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Abstract - In Augmented Reality (AR), the po-

sition and orientation of the camera have to be esti-

mated with high accuracy and low latency. This non-

linear estimation problem is studied in the present

paper. The proposed solution makes use of mea-

surements from inertial sensors and computer vi-

sion. These measurements are fused using a Kalman

filtering framework, incorporating a rather detailed

model for the dynamics of the camera. Experiments

show that the resulting filter provides good estimates

of the camera motion, even during fast movements.

Keywords: Sensor fusion, Kalman Filter, Augmented
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1 Introduction

For many applications it is useful to enhance human
vision with real-time computer generated virtual ob-
jects [1]. These virtual objects can for instance be used
to display information aiding the user to perform real-
world tasks. Typical applications range from TV and
film production, to industrial maintenance, defence,
medicine, education, entertainment and games. An
example is shown in Figure 1, where a virtual car has
been rendered into the scene.

Figure 1: An example of how AR can be used in TV
production: a virtual car has been rendered into the
scene.

The idea of adding virtual objects to an authentic
three dimensional scene, either by displaying them in a
see-through head mounted display or by superimposing

them on camera images is called augmented reality [1].
For a realistic effect, the virtual objects have to be cor-
rectly aligned to the real scene. Hence, one of the key
enabling technologies for AR is to be able to determine
the position and orientation (pose) of the camera with
high accuracy and low latency.

Prior work in this research area has mainly consid-
ered the problem in an environment which has been
prepared in advance with various artificial markers,
see, e.g., [2–5]. The current trend is to shift from
prepared to unprepared environments, which makes
the problem much harder. On the other hand, the
time-consuming and hence costly procedure of prepar-
ing the environment with markers will no longer be
required. Furthermore, these prepared environments
seriously limit the application of AR [6]. For example,
in outdoor situations it is generally not even possible to
prepare the environment with markers. This problem
of estimating the camera’s position and orientation in
an unprepared environment has previously been dis-
cussed in the literature, see, e.g., [7–11]. Furthermore,
the work by [12, 13] is interesting in this context. De-
spite all the current research within the area, the ob-
jective of estimating the position and orientation of a
camera in an unprepared environment still presents a
challenging problem.

Tracking in unprepared environments requires un-
obtrusive sensors, i.e., the sensors have to satisfy mo-
bility constraints and cannot modify the environment.
The currently available sensor types (inertial, acoustic,
magnetic, optical, radio, GPS) all have their shortcom-
ings on for instance accuracy, robustness, stability and
operating speed [14]. Hence, multiple sensors have to
be combined for robust and accurate tracking.

This paper discusses an AR framework using the
combination of unobtrusive inertial sensors, with a vi-
sion sensor, i.e., a camera detecting distinct features
in the scene (so-called natural landmarks). Inertial
sensors provide position and orientation by integrating
measured accelerations and angular velocities. These
estimates are very accurate on short timescales, but
drift away on a longer time scale. This drift can be
compensated for using computer vision, which, in it-
self, is not robust during fast motion. Since the in-
ertial sensors provide accurate pose predictions, com-
putational load required for the vision processing can
be reduced by e.g., decreasing search windows or pro-



cessing at lower frame rates. This will result in minor
performance degradation, but is very suitable for mo-
bile AR applications.

A schematic illustration of the approach is given
in Figure 2. The information from both sources is
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Figure 2: Schematic illustration of the approach.

fused using an Extended Kalman Filter (EKF). This
method hevily relies on accurate modelling (in the form
of process and observation models) of the system. The
derivation and use of these models forms the main con-
tribution of this paper.

2 Sensors

The position and orientation are determined by fusing
information from a camera and an Inertial Measure-
ment Unit (IMU). Both sensors have been integrated
in a single package, shown in Figure 3. The details of

Figure 3: A hardware prototype of the MATRIS
project, integrating a camera and an IMU in a single
housing. It provides a hardware synchronised stream
of video and inertial data.

both the IMU and the vision part will be discussed in
the following sections.

2.1 Inertial Measurement Unit

The IMU is based on solid state miniature Micro-
Electro-Mechanical Systems (MEMS) inertial sensors.

This type of inertial sensors are primarily used in au-
tomotive applications and consumer goods. Compared
to higher end MEMS inertial sensors or optical gyros,
the measurements are relatively noisy and unstable and
can only be used a few seconds to dead-reckon position
and orientation.

The IMU is set to provide 100 Hz calibrated and
temperature compensated 3D acceleration and 3D an-
gular velocity measurements. 3D earth magnetic field
data is also available, but not used. Furthermore, the
IMU provides a trigger signal to the camera, which al-
lows for exact hardware synchronisation between the
sampling instances of the IMU and the camera.

The IMU sensors are individually calibrated by
the manufacturer [15] to compensate for effects such
as gain factor, offsets, temperature dependence, non-
orthogonality, cross sensitivity, etc. However, with
this type of miniature, low-cost sensor, relatively large
residual sensor errors remain. Estimating these ac-
celerometer and gyro offset errors increases the stabil-
ity of the tracking. Since the inclusion of offset esti-
mation in the models is relatively straightforward, they
are suppressed for notational convenience.

2.2 Vision

The computer vision part of the AR application is
based on a Kanade-Lucas-Thomasi (KLT) feature
tracker and a model of the scene. The 3D scene model
consists of natural features (see Figure 4). Both pixel

Figure 4: An example of a scene model and the scene
it is based on.

data and 3D positions are stored for every feature.
While tracking, templates are generated by warping
the patches in the model according to homographies
calculated from the latest prediction of the camera
pose. These templates are then matched with the
current camera image using the KLT tracker, similar
to [13]. The vision measurements now consist of a list
of 2D/3D correspondences, i.e., 3D coordinates of a
feature together with its corresponding coordinates in
the camera image. These correspondences can be used
to estimate the camera pose.

