and let CN
t

be the total number of simulations required in the accept–reject proce-

dure at time t in Algorithm 5. Assume that
∫
g(yt | xt)dxt <∞ for all

t = 1, . . . , T . Then, for a bootstrap PF or a fully adapted PF, CN
t /N

converges in probability to a finite constant.

Proof. See [35, Proposition 1].

Proposition 3.6 implies that for large N , RS-FFBSi will have close

to linear computational complexity. However, it is worth to note that

there is no upper bound on the number of times that the while-loop at

52 Backward Simulation for State-Space Models

1 % INPUT:
2 % x p f − nx ∗ N ∗ T array with forward f i l t e r p a r t i c l e s .
3 % w pf − 1 ∗ N ∗ T array with forward f i l t e r we igh t s .
4 % T, M, N, − Constants , see t e x t f o r exp lanat ion .
5 % nx , rho
6 % OUTPUT:
7 % x f f b s i − nx ∗ M ∗ T array with backward t r a j e c t o r i e s .
8
9 x f f b s i = zeros (nx , M, T) ;

10 b ins = [0 cumsum(w pf (: , : ,T))] ;
11 [˜ , b] = h i s t c (rand (M, 1) , b ins) ; % Sample I ˜ Cat (w T)
12 x f f b s i (: , : ,T) = x pf (: , b ,T) ;
13 for (t = (T−1) : (−1) : 1)
14 b ins = [0 cumsum(w pf (: , : , t))] ; % Precomputation
15 L = 1 :M;
16 while (˜ isempty (L))
17 n = length (L) ;
18 [˜ , I] = h i s t c (rand(n , 1) , b ins) ; % Sample I ˜ Cat (w t)
19 U = rand (1 , n) ; % Sample U ˜ U([0 , 1])
20
21 x t1 = x f f b s i (: , L , t +1); % x { t+1}ˆk f o r k in L
22 x t = x pf (: , I , t) ; % x t ˆ i f o r i in I
23
24 p = t r a n s i t i o n d e n s i t y f un c t i o n (x t1 , x t) ;
25 accept = (U <= p/rho) ; % Accepted draws
26
27 % L i s the index l i s t o f backward t r a j e c t o r i e s at t ime t
28 % tha t s t i l l need assignment . I i s t he index l i s t o f
29 % candidate p a r t i c l e s at t ime t . The forward f i l t e r
30 % pa r t i c l e wi th (random) index I (k) i s e i t h e r accepted as
31 % the smoothing p a r t i c l e wi th index L(k) , or not .

32
33 x f f b s i (: , L(accept) , t) = x t (: , accept) ;
34 L = L(˜ accept) ; % Remove accepted
35 end
36 end

Listing 3.1 MATLAB code for RS-FFBSi. We have assumed that a function
transition density function(x t1, x t) is available, where x t1 and x t are nx × N
matrices (nx being the state dimension). The function computes the transition density
function value f(xt+1 | xt) for each pair of columns in the two matrices, and returns the
result as a 1 × N row vector.

line 5 may be executed. It has been observed in practice that different

backward trajectories can get very different acceptance probabilities.

This has the effect that most of the time required by Algorithm 5

is spent on just a few trajectories. Furthermore, RS-FFBSi has been

found to be sensitive to the dimension of the state-space X [21, 131].

3.3 Backward Simulation with Rejection Sampling 53

Technically, the rejection sampling in Algorithm 5 is done over the

finite space {1, . . . , N}. However, the underlying idea is to sample from

the backward kernel using rejection sampling, with the filtering distri-

bution as a proposal. That is, the rejection sampling is in effect done

in the space X. Hence, it is natural to expect that the acceptance prob-

ability is diminished as the dimension of X increases, due to the curse

of dimensionality.

Due to the effects mentioned above, RS-FFBSi can in fact require

more computational time than the standard FFBSi (Algorithm 4) for

many models. To alleviate this, Taghavi et al. [131] have proposed a

hybrid strategy which switches between RS-FFBSi and FFBSi. This

approach will be reviewed in the next section.

Finally, as a practical detail, we note that the sampling at line 8

should be conducted prior to the for-loop at line 10, for Algorithm 5 to

reach linear complexity. That is, when proposing indices {I(k)}nk=1 from

the categorical distribution with probabilities {wi
t}Ni=1, we draw the

samples all at once. This allows us to use the efficient multinomial sam-

pler by Douc et al. [35, Algorithm 2], which generates N i.i.d. samples

from a categorical distribution with support at N points in O(N) time.

3.3.2 Early Stopping

Since Expression (3.15) depends on xt+1, different backward trajec-

tories will get different acceptance probabilities in RS-FFBSi. The

trajectories with high probabilities are typically accepted early in the

process, whereas the trajectories with low probabilities can remain for

many iterations. This has the effect that the cardinality of the set L

(see Algorithm 5, page 51) decreases fast in the beginning, but it can

linger for a long time close to zero. Consequently, most of the time

required by RS-FFBSi is spent on just a few trajectories.

To speed up the algorithm, a hybrid strategy has been proposed

by Taghavi et al. [131]. The idea is to run the rejection sampling loop

for a certain number of iterations, and then switch to standard FFBSi

for the remaining backward trajectories (i.e., by making an exhaustive

evaluation of the remaining weights). The general method based on this

idea, RS-FFBSi with early stopping, is given in Algorithm 6.

54 Backward Simulation for State-Space Models

Algorithm 6 RS-FFBSi with early stopping [131]

Input: Forward filter particle systems {xit,wi
t}Ni=1 for t = 1, . . . , T .

Output: Backward trajectories {x̃j1:T }Mj=1.

1: Sample independently {bT (j)}Mj=1 ∼ Cat
({wi

T }Ni=1

)
.

2: Set x̃jT = x
bT (j)
T for j = 1, . . . , M .

3: for t = T − 1 to 1 do

4: L← {1, . . . , M}.
5: while Stopping criterion is not met and L is not empty do

6: Run one RS iteration (lines 6 to 16 in Algorithm 5, page 51).

7: end while

8: if L is not empty then

9: Sample bt(j) for j ∈ L using FFBSi (Algorithm 4, page 38).

10: end if

11: Set x̃jt = x
bt(j)
t and x̃jt:T = {x̃jt , x̃jt+1:T } for j = 1, . . . , M .

12: end for

Two stopping criteria are proposed in [131], one deterministic and

one adaptive. The first is a simple stopping rule, in which a maximum

number ofK rejection sampling iterations are allowed. If L is not empty

after K iterations, an exhaustive evaluation of the backward sampling

weights is made for the remaining trajectories. The second stopping

criterion is an adaptive rule, which monitors the number of acceptances

at each rejection sampling iteration. Based on this information, the

average acceptance probability is estimated and used to make a decision

about when to stop.

The benefit of using the adaptive rule is that it avoids a hard (and

possibly difficult) choice for the design parameter K. Instead, it has

the ability to automatically adapt the stopping time to the properties

of the model, depending on the acceptance probabilities. As we will

see in Example 3.3, early stopping can be quite useful in reducing the

computational cost compared to both FFBSi and RS-FFBSi.

Example 3.3 (RS-FFBSi with early stopping). This example is

taken from [131]. We consider a second-order LGSS model, previously

3.3 Backward Simulation with Rejection Sampling 55

used to evaluate the two-filter smoother presented in [51],

xt+1 = Axt + vt, vt ∼ N(0,Q),

yt = Cxt + et, et ∼ N (0,σ2),

with

C =
(
1 0

)
, A =

(
1 1

0 1

)
, Q =

(
1
3

1
2

1
2 1

)
.

We let σ ∈ {0.1, 1, 10}. The reason to choose different values for σ is to

obtain different acceptance probabilities in the rejection sampler, where

σ = 0.1, correspond to a fairly high acceptance probability and σ = 10

to a very low acceptance probability. We chooseN = 5000 forward filter

particles and M = 1000 backward trajectories. For the deterministic

stopping rule, we consider three different thresholds: K ∈ {M5 ,M10 , M20}.
We also use the adaptive stopping rule from [131].

We emphasize that all the backward simulators considered here are

equivalent in terms of accuracy. Hence, they are evaluated only in terms

of computational time. We clock the CPU times using the tic and toc

commands in Matlab. All the simulations are done on a standard laptop

Intel(R) Core(TM) i7-3720Qm 2.60GHz platform with 8GB of RAM.

For each value of σ, we generate five unique datasets, each consisting

of T = 100 samples. For each dataset, we run the algorithms ten times

and average the results, to reduce the effects of randomness.

The results for different choices of σ are shown in Table 3.1. For high

acceptance probabilities (σ = 0.1), there is a gain in using RS-FFBSi

instead of FFBSi. However, as σ is increased, some backward trajec-

tories get very small acceptance probabilities with many rejections as

a result. By using early stopping, a large improvement in computa-

tion time is attained for both small and large acceptance probabilities,

compared to both FFBSi and RS-FFBSi.

Table 3.1 Average CPU times in seconds for RS-FFBSi with early stopping.

σ FFBSi RS-FFBSi K = M
5

K = M
10

K = M
20

Adaptive

0.1 44.65 19.50 2.03 1.94 2.36 1.92
1 45.28 77.71 3.49 3.65 5.33 3.79
10 48.63 355.70 14.83 20.21 25.86 15.25

56 Backward Simulation for State-Space Models

3.4 Backward Simulation with MCMC Moves

In this section, we review a few related methods in which MCMC moves

are used in the context of backward simulation.

3.4.1 Metropolis–Hastings FFBSi

The bottleneck of the FFBSi algorithm is the computation of the back-

ward sampling weights (Equation (3.5)). In RS-FFBSi, rejection sam-

pling is used to avoid an exhaustive evaluation of the weights, which

is possible since the weights can be evaluated up to proportionality in

constant time. However, under the same conditions, it is also possible

to apply MCMC. An alternative is thus to run a Metropolis–Hastings

sampler for a fixed number of iterations, say R, to approximately

sample from the empirical backward kernel. This method, proposed

by [21], is referred to as Metropolis–Hastings FFBSi (MH-FFBSi).

Given a partial backward trajectory x̃t+1:T , the backward weights

are given by,

w̃i
t|T ∝ wi

tf(x̃t+1 | xit), (3.17)

for i = 1, . . . , N . Let {νit}Ni=1 be probabilities on the index set

{1, . . . , N}, defining a proposal distribution for an independent

Metropolis–Hastings sampler. To propose a move from I to C, we thus

draw C ∼ Cat({νit}Ni=1) and accept this sample with probability

1 ∧ w
C
t f(x̃t+1 | xCt)
wI
t f(x̃t+1 | xIt)

νIt
νCt

. (3.18)

Note that the acceptance probability can be evaluated in constant time

(independent of N). After R iterations, the state of the Markov chain

is used as an approximate sample from the empirical backward kernel.

To generate M backward trajectories, we have to run M indepen-

dent chains. Hence, the computational complexity of MH-FFBSi is

O(RM). However, in [21] it is argued that a small number of itera-

tions, say R = 10–30, are enough to get good performance in many

cases. To avoid burn-in, they propose to initialize the Markov chains

according to the genealogy of the forward filter. This means that, for

R = 0, the MH-FFBSi reduces to a degenerate smoother relying on the

3.4 Backward Simulation with MCMC Moves 57

Algorithm 7 Metropolis–Hastings FFBSi [21]

Input: Forward filter particle systems {xit,wi
t}Ni=1 for t = 1, . . . , T .

Output: Backward trajectories {x̃j1:T }Mj=1.

1: Sample independently {I(j)}Mj=1 ∼ Cat
({wi

T }Ni=1

)
.

2: Set x̃jT = x
I(j)
T for j = 1, . . . , M .

3: for t = T − 1 to 1 do

4: For j = 1, . . . , M , set I(j)[0] to the index of the ancestor of x̃jt+1.

5: for r = 1 to R do

6: Sample independently {C(j)}Mj=1 ∼ Cat({νit}Ni=1).

7: for j = 1 to M do

8: With probability

1 ∧ w
C(j)
t ν

I(j)[r−1]
t

w
I(j)[r−1]
t ν

C(j)
t

f(x̃jt+1 | xC(j)
t)

f(x̃jt+1 | xI(j)[r−1]
t)

,

set I(j)[r] = C(j), otherwise set I(j)[r] = I(j)[r − 1].

9: end for

10: end for

11: Set x̃jt = x
I(j)[R]
t and x̃jt:T = {x̃jt , x̃jt+1:T } for j = 1, . . . , M .

12: end for

forward filter particle trajectories. At the other extreme, as R tends to

infinity, it approaches the FFBSi. The parameter R thus gives a trade-

off between performance and computational cost. We summarize the

MH-FFBSi sampler in Algorithm 7.

The use of MCMC within FFBSi opens up for additional modifica-

tions of the basic FFBSi, which is also recognized in [21]. The backward

simulators considered so far are limited by the fact that the states are

only selected from those which appear in the collection of forward fil-

ter particles. If there is a significant discrepancy between the filtering

and the smoothing distributions, then the forward filter particles are

unlikely to be in the right locations of the state-space to represent the

smoothing distribution well.

For this reason, [21] propose a second method geared toward

this issue. The method, referred to as Metropolis–Hastings forward

58 Backward Simulation for State-Space Models

filtering/backward proposing (MH-FFBP), proceeds in a similar man-

ner as MH-FFBSi. However, at time t, rather than running a Markov

chain on the index set {1, . . . , N} to select one of the forward filter

particles {xit}Ni=1, the chain runs on the product space {1, . . . , N} × X

to sample jointly {xIt−1,x
′
t}. That is, we draw one of the forward filter

particles at time t − 1 and, given this particle, we propose a new value

for xt from some continuous proposal distribution on X.

This approach is enabled by the fact that the backward kernel is

given by a marginal of the joint density,

p(xt−1:t | xt+1,y1:t) ∝ f(xt+1 | xt)g(yt | xt)f(xt | xt−1)p(xt−1 | y1:t−1).

(3.19)

Hence, for a fixed backward trajectory x̃t+1:T , if we obtain a sample

x′t−1:t from the joint kernel (Equation (3.19)), we can simply dis-

card x′t−1 and augment the backward trajectory according to x̃t:T =

{x′t, x̃t+1:T }. By using the forward filter particles at time t − 1,

Equation (3.19) can be approximated by

p(dxt−1:t | x̃t+1,y1:t)

≈
N∑
i=1

wi
t−1f(x̃t+1 | xt)g(yt | xt)f(xt | xit−1)dxt∑

lw
l
t−1p(x̃t+1,yt | xlt−1)

δxi
t−1

(dxt−1). (3.20)

To sample from Equation (3.20) using MCMC, we choose a proposal

distribution on {1, . . . , N} × X,

νit−1q(xt | x̃t+1,yt,x
i
t−1), (3.21)

for i = 1, . . . , N . To propose a move from {I,xt} to {C,x′t}, we

draw C ∼ Cat({νit−1}Ni=1) and x′t ∼ q(xt | x̃t+1,yt,x
C
t−1). The sample is

accepted with probability

1 ∧ w
C
t−1f(x̃t+1 | x′t)g(yt | x′t)f(x′t | xCt−1)

wI
t−1f(x̃t+1 | xt)g(yt | xt)f(xt | xIt−1)

νIt−1q(xt | x̃t+1,yt,x
I
t−1)

νCt−1q(x
′
t | x̃t+1,yt,xCt−1)

.

(3.22)

As for MH-FFBSi, the acceptance probability can be evaluated in con-

stant time. Hence, the computational complexity of MH-FFBP is of

the same order, O(RM), though, the overhead is clearly larger. The

3.4 Backward Simulation with MCMC Moves 59

Algorithm 8 Metropolis–Hastings FFBP [21]

Input: Forward filter particle systems {xit,wi
t}Ni=1 for t = 1, . . . , T .

Output: Backward trajectories {x̃j1:T }Mj=1.

1: Sample independently {I(j)}Mj=1 ∼ Cat
({wi

T }Ni=1

)
.

2: Set x̃jT = x
I(j)
T for j = 1, . . . , M .

3: for t = T − 1 to 1 do

4: For j = 1, . . . , M , set x̃jt [0] to the ancestor of x̃jt+1 and set I(j)[0]

to the index of the ancestor of x̃jt [0].

5: for r = 1 to R do

6: Sample independently {C(j)}Mj=1 ∼ Cat({νit−1}Ni=1).

7: for j = 1 to M do

8: Sample x′,jt ∼ q(xt | x̃jt+1,yt,x
C(j)
t−1).

9: With probability (3.22), set {I(j)[r], x̃jt [r]} = {C(j),x′,jt },
otherwise set {I(j)[r], x̃jt [r]} = {I(j)[r − 1], x̃jt [r − 1]}.

10: end for

11: end for

12: Set x̃jt:T = {x̃jt [R], x̃jt+1:T } for j = 1, . . . , M .

13: end for

benefit of MH-FFBP, as pointed out above, is that it is able to sample

new positions for the particles when generating the backward trajec-

tories, instead of just recycling the particles from the forward filter.

The MH-FFBP is given in Algorithm 8. Note that a straightforward

modification is needed for the proposal mechanism at time t = 1, but,

for brevity, we have not made this explicit in the algorithm.

3.4.2 Metropolis–Hastings Improved Particle Smoother

A method which is related to MH-FFBP is the Metropolis–Hastings

improved particle smoother (MH-IPS), suggested by Dubarry and

Douc [46]. The method is also reminiscent of the resample-move algo-

rithm [60]. Instead of making use of the intermediate filtering distri-

butions, as has been the common theme for the backward simulators

considered so far, they start from the (degenerate) paths {x̌i1:T }Ni=1,

obtained by resampling the forward filter trajectories at time T . To

60 Backward Simulation for State-Space Models

increase the diversity among these paths, the particle positions are

updated by running N independent, single-state MCMC samplers, one

for each particle trajectory.

If possible, the variables xt are sampled from their full conditionals,

p(xt | x1:t−1,xt+1:T ,y1:T) ∝ f(xt+1 | xt)g(yt | xt)f(xt | xt−1). (3.23)

In the general case, however, these conditionals are not available.

Instead, Hastings-within-Gibbs moves are used to update the state tra-

jectories. Let x̃1:T be the current state of one of the Markov chains (i.e.,

one of the current particle trajectories). To update the tth component,

we simulate from some proposal density x′t ∼ q(xt | x̃t+1,yt, x̃t−1), tar-

geting Equation (3.23). With probability

1 ∧ f(x̃t+1 | x′t)g(yt | x′t)f(x′t | x̃t−1)

f(x̃t+1 | x̃t)g(yt | x̃t)f(x̃t | x̃t−1)

q(x̃t | x̃t+1,yt, x̃t−1)

q(x′t | x̃t+1,yt, x̃t−1)
, (3.24)

the proposed sample is accepted and a new state trajectory is con-

structed as {x̃1:t−1,x
′
t, x̃t+1:T }. If not, the sample is rejected and

the current trajectory x̃1:T is retained. Obvious modifications to the

proposal density and the acceptance probability are needed at times

t = T and t = 1.

In [46], it is suggested to sample the state variables in a deter-

ministic order, backward in time, for t = T, . . . , 1, which makes the

MH-IPS reminiscent of a backward simulator. The incentive for this

is to propagate the, in general, rich particle diversity at time points

close to T , down to time points far from T . The MH-IPS is given in

Algorithm 9, where we use a fixed number of R MCMC iterations.

That is, we sweep through the data R times, from time t = T to time

t = 1. The algorithm produces a (unweighted) collection of backward

trajectories {x̃i1:T [R]}Ni=1 which can be seen as approximate draws from

the JSD.

In the simulation studies conducted in [46], only a few MCMC iter-

ations, say R = 5–10, improve the particle diversity considerably. The

computational complexity of MH-IPS is O(RN). Hence, MH-IPS can

be an interesting, and computationally cheaper, alternative to FFBSi,

much like the MH-FFBP. It should be noted, however, that the method

3.4 Backward Simulation with MCMC Moves 61

Algorithm 9 Metropolis–Hastings improved particle smoother [46]

Input: Forward filter particle trajectories {xi1:T ,wi
T }Ni=1.

Output: Improved particle trajectories {x̃i1:T }Ni=1.

1: Resample the forward filter particle system at time T to obtain an

equally weighted particle system {x̌i1:T , 1
N }Ni=1.

2: Initialize: set x̃i1:T [0] = x̌i1:T for i = 1, . . . , N .

3: for r = 1 to R do

4: for t = T to 1 do

5: for i = 1 to N do

6: Sample x′,it ∼ qt(xt | x̃it+1[r],yt, x̃
i
t−1[r − 1]).

7: With probability given by (3.24), set x̃it[r] = x′,it , otherwise

set x̃it[r] = x̃it[r − 1].

8: end for

9: end for

10: end for

11: Set x̃i1:T = x̃i1:T [R] for i = 1, . . . , N .

relies on single-state updates, and it might thus to a larger extent than

a backward simulator be subject to strong dependencies between the

state variables.

The main differences between MH-FFBP and MH-IPS are: (i) MH-

FFBP uses all the intermediate filtering approximations from the

forward filter, whereas MH-IPS only makes use of the degenerate

particle trajectories at time T ; (ii) MH-FFBP loops over the time

indices t = T, . . . , 1 and runs R MCMC iterations for each time t,

whereas MH-IPS runs R MCMC iterations, looping over the time

indices t = T, . . . , 1 in each iteration.

Finally, as pointed out in [46], the MH-IPS procedure does not have

to be initialized by the forward filter trajectories. In fact, it can be

used as an add-on to any particle smoother, to increase the diversity

among the particle trajectories. Hence, it is possible to think of various

combinations, such as FFBSi combined with MH-IPS or even MH-

FFBP combined with MH-IPS.

62 Backward Simulation for State-Space Models

3.5 Backward Simulation for Maximum Likelihood Inference

As noted in Section 1.5, state smoothing lies at the core of many com-

mon learning algorithms for SSMs. The particle smoothers discussed

throughout this section can thus be useful for parameter inference in

nonlinear and/or non-Gaussian models. To illustrate this, we consider

the problem of maximum likelihood parameter inference in the param-

eterized SSM (Equation (1.3)).

To compute the MLE (Equation (1.4)), we make use of the EM

algorithm as discussed in Section 1.5. However, computing the auxiliary

quantity in the E-step amounts to solving a smoothing problem, which

cannot be done in closed form for a general nonlinear/non-Gaussian

SSM. Instead, we run one of the FFBSi (e.g., Algorithm 6 on page 54,

RS-FFBSi with early stopping) in the E-step. This results in an SMC-

analogue of the well known Monte Carlo EM algorithm [140]. Similar

particle smoother EM (PSEM) algorithms have previously been suc-

cessfully applied to maximum likelihood inference in challenging sce-

narios [23, 112, 127, 147].

More precisely, given a collection of backward trajectories {x̃j1:T }Mr
j=1

targeting pθ[r−1](x1:T | y1:T), we compute an estimate of the auxiliary

quantity (Equation (1.5)) according to

Q̂r(θ) =
1

Mr

Mr∑
j=1

logpθ(x̃
j
1:T ,y1:T), (3.25)

where the summand is given by Equation (1.6). This Monte Carlo

approximation is then maximized with respect to θ in the M-step, to

obtain the next parameter iterate. To obtain convergence of PSEM, we

require the accuracy of the approximation (Equation (3.25)) to increase

with the iteration number [23, 54]. Consequently, we need to let the

number of particles Nr and the number of backward trajectories Mr

increase with the iteration number r. One way to circumvent this issue

will be presented in Section 5.6.

The backward-simulation-based PSEM algorithm is summarized in

Algorithm 10. We illustrate the method in Example 3.4 below.

3.5 Backward Simulation for Maximum Likelihood Inference 63

Algorithm 10 Backward-simulation-based PSEM

1: Set θ[0] arbitrarily.

2: for k ≥ 1 do

3: Run Algorithm 1 with Nr particles, targeting pθ[r−1](x1:T | y1:T).
4: Run a backward simulator to generateMr trajectories {x̃j1:T }Nj=1.

5: Compute Q̂r(θ) according to Equation (3.25).

6: Compute θ[r] = argmaxθ∈Θ Q̂r(θ).

7: if convergence criterion is met then

8: break

9: end if

10: end for

11: return θ̂PSEM = θ[r].

Example 3.4 (PSEM). Consider again the nonlinear time-series

model studied in Example 3.2. We let the process noise variance be

given by σ2v = 1 and the measurement noise variance be given by

σ2e = 0.1, and assume that these parameters are unknown. Given a

batch of T = 1500 observations y1:T , we wish to infer the unknown

noise variances and thus set θ = (σ2v ,σ
2
e). We apply Algorithm 10 using

an RS-FFBSi sampler with early stopping in the E-step. The parameter

estimates are initialized at θ[0] = (2,2). We run the algorithm for 2000

iterations and let the number of particles Nr and the number of back-

ward trajectories Mr increase cubically with the iteration number r,

from 500 to 5000 and from 50 to 500, respectively. The resulting param-

eter estimates θ[r] are shown in Figure 3.4. As can be seen, the estimates

converge to values close to the true parameters. However, as pointed

out above, it is necessary to increase the number of particles and back-

ward trajectories with the iteration number to kill the Monte Carlo

variance and obtain a convergent sequence of estimates.

64 Backward Simulation for State-Space Models

0 500 1000 1500 2000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 500 1000 1500 2000
0

0.5

1

1.5

2

Fig. 3.4 Estimates of σ2
v (left) and σ2

e (right) vs. the iteration number k. The true parameter
values are shown as dashed lines.

4

Backward Simulation for
General Sequential Models

So far, we have been looking closely at SSMs. In the previous sections,

we saw how SMC and backward simulation can be used to sample

approximately from the JSD p(x1:T | y1:T). One of the strengths of

SMC, however, is that it is applicable to a much wider range of models

than SSMs. The same is true for backward simulation. However, con-

trary to SMC, the application of backward simulation will in general be

less straightforward when we leave the class of SSMs. In this section, we

will derive a general backward simulator and discuss how this can be

applied for inference in various models of interest. We will also highlight

some pitfalls that might limit the applicability of backward simulation

for certain types of models.

4.1 Motivating Examples

Let us start by considering a few examples of sequential inference

problems which fall outside the class of SSMs. These examples are

included as motivation for the development of the present section, but

also to outline possible directions for future work. We will return to

these examples in Section 6, when discussing possible extensions of the

65

66 Backward Simulation for General Sequential Models

methods presented throughout this tutorial. Readers not interested in

these examples can safely skip directly to Section 4.2.

4.1.1 Blocked Gibbs Sampling in Markov Random Fields

Markov random fields (MRFs) are a class of undirected graphical

models. They play an important role in spatial statistics and computer

vision, see e.g., [15, 138]. Let {xt}Tt=1 be a collection of latent variables

and let {yt}Tt=1 be a collection of observations. In this setting, t is just

an index variable for the data set and it has no temporal meaning. The

conditional independence properties among these variables are speci-

fied in terms of an undirected graph with edges E and vertices V as

illustrated in Figure 4.1 (left). The complete data likelihood can be

factorized according to

p(x1:T ,y1:T) =
1

Z

∏
i∈V

φ(xi,yi)
∏

(i,j)∈E
ψ(xi,xj), (4.1)

where Z is a normalization constant (referred to as the partition func-

tion) and the functions φ and ψ are referred to as the observation

potential and the interaction potential, respectively.

As in the case of SSMs, Gibbs samplers that sample the latent

variables one at a time tend to be slow to converge, due to strong

Fig. 4.1 (Left) MRF with white nodes representing latent variables and small gray nodes
representing observations; (Right) partitioning of the latent variables into groups xI1

and
xI2

used in the tree sampling algorithm (for clarity, the nodes corresponding to the obser-
vations are not shown).

4.1 Motivating Examples 67

dependencies among the sampled variables. To alleviate this, a Gibbs

sampler which exploits the structure of the MRF has been proposed

in [68]. The method, referred to as a tree sampling algorithm, is based

on the fact that the MRF graph can be partitioned into two disjoint

chains, or more generally, trees; see Figure 4.1 (right). With I1 and I2
representing the vertex indices for the two trees, respectively, a two-

stage Gibbs sampler is constructed according to;

(i) Draw x′I1 ∼ p(xI1 | xI2 ,y1:T);
(ii) Draw x′I2 ∼ p(xI2 | x′I1 ,y1:T).

By block sampling the latent variables in each tree, a considerable

improvement in mixing can be obtained compared to a one-at-a-time

sampler [69, 68]. This is in agreement with our previous findings for

SSMs.

Conditionally on xI2 , the variables xI1 form an acyclic graph. In

[68], it is assumed that the latent variables are discrete valued (cf. a

finite state-space HMM). Hence, it is possible to compute their exact

marginal distributions by using belief propagation [115]. Based on these

marginals, exact backward simulation can be employed to sample from

the conditional densities in the above Gibbs scheme.

By using SMC it is possible to generalize this idea to models for

which the exact marginals are not available. In particular, in combi-

nation with PMCMC (see Section 5), SMC-based backward simula-

tion can be used within Gibbs sampling in a systematic manner. This

approach would thus generalize the tree sampling algorithm to, for

instance, models with continuous latent variables. This requires a back-

ward simulator for the chain structures in the MRF in Figure 4.1. The

same approach can also be applied to other types of graphical models,

such as factor graphs [69].

4.1.2 Inference Strategies for Optimal Control Problems

An interesting aspect of parameter inference is that it is useful, not

only for learning predictive models, but also for policy optimization in

control problems. Consider a dynamical system with state xt, affected

68 Backward Simulation for General Sequential Models

by a controlled input signal ut,

xt+1 ∼ f(xt+1 | xt,ut) (4.2)

and x1 ∼ µ(x1). For simplicity, we assume that the state is com-

pletely observed. We consider a state-feedback policy (i.e., a control

law) ut = πθ(xt), parameterized by some parameter θ. Furthermore,

let rt = r(xt,ut) be the reward, or return, obtained at time t. In opti-

mal control problems we wish to find the policy which maximizes the

expected future return,

V π
µ (θ) = E

[∞∑
t=1

αtrt

]
, (4.3)

where α < 1 is a discount factor. It has been recognized [42, 75, 135]

that it is possible to view Equation (4.3) as the normalization constant

for an artificial transdimensional probability distribution, defined on⋃
T∈N{T} × XT ,

p̃θ(T,x1:T) �
r(xT ,uT)α

T

V π
µ (θ)

µ(x1)

T−1∏
t=1

f(xt+1 | xt,ut). (4.4)

What is interesting with this reformulation is that maximization of

the normalization constant is completely analogous to maximization

of the marginal likelihood in the parameterized SSM (Equation (1.3)).

It follows that the inference strategies discussed in Section 1.5 can

be used also for policy optimization. Indeed, EM algorithms have

been used by Toussaint and Storkey [135] and Hoffman et al. [74]

for discrete and linear Gaussian models, respectively. In [42, 75]

the problem is addressed in a general setting by using transdimen-

sional MCMC, such as reversible jump samplers [65]. By factorizing

p̃θ(T,x1:T) = p̃θ(x1:T | T)p̃θ(T), we note that p̃θ(x1:T | T) takes the

role of a joint smoothing density. Hence, the intermediate state

inference step of these algorithms requires us to address a nonstandard

“smoothing problem” for the artificial distribution p̃θ(x1:T | T).

4.1.3 Gaussian Process Regression

The Markovian assumption in SSMs can be limiting for many applica-

tions of interest. Consider a regression problem with regressors ξt ∈ R
nξ

4.2 SMC Revisited 69

and observations yt ∈ R
ny . We observe a batch of data {ξt,yt}Tt=1 and

wish to find a predictive model for yt given ξt. As in Section 4.1.1, t is

simply an index variable with no temporal meaning.

To model the dependency between the regressors and the observa-

tions, we use a nonparametric Gaussian process (GP) model. GPs are

widely used for both classification and regression problems; see [118]

for a general introduction. In the regression setting, we have

f(·) ∼ GP(m(ξ),κ(ξ,ξ′)), (4.5a)

xt = f(ξt), (4.5b)

yt | xt ∼ g(yt | xt), (4.5c)

where m(·) is a mean function and κ(·, ·) is a covariance kernel. Hence,

the function f is modeled as a sample path from a GP, i.e., such that

any finite collection of variables {f(ξt)}t∈I (where I is an index set)

has a joint Gaussian distribution,

{f(ξt)}t∈I ∼ N (m,K),

mt =m(ξt), t ∈ I,
Ks,t = κ(ξs, ξt) s,t ∈ I.

The xts can be seen as noise free sample points from the GP. These

variables are latent, but observed indirectly through the measurement

likelihood g(yt | xt). The model (Equation (4.5)) is reminiscent of Equa-

tion (1.2). However, for the GP model, the xts are not given by a

Markovian process and the model thus falls outside the class of SSMs.

We return to this problem in Examples 4.2 and 4.3 below.

4.2 SMC Revisited

The examples provided in the previous section are examples of latent

variable models which are not given by SSMs. There are numerous

other models of this kind for which SMC has been successfully applied,

e.g., Dirichlet process mixture models [99, 48], phylogenetic trees [16]

and agglomerative clustering models [133], to mention a few.

We thus seek a framework for backward simulation which is more

generally applicable than the one presented in Section 3. For this cause,

let γt(x1:t) for t = 1, . . . , T be a sequence of target densities on some

70 Backward Simulation for General Sequential Models

increasing space Xt. We assume that these densities can be written as

γt(x1:t) =
γ̄t(x1:t)

Zt
, (4.6)

where the unnormalized density γ̄t(x1:t) can be evaluated point-wise,

whereas the normalization constant Zt is possibly unknown. SMC can

be used to target any such sequence, in the same way as was done

for the sequence of JSDs in Section 2. In that case, we had γt(x1:t) =

p(x1:t | y1:t) and γ̄t(x1:t) = p(x1:t,y1:t). We will continue to refer to the

index t as time, even though it might not at all be a temporal index. In

[107], SMC samplers are designed for a sequence of target distributions

on a common, fixed dimensional space. However, by making use of

auxiliary variables, they transform these problems into a form which

coincides with the SMC framework discussed here.

Assume that {xi1:t−1,w
i
t−1}Ni=1 is a weighted particle system, tar-

geting γt−1(x1:t−1). This particle system is propagated to time t by

resampling and sequential importance sampling, in the same way as

was done in Section 2. However, we now take a slightly different view

on this procedure, which will prove to be convenient in the sequel.

Let ait be the index of the ancestor at time t − 1, of particle xit. That

is, if {x̌i1:t−1}Ni=1 is the collection of resampled particle trajectories at

time t − 1, we have x̌i1:t−1 = x
ait
1:t−1. The ancestor indices are auxiliary

variables in the SMC sampler, and they were (among other things) used

to derive the auxiliary particle filter (APF) in [116]. When we write

xk1:t, this should be interpreted as the ancestral path of the particle xkt .

Since the concepts of ancestor indices and ancestral paths will be of

importance later on, we illustrate them with an example.

Example 4.1 (Ancestral paths). Figure 4.2 shows the evolution of

three particles for t = 1, 2, 3. At time t = 1, particle x21 is resampled

twice and particle x31 is resampled once. At time t = 2, the ancestors

are thus given by a12 = 2, a22 = 2 and a32 = 3. Similarly, at time t = 3, the

ancestors are given by a13 = 2, a23 = 3 and a33 = 3. The ancestral path of

particle x13, which we denote x11:3, is shown as a thick line in the figure.

This path is given recursively from the ancestor indices,

x11:3 = (x
a
a13
2

1 ,x
a13
2 ,x

1
3) = (x21,x

2
2,x

1
3).

4.2 SMC Revisited 71

Fig. 4.2 Evolution of a particle system. The ancestral path of x1
3, i.e., x

1
1:3, is shown as a

thick line.

Let us introduce a sequence of proposal kernels on the product space

{1, . . . , N} × X,

Mt(at,xt) = wat
t−1rt(xt | xat1:t−1), (4.7)

for t = 2, . . . , T . Here, rt is a kernel from which we propose a new

sample at time t, given its ancestor xat1:t−1. It should be noted that the

kernel Mt depends on all the random variables generated by the SMC

sampler up to time t − 1 (i.e., all the particles and all the ancestor

indices), but to avoid a very cumbersome notation we have not made

this dependence explicit.

The particle system {xi1:t−1,w
i
t−1}Ni=1 can now be propagated to

time t by sampling independently from Equation (4.7),

{ait,xit} ∼Mt(at,xt), (4.8)

for i = 1, . . . , N . The particles xi1:t = {xa
i
t

1:t−1,x
i
t} are thereafter assigned

(unnormalized) importance weights w̄i
t =Wt(x

i
1:t), where the weight

function is given by,

Wt(x1:t) =
γ̄t(x1:t)

γ̄t−1(x1:t−1)rt(xt | x1:t−1)
. (4.9)

As before, since the weights are only known up to proportionality, they

are normalized to sum to one, wi
t = w̄i

t/
∑

l w̄
l
t. This results in a new

weighted particle system {xi1:t,wi
t}Ni=1 targeting γt(x1:t). In this formu-

lation, the resampling step is implicit and corresponds to sampling the

ancestor indices at in Equation (4.8).

The procedure is initialized by targeting γ1(x1) using importance

sampling. We thus sample from some proposal density xi1 ∼ r1(x1) and
compute importance weights w̄i

t =W1(x1), where the weight function

72 Backward Simulation for General Sequential Models

Algorithm 11 SMC (all operations are for i = 1, . . . , N)

1: Draw xi1 ∼ r1(x1).
2: Compute w̄i

1 =W1(x
i
1).

3: Normalize: set wi
1 = w̄i

1/
∑

l w̄
l
1.

4: for t = 2 to T do

5: Draw {ait,xit} ∼Mt(at,xt).

6: Set xi1:t = {xa
i
t

1:t−1,x
i
t}.

7: Compute w̄i
t =Wt(x

i
1:t).

8: Normalize: set wi
t = w̄i

t/
∑

l w̄
l
t.

9: end for

is given by W1(x1) = γ̄1(x1)/r1(x1). The SMC sampler is summarized

in Algorithm 11.

4.3 A General Backward Simulator

In many inferential problems for which SMC is applied, the actual quan-

tity of interest is the final target density γT (x1:T), or some marginal

thereof. The densities γt(x1:t) are then used as intermediate quanti-

ties, as a way to sequentially construct this target. The SMC proce-

dure outlined above generates a sequence of weighted particle systems

{xi1:t,wi
t}Ni=1 targeting the densities γt(x1:t) for t = 1, . . . , T . These sys-

tems define empirical point-mass distributions according to

γ̂Nt (dx1:t) �
N∑
i=1

wi
tδxi

1:t
(dx1:t). (4.10)

Hence, an approximation of γT (x1:T) is given for t = T . However, this

approximation will be inaccurate due to path degeneracy (see Sec-

tion 2.1.2). To mitigate this issue, we seek a way to increase the diver-

sity of the particle trajectories used to approximate γT (x1:T). We will

strive to do this in a similar way as for the FFBSi in the SSM set-

ting, i.e., by reusing information from the intermediate approximations

(Equation(4.10)).

Consider the conditional density

γT (x1:t | xt+1:T) =
γT (x1:T)∫

γT (x1:T)dx1:t
. (4.11)

4.3 A General Backward Simulator 73

This density defines a transition kernel (the backward kernel) of invari-

ant density γT . Hence, if x1:T is distributed according to γT , we can

generate a new sample with the same distribution by sampling from

this kernel, much in the same way as in a Gibbs sampler. That is, we

draw x′1:t ∼ γT (x1:t | xt+1:T) and construct the trajectory {x′1:t,xt+1:T }.
This suggests that we can use the following strategy:

• Draw x′1:T ∼ γT (x1:T), set x̃T = x′T and discard x′1:T−1;
• For t = T − 1, . . . , 1:

– Draw x′1:t ∼ γT (x1:t | x̃t+1:T);

– Set x̃t:T = {x′t, x̃t+1:T } and discard x′1:t−1.

The resulting trajectory x̃1:T is distributed according to γT . At first,

this backward simulator might appear superfluous, since it is initialized

by sampling directly from the target density of interest. However, in

the case of SMC, it allows us to make use of the intermediate quantities

(Equation (4.10)) to improve upon the degenerate particle trajectories

resulting from an initial SMC sweep.

The backward kernel for this simulator is given by

γT (x1:t | xt+1:T) ∝ γT (x1:T) ∝ γ̄T (x1:T)

γ̄t(x1:t)
γt(x1:t). (4.12)

By plugging Equation (4.10) into this expression, we obtain an approx-

imation of the backward kernel according to

γ̂NT (dx1:t | x̃t+1:T) =

N∑
i=1

w̃i
t|T δxi

1:t
(dx1:t), (4.13)

with

w̃i
t|T ∝ wi

t

γ̄T ({xi1:t, x̃t+1:T })
γ̄t(x

i
1:t)

, (4.14)

and where the weights are normalized to sum to one. Here, {xi1:t, x̃t+1:T }
should be understood as a point in XT formed by concatenating the

two partial trajectories. As expected, for an SSM, with γ̄t(x1:t) =

p(x1:t,y1:t), we obtain the weight expression from Equation (3.5). Using

the empirical backward kernel, we construct an SMC-based backward

74 Backward Simulation for General Sequential Models

Algorithm 12 Backward simulator

Input: Forward filter particle systems {xi1:t,wi
t}Ni=1 for t = 1, . . . , T .

Output: Backward trajectories {x̃j1:T }Mj=1.

1: Sample independently {bT (j)}Mj=1 ∼ Cat
({wi

T }Ni=1

)
.

2: Set x̃jT = x
bT (j)
T for j = 1, . . . , M .

3: for t = T − 1 to 1 do

4: for j = 1 to M do

5: Compute

w̃i,j
t|T ∝ wi

t

γ̄T ({xi1:t, x̃jt+1:T })
γ̄t(x

i
1:t)

,

for i = 1, . . . , N .

6: Normalize the smoothing weights {w̃i,j
t|T }Ni=1 to sum to one.

7: Draw bt(j) ∼ Cat
(
{w̃i,j

t|T }Ni=1

)
.

8: Set x̃jt = x
bt(j)
t and x̃jt:T = {x̃jt , x̃jt+1:T }.

9: end for

10: end for

simulator as in Algorithm 12. The algorithm generates M independent

trajectories, similar to the FFBSi in Algorithm 4 (page 38). We illus-

trate the backward simulation on the nonparametric regression problem

from Section 4.1.3.

Example 4.2(Gaussian process regression). Let us return to the

GP regression problem considered in Section 4.1.3. We observe a het-

eroscedastic data set {y1:T , ξ1:T } for T = 1000 and wish to infer the

momentaneous volatility. The data is illustrated in Figure 4.3. We put

a zero-mean Gaussian process prior on the log-volatility, i.e., the model

is given by

f(·) ∼ GP(0,κ(ξ,ξ′)), (4.15)

xt = f(ξt), (4.16)

yt = et exp
(
1
2xt

)
, et ∼ N (0,1). (4.17)

4.3 A General Backward Simulator 75

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

Fig. 4.3 Regression results using SMC; (left) applied only in the forward direction; (right)
complemented with a backward simulation pass. The dots show the observations and the
gray lines the generated trajectories, representing the log-volatility.

To complete the model, we use a covariance function in the Matérn

class of kernels, namely,

κ(ξ,ξ′) =

(
1 +

√
3|ξ − ξ′|
�

)
exp

(
−
√
3|ξ − ξ′|
�

)
.

For simplicity, we fix the length scale to � = 0.1. To infer the latent

process x1:T , we employ an SMC sampler with N = 500 particles to

the data set.1 The results are given in the left panel of Figure 4.3.

The SMC sampler clearly suffers from path degeneracy, resulting in

poor regression results and overconfidence in the estimated volatility.

To mitigate these issues, we complement the SMC sampler with a run

of the backward simulator given in Algorithm 12. We generateM = 100

backward trajectories. The results are illustrated in the right panel of

Figure 4.3. The backward simulator mitigates the degeneracy problem

to a large extent and results in more reliable credibility intervals.

The generality of Algorithm 12 suggests that the method can be

used for a very wide range of problems. While this is indeed true, it

should be noted that its usefulness will depend heavily on the properties

of the problem at hand.

1For clarity of illustration, we sort the data points in increasing order of the regressors.
However, this is not necessary and the algorithms can be applied using any ordering of
the data points.

76 Backward Simulation for General Sequential Models

To start with, the computational complexity of Algorithm 12 is

O(MN), just as for the original formulation of the FFBSi. Unfortu-

nately, for many models outside the class of SSMs, the rejection sam-

pling technique applied in Section 3.3 is of limited use. The reason

is that Algorithm 12 samples complete trajectories at each iteration.

Hence, the sampling is done in a high-dimensional space and a rejec-

tion sampler will suffer from the curse of dimensionality, with very

low acceptance probabilities as a result. Furthermore, the computation

of the weights (Equation (4.14)) will for many models scale with T

(see Section 4.5). This differs from the SSM setting, where the weights

(Equation (3.5)) are independent of T . Whether or not this is pro-

hibitive clearly depends on the application.

Another pitfall to look out for is that the backward sampling weights

can get badly skewed when there are strong and long-ranging depen-

dencies among the variables x1:T . If this is the case, there is a high

probability that the backward simulator does not alter the trajectories

generated in the forward pass to any considerable degree. The problem

is illustrated in the example below.

Example 4.3 (Gaussian process regression, cont’d). Consider

again the GP regression problem of Example 4.2. Assume that we want

to impose further smoothness constraints on the latent process xt. This

can be done by modifying the covariance kernel of the GP prior. For

instance, we can use a squared exponential kernel,

κ(ξ,ξ′) = exp

(
−(ξ − ξ)2

2�2

)
,

which results in a very smooth process [118]. The same fixed length

scale as before is used, � = 0.1. We apply an SMC sampler and a back-

ward simulator to the data with N = 500 particles and M = 100 back-

ward trajectories. The results are given in Figure 4.4. For this choice

of covariance kernel, the results are quite different from what we expe-

rienced in Example 4.2. Most notably, the backward simulator does

not provide any significant improvement over just running SMC in the

forward direction, and the path degeneracy problem is still present. To

generate a backward trajectory, at each time t we consider the union of

4.3 A General Backward Simulator 77

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

Fig. 4.4 Regression results using SMC; (left) applied only in the forward direction; (right)
complemented with a backward simulation pass. The dots show the observations and the
gray lines the generated trajectories, representing the log-volatility.

the partial backward trajectory x̃t+1:T with partial forward trajectories

xi1:t. These unions, {xi1:t, x̃t+1:T }, are used to compute the weights w̃i
t|T ;

see Equation (4.14). In order to improve the particle diversity in the

backward pass, we rely on having several possible candidates among the

partial forward trajectories, i.e., on having several weights w̃i
t|T which

are significantly larger than zero. However, the long-ranging dependen-

cies imposed by the squared exponential kernel tend to result in weights

close to zero, except for the one particle xi1:t which was the ancestor of

x̃t+1 in the forward pass. Hence, the backward simulator will with high

probability just recover the ancestral paths from the SMC sampler, and

consequently suffer from the same degeneracy problems.

The problem illustrated in the example above is caused by the

strong dependence between the partial backward and partial forward

trajectories. It was illustrated on the GP regression problem with

a squared exponential kernel, because the long-ranging dependencies

imposed by this kernel (with this specific length scale) made the prob-

lem very distinct. However, it should be noted that the same effect

can be experienced when there is a strong dependence between consec-

utive states, even when the dependence is not long ranging. In fact,

even in a Markovian SSM, we might get skewed weights when the

transition density f is “peaky”. The extreme case is of course when

78 Backward Simulation for General Sequential Models

the transition kernel is degenerate, a case which is discussed in more

detail in Section 4.6.1.

4.4 Rao–Blackwellized FFBSi

To illustrate the applicability of the general backward simulator, we

consider a special case which is of particular interest. A popular

approach to increase the efficiency of SMC samplers for SSMs is to

marginalize over one component of the state, and apply an SMC sam-

pler in the lower dimensional marginal space. This leads to what is

known as the Rao–Blackwellized particle filter (RBPF) [25, 39, 125].

It has been shown that the RBPF always will have lower asymptotic

variance than the corresponding non-marginalized filter [28, 96]. Intu-

itively, this can be understood by the fact that in an RBPF, the par-

ticles are spread in a lower dimensional space and will thus provide a

denser point-mass approximation of the target distribution. The RBPF

has been successfully applied to a range of applications, e.g., simulta-

neous localization and mapping [105, 106], aircraft positioning [125],

underwater navigation [82], communications [26, 139] and audio source

separation [4].

The same approach has also been applied to state smoothing

[53, 92, 123, 142], but it turns out that Rao–Blackwellization is less

straightforward in this case. The reason is that the marginal state-

process will be non-Markov. As an example, consider the following

conditionally linear Gaussian state-space (CLGSS) model,

xt+1 ∼ f(xt+1 | xt), (4.18a)

zt+1 = A(xt)zt + F (xt)vt, vt ∼ N (0, I), (4.18b)

yt = C(xt)zt + et, et ∼ N (0,R(xt)). (4.18c)

If the state-variable xt can take only a finite number of values, the

above model reduces to a jump Markov linear system where xt is a

mode variable determining which linear mode that is active at time t.

The CLGSS model is thus a generalization of a switching system, with

a (possibly) continuous mode variable.

The RBPF exploits the tractable substructure of the model through

the factorization p(zt,x1:t | y1:t) = p(zt | x1:t,y1:t)p(x1:t | y1:t). Since the

4.4 Rao–Blackwellized FFBSi 79

model is CLGSS, the first factor of this expression is Gaussian and

it can be evaluated by running a conditional Kalman filter (see e.g.,

[125]). That is,

p(zt | x1:t,y1:t) = N (zt; z̄t|t(x1:t),Pt|t(x1:t)), (4.19)

for some tractable sequences of mean and covariance functions. The

factor p(x1:t | y1:t) is targeted by an SMC sampler and it is approx-

imated by a weighted particle system {xi1:t,wi
t}Ni=1. Consequently, we

obtain the Gaussian mixture approximation,

p(dzt,dx1:t | y1:t) ≈
N∑
i=1

wi
tN (dzt; z̄

i
t|t,P

i
t|t)δxi

1:t
(dx1:t), (4.20)

where z̄it|t = z̄t|t(x
i
1:t) and P

i
t|t = Pt|t(x

i
1:t). Hence, the RBPF is an SMC

sampler in which each particle is equipped with a Kalman filter,

tracking the sufficient statistics for the conditional Gaussian densities

(Equation (4.19)).

Equivalently, we can view the marginalization of the z-process as a

way to reduce the model (Equation (4.18)) to,

xt+1 ∼ f(xt+1 | xt), (4.21a)

yt ∼ p(yt | x1:t,y1:t−1). (4.21b)

Similar to Equation (4.19), the conditional density in Equation (4.21b)

is Gaussian and it can be evaluated for any fixed marginal state trajec-

tory x1:t by running a Kalman filter. The RBPF is then simply an SMC

sampler targeting the sequence of conditional densities p(x1:t | y1:t) for
the reduced latent variable model (Equation (4.21)). This model shares

many of the properties with the SSM (Equation (1.2)). However, as an

effect of the marginalization of the z-process, the measurement model

(Equation (4.21b)) depends on the complete history x1:t and the back-

ward simulators derived in Section 3 are not applicable.

To construct a Rao–Blackwellized FFBSi particle smoother, we

instead make use of the general backward simulator in Algorithm 12

(page 74). With T being some final time point, the target distribution

is given by p(x1:T | y1:T). To compute the weights (Equation (4.14)),

80 Backward Simulation for General Sequential Models

we need to evaluate the ratio

γ̄T (x1:T)

γ̄t(x1:t)
=
p(x1:T ,y1:T)

p(x1:t,y1:t)
= p(xt+1:T ,yt+1:T | x1:t,y1:t)

∝ p(yt+1:T | x1:T ,y1:t)f(xt+1 | xt). (4.22)

It remains to find an expression for the first factor of this expression

(up to proportionality). In fact, this predictive density can be com-

puted straightforwardly by running a conditional Kalman filter from

time t up to T . However, using this approach to calculate the weights

at time t would requireN separate Kalman filters to run over T − t time

steps, resulting in a total computational complexity scaling quadrati-

cally with T . For this specific model, it is possible to do better.

The idea is to propagate a set of statistics backward in time, as the

backward trajectory x̃1:T is generated. This approach has been used for

MCMC sampling in [59] and it has been adapted to Rao–Blackwellized

backward simulation in [142, 123]. In [92], a similar method is derived

for a different type of CLGSS model, in which there is a dependence

on zt in the updating Equation (4.18a).

For the derivation below, we use the notation ‖µ‖2Ω � µTΩµ, where

µ is a vector and Ω � 0 is a positive semidefinite matrix. To compute

Equation (4.22) we consider the expression,

p(yt+1:T | x1:T ,y1:t) =
∫
p(yt+1:T | zt+1,xt+1:T)p(zt+1 | x1:t,y1:t)dzt+1.

(4.23)

The second factor of the integrand is given by a one-step prediction of

the RBPF, similar to Equation (4.19),

p(zt+1 | x1:t,y1:t) = N (zt+1; z̄t+1|t(x1:t),Pt+1|t(x1:t)). (4.24)

For later reference, we introduce a Cholesky factorization of the pre-

dictive covariance, Pt+1|t(x1:t) = Γt+1|t(x1:t)Γt+1|t(x1:t)
T.

The key quantity is the first factor of the integrand in Equa-

tion (4.23). We will show, by induction, that for any t = 1, . . . , T − 1,

p(yt+1:T | zt+1,xt+1:T) ∝ exp
(
−1

2

(
‖zt+1‖2Ωt+1

− 2λTt+1zt+1

))
(4.25)

for some Ωt+1 � 0 and λt+1 that only depend on yt+1:T and xt+1:T .

4.4 Rao–Blackwellized FFBSi 81

First, we give a technical lemma. The proof is omitted for brevity,

but follows straightforwardly by carrying out the integration.

Lemma 4.1. Let z =m + Γξ with ξ ∼ N (0, I) and let Ω � 0. Then

E
[
exp

(−1
2

(‖z‖2Ω − 2λTz
))]

= |M |− 1
2 exp

(−1
2

(‖m‖2Ω − 2λTm − ‖ΓT(λ − Ωm)‖2M−1

))
,

with M = ΓTΩΓ + I.

To simplify the notation, we will write At for A(xt) and similarly

for other functions. First, we note that, by Equation (4.18c),

p(yt | zt,xt) ∝ exp
(−1

2

(
zTt C

T
t R

−1
t Ctzt − 2(CT

t R
−1
t yt)

Tzt
))
. (4.26)

Hence, at time T , Equation (4.25) holds with

ΩT = CT
TR

−1
T CT , (4.27a)

λT = CT
TR

−1
T yT . (4.27b)

Assume that Equation (4.25) holds at time t + 1 and consider the fac-

torization,

p(yt:T | zt,xt:T) = p(yt+1:T | zt,xt:T)p(yt | zt,xt). (4.28)

The first factor in Equation (4.28) is given by

p(yt+1:T | zt,xt:T) =

∫
p(yt+1:T | zt+1,zt,xt:T)p(zt+1 | zt,xt:T)dzt+1

=

∫
p(yt+1:T | zt+1,xt+1:T)p(zt+1 | zt,xt)dzt+1.

(4.29)

Under the induction hypothesis and using Lemma 4.1 and Equa-

tion (4.18b),

p(yt+1:T | zt,xt:T) ∝ exp
(−1

2ξt
)
, (4.30a)

with

ξt+1 = ‖Atzt‖2Ωt+1
− 2λTt+1Atzt − ‖FT

t (λt+1 − Ωt+1Atzt)‖2Λ−1
t

(4.30b)

82 Backward Simulation for General Sequential Models

and Λt = FT
t Ωt+1Ft + I. Combining Equations (4.26) and (4.30) in

Equation (4.28) we get p(yt:T | zt,xt:T) ∝ exp
(−1

2

(‖zt‖2Ωt
− 2λTt zt

))
with,

Ωt = AT
t (I − Ωt+1FtΛ

−1
t FT

t)Ωt+1At + CT
t R

−1
t Ct, (4.31a)

λt = AT
t (I − Ωt+1FtΛ

−1
t FT

t)λt+1 + CT
t R

−1
t yt, (4.31b)

which completes the induction.

Finally, applying Lemma 4.1 to Equation (4.23), with the integrands

given by Equations (4.24) and (4.25) results in, p(yt+1:T | x1:T ,y1:t) ∝
|Mt|− 1

2 exp
(−1

2ηt
)
, with

Mt = ΓT
t+1|tΩt+1Γt+1|t + I, (4.32a)

ηt = ‖z̄t+1|t‖2Ωt+1
− 2λTt+1z̄t+1|t − ‖ΓT

t+1|t(λt+1 − Ωt+1z̄t+1|t)‖2M−1
t
.

(4.32b)

Using the above expression we can compute the backward sampling

weights through Equation (4.22). We present the adaption of the gen-

eral backward simulator (Algorithm 12) to Rao–Blackwellized particle

smoothing in Algorithm 13.

4.5 Non-Markovian Latent Variable Models

By marginalization of the CLGSS model (Equation (4.18)) we obtained

the formulation in Equation (4.21). This model is in fact a special case

of an important generalization of SSMs, the class of non-Markovian

latent variable models is given by

xt+1 ∼ f(xt+1 | x1:t), (4.33a)

yt ∼ g(yt | x1:t). (4.33b)

Similar to the SSM (Equation (1.2)), this model is characterized by a

latent process xt ∈ X and an observed process yt ∈ Y. However, it does

not share the conditional independence properties that are central to

SSMs. Instead, both the transition density f and the measurement

density g may depend on the entire past history of the state trajectory.

In Section 4.6 we will see additional examples in which non-

Markovian models arise by some manipulation of an SSM, similar to

4.5 Non-Markovian Latent Variable Models 83

Algorithm 13 Rao–Blackwellized FFBSi

Input: Forward filter particle systems {xit,wi
t}Ni=1 for t = 1, . . . , T and

linear state statistics {z̄it+1|t,Γ
i
t+1|t}Ni=1 for t = 1, . . . , T − 1.

Output: Backward trajectories {x̃j1:T }Mj=1.

1: Sample independently {bT (j)}Mj=1 ∼ Cat
({wi

T }Ni=1

)
.

2: Set x̃jT = x
bT (j)
T for j = 1, . . . , M .

3: Compute {Ωj
T ,λ

j
T } according to (4.27) for j = 1, . . . , M .

4: for t = T − 1 to 1 do

5: for j = 1 to M do

6: for i = 1 to N do

7: Compute {M i,j
t ,ηi,jt } according to Equation (4.32).

8: Compute w̃i,j
t|T ∝ wi

t|M i,j
t |−

1
2 exp

(
−1

2η
i,j
t

)
f(x̃jt+1 | xit).

9: end for

10: Normalize the smoothing weights {w̃i,j
t|T }Ni=1 to sum to one.

11: Draw bt(j) ∼ Cat
(
{w̃i,j

t|T }Ni=1

)
.

12: Set x̃jt = x
bt(j)
t and x̃jt:T = {x̃jt , x̃jt+1:T }.

13: Compute {Ωj
t ,λ

j
t} according to (4.31).

14: end for

15: end for

the marginalization discussed in the previous section. Another example

is the GP regression model considered in Section 4.1.3, which also can

be written on the form of Equation (4.33).

With the target density being γt(x1:t) = p(x1:t | y1:t), this model fits

into the framework presented in Section 4.3. As we saw in the previous

section, to compute the backward simulation weights (Equation (4.14))

we need to evaluate the ratio

γ̄T (x1:T)

γ̄t(x1:t)
=
p(x1:T ,y1:T)

p(x1:t,y1:t)
=

T∏
s=t+1

g(ys | x1:s)f(xs | x1:s−1). (4.34)

For the CLGSS model (Equation (4.18)), we found a backward recur-

sion for a set of statistics, which enabled the evaluation of this expres-

sion in constant time. However, in the general case, the computational

cost of evaluating Equation (4.34) will increase with T . For instance,

84 Backward Simulation for General Sequential Models

if the functions f and g can be evaluated in constant time, then the

computational cost of evaluating Equation (4.34) scales linearly with T .

This implies that the cost of generating a full backward trajectory is

O(T 2). Since T is typically large, an O(T 2) computational complexity

can be prohibitive for many applications.

One way to mitigate this issue has been proposed in [93]. They con-

sider non-Markovian models in which there is a decay in the influence

of the past on the present, akin to that in SSMs but without the strong

Markovian assumption. It is thus possible to obtain a useful approxima-

tion of Equation (4.34) by truncating the product to a smaller number

of factors. In [93], an adaptive method is proposed, in which the fac-

tors of Equation (4.34) are computed sequentially until some criterion

is met, after which the product is truncated. They also propose a spe-

cific backward-simulation-based inference method, particle Gibbs with

ancestor sampling, which is suitable for inference in this type of models.

This method will be reviewed in detail in Section 5.5.

4.6 From State-Space Models to Non-Markovian Models

Rao–Blackwellization, as considered in Section 4.4, resulted in a non-

Markovian latent variable model. To provide further insight into this

model class, we present a few additional examples of SSMs for which

backward simulation is problematic in the original formulation. A

transformation to a non-Markovian model is then useful in order to

enable backward simulation, by using the general sampler provided in

Algorithm 12 on page 74.

4.6.1 Degenerate State-Space Models

As was pointed out in Section 3, the approximation of the backward

kernel (Equation (3.2)) relies on the assumption that the model under

study is fully dominated. Hence, the backward simulators for SSMs

derived in Section 3 are not applicable for degenerate models. This can

be understood by noting that, if the model is degenerate, then so is the

backward kernel. Consequently, the support of the backward kernel is

limited to some low-dimensional subspace or manifold, embedded in

the state-space. Due to this, it cannot be approximated in a natural

4.6 From State-Space Models to Non-Markovian Models 85

way by the forward filter particles. We illustrate the problem in the

following example.

Example 4.4 (Degenerate backward kernel). To see why back-

ward simulation is problematic for degenerate models, we consider a

simple toy model. Let the state be given by xt = (x1,t, x2,t)
T ∈ R

2. The

initial state is distributed according to x1 ∼ N (0, I) and the evolution

of the state process is given by xt+1 = xt + vt with,

vt ∼ N
((

10

0

)
,

(
1 0

0 0

))
.

Since the process noise covariance is singular, the model is degenerate

(see Section 1.4). Still, it is straightforward to apply SMC to this model.

Assume that we apply a bootstrap PF with N = 10 particles. The par-

ticles generated at times t = 1 and t = 2 are shown in Figure 4.5.

From the definition (Equation (1.10)), the backward kernel at time

t = 1 is given by B1(A | x̃2,y1) = P (x1 ∈ A | x̃2,y1). Since the tran-

sition kernel is degenerate, it holds that B1({x1 ∈ R
2 : x1,2 �= x̃2,2} |

x̃2,y1) = 0. That is, for a given particle x̃2 there is, with probability

1, only one particle at time t = 1 which is contained in the support of

the backward kernel B1(· | x̃2,y1), namely the ancestor particle of x̃2.

The same argument can be applied for any time t. If we apply a

backward simulator to this model, we will only recover the genealogy

−2 0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 4.5 Particles generated at time t = 1 (crosses) and at time t = 2 (circles) together with
the ancestral dependence (gray lines).

86 Backward Simulation for General Sequential Models

of the forward PF and the backward simulator is not able to improve

upon the degenerate paths of the forward filter. For this specific

model, the x2,t-state is completely deterministic given the initial state.

However, the same problem will arise whenever the transition kernel

is degenerate, but in general with more complicated constraints on the

individual state components as a result.

This restriction of backward simulators for SSMs is unfortunate,

since many interesting dynamical systems are most naturally modeled

as degenerate. For instance, consider a nonlinear system with additive

noise on the form,

ξt+1 = fξ(ξt) + Gνt, (4.35a)

yt = hξ(ξt) + et, (4.35b)

where G is a tall matrix and, consequently, rank(G) < dim(ξt). Hence,

the process noise covariance matrix GGT is singular. SMC samplers

can straightforwardly be applied to this type of model, but as pointed

out above, smoothing via backward simulation is more problematic.

To alleviate the problem, we can recast the degenerate SSM as a

non-Markovian model in a lower dimensional space. For the model con-

sidered in Example 4.4, the state x2,t is superfluous. Hence, the model

can be reformulated by removing x2,t and running the backward simu-

lator only for the x1,t-state. A similar approach can be applied to the

additive noise model (Equation (4.35)). Let G = U
[
Σ 0

]T
V T with

unitary U and V be a singular value decomposition of G. Furthermore,

let, [
xt+1

zt+1

]
� UTξt+1 = UTf(UUTξt) +

[
ΣV Tνt

0

]
. (4.36)

Hence, with vt � ΣV Tνt and by appropriate definitions of the functions

fx, fz and h, the model (Equation (4.35)) can be rewritten as

xt+1 = fx(xt,zt) + vt, (4.37a)

zt+1 = fz(xt,zt), (4.37b)

yt = h(xt,zt) + et. (4.37c)

4.6 From State-Space Models to Non-Markovian Models 87

For simplicity, assume that z1 is known. If this is not the case, z1 can be

included in the system state or treated as an unknown static parameter

of the model. Hence, the sequence z1:t is σ(x1:t−1)-measurable and we

can write zt = zt(x1:t−1). We can then further rewrite the model as,

xt+1 = fx(x1:t) + vt, (4.38a)

yt = h(x1:t) + et, (4.38b)

which is a non-degenerate, non-Markovian model. This reformulation

illustrates the intimate relationship between degenerate models and

non-Markovian models. In fact, this is nothing but another applica-

tion of marginalization as discussed in Section 4.4, where the z-state is

conditionally deterministic and thus trivially marginalizable.

The model (Equation (4.38)) will in general not allow for a simple

evaluation of Equation (4.34) in constant time. Hence, the computa-

tional complexity for applying backward simulation in this model is

O(T 2). Whether or not this is prohibitive clearly depends upon the

application. One possibility to reduce the complexity is to make use of

a truncation as discussed in Section 4.5.

4.6.2 Collapsing of State-Space Models

Another subclass of SSMs, for which backward simulation in problem-

atic, is that in which the transition density function f is not available

on closed form. It is quite common that the transition density f can be

simulated from, but not evaluated point-wise, see e.g., [50, 63, 67, 108].

If this is the case, it is not possible to evaluate the backward sampling

weights (Equation (3.5)), since these depend explicitly on f .

To find a way around this, we note that if f(xt | xt−1) can be simu-

lated from, then this is typically done by generating a random variable

vt ∼ pv(vt) and computing xt = a(xt−1,vt) for some function a. By a

similar argument as in the previous section, it follows that xt is σ(v1:t)-

measurable. Hence, the model can be written as

vt ∼ pv(vt), (4.39a)

yt ∼ g(yt | v1:t−1), (4.39b)

which is a non-Markovian model with latent variables vt ∈ V. This for-

mulation has been exploited by [67, 108] to construct auxiliary particle

88 Backward Simulation for General Sequential Models

filters for SSMs in which the transition density function is not avail-

able on closed form. By using Algorithm 12 we can employ backward

simulation for the model (Equation (4.39)), thus simulating the innova-

tion process v1:T . Again, the computational complexity for evaluating

the backward sampling weights will be O(T 2) in the general case, but

truncation can be used to reduce the complexity at the cost of an

approximation error.

4.6.3 Non-centered Parameterizations

A different reason for reformulating an SSM into the form of Equa-

tion (4.39), can arise in the context of parameter inference using data

augmentation, e.g., Gibbs sampling. Assume that we have a parametric

model of an SSM as in Equation (1.3). For simplicity, we assume that

only the transition density function (Equation (1.3a)) is parameterized

by θ. In the Bayesian setting, i.e., with θ modeled as a random variable,

a graphical model for this SSM is given in Figure 4.6 (left).

In [114], this is referred to as a centered parameterization. This

parameterization suggest a Gibbs sampler according to;

(i) Draw θ′ ∼ p(θ | x1:T ,y1:T);
(ii) Draw x′1:T ∼ p(x1:T | θ′,y1:T).

The conditioning on x1:T in Step (i) typically allows for a fairly straight-

forward updating of θ. Step (ii) can be addressed by using a backward

simulator. In particular, the PMCMC framework (see Section 5 and, in

particular, Sections 5.4–5.5) provides the means of using SMC-based

backward simulators within Gibbs sampling.

Fig. 4.6 Graphical model of a centered parameterization (left) and a non-centered param-
eterization (right) of an SSM.

4.6 From State-Space Models to Non-Markovian Models 89

However, as can be seen in Figure 4.6, x1:T and θ exhibit a priori

dependence. In many cases, this dependence can be very strong, result-

ing in slow convergence of the Gibbs sampler outlined above. By instead

making use of the formulation in Equation (4.39), we can choose the

variables v1:T to be a priori independent of θ. The graphical model is

given in Figure 4.6 (right). This is referred to as a non-centered param-

eterization, and it results in the Gibbs sampler:

(i)′ Draw θ′ ∼ p(θ | v1:T ,y1:T);
(ii)′ Draw v′1:T ∼ p(v1:T | θ′,y1:T).

Often, the non-centered parameterization can result in a Gibbs sam-

pler with better convergence properties than the centered parameteri-

zation, though the opposite is also possible (see [114] for a discussion).

However, Steps (i)′–(ii)′ are typically more computationally involved

than Steps (i)–(ii). In particular, Step (ii)′ requires the simulation of

a posterior sample from the innovation process v1:T . As pointed out

above, backward simulation in the model (Equation (4.39)) can lead

to a high computational complexity. Consequently, the potential ben-

efit of using a non-centered parameterization has to be evaluated on a

case-by-case basis.

5

Backward Simulation in Particle MCMC

Particle Markov chain Monte Carlo (PMCMC) is a systematic way of

combining the two main tools used in Monte Carlo statistical infer-

ence: SMC and MCMC. This is a class of inferential methods, intro-

duced in [3], in which SMC is used to construct proposal mechanisms

for MCMC samplers. Within this framework, backward simulation has

proved to be an important component. This section is devoted to

PMCMC, and in particular to how we can benefit from using back-

ward simulation within this framework.

5.1 Introduction to PMCMC

In the previous sections, we have mostly been focusing on state-

inference under the assumption that the parameters of the model are

known (or at least fixed). However, what we are often interested in is

to make posterior inference about some static parameter θ ∈ Θ of the

model; see Section 1.5.

As an example, consider the parameterized SSM (Equation (1.3)),

with prior density π(θ) for the parameter. Given a batch of obser-

vations y1:T , we seek the posterior density p(θ | y1:T) ∝ p(y1:T | θ)π(θ).
90

5.1 Introduction to PMCMC 91

This posterior is typically not available in closed form. Furthermore, for

a general nonlinear/non-Gaussian SSM, it is problematic to design an

MCMC sampler targeting p(θ | y1:T) directly, since this would require

us to analytically marginalize the states x1:T . As noted in Section 1.5,

a possible remedy is to include the latent states x1:T as auxiliary vari-

ables and instead target the joint posterior p(θ,x1:T | y1:T) with an

MCMC sampler. For example, this opens up for Gibbs sampling using

the following scheme:

(i) Draw θ′ ∼ p(θ | x1:T ,y1:T);
(ii) Draw x′1:T ∼ p(x1:T | θ′,y1:T).

Sampling θ in Step (i), i.e., conditionally on both the observed data and

the latent states, is in general much easier than sampling θ conditionally

only on the observed data. In fact, if conjugate priors are used, this step

can be carried out exactly. For non-conjugate models, one option is to

replace Step (i) with a Metropolis–Hastings step, which is possible since

the unnormalized density p(θ,x1:T ,y1:T) can be evaluated point-wise.

Step (ii) of the above Gibbs sampler, however, is less straightforward

since it requires us to generate a sample from the JSD for a fixed

value of the system parameter. In some special cases this can be done

exactly. For instance, if the model is linear Gaussian, we can make use

of the backward simulator for LGSS models derived in Section 1.7 to

sample x′1:T .

For a general nonlinear/non-Gaussian model, on the other hand, the

JSD is not available and the second step of the Gibbs sampler cannot

be carried out. However, with the material of Sections 3 and 4 in mind,

a natural idea is to employ SMC to approximately sample from the

JSD, using the backward simulator of Algorithm 4 on page 38.

However, to simply replace Step (ii) of the Gibbs sampler with a

backward simulator will result in a method suffering from some serious

drawbacks. Since it is based on SMC, we only obtain an approximate

sample from the JSD by running Algorithm 4. This will introduce addi-

tional bias and it is not clear how the error will propagate through

the Gibbs sampler. As a consequence, the success of this approach

relies heavily on using a large number of particles N in the underly-

ing SMC sampler, to obtain accurate backward kernel approximations.

92 Backward Simulation in Particle MCMC

This might seem like a natural requirement, but it also means that

we waste a lot of computational resources. The reason is that, at each

iteration of the Gibbs sampler, we run an SMC sampler with a large

number of particles, extract a single-state trajectory and then discard

all the remaining particles. As we will see in Section 5.4, it is possible

to do much better if we, instead of viewing the Gibbs sampler and the

SMC sampler as two separate components, analyze them together.

We will start our exploration of the PMCMC framework by review-

ing the particle marginal Metropolis–Hastings (PMMH) sampler [3]

in Section 5.2. PMMH is an example of a pseudo-marginal method,

meaning that it uses unbiased likelihood estimates in place of exact

likelihoods in an MCMC sampler [6, 11]. Somewhat surprisingly, this

will not alter the stationary distribution of the chain. PMMH is a good

starting point for introducing PMCMC, and we will fall back on this

material in the later sections. In Section 5.3 we will see how backward

simulation can be used to improve the quality of the PMMH estimates,

using a method proposed in [113].

We then turn to a different member of the PMCMC family, par-

ticle Gibbs (PG), for which backward simulation has turned out to

play a quite different role. In Sections 5.4 and 5.5, we will discuss two

approaches to backward simulation in the context of PG, which enables

us to employ this method even for large data records and using very

few particles. These two sections cover material previously presented

in [93, 94, 142].

5.2 Particle Marginal Metropolis–Hastings

We will work within the general framework introduced in Section 4,

but now with the addition of an unknown static parameter θ. Hence,

the target density on Θ × XT is given by

γT (θ,x1:T) =
γ̄T (θ,x1:T)

ZT
=
γ̄θT (x1:T)π(θ)

ZT
, (5.1)

where π(θ) is the prior density for the parameter and ZT is a normal-

ization constant. When using θ as a superscript, it should be thought

of as conditionally on θ, but for notational simplicity we prefer to write

γ̄θT (x1:T) rather than γ̄T (x1:T | θ), etc.

5.2 Particle Marginal Metropolis–Hastings 93

For fixed θ, a sequence of intermediate densities

γθt (x1:t) =
γ̄θt (x1:t)

Zt(θ)
(5.2)

for t = 1, . . . , T is available, analogously to Equation (4.6). Note that

the normalization factor Zt(θ) =
∫
γ̄θt (x1:t)dx1:t depends on θ. These

densities can sequentially be approximated by the application of an

SMC sampler, analogously to Section 4.2 (simply add θ to the notation

for all quantities introduced in Section 4.2).

Example 5.1 (The special case of SSMs). In the special case of

an SSM, we typically have

γT (θ,x1:T) = p(θ,x1:T | y1:T) and γ̄T (θ,x1:T) = p(θ,x1:T ,y1:T).

Hence, Equation (5.1) corresponds to

p(θ,x1:T | y1:T) = p(θ,x1:T ,y1:T)

p(y1:T)
=
p(x1:T ,y1:T | θ)π(θ)

p(y1:T)
,

with the normalization constant ZT = p(y1:T). Similarly, for fixed θ,

the intermediate quantities of the SMC sampler are the JSDs, so Equa-

tion (5.2) corresponds to

p(x1:t | θ,y1:t) = p(x1:t,y1:t | θ)
p(y1:t | θ) ,

with the conditional normalization constant Zt(θ) = p(y1:t | θ).

For large T , the high dimension of the space Θ × XT is prohibitive

when designing an MCMC sampler for the target density in Equa-

tion (5.1). As previously pointed out, we will try to alleviate this by con-

structing a proposal based on SMC, and use this within a Metropolis–

Hastings sampler. To start with, consider a proposal kernel on Θ × XT

given by,

q(x′1:T ,θ
′ | θ,x1:T) = q(θ′ | θ)γθ′T (x′1:T). (5.3)

This proposal makes use of a marginal Markov kernel q(θ′ | θ) on Θ and

is perfectly adapted to the target on XT . This proposal cannot be used

in practice, since the second factor on the right-hand side, γθT (x1:T), is

assumed to be unavailable. However, this factor can be approximated

94 Backward Simulation in Particle MCMC

using SMC, resulting in an empirical point-mass distribution, similar

to Equation (4.10),

γ̂θ,NT (dx1:T) �
N∑
i=1

wi
T δxi

1:T
(dx1:T). (5.4)

In order to mimic the proposal kernel in Equation (5.3), we can thus

make use of the following sampling strategy:

(i) Draw θ′ ∼ q(θ′ | θ);
(ii) Parameterize the model with θ′ and run an SMC sampler

(Algorithm 11, page 72) targeting γθ
′

T (x1:T);

(iii) Draw k with P (k = i) = wi
T and set x′1:T = xk1:T .

Note that the particle trajectory generated in Step (iii) is the ancestral

path of particle xkT , as discussed in Example 4.1. That is, we can write

xk1:T = xb1:T1:T � (xb11 , . . . , x
bT
T), (5.5)

where the indices b1:T are given recursively by the ancestor indices:

bT = k and bt = a
bt+1

t+1 .

The above sampling procedure can straightforwardly be imple-

mented and it defines a proposal kernel on Θ × XT , akin to the “ideal”

kernel (Equation (5.3)). The problem, however, in using this proposal

mechanism in a Metropolis–Hastings sampler lies in the computation

of the acceptance probability. To compute the acceptance probability,

we need to be able to evaluate the proposal kernel density point-wise.

For the sampling scheme defined by Steps (i)–(iii) above, the proposal

kernel is given by

q(dθ′ | θ)E
[

N∑
i=1

wi
T δxi

1:T
(dx1:T)

]
, (5.6)

where the expectation is taken w.r.t. the randomness of the SMC sam-

pler (the weights {wi
T }Ni=1 and the particles {xi1:T }Ni=1 are random vari-

ables). In other words, to be able to evaluate the proposal kernel, we

have to marginalize over all the random variables generated by the

SMC sampler, which is an utterly hopeless task.

The solution to this problem, as often, lies in including the random

variables generated by the SMC sampler as auxiliary variables in the

5.2 Particle Marginal Metropolis–Hastings 95

sampling scheme. By doing so, we avoid the need to marginalizing over

them. For this cause, we introduce the boldface notation

xt = {x1t , . . . , xNt }, at = {a1t , . . . , aNt }, (5.7)

to refer to all the particles and ancestor indices, respectively, generated

by the SMC sampler at time t. It follows that, for a fixed θ, the SMC

sampler in Algorithm 11 (page 72) generates a single sample on the

extended space XNT × {1, . . . , N}N(T−1). The probability density of

this sample is given by,

ψθ(x1:T ,a2:T) �
N∏
i=1

rθ1(x
i
1)

T∏
t=2

N∏
i=1

Mθ
t (a

i
t,x

i
t). (5.8)

That is, at time t = 1, we sample {xi1}Ni=1 independently from the pro-

posal density rθ1(x1). Then, for each time point t = 2, . . . , T , we sample

{ait,xit}Ni=1 independently from the proposal kernel Mθ
t (at,xt). Recall

that Mθ
t (at,xt) depends on all the random variables generated up to

time t − 1, i.e., {x1:t−1,a2:t−1}, but we will not make this dependence

explicit for notational convenience.

Using the notion of sampling on an extended space, the proce-

dure given by Steps (i)–(iii) above can be seen as generating a sam-

ple {θ′,x1:T ,a2:T ,k} in the space Ω � Θ × XNT × {1, . . . , N}N(T−1)+1.

Furthermore, the density of these random variables on Ω is given by,

q(θ′ | θ)ψθ′(x1:T ,a2:T)w
k
T , (5.9)

where the three factors, from left to right, correspond to the three steps

of the sampling procedure.

We are now in an unusual situation — we wish to use the pro-

posal kernel in Equation (5.9), which is defined on Ω, in a Metropolis–

Hastings sampler. However, the target density γT (θ,x1:T) is defined on

a lower dimensional space Θ × XT ⊂ Ω. In order to do so, we define a

new, extended target density on Ω. Basically, what we look for is an

artificial target density, which we can call φ, which:

(1) Admits γT (θ,x1:T) as a marginal;

(2) Is, in some sense, as close as possible to the proposal.

96 Backward Simulation in Particle MCMC

The first requirement is necessary since we wish to use φ as a surro-

gate for the original target γT (θ,x1:T). If φ admits γT as a marginal

and if we are able to design an MCMC sampler with stationary dis-

tribution φ, then we implicitly target also γT . More precisely, the sub-

chain constructed by only considering the variables corresponding to

this marginal will have γT as stationary distribution.

The second requirement is more vague, but it is crucial in order to

obtain an efficient (and simple) algorithm. Guided by these require-

ments, we define the extended target density on Ω according to

φ(θ,x1:T ,a2:T ,k) = φ(θ,xb1:T1:T , b1:T)φ(x
−b1:T
1:T ,a−b2:T

2:T | θ,xb1:T1:T , b1:T)

� γT (θ,x
b1:T
1:T)

NT

︸ ︷︷ ︸
marginal

N∏
i=1
i �=b1

rθ1(x
i
1)

T∏
t=2

N∏
i=1
i �=bt

Mθ
t (a

i
t,x

i
t)

︸ ︷︷ ︸
conditional

. (5.10)

In the above expression, we have introduced the notation

x−i
t = {x1t , . . . , xi−1

t , xi+1
t , . . . , xNt }, x−b1:T

1:T = {x−b1
1 , . . . , x−bT

T } and

similarly for the ancestor indices. The factorization into a marginal

and a conditional density, which can be done since φ is a probability

density function, is intended to reveal some of the structure of

the extended target. First, the marginal density of the variables

{θ,xb1:T1:T , b1:T } is defined to be equal to the original target density

γT (θ,x
b1:T
1:T), up to a factor N−T (related to the index variables

b1:T). By defining the marginal in this way, we fulfill the first of the

two requirements. More precisely, if {θ,x1:T ,a2:T ,k} are distributed

according to φ, then, by construction, the variables {θ,xb1:T1:T } are

distributed according to γT . Note that the particle trajectory xb1:T1:T is

the ancestral path of xkT , as defined in Equation (5.5).

Second, to define the conditional density of the remaining vari-

ables, we look at the second requirement. That is, we strive to make

this conditional density as close as possible to the proposal density

(Equation (5.9)), or in effect as close as possible to ψθ defined in Equa-

tion (5.8). This is done by defining the conditional, i.e., the second

factor in Equation (5.10), similar to Equation (5.8). The difference is

that, since we now condition on the path xb1:T1:T and the indices b1:T , we

remove the corresponding factors from the products.

5.2 Particle Marginal Metropolis–Hastings 97

With the target density (Equation (5.10)) and the proposal (Equa-

tion (5.9)) in place, we are close to having a complete Metropolis–

Hastings sampler. What remains is to compute the acceptance proba-

bility. For a proposed move from {θ,x1:T ,a2:T ,k} to {θ′,x′
1:T ,a

′
2:T ,k

′},
this is given by a standard Metropolis–Hastings ratio,

1 ∧ φ(θ
′,x′

1:T ,a
′
2:T ,k

′)

φ(θ,x1:T ,a2:T ,k)

q(θ | θ′)ψθ(x1:T ,a2:T)w
k
T

q(θ′ | θ)ψθ′(x′
1:T ,a

′
2:T)w

′,k′
T

. (5.11)

To simplify this expression we will rewrite Equation (5.10) on an alter-

native form. Note first that we can write

γ̄θt (x1:t) = γ̄θ1(x1)

t∏
s=2

γ̄θs (x1:s)

γ̄θs−1(x1:s−1)
. (5.12)

By using the definition of the weight function (Equation (4.9)), this

expression can be expanded according to

γ̄θt (x1:t) =W θ
1 (x1)r

θ
1(x1)

t∏
s=2

W θ
s (x1:s)r

θ
s(xs | x1:s−1). (5.13)

By plugging the trajectory xb1:t1:t into the above expression, we get

γ̄θt (x
b1:t
1:t) = w̄b1

1 r
θ
1(x

b1
1)

t∏
s=2

w̄bs
s r

θ
s(x

bs
s | xb1:s−1

1:s−1)

=

(
t∏

s=1

N∑
l=1

w̄l
s

)
w̄b1
1∑
l w̄

l
1

rθ1(x
b1
1)

t∏
s=2

w̄bs
s∑
l w̄

l
s

rθs(x
bs
s | xb1:s−1

1:s−1)

= wbt
t

(
t∏

s=1

N∑
l=1

w̄l
s

)
rθ1(x

b1
1)

t∏
s=2

Mθ
t (a

bs
s ,x

bs
s), (5.14)

where {w̄i
t}Ni=1 are the unnormalized importance weights at time t. Let

ẐN
t (θ) �

t∏
s=1

(
1

N

N∑
l=1

w̄l
s

)
. (5.15)

Note that this quantity depends on all the random variables generated

by the SMC sampler, {x1:t,a2:t}, though this dependence is not explicit

in the notation. Using Equation (5.15) we can now rewrite the extended

98 Backward Simulation in Particle MCMC

target density (Equation (5.10)) as

φ(θ,x1:T ,a2:T ,k)
(5.1)
=

γ̄θT (x
b1:T
1:T)π(θ)

ZTNT

ψθ(x1:T ,a2:T)

rθ1(x
b1
1)

∏T
t=2M

θ
t (a

bt
t ,x

bt
t)

(5.14)
=

ẐN
T (θ)π(θ)

ZT
wk
Tψ

θ(x1:T ,a2:T), (5.16)

where we have used the identity bT = k. The random variable ẐN
t (θ)

has a natural interpretation as an estimator of the normalization con-

stant Zt(θ) in Equation (5.2). It is well known that this estimator is

unbiased [31, 117], which in fact follows directly from Equation (5.16)

since φ is a probability density function and thus integrates to one. By

plugging Equation (5.16) into Equation (5.11), we obtain the, surpris-

ingly simple, expression for the acceptance probability,

1 ∧ Ẑ
′,N
T (θ′)

ẐN
T (θ)

π(θ′)

π(θ)

q(θ | θ′)
q(θ′ | θ) . (5.17)

The resulting Metropolis–Hastings sampler, using the SMC-based pro-

posal kernel (Equation (5.9)) for the extended target density (Equa-

tion (5.10)), is referred to as particle marginal Metropolis–Hastings

(PMMH). It should be noted that, despite the rather cumbersome

derivation, the method is very simple to implement. We summarize

the PMMH sampler in Algorithm 14.

From the derivation above, it follows that the PMMH sampler

generates a sequence {θ[r],x1:T [r]}r≥0 with stationary distribution

γT (θ,x1:T). Under additional weak assumptions, it also follows that

the underlying Markov chain is ergodic, and PMMH is thus a valid

MCMC sampler.

(A3) Let S = {θ ∈ Θ : π(θ) > 0}. Then, for any θ ∈ S and any t ∈
{1, . . . , T}, Sθt ⊆ Qθ

t , where

Sθt = {x1:t ∈ Xt : γθt (x1:t) > 0},
Qθ

t = {x1:t ∈ Xt : rθt (xt | x1:t−1)γ
θ
t−1(x1:t−1) > 0}.

(A4) The ideal Metropolis–Hastings sampler with target density

γT (θ,x1:T) and proposal density given by Equation (5.3) is irreducible

and aperiodic.

5.2 Particle Marginal Metropolis–Hastings 99

Algorithm 14 Particle marginal Metropolis–Hastings [3]

1: Set θ[0] arbitrarily.

2: Run an SMC sampler, targeting γ
θ[0]
T (x1:T), and compute an esti-

mate of the normalization constant, ẐN
T (θ[0]).

3: Sample k with P (k = i) = wi
T and set x1:T [0] = xk1:T .

4: for r ≥ 1 do

5: Draw θ′ ∼ q(θ′ | θ[r − 1]).

6: Run an SMC sampler, targeting γθ
′

T (x1:T), and compute an esti-

mate of the normalization constant, Ẑ ′,N
T (θ′).

7: Sample k with P (k = i) = wi
T and set x′1:T = xk1:T .

8: With probability

1 ∧ Ẑ ′,N
T (θ′)

ẐN
T (θ[r − 1])

π(θ′)

π(θ[r − 1])

q(θ[r − 1] | θ′)
q(θ′ | θ[r − 1])

,

set {θ[r],x1:T [r], ẐN
T (θ[r])} = {θ′,x′1:T , Ẑ ′,N

T (θ′)}, otherwise set

{θ[r],x1:T [r], ẐN
T (θ[r])} = {θ[r − 1],x1:T [r − 1], ẐN

T (θ[r − 1])}.
9: end for

Theorem 5.1. Assume (A3) and (A4). Then, for any N ≥ 1, the

PMMH sampler generates a sequence {θ[r],x1:T [r]}r≥0 whose marginal

distributions LN ({θ[r],x1:T [r]} ∈ ·) satisfy,
‖LN ({θ[r],x1:T [r]} ∈ ·) − γT (·)‖TV → 0 as r→∞,

where ‖ · ‖TV is the total variation norm.

Proof. See [3, Theorem 4].

See [8, 6] for additional and more precise convergence results related

to the PMMH method.

An interesting, and aesthetically appealing, property of PMMH is

that it is reminiscent of an ideal Metropolis–Hastings sampler, targeting

the marginal density

γT (θ) �
∫
γT (θ,x1:T)dx1:T , (5.18)

100 Backward Simulation in Particle MCMC

using the proposal kernel q(θ′ | θ) (or, equivalently, using the ideal pro-

posal (Equation (5.3)) to target the joint density γT (θ,x1:T)). For this

marginal Metropolis–Hastings sampler, the acceptance probability is

given by

1 ∧ ZT (θ
′)

ZT (θ)

π(θ′)

π(θ)

q(θ | θ′)
q(θ′ | θ) . (5.19)

The difference between this expression and the PMMH acceptance

probability (Equation (5.17)) is that, in the latter, the unknown

normalization constants are replaced by their SMC-based estimators

(Equation (5.15)).

Hence, PMMH can be thought of as an SMC approximation of

an ideal marginal Metropolis–Hastings sampler. Since the estimator in

Equation (5.15) is consistent, the PMMH acceptance probability con-

verges to Equation (5.19) as the number of particles N increases. That

is, the convergence speed of PMMH converges to that of the ideal sam-

pler. We emphasize that PMMH is exact for any number of particles, in

the sense that the stationary distribution of the sampler is γT (θ,x1:T)

for any N ≥ 1 (see Theorem 5.1). However, for small N , the variance

of the estimator (5.15) will be large and PMMH tends to get stuck,

leading to slow convergence.

For a fixed computational time, there is a trade-off between taking

N large to get a high acceptance probability, and to run many iterations

of the MCMC sampler. This trade-off has been analyzed in [43, 117]

who, under certain assumption, conclude that it is optimal to choose

N so that the variance of the logarithm of ẐN
T is around 1. As a rule of

thumb,N should thus scale at least linearly with T to keep the variance

of the normalization constant estimate in check [3].

Another thing that is interesting to note is that the variable k, which

is sampled at line 7 of Algorithm 14, does not affect the accept/reject

decision on line 8. That is, the acceptance probability depends only on

the estimate of the normalization constant (Equation (5.15)), and not

on the specific particle trajectory x′1:T that is extracted at line 7. Hence,

if the object of interest is the marginal density (Equation (5.18)), there

is no need to sample k at all.

5.3 PMMH with Backward Simulation 101

5.3 PMMH with Backward Simulation

The PMMH targets the joint density γT (θ,x1:T). However, as pointed

out in the previous section, if the focus is only on the marginal density

(Equation (5.18)), then the state trajectory x′1:T does not have to be

sampled.

On the contrary, if the focus is on the latent variables x1:T , then it

seems like a waste to generate N particle trajectories at each iteration

of the PMMH sampler, but keep only a single one, as is done in Algo-

rithm 14. In fact, since the acceptance probability does not depend on

the specific trajectory that is extracted, it is possible to average over

all the trajectories instead of randomly picking one of them.

Assume that we wish to compute

EγT [ϕ(θ,x1:T)] =

∫
ϕ(θ,x1:T)γT (θ,x1:T)dθdx1:T , (5.20)

for some test function ϕ : Θ × XT → R. We run R iterations of Algo-

rithm 14 (possibly with some burn-in), resulting in a realization of

the process, {θ[r],x1:T [r]}Rr=0. The most straightforward estimator of

Equation (5.20) is then

ϕ̂PMMH =
1

R

R∑
r=0

ϕ(θ[r],x1:T [r]), (5.21)

which, by the ergodic theorem, converges almost surely to Equa-

tion (5.20). However, it was recognized by Andrieu et al. [3] that an

alternative is to use the Rao–Blackwellized estimator

ϕ̂PMMH-RB =
1

R

R∑
r=0

E

[
ϕ
(
θ[r],xk1:T

) ∣∣∣ θ[r],x1:T [r],a2:T [r]
]

=
1

R

R∑
r=0

N∑
i=1

wi
T [r]ϕ

(
θ[r],xi1:T [r]

)
. (5.22)

The possibility to make use of all the generated particles to reduce the

variance of the estimator seems promising. However, a problem with

the above estimator is that the particle systems {xi1:T [r],wi
T [r]}Ni=1 are

generated by SMC samplers, and will thus suffer from path degeneracy.

102 Backward Simulation in Particle MCMC

Hence, the possible benefit of Rao–Blackwellization is limited, due to

the low particle diversity for time points t far away from the final

time T .

To achieve a better variance reduction effect, [113] have proposed

to complement PMMH with a run of a backward simulator. That is,

line 7 of Algorithm 14 on page 99 is replaced by an execution of Algo-

rithm 12 (page 74). In practice, it is preferable to run the backward

simulator only if the proposed sample is accepted. This is possible since,

as pointed out above, the acceptance probability is independent of the

extracted trajectories. The PMMH sampler with backward simulation

is given in Algorithm 15.

Algorithm 15 PMMH with backward simulation [113]

1: Set θ[0] arbitrarily.

2: Run an SMC sampler, targeting γ
θ[0]
T (x1:T), and compute an esti-

mate of the normalization constant, ẐN
T (θ[0]).

3: Generate {x̃j1:T [0]}Mj=1 by backward simulation (Algorithm 12).

4: for r ≥ 1 do

5: Draw θ′ ∼ q(θ′ | θ[r − 1]).

6: Run an SMC sampler, targeting γθ
′

T (x1:T), and compute an esti-

mate of the normalization constant, Ẑ ′,N
T (θ′).

7: With probability

1 ∧ Ẑ ′,N
T (θ′)

ẐN
T (θ[r − 1])

π(θ′)

π(θ[r − 1])

q(θ[r − 1] | θ′)
q(θ′ | θ[r − 1])

,

set Iaccept = 1, otherwise set Iaccept = 0.

8: if Iaccept = 1 then

9: Set {θ[r], ẐN
T (θ[r])} = {θ′, Ẑ ′,N

T (θ′)}.
10: Generate {x̃j1:T [r]}Mj=1 by backward simulation (Algorithm 12).

11: else

12: Set {θ[r], ẐN
T (θ[r])} = {θ[r − 1], ẐN

T (θ[r − 1])}.
13: Set {x̃j1:T [r]}Mj=1 = {x̃j1:T [r − 1]}Mj=1.

14: end if

15: end for

5.3 PMMH with Backward Simulation 103

Let the M backward trajectories generated at iteration r of

the PMMH sampler be denoted {x̃j1:T [r]}Mj=1. An estimator of

Equation (5.20) is then given by

ϕ̂PMMH-BS =
1

RM

R∑
r=0

M∑
j=1

ϕ
(
θ[r], x̃j1:T [r]

)
. (5.23)

It is shown in [113] that the backward simulator leaves the target dis-

tribution invariant. Again, by Rao–Blackwellization type of arguments,

it then follows that Equation (5.23) converges almost surely as R→∞,

for any M ≥ 1.

In [113], an expression for the variance of the estimator in Equa-

tion (5.23) is provided,

Var(ϕ̂PMMH-BS) = E
[
Var

(
ϕ̂PMMH-BS

∣∣ {θ[r],x1:T [r],a2:T [r]}Rr=0

)]
+ Var

(
E
[
ϕ̂PMMH-BS

∣∣ {θ[r],x1:T [r],a2:T [r]}Rr=0

])
=

1

R

(
σ2

M
+ σ2R

)
≈ 1

R

(
σ2

M
+ σ2∞

)
, (5.24)

where

σ2 = E [Var (ϕ(θ, x̃1:T) | {θ,x1:T ,a2:T })] ,

σ2R =
1

R
Var

(
R∑

r=0

E [ϕ(θ[r], x̃1:T [r]) | {θ[r],x1:T [r],a2:T [r]}]
)
,

and σ2∞ = limR→∞σ2R is the time-average variance constant. This

expression can be used to find an optimal trade-off between R and

M , depending on the run times of the algorithm for different settings.

In practice, the parameters σ2 and σ2∞ are not known, and to make use

of Equation (5.24) to tune the sampler it is thus necessary to estimate

these parameters from data.

We illustrate the effects of Rao–Blackwellization and backward sim-

ulation in the example below.

Example 5.2 (PIMH with backward simulation). We present a

simulation study similar to one of the examples considered in [113].

104 Backward Simulation in Particle MCMC

Consider again the nonlinear time-series model,

xt+1 = 0.5xt + 25
xt

1 + x2t
+ 8cos(1.2t) + vt,

yt = 0.05x2t + et,

with vt ∼ N (0,10), et ∼ N (0,1) and x1 ∼ N (0,5). We seek the joint

smoothing distribution p(x1:T | y1:T). For simplicity, we assume that

there are no unknown parameters in the model. Since the PMCMC

samplers in Algorithms 14 and 15 address the joint parameter and

state inference problem, smoothing is covered as a special case (see

Section 5.7). In this case, i.e., in the absence of an unknown static

parameter, the PMMH sampler is referred to as particle independent

Metropolis–Hastings (PIMH).

We wish to compare the estimator variances for the three alterna-

tive estimators ϕ̂PIMH, ϕ̂PIMH-RB and ϕ̂PIMH-BS. We generate one batch

of T = 100 observations from the time series. We then run 100 inde-

pendent copies of Algorithms 14 and 15 (all using the same data), each

for R = 5000 iterations. We use N = 500 particles for the SMC sam-

plers andM = 25 backward trajectories in Algorithm 15. For each run,

we compute three estimates of the posterior mean of x1:T according

to Equations (5.21), (5.22) and (5.23), respectively. Figure 5.1 shows

the estimator variances for each time point t. Close to the final time

point T , the Rao–Blackwellization in Equation (5.22) has a clear impact

on the estimator variance, which is reduced by about two orders of

0 10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0 PIMH

PIMH−RB
PIMH−BS

Fig. 5.1 Estimator variances for PIMH, PIMH-RB and PIMH-BS, respectively, for the
estimates of the posterior mean of x1:100.

5.4 Particle Gibbs with Backward Simulation 105

magnitude compared to the crude PIMH estimator. However, due to

path degeneracy, the variance reduction gets less pronounced for times t

far from T . For t < 50, there is more or less no reduction at all. For

the backward-simulation-based estimator (Equation (5.23)), however,

we obtain a clear variance reduction for all time points.

5.4 Particle Gibbs with Backward Simulation

PMMH is a Metropolis–Hastings sampler, targeting Equation (5.10)

with the specific proposal given in Equation (5.9). However, now that

we have the extended target (Equation (5.10)) in place, we can think

about other MCMC samplers targeting this distribution, leading to

other members of the PMCMC family. One possibility is to design a

multi-stage Gibbs sampler for φ, using the following sweep (note that

b1:T = {ab2:T2:T , bT }):

(i) Draw θ′ ∼ φ(θ | xb1:T1:T , b1:T);

(ii) Draw {x′,−b1:T
1:T ,a′,−b2:T

2:T } ∼ φ(x−b1:T
1:T ,a−b2:T

2:T | θ′,xb1:T1:T , b1:T);

(iii) Draw k′ ∼ φ(k | θ′,x′,−b1:T
1:T ,a′,−b2:T

2:T ,xb1:T1:T ,a
b2:T
2:T);

This is the particle Gibbs (PG) sampler, proposed in [3]. The first step

of the procedure is a partially collapsed Gibbs step (see Section 2.2.3 or

[97, 137]), which leaves the target distribution invariant. Alternatively,

we may view Steps (i)–(ii) as a grouped Gibbs step for the variables

{θ,x−b1:T
1:T ,a−b2:T

2:T }.
Later in this section, we will consider an alternative Gibbs sweep

which makes use of backward simulation to improve the mixing of the

sampler. However, to be able to see why backward simulation can be

useful in this context, we first need to understand the properties of the

PG sampler. To get a better picture of what this method does, let us

therefore go through the three steps of the procedure and discuss how

they can be implemented.

For Step (i) we have, by the construction of the extended target

distribution φ in Equation (5.10),

φ(θ | xb1:T1:T , b1:T) = γT (θ | x1:T) � γT (θ,x1:T)∫
γT (θ,x1:T)dθ

. (5.25)

106 Backward Simulation in Particle MCMC

As argued before, it is in general much easier to sample the parameter

θ conditionally on the latent variables x1:T , than from the marginal

density (Equation (5.18)). We shall thus assume that this step can be

carried out exactly. This is possible when a conjugate prior is used

for θ. For a non-conjugate model, we can instead sample θ′ from a

Metropolis–Hastings kernel, leaving Equation (5.25) invariant.

The conditional density used in Step (ii) is also given by

construction,

φ(x−b1:T
1:T ,a−b2:T

2:T | θ,xb1:T1:T , b1:T) =
N∏
i=1
i �=b1

rθ1(x
i
1)

T∏
t=2

N∏
i=1
i �=bt

Mθ
t (a

i
t,x

i
t). (5.26)

It is interesting to note that this expression does not depend explicitly

on the target density γT (θ,x1:T), but only on the proposal kernels used

in the SMC sampler (cf. Equation (5.8)). Hence, we can sample from

Equation (5.26) by using a procedure reminiscent of the SMC sampler

in Algorithm 11 on page 72. The difference is that in Equation (5.26),

the factors corresponding to the indices b1:T have been excluded. Hence,

to sample from Equation (5.26) we first generate xi1 ∼ rθ1(x1) for i ∈
{1, . . . , N} \ b1, then {ai2,xi2} ∼Mθ

2 (a2,x2) for i ∈ {1, . . . , N} \ b2, etc.
Throughout this sampling process, the trajectory xb1:T1:T is kept fixed.

Before stating an algorithm corresponding to this sampling proce-

dure, however, we note that the indices b1:T are nuisance variables.

That is, in practice we are not interested in the values of these vari-

ables and they are only introduced to aid in the derivation of the algo-

rithm. Furthermore, the SMC sampler is invariant to permutations of

the particle indices, i.e., it does not matter in which order we enumer-

ate the particles. Consequently, the actual values of the indices b1:T
are of no significance when sampling from Equation (5.26), meaning

that we do not have to keep track of these variables. Instead we can fix

b1:T to some arbitrary sequence which we find more convenient, e.g.,

b1:T = (N, . . . , N). With this convention, a method for sampling from

Equation (5.26), referred to as a conditional SMC (CSMC) sampler, is

given in Algorithm 16.

Finally, for Step (iii), we note that

φ(k | θ,x1:T ,a2:T) ∝ φ(θ,x1:T ,a2:T ,k)
(5.16)∝ wk

T . (5.27)

5.4 Particle Gibbs with Backward Simulation 107

Algorithm 16 Conditional SMC (conditioned on x′1:T)

1: Draw xi1 ∼ rθ1(x1) for i = 1, . . . , N − 1 and set xN1 = x′1.

2: Compute w̄i
1 =W1(x

i
1) for i = 1, . . . , N .

3: Normalize the weights wi
1 = w̄i

1/
∑

l w̄
l
1 for i = 1, . . . , N .

4: for t = 2 to T do

5: Draw {ait,xit} ∼Mθ
t (at,xt) for i = 1, . . . , N − 1.

6: Set aNt = N and xNt = x′t.

7: Set xi1:t = {xa
i
t

1:t−1,x
i
t} for i = 1, . . . , N .

8: Compute w̄i
t =W θ

t (x
i
1:t) for i = 1, . . . , N .

9: Normalize the weights wi
t = w̄i

t/
∑

l w̄
l
t for i = 1, . . . , N .

10: end for

Algorithm 17 Particle Gibbs [3]

1: Set θ[0] and x1:T [0] arbitrarily.

2: for r ≥ 1 do

3: Draw θ[r] ∼ γT (θ | x1:T [r − 1]).

4: Run a CSMC sampler (Algorithm 16) targeting γ
θ[r]
T (x1:T), con-

ditioned on x1:T [r − 1].

5: Sample k with P (k = i) = wi
T and trace the ancestral path of

particle xkT , i.e., set x1:T [r] = xk1:T .

6: end for

Hence, as in PMMH, we sample the index k with P (k = i) = wi
T .

We can now reinterpret the three steps of the PG sampler as in

Algorithm 17.

As can be seen in Theorem 5.2 below, ergodicity of PG holds under

similar assumptions as for PMMH. See also [29] for a uniform ergodicity

result for the PG sampler.

(A5) The ideal Gibbs sampler, defined by alternating between sam-

pling from γT (θ | x1:T) and γθT (x1:T), is irreducible and aperiodic.

Theorem 5.2. Assume (A3) and (A5). Then, for any N ≥ 2, the

PG sampler generates a sequence {θ[r],x1:T [r]}r≥0 whose marginal

108 Backward Simulation in Particle MCMC

distributions LN ({θ[r],x1:T [r]} ∈ ·) satisfy,
‖LN ({θ[r],x1:T [r]} ∈ ·) − γT (·)‖TV → 0 as r→∞,

where ‖ · ‖TV is the total variation norm.

Proof. See [3, Theorem 5].

As pointed out above, a key property of PMCMC methods is that

they do not rely on asymptotics inN to be valid MCMC samplers. How-

ever, for the PMMH sampler we found that the acceptance probability

(Equation (5.17)) depends on the SMC estimate of the normalization

constant Equation (5.15). Hence, to obtain a reasonable probability of

acceptance, we have to take N large enough to get sufficiently small

variance of this estimator.

For the PG sampler, on the other hand, the dependence on N is not

as obvious. Since it is a Gibbs sampler, all generated samples will in

fact be accepted. To investigate how the method is affected by different

values of N , we apply it to a simple toy problem in the example below.

Example 5.3 (PG for stochastic volatility model). Consider a

simple stochastic volatility model on state-space form,

xt+1 = axt + vt, vt ∼ N (0,θ),

yt = et exp
(
1
2xt

)
, et ∼ N (0,1).

For brevity, we keep a = 0.9 fixed, but assume that the variance θ of

the latent process is unknown. We put a conjugate inverse gamma prior

on θ, with hyperparameters a = b = 0.01. We then generate a batch of

T = 100 measurements with the true value θ = 0.52, and employ the

PG sampler to find the posterior p(θ | y1:T) of the parameter.

To see how the sampler is affected by the number of particles,

we consider four independent runs with N = 5, 20, 100 and 1000,

respectively. We run the samplers for 100000 iteration, discarding the

first 10000 iterations as burn-in. The empirical ACFs for the residu-

als θ[r] − E[θ | y1:T] are reported in the left panel of Figure 5.2. For

N = 1000, we get a fairly sharp drop in autocorrelation, indicating a

5.4 Particle Gibbs with Backward Simulation 109

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1 N=5
N=20
N=100
N=1000

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1 N=5
N=20
N=100
N=1000

Fig. 5.2 Empirical ACF for θ for the PG samplers using different number of particles N .

sampler that mixes well. However, as we decrease the number of par-

ticles, there is a dramatic change in the ACF. For N = 20, the ACF

drops off very slowly and for N = 5 it is almost constant, meaning that

the sampler is more or less stuck at a single point in the parameter

space for all 100000 iterations.

Furthermore, to see how the sampler is affected by the size of the

data set, we repeat the experiment with T = 1000. The ACFs are given

in the right panel of Figure 5.2. The same effect is clearly visible and

even more severe in this scenario. Even for N = 1000 the method strug-

gles, and as we reduce the number of particles further, the sampler gets

stuck.

To get a better insight into the poor mixing of the PG kernel for

small N and/or large T , let us analyze two consecutive iterations of the

sampler in more detail. For clarity, we use a small number of particles

and time steps, N = 20 and T = 50, respectively.

Figure 5.3 (top) shows the particle system generated by the CSMC

sampler at iteration r. Due to path degeneracy, there is only one dis-

tinct particle trajectory for t ≤ 27. The extracted trajectory x1:T [r],

corresponding to the ancestral path of particle xkT , is illustrated by a

thick black line. At the next iteration of the PG sampler we run CSMC

conditioned on x1:T [r]. This results in the system shown in Figure 5.3

(bottom). Due to path degeneracy, we once again obtain only a single

distinct particle trajectory for time points far from T , here for t ≤ 35.

However, the particle system generated by the CSMC sampler must

110 Backward Simulation in Particle MCMC

5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Time

S
ta
te

5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Time

S
ta
te

Fig. 5.3 Particle system generated by CSMC at iterations r (top) and r + 1 (bottom)
of the PG sampler. The dots show the particle positions, the thin black lines show the
ancestral dependence of the particles and the thick black lines show the sampled trajectories
x1:T [r] and x1:T [r + 1], respectively. In the bottom pane, the thick gray line illustrates the
conditioned path at iteration r + 1, which by construction equals x1:T [r]. Note that, due to
path degeneracy, the particles shown as gray dots are not reachable by tracing any of the
ancestral lineages from time T and back.

contain the conditioned path. Hence, all particle trajectories available

at iteration r + 1 are identical to x1:T [r] up to time t = 27. Conse-

quently, when we sample x1:T [r + 1] at iteration r + 1, this trajectory

will to a large extent be identical to x1:T [r]. This results in a poor explo-

ration of the state-space, which in turn means that the Gibbs kernel

will mix slowly.

Based on this argument we note that the mixing will be particularly

poor when the path degeneracy is severe. This will be the case if the

length of the data record T is large and/or if the number of particles N

is small. This is in agreement with the results reported in Figure 5.2.

5.4 Particle Gibbs with Backward Simulation 111

From the discussion in the example above we conclude that the

PG sampler suffers from poor mixing as a result of path degeneracy.

Hence, for this method to work, we need to take N large enough to

tackle the degeneracy, which for many problems is unrealistic from a

computational point of view.

An alternative interpretation of this issue is that it is caused by

the fact that the Gibbs sweep defining the PG sampler, Steps (i)–

(iii) above, is incomplete. More precisely, if we collect the variables

from the three steps of the procedure, we note that we never sample

new values for {xb1:T1:T , b1:T−1} in this sweep. Despite this incompleteness

of the Gibbs sweep, it holds under the assumptions of Theorem 5.2

that PG is ergodic. Intuitively, this can be explained by the fact that

the collection of variables that is left out is chosen randomly at each

iteration. In the long run, we will thus include all the variables with

probability one. However, due to degeneracy of the SMC sampler, the

collections of variables that are left out at any two consecutive iterations

will be strongly dependent, resulting in poor mixing.

A way to address this problem was proposed by Whiteley [141]

and further explored in [94, 142]. The idea is to complement the

PG sampler with a backward simulator to mitigate the path degen-

eracy problem, and thus obtain a faster mixing sampler. Alternatively,

based on the interpretation above, this modification can be seen as

a way to include the index variables b1:T−1 in the Gibbs sampler.1

As noted above, we are not interested in these index variables per se,

but including them in the Gibbs sweep can lead to a general improve-

ment in mixing, affecting all the variables of the model. The idea is to

sample the variables bt backward in time, using a sequence of Gibbs

steps. More precisely, we replace Step (iii) of the PG sampler with the

following,

1 Ideally, we would like to include the variables x
b1:T
1:T as well, but this is in general not

possible since it would be similar to sampling from the original target density, which we
assume is infeasible.

112 Backward Simulation in Particle MCMC

(iii)′ Draw,

b′T ∼ φ(bT | θ′,x′,−b1:T
1:T ,a′,−b2:T

2:T ,xb1:T1:T , i
b2:T
2:T);

...

b′t ∼ φ(bt | θ′,x′,−b1:t
1:t ,a′,−b2:t

2:t ,xb1:t1:t , i
b2:t
2:t ,x

b′t+1:T

t+1:T , b
′
t+1:T);

...

b′1 ∼ φ(b1 | θ′,x′,−b1
1 ,xb11 ,x

b′2:T
2:T , b

′
2:T).

Note that the densities involved in this sampling scheme are condi-

tionals, not under the full joint density φ(θ,x1:T ,a2:T ,k), but under

marginals thereof. That is, Step (iii)′ corresponds to a sequence of par-

tially collapsed Gibbs steps. As we have noted before, collapsing, or

marginalization, is often used within Gibbs sampling and it does not

violate the invariance of the sampler.

As hinted at above, this backward sampling of the ancestor indices

corresponds to a run of a backward simulator. We call the resulting

method, defined by the Gibbs Steps (i),(ii) and (iii)′, particle Gibbs

with backward simulation (PGBS). Note that the first row of Step (iii)′

is identical to Step (iii) of the original PG sampler, where we sample

the variable k = bT from its full conditional. However, in PGBS we

do not stop there, but continue to draw new values for the indices

bt down to t = 1. This will break the strong dependencies caused by

the SMC path degeneracy, and allow for a much faster mixing Gibbs

kernel.

To see that Step (iii)′ indeed corresponds to a run of a back-

ward simulator, note first that by marginalizing Equation (5.26) over

{x−bt+1:T

t+1:T ,a
−bt+1:T

t+1:T } we get

φ(x−b1:t
1:t ,a−b2:t

2:t | θ,xb1:T1:T , b1:T) =

N∏
i=1
i �=b1

rθ1(x
i
1)

t∏
s=2

N∏
i=1
i �=bs

Mθ
s (a

i
s,x

i
s). (5.28)

5.4 Particle Gibbs with Backward Simulation 113

We can thus write

φ(bt | θ,x1:t,a2:t,x
bt+1:T

t+1:T , bt+1:T) ∝ φ(θ,x1:t,a2:t,x
bt+1:T

t+1:T , bt:T)

= φ(θ,xb1:T1:T , b1:T)φ(x
−b1:t
1:t ,a−b2:t

2:t | θ,xb1:T1:T , b1:T)

=
γ̄θT (x

b1:T
1:T)

γ̄θt (x
b1:t
1:t)

γ̄θt (x
b1:t
1:t)π(θ)

ZTNT

N∏
i=1
i �=b1

rθ1(x
i
1)

t∏
s=2

N∏
i=1
i �=bs

Mθ
s (a

i
s,x

i
s), (5.29)

where we have used Equations (5.1) and (5.28) for the last equality. By

expanding γ̄θt (x
b1:t
1:t) in the numerator according to Equation (5.14), we

obtain,

φ(bt | θ,x1:t,a2:t,x
bt+1:T

t+1:T , bt+1:T) ∝ wbt
t

γ̄θT (x
b1:T
1:T)

γ̄θt (x
b1:t
1:t)

, (5.30)

which is exactly the expression for the backward simulation weights

(Equation (4.14)). We summarize the PGBS sampler in Algorithm 18.

On line 5 of the algorithm, the indices b1:T are generated according to

Step (iii)′ of the sampler. However, as noted above, we are not interested

in these indices themselves, but only in the trajectory xb1:T1:T . Conse-

quently, for practical convenience, the algorithm makes no explicit ref-

erence to b1:T . Note that we only generate a single backward trajectory

at each iteration of the sampler. Hence, the computational complexity

is still linear in the number of particles. The effect of adding backward

simulation to the sampler is quite substantial, which is illustrated on

our toy problem in the example below.

Example 5.4(PGBS for stochastic volatility model). We return

to Example 5.3 and apply the PGBS sampler to the same batches of

data, for T = 100 and T = 1000, respectively. As before, we consider

four independent runs with N = 5, 20, 100 and 1000, respectively. The

empirical ACFs for the residuals θ[r] − E[θ | y1:T], based on 100000

iterations of the samplers, are given in Figure 5.4.

When compared with the corresponding plots for the PG sampler

in Figure 5.2, we see a large improvement. The addition of a backward

114 Backward Simulation in Particle MCMC

Algorithm 18 Particle Gibbs with backward simulation [142, 94]

1: Set θ[0] and x1:T [0] arbitrarily.

2: for r ≥ 1 do

3: Draw θ[r] ∼ γT (θ | x1:T [r − 1]).

4: Run a CSMC sampler (Algorithm 16) targeting γ
θ[r]
T (x1:T), con-

ditioned on x1:T [r − 1].

5: Run a backward simulator (Algorithm 12, page 74, with M = 1)

to sample the trajectory x1:T [r].

6: end for

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1 N=5
N=20
N=100
N=1000

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1
A
C
F

N=5
N=20
N=100
N=1000

Fig. 5.4 Empirical ACF for θ for the PGBS samplers using different numbers of particles N .

simulation sweep appears to make the method much more robust to

a small number of particles, as well as larger data sets. In fact, there

is no noticeable improvement when increasing the number of particles

above N = 20. Hence, for this specific example, we can conclude that

PGBS with N � 20 performs very close to an ideal Gibbs sampler, i.e.,

a Gibbs sampler in which x1:T is sampled from the exact JSD.

To provide further insight into the effect of the backward simulation

step in PGBS, we make a similar inspection as in Example 5.3. That

is, we look at two consecutive iterations of the sampler in more detail,

using N = 20 and T = 50 for clarity.

Figure 5.5 (top) shows the particles generated by the CSMC sampler

at iteration r, as well as the specific trajectory x1:T [r] which is sampled

by the backward simulator. At the next iteration of the PGBS sampler

5.4 Particle Gibbs with Backward Simulation 115

5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Time

S
ta
te

5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Time

S
ta
te

Fig. 5.5 Particles generated by CSMC at iterations r (top) and r + 1 (bottom) of the PGBS
sampler. The dots show the particle positions and the black lines show the trajectories
x1:T [r] and x1:T [r + 1], respectively, sampled by backward simulation. In the bottom panel,
the thick gray line illustrates the conditioned path at iteration r + 1, which by construction
equals x1:T [r]. Note that all the particles, at all time points, are reachable by the backward
simulators.

we run CSMC conditioned on x1:T [r]. This results in the particles shown

in Figure 5.5 (bottom). The conditioned path is illustrated by a thick

gray line, and the path x1:T [r + 1] is shown as a black line.

As discussed in Example 5.3, the CSMC sampler will degenerate

toward the conditioned path. However, since x1:T [r + 1] is sampled

using a backward simulator, we are not constrained to any of the ances-

tral lineages. Instead, we explore all the particles generated in the for-

ward sweep, and not only those that survive to time T . This results

in a path x1:T [r + 1] which, with high probability, is to a large extent

different from x1:T [r]. The effect is that PGBS explores the state-space

around the conditioned path much better than PG, resulting in a faster

mixing Gibbs kernel.

116 Backward Simulation in Particle MCMC

In the example above, PGBS appeared to be quite robust to both

large T and small N , performing close to an ideal Gibbs sampler even

with very few particles. This has been experienced also in more chal-

lenging scenarios, see e.g., [142] for inference in jump Markov linear

systems and [143] for multiple change-point problems.

Intuitively, there are two reasons for why PGBS can perform well,

even for small N . First, the conditioning in the CSMC sampler is cru-

cial. It can be thought of as guiding the particles toward the conditioned

path. In that way we retain information from one MCMC iteration to

the next. In this aspect, PMMH, for instance, is more blunt, since it is

based on independent SMC samplers at each iteration. Second, the use

of backward simulation to update the indices b1:T allows for a pertur-

bation around the conditioned path. Due to this, the sampler can avoid

getting stuck as a result of path degeneracy, and therefore explores the

state-space efficiently around the conditioned path.

PGBS is reminiscent of the Gibbs sampler proposed by Neal et al.

[110] for inference in SSMs. In this method, a pool of candidate states

is generated, followed by a backward trajectory simulation. From this

perspective, PGBS can be seen as a clever way of generating the can-

didate states by running an SMC sampler.

5.5 Particle Gibbs with Ancestor Sampling

TheCSMC sampler that is used in PG andPGBS is a sequential method,

progressing forward in time, generating the variables {x−bt
t ,a−bt

t } for t =
1, . . . , T . Similar to the backward simulation pass, this forward sweep can

be interpreted as a sequence of partially collapsedGibbs steps.To see this,

we note that Equation (5.28) implies that

φ(x−b1
1 | θ,xb1:T1:T , b1:T) =

N∏
i=1
i �=b1

rθ1(x
i
1), (5.31a)

and, for t = 2, . . . , T ,

φ(x−bt
t ,a−bt

t | θ,x−b1:t−1

1:t−1 ,a
−b2:t−1

2:t−1 ,xb1:T1:T , b1:T)

=
φ(x−b1:t

1:t ,a−b2:t
2:t | θ,xb1:T1:T , b1:T)

φ(x
−b1:t−1

1:t−1 ,a
−b2:t−1

2:t−1 | θ,xb1:T1:T , b1:T)
=

N∏
i=1
i �=bt

Mθ
t (a

i
t,x

i
t). (5.31b)

5.5 Particle Gibbs with Ancestor Sampling 117

That is, we can interpret the CSMC sampler in Algorithm 16 as

first sampling x−b1
1 from Equation (5.31a) and then, for t = 2, . . . , T ,

sampling {x−bt
t ,a−bt

t } from Equation (5.31b).2 This corresponds to a

sequence of partially collapsed Gibbs steps.

In PGBS, this forward sweep is complemented with a backward

sweep, in which the variables bt are generated from the condition-

als (Equation (5.30)) for t = T, T − 1, . . . , 1. However, it is possible

to instead alternate between these two sequences and generate all the

variables in a single forward sweep. That is, after an initial draw from

Equation (5.31a), we alternate between sampling {x−bt
t ,a−bt

t } from

Equation (5.31b) and bt−1 from Equation (5.30). Finally, we sample

bT from its full conditional (Equation (5.27), analogously to the PG

sampler. This leads to a related method proposed by Lindsten et al.

[93], referred to as particle Gibbs with ancestor sampling (PGAS).

In summary, PGAS is a Gibbs sampler for the extended target dis-

tribution φ defined in Equation (5.10), using the following sweep:

(i) Draw θ′ ∼ φ(θ | xb1:T1:T , b1:T);

(ii) Draw x′,−b1
1 ∼ φ(x−b1

1 | θ,xb1:T1:T , b1:T) and, for t = 2, . . . , T ,

{x′,−bt
t ,a′,−bt

t } ∼ φ(x−bt
t ,a−bt

t | θ′,x′,−b1:t−1

1:t−1 ,a′2:t−1,x
b1:T
1:T , bt−1:T);

(a′,btt =) b′t−1 ∼ φ(bt−1 | θ′,x′,−b1:t−1

1:t−1 ,a′2:t−1,x
b1:T
1:T , bt:T);

(iii) Draw (k′ =) b′T ∼ φ(bT | θ′,x′,−b1:T
1:T ,a′2:T ,x

b1:T
1:T).

Hence, at each iteration of the CSMC sampler, we draw a new value for

the ancestor index abtt , instead of setting this according to the condi-

tioning. The resulting method, denoted CSMC with ancestor sampling,

is given in Algorithm 19. Again, for convenience we put the conditioned

particles in the Nth positions, i.e., we set b1:T = (N, . . . , N). The PGAS

sampler is summarized in Algorithm 20.

As for PG and PGBS, it can be verified that the above procedure is

a partially collapsed Gibbs sampler and it will thus leave φ invariant.

Furthermore, the ergodicity result from Theorem 5.2 applies without

modification to PGAS. In practice, the ancestor sampling in the CSMC

procedure gives rise to a considerable improvement over PG, compara-

ble to that of backward simulation. The method has been successfully

2As pointed out above, Algorithm 16 fixates b1:T = (N, . . . , N) for the conditioned path.

118 Backward Simulation in Particle MCMC

Algorithm 19 CSMC with ancestor sampling (conditioned on x′1:T)

1: Draw xi1 ∼ rθ1(x1) for i = 1, . . . , N − 1 and set xN1 = x′1.

2: Compute w̄i
1 =W1(x

i
1) for i = 1, . . . , N .

3: Normalize the weights wi
1 = w̄i

1/
∑

l w̄
l
1 for i = 1, . . . , N .

4: for t = 2 to T do

5: Draw {ait,xit} ∼Mθ
t (at,xt) for i = 1, . . . , N − 1 and set xNt = x′t.

6: Draw aNt with

P (aNt = i) ∝ wi
t−1

γ̄θT ({xi1:t−1,x
′
t:T })

γ̄θt−1(x
i
1:t−1)

.

7: Set xi1:t = {xa
i
t

1:t−1,x
i
t} for i = 1, . . . , N .

8: Compute w̄i
t =W θ

t (x
i
1:t) for i = 1, . . . , N .

9: Normalize the weights wi
t = w̄i

t/
∑

l w̄
l
t for i = 1, . . . , N .

10: end for

Algorithm 20 Particle Gibbs with ancestor sampling [93]

1: Set θ[0] and x1:T [0] arbitrarily.

2: for r ≥ 1 do

3: Draw θ[r] ∼ γT (θ | x1:T [r − 1]).

4: Run CSMC with ancestor sampling (Algorithm 19) targeting

γ
θ[r]
T (x1:T), conditioned on x1:T [r − 1].

5: Sample k with P (k = i) = wi
T and trace the ancestral path of

particle xkT , i.e., set x1:T [r] = xk1:T .

6: end for

applied to challenging inference problems, such as Wiener system iden-

tification [95] and learning of nonparametric, nonlinear SSMs [55]. We

illustrate the PGAS method in the following example.

Example 5.5(PGAS for stochastic volatility model). We return

again to the toy problem studied in Examples 5.3 and 5.4. We now

apply the PGAS sampler to the same batches of data, for T = 100 and

T = 1000, respectively. As before, we consider four independent runs

with N = 5, 20, 100 and 1000, respectively. The empirical ACFs for the

5.5 Particle Gibbs with Ancestor Sampling 119

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1 N=5
N=20
N=100
N=1000

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

A
C
F

N=5
N=20
N=100
N=1000

Fig. 5.6 Empirical ACF for θ for the PGAS samplers using different numbers of particles N .

residuals θ[r] − E[θ | y1:T], based on 100000 iterations of the samplers,

are given in Figure 5.6.

The results are similar to those obtained by PGBS; see Figure 5.4.

As for PGBS, in this specific example, the PGAS sampler performs

very close to an ideal Gibbs sampler for N � 20. As was discussed in

the previous section, the source of the poor mixing of the basic PG

sampler is path degeneracy. We have previously seen how backward

simulation can be used to mitigate this problem, which explains why

PGBS can outperform the basic PG sampler. However, it might be

harder to see why the ancestor sampling used in PGAS gives the same

effect. In fact, the paths generated by the CSMC procedure with ances-

tor sampling (Algorithm 19) will degenerate. The difference from the

basic CSMC procedure (Algorithm 16, page 107), however, is that they

do not degenerate to the conditioned path.

To understand the meaning of this, let us again look at two consec-

utive iterations of the sampler in more detail, using N = 20 and T = 50

as before. Figure 5.7 (top) shows the particles generated by the CSMC

procedure with ancestor sampling, at iteration r. As pointed out above,

due to path degeneracy, all the trajectories coincide for times t far from

the final time T . The extracted trajectory x1:T [r], corresponding to the

ancestral path of particle xkT , is illustrated by a thick black line.

At the next iteration of the PGAS sampler we run CSMC with

ancestor sampling, conditioned on x1:T [r]. This results in the particle

120 Backward Simulation in Particle MCMC

5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Time

S
ta
te

5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

Time

S
ta
te

Fig. 5.7 Particle system generated by CSMC with ancestor sampling at iterations r (top)
and r + 1 (bottom) of the PGAS sampler. The dots show the particle positions, the thin
black lines show the ancestral dependence of the particles and the thick black lines show
the sampled trajectories x1:T [r] and x1:T [r + 1], respectively. In the bottom pane, the thick
gray line fragments illustrate the conditioned path at iteration r + 1, with newly sampled
ancestor indices. As an effect of ancestor sampling, the particle system at iteration r + 1
does not degenerate to the conditioned path.

system shown in Figure 5.7 (bottom). As in Figures 5.3 and 5.5, the

conditioned path is illustrated by a thick gray line. However, since,

at each time point t, we sample a new ancestor for the conditioned

particle xt[r], the conditioned path is broken up into pieces. This has

the effect that the particle system generated at iteration r + 1 of PGAS

degenerates to a path which, to a large extent, is different from the

conditioned path x1:T [r]. Similar to using backward simulation, the

effect is that PGAS explores the state-space around the conditioned

path much better than PG, resulting in a faster mixing Gibbs kernel.

5.6 PMCMC for Maximum Likelihood Inference 121

As could be seen in the example above, the use of ancestor sampling

in PGAS gives a similar improvement over the basic PG sampler, as

the backward simulation pass used in PGBS. This is not surprising,

since both methods in fact make use of the same collections of Gibbs

steps to sample from the extended target φ. The difference between the

methods lies in the order in which these Gibbs steps are carried out.

Here, PGBS requires separate forward and backward passes, whereas

PGAS only proceeds in the forward direction, without the need of an

explicit backward pass.

In [93], some more practical differences between the methods are

pointed out. Primarily, they derive the PGAS sampler with the class of

non-Markovian latent variable models in mind. They then make use of a

weight truncation as discussed in Section 4.5, and illustrate empirically

that PGAS is more robust to the truncation error than alternative

backward-simulation-based methods, such as PGBS. Additionally, they

point out that PGAS can be implemented more straightforwardly than

PGBS, especially in the case of non-Markovian models. The reason is

that, since it only proceeds in the forward direction, there is no need to

store or regenerate intermediate quantities from the SMC sampler, thus

requiring less bookkeeping. For the same reason, PGAS can be more

memory efficient than alternative backward-simulation-based methods,

in particular when the state is high-dimensional or equipped with some

high-dimensional statistic.

5.6 PMCMC for Maximum Likelihood Inference

The PMCMC framework provides efficient methods for Bayesian

parameter inference, which rely on the notion of exact approximation.

However, as noted by Donnet and Samson [34], Andrieu and Vihola [7],

and Lindsten [91], these attractive methods are not exclusive to the

Bayesian. Indeed, it is possible to make use of PMCMC kernels when

addressing, for instance, maximum likelihood problems as well. In this

section, we review the method by Lindsten[91], which is a procedure

for maximum likelihood parameter inference in general SSMs, based on

CSMC with ancestor sampling (Algorithm 19, page 118).

122 Backward Simulation in Particle MCMC

For ease of comparison with the PSEM methods discussed in Sec-

tion 3.5 and to highlight the fact that we are indeed dealing with a

maximum likelihood problem, we restrict our attention to SSMs. How-

ever, the same approach can straightforwardly be used for parameter

inference in the class of general latent variable models considered above.

Hence, consider an SSM, parameterized by θ ∈ Θ,

xt+1 ∼ fθ(xt+1 | xt), (5.32a)

yt ∼ gθ(yt | xt), (5.32b)

and x1 ∼ µθ(x1). We observe a batch of measurements y1:T and seek

the maximum likelihood estimator,

θ̂ML = argmax
θ∈Θ

logpθ(y1:T). (5.33)

In Section 3.5, we derived a PSEM algorithm to address this problem.

However, we also noted that PSEM relies on asymptotics in the number

of particles and backward trajectories to obtain a convergent sequence

of parameter estimates. Hence, a computationally expensive particle

smoother has to be run at each iteration of the algorithm, leading to a

learning procedure with a very high computational cost.

This issue has been recognized as a problem with the basic Monte

Carlo EM algorithm, of which PSEM can be seen as a generalization.

To be able to make more efficient use of the simulated variables in

Monte Carlo EM, a related method, referred to as stochastic approxi-

mation EM (SAEM) was proposed by Delyon et al. [32]. This method

uses a stochastic approximation update of the auxiliary quantity of the

EM algorithm. In the SSM setting, this quantity is defined in Equa-

tion (1.5), and we thus get the following approximation,

Q̂r(θ) = (1 − αr)Q̂r−1(θ) + αr

 1

Mr

Mr∑
j=1

logpθ(x̃1:T ,y1:T)

. (5.34)

In the vanilla form of SAEM, the samples {x̃j1:T }Mj=1 are independent

draws from the JSD pθ[r−1](x1:T | y1:T), parameterized by the current

estimate θ[r − 1] (assuming for the time being that these samples can

be generated).

5.6 PMCMC for Maximum Likelihood Inference 123

As for PSEM, the M-step of the EM algorithm remains unchanged,

but now we maximize the stochastic approximation Q̂r(θ) instead of

Q(θ,θ[r − 1]). In Equation (5.34), {αr}r≥1 is a decreasing sequence

of positive step sizes, satisfying the usual stochastic approximation

conditions,
∑

rαr =∞ and
∑

rα
2
r <∞; see e.g., [88]. In SAEM, all

simulated values contribute to Q̂r−1(θ), but they are down-weighted

using a forgetting factor given by the step size. Under appropriate

assumptions, SAEM can be shown to converge for fixed Mr (e.g.,

Mr ≡ 1), as r→∞ [32, 23]. When the simulation step is computa-

tionally involved, there is a considerable computational advantage of

SAEM over Monte Carlo EM [32].

To make use of this approach, we still need to generate samples from

the JSD. One option is of course to apply a standard FFBSi to gen-

erate a collection of backward trajectories {x̃j1:T }Mr
j=1 which are used in

Equation (5.34). Due to the fact that we now use a stochastic approxi-

mation update, a small number of backward trajectories (e.g., Mr ≡ 1),

are sufficient. However, we still require these trajectories to be gener-

ated from a distribution with a small (and diminishing) discrepancy

from the JSD. In other words, this approach still relies on asymptotics

in the number of forward filter particles Nr, in order to obtain accurate

backward kernel approximations. This is not satisfactory, since we aim

for a method which enjoys the exact approximation property obtained

in the PMCMC setting.

To enable this, and thus be able to further reduce the computational

complexity, we will use a Markovian version of stochastic approxima-

tion [12, 5]. It has been recognized that it is not necessary to sample

exactly from the posterior distribution of the latent variables, to assess

convergence of the SAEM algorithm. Indeed, it is sufficient to simulate

from a family of Markov kernels {Kθ : θ ∈ Θ}, leaving the family of pos-

teriors invariant [86]. This is where PMCMC comes into play. Using any

one of the PMCMC samplers presented above, we can construct a fam-

ily of Markov kernels on XT , such that, for each θ ∈ Θ, Kθ(x
′
1:T | x1:T)

leaves the JSD pθ(x1:T | y1:T) invariant. In combination with Markovian

SAEM, we refer to this approach as particle SAEM (PSAEM).

To be more specific, we follow [91] and employ the CSMC with

ancestor sampling presented in Algorithm 19 on page 118. That is,

124 Backward Simulation in Particle MCMC

at iteration r, we first run a CSMC sampler with ancestor sampling,

targeting pθ[r−1](x1:T | y1:T). We then sample one of the particle trajec-

tories, with probabilities given by the importance weights at the final

time point. With a similar argument as was used to prove the validity

of the PGAS sampler (see Section 5.5), this procedure will leave the

JSD invariant.

In [91], it is suggested to reuse all the particle trajectories in the

approximation of the auxiliary quantity Q. This amounts to a Rao–

Blackwellization, similar to Equation (5.22). Hence, let {xi1:T ,wi
T }Ni=1

be the weighted particle system generated by Algorithm 19. We then

compute a stochastic approximation according to

Q̂r(θ) = (1 − αr)Q̂r−1(θ) + αr

N∑
i=1

wi
T logpθ(x

i
1:T ,y1:T). (5.35)

This approximation is then maximized w.r.t. θ in the M-step of the EM

algorithm. We emphasize that, due to the use of stochastic approxima-

tion updates and the invariance property of the CSMC with ancestor

sampling, this approach does not rely on asymptotics in N .

We summarize the method in Algorithm 21, and illustrate its per-

formance in Example 5.6 below.

Example 5.6 (PSAEM). We return to the nonlinear time-series

model studied in Example 3.4. We use the same settings and the same

batch of data with T = 1500 observations. The unknown parameters

are given by the process noise and measurement noise variances, i.e.,

θ = (σ2v ,σ
2
e). We apply Algorithm 21 with N = 15 particles for 2000

iterations, initialized at θ[0] = (2,2). We let αr ≡ 1 for r ≤ 100, and

αr ∼ r−0.7 for r > 100. This allows for a rapid change in the parameter

estimates during the initial iterations, followed by a convergent phase.

The resulting parameter estimates θ[r] are shown in Figure 5.8. As can

be seen, the estimates converge to values close to the true parameters,

despite the fact that we use a fixed (and small) number of particles.

Compared to PSEM (see Figure 3.4), there is a significant improvement

in terms of variance of the estimates and, most notably, in computa-

tional complexity.

5.7 PMCMC for State Smoothing 125

Algorithm 21 PSAEM using CSMC with ancestor sampling

1: Set θ[0] and x1:T [0] arbitrarily. Set Q̂0(θ) ≡ 0.

2: for r ≥ 1 do

3: Run CSMC with ancestor sampling (Algorithm 19) targeting

pθ[r−1](x1:T | y1:T), conditioned on x1:T [r − 1].

4: Compute Q̂r(θ) according to Equation (5.35).

5: Compute θ[r] = argmaxθ∈Θ Q̂r(θ).

6: if convergence criterion is met then

7: break

8: end if

9: Sample k with P (k = i) = wi
T and trace the ancestral path of

particle xkT , i.e., set x1:T [r] = xk1:T .

10: end for

11: return θ̂PSAEM = θ[r].

0 500 1000 1500 2000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

Fig. 5.8 Estimates of σ2
v (left) and σ2

e (right) vs. the iteration number k. The true parameter
values are shown as dashed lines.

5.7 PMCMC for State Smoothing

Before we leave this section on PMCMC, it is worth to emphasize that

all the PMCMC methods covered in this section can be used for state

inference, as well as for parameter inference. The PMCMC samplers

target the density γT (θ,x1:T), or, in the SSM setting, p(θ,x1:T | y1:T).
Consequently, if there are no unknown parameters in the models, the

JSD p(x1:T | y1:T) can be obtained as a special case.

126 Backward Simulation in Particle MCMC

In fact, the addition of backward simulation to the PMMH sampler,

as discussed in Section 5.3, is a way to improve the inference about the

state, but does not alter the inferential performance for the parameter.

Hence, this method should primarily be seen as a state smoother, and

can be thought of as a way to Metropolise the backward simulator in

Algorithm 12 (page 74) or the FFBSi in Algorithm 4 (page 38). See

also Example 5.2.

Similarly, the PGAS and PGBS samplers can be applied equally

well in the absence of any unknown parameter θ, by simply skipping

the corresponding Gibbs step. These methods can thus also be used

as state smoothers. In fact, these methods could prove to be valuable

alternatives to the backward simulator in Algorithm 12. Since they

require much fewer particles than a stand-alone backward simulator,

they could potentially reach higher accuracy at the same computa-

tional cost, despite the fact that they need many iterations of the

outer MCMC loop. To date, no exhaustive comparison of these different

approaches to smoothing has been made. Furthermore, it is likely that

the preference for one method over another has to be investigated on

a case-by-case basis.

6

Discussion

The purpose of this tutorial has been to present and discuss various

backward simulation methods for Monte Carlo statistical inference. We

have focused on SMC-based backward simulators, which are useful for

inference in analytically intractable models, such as nonlinear and/or

non-Gaussian SSMs, but also in more general latent variable mod-

els. This is an active area of research. Inference for linear Gaussian

and finite state-space models is by now well understood. For nonlinear

models, on the other hand, there are still many challenges and open

problems. This is apparent, for instance, by looking at the large number

of related methods that have been presented in the literature during

the past few years, many of which have been reviewed.

We have seen that there exist a large number of different approaches

to backward simulation based on SMC. Indeed, backward simulation

underlies a wide range of related particle smoothers, many of which

were discussed in Sections 3–4 and in Section 5.7. Hence, when facing

a certain state inference problem, we have many possible methods to

choose from. Which method that is most suitable for the given problem

has to be evaluated on a case-by-case basis, based on specific model

properties, variance-bias trade-offs, etc. Computational complexities

127

128 Discussion

and overheads, memory usage and possibilities for parallelization are

also important factors that have to be taken into account. The back-

ward simulators presented in Sections 3–4 are particularly well suited

for parallelization, since the backward trajectories can be generated

independently. To the best of the authors’ knowledge, no exhaustive

comparison of different particle smoothing algorithms has been con-

ducted to date.

As we have seen, backward simulation is useful for both state infer-

ence and parameter inference. For instance, PMCMC (discussed in

Section 5) enables Bayesian parameter learning in complicated latent

variable models. In this context, the particle Gibbs samplers presented

in Sections 5.4 and 5.5 used backward simulation as a way to do

exact approximate grouping of the state variables, in order to improve

the mixing over a single-state Gibbs sampler. We also made use of

backward-simulation-based methods for maximum likelihood param-

eter inference through PSEM in Section 3.5 and particle SAEM in

Section 5.6.

Both the Gibbs samplers and the EM-based methods for parameter

inference rely on inherent state inference problems to be solved. In EM,

the E-step amounts to solving a smoothing problem, and in the Gibbs

sampler, the states are used as auxiliary variables to enable learning of

the parameters. Hence, it is not surprising that state inference proce-

dures can be used as components in these algorithms. However, there

are alternative methods for parameter inference based on SMC, which

do note make use of intermediate state inference steps in the same

way. These include the PMMH sampler presented in Section 5.2 and

direct maximum likelihood methods (e.g., based on zero-order stochas-

tic optimization). For these methods, it is not clear that backward

simulation can aid in solving the parameter inference problem. Indeed,

in Section 5.3 we saw that the acceptance probability of the PMMH

sampler was unaffected by the introduction of a backward simulator.

Whether or not it is possible to exploit the backward simulation idea for

these parameter inference methods as well, is a question which requires

further investigation.

Many of the algorithms discussed throughout this tutorial can be

thought of as (non-trivial) combinations of more basic algorithms. For

129

instance, the samplers presented in Section 3.4 make use of MCMC

within SMC to generate backward trajectories. PMCMC goes the

other way around and makes use of SMC within MCMC to construct

specialized Markov kernels. Due to the large number of alternative

methods that have been developed, it is possible to come up with

many more composite algorithms in the same way. For instance,

the MH-IPS discussed in Section 9 makes use of single-state Gibbs

samplers to rejuvenate a degenerate particle system produced by a

forward filter. Promising results have been reported for this method,

but we have also experienced that single-state samplers can have slow

convergence. An alternative is to make use of PMCMC samplers (e.g.,

PGAS, see Section 5.5) to update the particle trajectories in MH-IPS

instead. This will, among other things, open up for easy parallelization

of PMCMC samplers. It is not unlikely that such composite methods

can prove to be serious competitors to the more basic ones, since they

are able to exploit the strengths of each of the components. An obvious

drawback, however, is that by combining more and more advanced

methods, the implementation and analysis of the resulting algorithms

will become increasingly more complex.

Another direction of future work is to tailor backward simulators

for specific model classes. We saw an example of this with the

Rao–Blackwellized FFBSi for conditionally linear Gaussian models in

Section 4.4. Other models of central interest are those discussed in

Section 4.1. For instance, the tree sampler for undirected graphical

models discussed in Section 4.1.1 exploited a partitioning of the graph

into disjoint chains. Under this partitioning, a sequential structure of

the latent variables can be identified which makes the problem well

suited for SMC and backward simulation. However, this partitioning is

only one possibility. In [69, 68] other alternatives are considered, e.g.,

to partition the graph into branching trees. Application of backward

simulation to these models, or more generally to graphical models

containing loops, requires further generalizations of the algorithmic

framework. Interesting developments in this direction are made in

[19, 76, 130] where SMC is used for loopy belief propagation in general

undirected graphical models.

130 Discussion

The example considered in Section 4.1.2, i.e., to use inference strate-

gies to solve optimal control problems, is also an interesting topic for

future work. As previously mentioned, this problem has been addressed

using transdimensional MCMC [75, 42]. By combining this approach

with PMCMC, it might be possible to design efficient samplers for the

optimal control problem in a rather general setting. If fact, the combi-

nation of transdimensional sampling and PMCMC is interesting in its

own right, with many potential applications.

The challenging classes of non-Markovian models discussed in Sec-

tion 4.6 are also of key relevance. Although it is possible to apply the

general backward simulator of Algorithm 12 (page 74) to these models,

this is plagued by a high computational cost. To find efficient sam-

plers for these models is a topic for future work. There are also open

challenges in applying backward-simulation-based methods to Bayesian

nonparametric models (see e.g., [73]), such as Dirichlet process mixture

models [9, 52]. The Chinese restaurant process [1, 14] can be thought of

as a non-Markovian, sequential latent variable model, suggesting that

the inference methods discussed in this tutorial can be applied to mod-

els containing this structure. However, it is not obvious how to correctly

represent the backward kernel in such nonparametric settings.

Acknowledgments

This work was supported by the project Calibrating Nonlinear

Dynamical Models (Contract number: 621-2010-5876) funded by the

Swedish Research Council and CADICS, a Linnaeus Center also funded

by the Swedish Research Council.

131

Notations and Acronyms

Abbreviation Meaning

ACF Autocorrelation function
APF Auxiliary particle filter
CLGSS Conditionally linear Gaussian state-space
CLT Central limit theorem
CSMC Conditional sequential Monte Carlo
ESS Effective sample size
EM Expectation maximization
FFBSi Forward filter/backward simulator
FFBSm Forward filter/backward smoother
GP Gaussian process
HMM Hidden Markov model
JMLS Jump Markov linear system
JSD Joint smoothing density
LGSS Linear Gaussian state-space
MCMC Markov chain Monte Carlo
MH Metropolis–Hastings
MH-FFBP Metropolis–Hastings forward filter/backward proposing
MH-FFBSi Metropolis–Hastings forward filter/backward simulator
MH-IPS Metropolis–Hastings improved particle smoother
MLE Maximum-likelihood estimator
MRF Markov random field
PF Particle filter
PG Particle Gibbs
PGAS Particle Gibbs with ancestral sampling
PGBS Particle Gibbs with backward simulation

PIMH Particle independent Metropolis–Hastings

132

Notations and Acronyms 133

PMCMC Particle Markov chain Monte Carlo
PMMH Particle marginal Metropolis–Hastings
PSAEM Particle stochastic approximation expectation maximization
PSEM Particle smoother expectation maximization
RBPF Rao–Blackwellized particle filter
RMSE Root-mean-square error
RS Rejection sampling
RS-FFBSi Rejection sampling forward filter/backward simulator
SAEM Stochastic approximation expectation maximization
SMC Sequential Monte Carlo
SSM State-space model
TV Total variation

References

[1] D. Aldous, “Exchangeability and related topics,” in École d’Été de Probabilités
de Saint-Flour XIII–1983, (P. L. Hennequin, ed.), Springer, 1985.

[2] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan, “An introduction
to MCMC for machine learning,” Machine Learning, vol. 50, no. 1, pp. 5–43,
2003.

[3] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte
Carlo methods,” Journal of the Royal Statistical Society: Series B, vol. 72,
no. 3, pp. 269–342, 2010.

[4] C. Andrieu and S. J. Godsill, “A particle filter for model based audio source
separation,” in Proceedings of the 2000 International Workshop on Indepen-
dent Component Analysis and Blind Signal Separation (ICA), Helsinki, Fin-
land, June 2000.

[5] C. Andrieu, E. Moulines, and P. Priouret, “Stability of stochastic approxima-
tion under verifiable conditions,” SIAM Journal on Control and Optimization,
vol. 44, no. 1, pp. 283–312, 2005.

[6] C. Andrieu and G. O. Roberts, “The pseudo-marginal approach for efficient
Monte Carlo computations,” The Annals of Statistics, vol. 37, no. 2, pp. 697–
725, 2009.

[7] C. Andrieu and M. Vihola, “Markovian stochastic approximation with expand-
ing projections,” arXiv.org, arXiv:1111.5421, November 2011.

[8] C. Andrieu and M. Vihola, “Convergence properties of pseudo-marginal
Markov chain Monte Carlo algorithms,” arXiv.org, arXiv:1210.1484, October
2012.

134

References 135

[9] C. E. Antoniak, “Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems,” The Annals of Statistics, vol. 2, no. 6, pp. 1152–
1174, 1974.

[10] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[11] M. A. Beaumont, “Estimation of population growth or decline in genetically
monitored populations,” Genetics, vol. 164, no. 3, pp. 1139–1160, 2003.

[12] A. Benveniste, M. Métivier, and P. Priouret, Adaptive Algorithms and Stochas-
tic Approximations. New York, USA: Springer-Verlag, 1990.

[13] C. M. Bishop, Pattern Recognition and Machine Learning, Information Science
and Statistics. New York, USA: Springer, 2006.

[14] D. Blackwell and J. B. MacQueen, “Ferguson distributions via Polya urn
schemes,” The Annals of Statistics, vol. 1, no. 2, pp. 353–355, 1973.

[15] A. Blake, P. Kohli, and C. Rother, eds., Markov Random Fields For Vision
And Image Processing. MIT Press, 2011.

[16] A. Bouchard-Côté, S. Sankararaman, and M. I. Jordan, “Phylogenetic
inference via sequential Monte Carlo,” Systematic Biology, vol. 61, no. 4,
pp. 579–593, 2012.

[17] Y. Bresler, “Two-filter formulae for discrete-time non-linear bayesian
smoothing,” International Journal of Control, vol. 43, no. 2, pp. 629–641,
1986.

[18] M. Briers, A. Doucet, and S. Maskell, “Smoothing algorithms for state-space
models,” Annals of the Institute of Statistical Mathematics, vol. 62, no. 1,
pp. 61–89, February 2010.

[19] M. Briers, A. Doucet, and S. S. Singh, “Sequential auxiliary particle belief
propagation,” in Proceedings of the International Conference on Information
Fusion (FUSION), July 2005.

[20] S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng, eds., Handbook of Markov
Chain Monte Carlo. Chapman & Hall/CRC, 2011.

[21] P. Bunch and S. Godsill, “Improved particle approximations to the joint
smoothing distribution using Markov chain Monte Carlo,” IEEE Transactions
on Signal Processing (submitted), 2012.

[22] O. Cappé, S. J. Godsill, and E. Moulines, “An overview of existing methods
and recent advances in sequential Monte Carlo,” Proceedings of the IEEE,
vol. 95, no. 5, pp. 899–924, 2007.

[23] O. Cappé, E. Moulines, and T. Rydén, Inference in Hidden Markov Models.
Springer, 2005.

[24] C. K. Carter and R. Kohn, “On Gibbs sampling for state space models,”
Biometrika, vol. 81, no. 3, pp. 541–553, 1994.

[25] R. Chen and J. S. Liu, “Mixture Kalman filters,” Journal of the Royal Statis-
tical Society: Series B, vol. 62, no. 3, pp. 493–508, 2000.

[26] R. Chen, X. Wang, and J. S. Liu, “Adaptive joint detection and decoding
in flat-fading channels via mixture Kalman filtering,” IEEE Transactions on
Information Theory, vol. 46, no. 6, pp. 2079–2094, 2000.

136 References

[27] M. Chesney and L. Scott, “Pricing European currency options: A compari-
son of the modified Black-Scholes model and a random variance model,” The
Journal of Financial and Quantitative Analysis, vol. 24, no. 3, pp. 267–284,
1989.

[28] N. Chopin, “Central limit theorem for sequential Monte Carlo methods and
its application to Bayesian inference,” The Annals of Statistics, vol. 32, no. 6,
pp. 2385–2411, 2004.

[29] N. Chopin and S. S. Singh, “On the particle Gibbs sampler,” arXiv.org,
arXiv:1304.1887, April 2013.

[30] P. de Jong and N. Shephard, “The simulation smoother for time series
models,” Biometrika, vol. 82, no. 2, pp. 339–350, 1995.

[31] P. Del Moral, Feynman-Kac Formulae — Genealogical and Interacting Par-
ticle Systems with Applications, Probability and its Applications. Springer,
2004.

[32] B. Delyon, M. Lavielle, and E. Moulines, “Convergence of a stochastic approx-
imation version of the EM algorithm,” The Annals of Statistics, vol. 27, no. 1,
pp. 94–128, 1999.

[33] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete
data via the EM algorithm,” Journal of the Royal Statistical Society, Series B,
vol. 39, no. 1, pp. 1–38, 1977.

[34] S. Donnet and A. Samson, “EM algorithm coupled with particle filter for max-
imum likelihood parameter estimation of stochastic differential mixed-effects
models,” Technical Report hal-00519576, v2, Université Paris Descartes,
MAP5, 2011.

[35] R. Douc, A. Garivier, E. Moulines, and J. Olsson, “Sequential Monte Carlo
smoothing for general state space hidden Markov models,” Annals of Applied
Probability, vol. 21, no. 6, pp. 2109–2145, 2011.

[36] R. Douc and E. Moulines, “Limit theorems for weighted samples with appli-
cations to sequential Monte Carlo,” The Annals of Statistics, vol. 36, no. 5,
pp. 2344–2376, 2008.

[37] R. Douc, E. Moulines, and J. Olsson, “Optimality of the auxiliary particle
filter,” Probability and Mathematical Statistics, vol. 29, pp. 1–28, 2009.

[38] A. Doucet, N. de Freitas, and N. Gordon, eds., Sequential Monte Carlo Meth-
ods in Practice. New York, USA: Springer Verlag, 2001.

[39] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential Monte Carlo sam-
pling methods for Bayesian filtering,” Statistics and Computing, vol. 10, no. 3,
pp. 197–208, 2000.

[40] A. Doucet, S. J. Godsill, and M. West, “Monte Carlo filtering and smoothing
with application to time-varying spectral estimation,” in Proceedings of the
2000 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Istanbul, Turkey, June 2000.

[41] A. Doucet and A. Johansen, “A tutorial on particle filtering and smooth-
ing: Fifteen years later,” in The Oxford Handbook of Nonlinear Filtering,
(D. Crisan and B. Rozovsky, eds.), Oxford University Press, 2011.

[42] A. Doucet, A. M. Johansen, and V. B. Tadić, “On solving integral equations
using Markov chain Monte Carlo methods,” Applied Mathematics and Com-
putation, vol. 216, pp. 2869–2880, 2010.

References 137

[43] A. Doucet, M. K. Pitt, and R. Kohn, “Efficient implementation of Markov
chain Monte Carlo when using an unbiased likelihood estimator,” arXiv.org,
arXiv:1210.1871, October 2012.

[44] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte
Carlo,” Physics Letters B, vol. 195, no. 2, pp. 216–222, 1987.

[45] C. Dubarry and S. L. Corff, “Non-asymptotic deviation inequalities for
smoothed additive functionals in non-linear state-space models,” arXiv.org,
arXiv:1012.4183v2, April 2012.

[46] C. Dubarry and R. Douc, “Particle approximation improvement of the
joint smoothing distribution with on-the-fly variance estimation,” arXiv.org,
arXiv:1107.5524, July 2011.

[47] J. Durbin and S. J. Koopman, “A simple and efficient simulation smoother
for state space time series analysis,” Biometrika, vol. 89, no. 3, pp. 603–616,
2002.

[48] P. Fearnhead, “Particle filters for mixture models with an unknown number
of components,” Statistics and Computing, vol. 14, pp. 11–21, 2004.

[49] P. Fearnhead, “Using random quasi-Monte-Carlo within particle filters, with
application to financial time series,” Journal of Computational and Graphical
Statistics, vol. 14, no. 4, pp. 751–769, 2005.

[50] P. Fearnhead, O. Papaspiliopoulos, and G. O. Roberts, “Particle filters for par-
tially observed diffusions,” Journal of the Royal Statistical Society: Series B,
vol. 70, no. 4, pp. 755–777, 2008.

[51] P. Fearnhead, D. Wyncoll, and J. Tawn, “A sequential smoothing algorithm
with linear computational cost,” Biometrika, vol. 97, no. 2, pp. 447–464, 2010.

[52] T. S. Ferguson, “A Bayesian analysis of some nonparametric problems,” The
Annals of Statistics, vol. 1, no. 2, pp. 209–230, 1973.

[53] W. Fong, S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing
with application to audio signal enhancement,” IEEE Transactions on Signal
Processing, vol. 50, no. 2, pp. 438–449, February 2002.

[54] G. Fort and E. Moulines, “Convergence of the Monte Carlo expectation max-
imization for curved exponential families,” The Annals of Statistics, vol. 31,
no. 4, pp. 1220–1259, 2003.

[55] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Rasmussen, “Bayesian inference
and learning in Gaussian process state-space models with particle MCMC,”
arXiv.org, arXiv:1306.2861, June 2013.

[56] S. Frühwirth-Schnatter, “Data augmentation and dynamic linear models,”
Journal of Time Series Analysis, vol. 15, no. 2, pp. 183–202, 1994.

[57] A. E. Gelfand and A. F. M. Smith, “Sampling-based approaches to calculating
marginal densities,” Journal of the American Statistical Association, vol. 85,
no. 410, pp. 398–409, 1990.

[58] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 6, no. 6, pp. 721–741, 1984.

[59] R. Gerlach, C. Carter, and R. Kohn, “Efficient Bayesian inference for dynamic
mixture models,” Journal of the American Statistical Association, vol. 95,
no. 451, pp. 819–828, 2000.

138 References

[60] W. R. Gilks and C. Berzuini, “Following a moving target — Monte Carlo infer-
ence for dynamic Bayesian models,” Journal of the Royal Statistical Society.
Series B (Statistical Methodology), vol. 63, no. 1, pp. 127–146, 2001.

[61] M. Girolami and B. Calderhead, “Riemann manifold Langevin and Hamilto-
nian Monte Carlo methods,” Journal of the Royal Statistical Society: Series B,
vol. 73, no. 2, pp. 1–37, 2011.

[62] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing for nonlinear
time series,” Journal of the American Statistical Association, vol. 99, no. 465,
pp. 156–168, March 2004.

[63] A. Golightly and D. J. Wilkinson, “Bayesian inference for nonlinear multivari-
ate diffusion models observed with error,” Computational Statistics & Data
Analysis, vol. 52, no. 3, pp. 1674–1693, 2008.

[64] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” Radar and Signal Pro-
cessing, IEEE Proceedings F, vol. 140, no. 2, pp. 107–113, April 1993.

[65] P. J. Green, “Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination,” Biometrika, vol. 82, no. 4, pp. 711–732, 1995.

[66] F. Gustafsson, “Particle filter theory and practice with positioning appli-
cations,” IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 7,
pp. 53–82, 2010.

[67] J. Hall, M. K. Pitt, and R. Kohn, “Bayesian inference for nonlinear structural
time series models,” arXiv.org, arXiv:1209.0253v2, September 2012.

[68] F. Hamze and N. de Freitas, “From fields to trees,” in Proceedings of the
Conference on Uncertainty in Artificial Intelligence (UAI), 2004.

[69] F. Hamze, J.-N. Rivasseau, and N. de Freitas, “Information theory tools to
rank MCMC algorithms on probabilistic graphical models,” in Proceedings of
the UCSD Information Theory Workshop, 2006.

[70] J. Handschin and D. Mayne, “Monte Carlo techniques to estimate the condi-
tional expectation in multi-stage non-linear filtering,” International Journal
of Control, vol. 9, no. 5, pp. 547–559, May 1969.

[71] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and
their applications,” Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[72] S. E. Hills and A. F. M. Smith, “Parameterization issues in Bayesian inference
(with discussion),” in Bayesian Statistics 4, (J. M. Bernardo, J. O. Berger,
A. P. Dawid, and A. F. M. Smith, eds.), pp. 641–649, Oxford University Press,
1992.

[73] N. L. Hjort, C. Holmes, P. Müller, and S. G. Walker, eds., Bayesian Nonpara-
metrics. Cambridge University Press, 2010.

[74] M. Hoffman, N. de Freitas, A. Doucet, and J. Peters, “An expectation max-
imization algorithm for continuous Markov decision processes with arbitrary
rewards,” in Proceedings of the International Conference on Artificial Intelli-
gence and Statistics, Clearwater Beach, FL, USA, 2009.

[75] M. Hoffman, H. Kueck, N. de Freitas, and A. Doucet, “New inference strate-
gies for solving Markov decision processes using reversible jump MCMC,” in
Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 223–231, Corvallis, OR, USA, 2009.

References 139

[76] A. Ihler and D. McAllester, “Particle belief propagation,” in Proceedings of the
International Conference on Artificial Intelligence and Statistics, Clearwater
Beach, FL, USA, 2009.

[77] M. Isard and A. Blake, “Condensation — conditional density propagation for
visual tracking,” International Journal of Computer Vision, vol. 29, no. 1,
pp. 5–28, 1998.

[78] H. Ishwaran, “Applications of hybrid Monte Carlo to Bayesian generalized
linear models: Quasicomplete separation and neural networks,” Journal of
Computational and Graphical Statistics, vol. 8, no. 4, pp. 779–799, 1999.

[79] A. M. Johansen and A. Doucet, “A note on auxiliary particle filters,” Statistics
& Probability Letters, vol. 78, no. 12, pp. 1498–1504, 2008.

[80] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Upper Saddle
River, NJ, USA: Prentice Hall, 2000.

[81] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Transactions of the ASME–Journal of Basic Engineering, vol. 82, no. Series D,
pp. 35–45, 1960.

[82] R. Karlsson and F. Gustafsson, “Particle filter for underwater navigation,”
in Proceedings of the 2003 IEEE Workshop on Statistical Signal Processing
(SSP), pp. 509–512, St. Louis, USA, September 2003.

[83] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear
state space models,” Journal of Computational and Graphical Statistics, vol. 5,
no. 1, pp. 1–25, 1996.

[84] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and D. Lang,
“Fast particle smoothing: if I had a million particles,” in Proceedings of
the International Conference on Machine Learning, Pittsburgh, USA, June
2006.

[85] M. Klaas, D. Lang, and N. de Freitas, “Fast maximum a posteriori inference in
Monte Carlo state spaces,” in Proceedings of the 10th International Workshop
on Artificial Intelligence and Statistics, 2005.

[86] E. Kuhn and M. Lavielle, “Coupling a stochastic approximation version of
EM with an MCMC procedure,” ESAIM: Probability and Statistics, vol. 8,
pp. 115–131, 2004.

[87] H. R. Künsch, “Recursive Monte Carlo filters: Algorithms and theoretical
analysis,” The Annals of Statistics, vol. 33, no. 5, pp. 1983–2021, 2005.

[88] H. J. Kushner and G. G. Yin, Stochastic Approximation Algorithms and Appli-
cations. Springer, 1997.

[89] D. Lang and N. de Freitas, “Beat tracking the graphical model way,” in Pro-
ceedings of the 2004 Conference on Neural Information Processing Systems
(NIPS), Vancouver, Canada, December 2004.

[90] E. L. Lehmann and G. Casella, Theory of Point Estimation. Springer Texts
in Statistics. New York, USA: Springer, 2nd ed., 1998.

[91] F. Lindsten, “An efficient stochastic approximation EM algorithm using con-
ditional particle filters,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada,
May 2013.

140 References

[92] F. Lindsten, P. Bunch, S. J. Godsill, and T. B. Schön, “Rao-Blackwellized par-
ticle smoothers for mixed linear/nonlinear state-space models,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Vancouver, Canada, May 2013.

[93] F. Lindsten, M. I. Jordan, and T. B. Schön, “Ancestor sampling for par-
ticle Gibbs,” in Advances in Neural Information Processing Systems 25,
(P. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, eds.), pp. 2600–2608, 2012.

[94] F. Lindsten and T. B. Schön, “On the use of backward simulation in the parti-
cle Gibbs sampler,” in Proceedings of the 2012 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, March
2012.

[95] F. Lindsten, T. B. Schön, and M. I. Jordan, “Bayesian semiparametric
Wiener system identification,” Automatica, vol. 49, no. 7, pp. 2053–2063,
2013.

[96] F. Lindsten, T. B. Schön, and J. Olsson, “An explicit variance reduction
expression for the Rao-Blackwellised particle filter,” in Proceedings of the 18th
IFAC World Congress, Milan, Italy, August 2011.

[97] J. S. Liu, Monte Carlo Strategies in Scientific Computing. Springer, 2001.
[98] J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic sys-

tems,” Journal of the American Statistical Association, vol. 93, no. 443,
pp. 1032–1044, 1998.

[99] S. N. MacEachern, M. Clyde, and J. S. Liu, “Sequential importance sampling
for nonparametric Bayes models: The next generation,” The Canadian Journal
of Statistics, vol. 27, no. 2, pp. 251–267, 1999.

[100] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions. Whiley
Series in Probability and Statistics. New York, USA: John Wiley & Sons,
second ed., 2008.

[101] A. Melino and S. M. Turnbull, “Pricing foreign currency options with
stochastic volatility,” Journal of Econometrics, vol. 45, no. 1–2, pp. 239–265,
1990.

[102] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,” Jour-
nal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[103] N. Metropolis and S. Ulam, “The Monte Carlo method,” Journal of the Amer-
ican Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[104] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability. Cam-
bridge University Press, 2nd ed., 2009.

[105] M. Montemerlo and S. Thrun, FastSLAM: A scalable method for the simul-
taneous localization and mapping problem in robotics. Berlin, Germany:
Springer, 2007.

[106] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A factored
solution to the simultaneous localization and mapping problem,” in Proceed-
ings of the AAAI National Conference on Artificial Intelligence, Edmonton,
Canada, 2002.

References 141

[107] P. D. Moral, A. Doucet, and A. Jasra, “Sequential Monte Carlo samplers,”
Journal of the Royal Statistical Society: Series B, vol. 68, no. 3, pp. 411–436,
2006.

[108] L. M. Murray, E. M. Jones, and J. Parslow, “On collapsed state-space
models and the particle marginal Metropolis-Hastings sampler,” arXiv.org,
arXiv:1202.6159v1, February 2012.

[109] R. M. Neal, “MCMC using Hamiltonian dynamics,” in Handbook of Markov
Chain Monte Carlo, (S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng,
eds.), pp. 113–162, Chapman & Hall/CRC, 2011.

[110] R. M. Neal, M. J. Beal, and S. T. Roweis, “Inferring state sequences for
non-linear systems with embedded hidden Markov models,” in Proceedings
of the 2003 Conference on Neural Information Processing Systems (NIPS),
Vancouver, Canada, December 2003.

[111] M. L. A. Netto, L. Gimeno, and M. J. Mendes, “A new spline algorithm
for non-linear filtering of discrete time systems,” in Proceedings of the 7th
Triennial World Congress, pp. 2123–2130, Helsinki, Finland, 1979.

[112] J. Olsson, R. Douc, O. Cappé, and E. Moulines, “Sequential Monte Carlo
smoothing with application to parameter estimation in nonlinear state-space
models,” Bernoulli, vol. 14, no. 1, pp. 155–179, 2008.

[113] J. Olsson and T. Rydén, “Rao-Blackwellization of particle Markov chain
Monte Carlo methods using forward filtering backward sampling,” IEEE
Transactions on Signal Processing, vol. 59, no. 10, pp. 4606–4619, 2011.

[114] O. Papaspiliopoulos, G. O. Roberts, and M. Sköld, “Non-centered parameteri-
sations for hierarchical models and data augmentation,” in Bayesian Statistics
7, (J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman,
A. F. M. Smith, and M. West, eds.), pp. 307–326, Oxford University Press,
2003.

[115] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausble
Inference. San Francisco, CA, USA: Morgan Kaufmann, 2nd ed., 1988.

[116] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” Journal of the American Statistical Association, vol. 94, no. 446,
pp. 590–599, 1999.

[117] M. K. Pitt, R. S. Silva, P. Giordani, and R. Kohn, “On some properties of
Markov chain Monte Carlo simulation methods based on the particle filter,”
Journal of Econometrics, vol. 171, pp. 134–151, 2012.

[118] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[119] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates of
linear dynamic systems,” AIAA Journal, vol. 3, no. 8, pp. 1445–1450, August
1965.

[120] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. Springer,
2004.

[121] G. O. Roberts and S. K. Sahu, “Updating schemes, correlation structure,
blocking and parameterization for the Gibbs sampler,” Journal of the Royal
Statistical Society: Series B, vol. 59, no. 2, pp. 291–317, 1997.

142 References

[122] D. B. Rubin, “A noniterative sampling/importance resampling alternative to
the data augmentation algorithm for creating a few imputations when frac-
tions of missing information are modest: The SIR algorithm,” Journal of the
American Statistical Association, vol. 82, no. 398, pp. 543–546, June 1987.
Comment to Tanner and Wong: The Calculation of Posterior Distributions by
Data Augmentation.

[123] S. Särkkä, P. Bunch, and S. Godsill, “A backward-simulation based Rao-
Blackwellized particle smoother for conditionally linear Gaussian models,” in
Proceedings of the 16th IFAC Symposium on System Identification, Brussels,
Belgium, July 2012.

[124] M. N. Schmidt, “Function factorization using warped Gaussian processes,”
in Proceedings of the International Conference on Machine Learning,
pp. 921–928, 2009.

[125] T. Schön, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle filters
for mixed linear/nonlinear state-space models,” IEEE Transactions on Signal
Processing, vol. 53, no. 7, pp. 2279–2289, July 2005.

[126] T. B. Schön and F. Lindsten, Computational Learning in Dynamical Systems.
2013. (forthcoming, draft manuscript is available from the authors).

[127] T. B. Schön, A. Wills, and B. Ninness, “System identification of nonlinear
state-space models,” Automatica, vol. 47, no. 1, pp. 39–49, 2011.

[128] J. C. Spall, “Estimation via Markov chain Monte Carlo,” IEEE Control Sys-
tems Magazine, vol. 23, no. 2, pp. 34–45, 2003.

[129] L. Stewart and P. McCarty, “The use of Bayesian belief networks to fuse
continuous and discrete information for target recognition, tracking, and situ-
ation assessment,” in Proceedings of the SPIE 1699, Signal Processing, Sensor
Fusion, and Target Recognition, 1992.

[130] E. B. Sudderth, A. T. Ihler, M. Isard, W. T. Freeman, and A. S. Willsky,
“Nonparametric belief propagation,” Communications of the ACM, vol. 53,
no. 10, pp. 95–103, 2010.

[131] E. Taghavi, F. Lindsten, L. Svensson, and T. B. Schön, “Adaptive stopping for
fast particle smoothing,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada,
May 2013.

[132] M. A. Tanner and W. H. Wong, “The calculation of posterior distributions by
data augmentation,” Journal of the American Statistical Association, vol. 82,
no. 398, pp. 528–540, June 1987.

[133] Y. W. Teh, H. Daumé III, and D. Roy, “Bayesian agglomerative clustering
with coalescents,” Advances in Neural Information Processing, pp. 1473–1480,
2008.

[134] L. Tierney, “Markov chains for exploring posterior distributions,” The Annals
of Statistics, vol. 22, no. 4, pp. 1701–1728, 1994.

[135] M. Toussaint and A. Storkey, “Probabilistic inference for solving discrete and
continuous state Markov decision processes,” in Proceedings of the Interna-
tional Conference on Machine Learning, Pittsburgh, PA, USA, 2006.

[136] D. A. van Dyk and X.-L. Meng, “The art of data augmentation,” Journal of
Computational and Graphical Statistics, vol. 10, no. 1, pp. 1–50, March 2001.

References 143

[137] D. A. Van Dyk and T. Park, “Partially collapsed Gibbs samplers: Theory and
methods,” Journal of the American Statistical Association, vol. 103, no. 482,
pp. 790–796, 2008.

[138] M. J. Wainwright and M. I. Jordan, “Graphical models, exponential fami-
lies, and variational inference,” Foundations and Trends in Machine Learning,
vol. 1, no. 1–2, pp. 1–305, 2008.

[139] X. Wang, R. Chen, and D. Guo, “Delayed-pilot sampling for mixture Kalman
filter with application in fading channels,” IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 2, pp. 241–254, 2002.

[140] G. C. G. Wei and M. A. Tanner, “A Monte Carlo implementation of the EM
algorithm and the poor man’s data augmentation algorithms,” Journal of the
American Statistical Association, vol. 85, no. 411, pp. 699–704, 1990.

[141] N. Whiteley, “Discussion on Particle Markov chain Monte Carlo methods,”
Journal of the Royal Statistical Society: Series B, vol. 72, no. 3, pp. 306–307,
2010.

[142] N. Whiteley, C. Andrieu, and A. Doucet, “Efficient Bayesian inference for
switching state-space models using discrete particle Markov chain Monte Carlo
methods,” Technical report, Bristol Statistics Research Report 10:04, 2010.

[143] N. Whiteley, C. Andrieu, and A. Doucet, “Bayesian computational methods
for inference in multiple change-points models,” Submitted, 2011.

[144] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing, vol. 4,
pp. 65–85, 1994.

[145] P. Wild and W. R. Gilks, “Algorithm AS 287: Adaptive rejection sampling
from log-concave density functions,” Journal of the Royal Statistical Society:
Series C, vol. 42, no. 4, pp. 701–709, 1993.

[146] D. J. Wilkinson and S. K. H. Yeung, “Conditional simulation from highly
structured Gaussian systems, with application to blocking-MCMC for the
Bayesian analysis of very large linear models,” Statistics and Computing,
vol. 12, no. 3, pp. 287–300, July 2002.

[147] A. Wills, T. B. Schön, L. Ljung, and B. Ninness, “Identification of
Hammerstein–Wiener models,” Automatica, vol. 49, no. 1, pp. 70–81, 2013.

[148] C. F. J. Wu, “On the convergence properties of the EM algorithm,” The
Annals of Statistics, vol. 11, no. 1, pp. 95–103, 1983.

	Introduction
	Background and Motivation
	Notation and Definitions
	A Preview Example
	State-Space Models
	Parameter Learning in SSMs
	Smoothing Recursions
	Backward Simulation in Linear Gaussian SSMs
	Outline

	Monte Carlo Preliminaries
	Sequential Monte Carlo
	Markov Chain Monte Carlo

	Backward Simulation for State-Space Models
	Forward Filter/Backward Simulator
	Analysis and Convergence
	Backward Simulation with Rejection Sampling
	Backward Simulation with MCMC Moves
	Backward Simulation for Maximum Likelihood Inference

	Backward Simulation for General Sequential Models
	Motivating Examples
	SMC Revisited
	A General Backward Simulator
	Rao–Blackwellized FFBSi
	Non-Markovian Latent Variable Models
	From State-Space Models to Non-Markovian Models

	Backward Simulation in Particle MCMC
	Introduction to PMCMC
	Particle Marginal Metropolis–Hastings
	PMMH with Backward Simulation
	Particle Gibbs with Backward Simulation
	Particle Gibbs with Ancestor Sampling
	PMCMC for Maximum Likelihood Inference
	PMCMC for State Smoothing

	Discussion
	Acknowledgments
	Notations and Acronyms
	References