By itself, this setup is very sensitive to even moder-
ate motion since the search templates need to be close
to reality for reliable and accurate matching. How-
ever, because of the relatively low sampling rates of
the computer vision the predicted poses can be quite
poor, resulting in low quality search templates. The



IMU can be used to estimate the pose quite accurately
on a short time scale and hence its use drastically im-
proves the robustness of the system.

Currently, the scene model is generated off-line us-
ing images of the scene or existing CAD models [16].
In the future Simultaneous Localisation and Mapping
(SLAM) [13] will be incorporated as well.

3 Models

Several coordinate systems (shown in Figure 5) are
used in order to model the setup:
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Figure 5: The world, camera, image and sensor coor-
dinate systems with their corresponding unit vectors.

• World (w): This is the reference system, fixed
to earth. The (static) features of the scene are
modelled in this coordinate system. Ignoring the
earth’s rotation, this system is an inertial frame.
This coordinate system can be aligned in any way
as long as the gravity vector and (if the magne-
tometers are used) the magnetic field vector are
known.

• Camera (c): The coordinate system attached to
the (moving) camera. Its origin is located in the
optical centre of the camera, with the z-axis along
the optical axis. The camera, a projective device,
takes its images in the image coordinate system.
Furthermore, it has an inertial sensor attached.

• Image (i): The 2D coordinate system in which
the camera projects the scene. The image plane
is perpendicular to the optical axis and is located
at an offset (focal length) from the optical centre
of the camera.

• Sensor (s): This is the coordinate system of the
IMU. Even though the camera and IMU are con-
tained in a single small unit, the sensor coordinate
system does not coincide with the camera coordi-
nate system. However, the sensor is, rigidly at-
tached to the camera with a constant translation
and orientation. These parameters are determined
in a calibration procedure.

The coordinate system in which a quantity is resolved
in will be denoted with a superscript.

3.1 Process model

The camera pose consists of position and orientation.
The position can be expressed rather straightforwardly
in Cartesian coordinates. However, finding a good de-
scription for orientation is a more intricate problem
and several solutions exist [17]. Unit quaternions pro-
vides an appealing solution in terms of non-singular
parameters and simple dynamics. Using unit quater-
nions, a rotation is performed according to

xa ≡ qab � xb � q̄ab = qab � xb � qba, (1)

where xa, xb,∈ Q0 = {q ∈ R4 : q0 = 0}, qab ∈ Q1 =
{q ∈ R4 : q � q̄ = 1} and � denotes quaternion mul-
tiplication. The notation qab is used for the rotation
from the b to the a coordinate system.

The camera pose consists of the position of the cam-
era cw and its orientation qcw. The kinematics of
the camera pose are described by a set of continuous-
time differential equations, briefly derived below. For
a more thorough discussion of these equations, see [18].

The position of the camera cw can be written as a
vector sum (see Figure 5)

cw = sw + [c− s]w = sw + qws � cs � qsw. (2)

Differentiating (2) with respect to time results in

ċw = ṡw + ωw × [c− s]w

= ṡw + qws � [cs × ωs]� qsw, (3)

where the term with ċs has been ignored due to the
fact that the sensor is rigidly attached to the camera.
The accelerometer measurement can be written as

as = qsw � [s̈w − gw]� qws, (4)

where gw denotes the gravity vector. Rewriting (4)
results in

s̈w = qws � as � qsw + gw. (5)

Furthermore, quaternion kinematics give the following
equation for the time derivative of qsw

q̇sw = − 1
2ω

s � qsw (6)

The derivations above can now be summarised in the
following continuous-time state-space model

∂

∂t

 cw

ṡw

qsw

 =

ṡw + qws � [cs × ωs]� qsw

qws � as � qsw + gw

− 1
2ω

s � qsw

 , (7a)

which, in combination with

qcw = qcs � qsw, (7b)

provides a complete description of the camera pose.
The non-standard state vector, x = [cw, ṡw, qsw], as
opposed to [cw, ċw, qcw], has the advantage that the



inertial quantities, as and ωs are measured directly by
the IMU.

The discrete-time process model is now derived by
integrating (7), while treating the inertial measure-
ments as piecewise constant input signals. This dead-
reckoning approach results in the following discrete-
time state-space description

cw
t+T = cw

t + T ṡw
t + T 2

2 gw

+Rws
t R1

t a
s
t +Rws

t R2
tC

sωs
t , (8a)

ṡw
t+T = sw

t + Tgw +Rws
t R1

tC
sωs

t , (8b)
qsw
t+T = wt � qsw

t , (8c)

where T the sample time, Rws(qsw) is the rotation ma-
trix from s to w defined as

Rws(qws) =2q20 + 2q21 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q20 + 2q22 − 1 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 + 2q23 − 1

 .
(9)

Furthermore,

R1(ωs) = TI + T 2

2 Ωs, (10a)

R2(ωs) = T 2

2 I + T 3

6 Ωs, (10b)

w(ωs) =
[

1
−T

2 ωs

]
. (10c)

Finally, I is the identity matrix, and Cs and Ωs are
skew-symmetric matrices defined according to

cs × v =

 0 −csz csy
csz 0 −csx

−csy csx 0


︸ ︷︷ ︸

Cs

v1v2
v3

 . (11)

The process model (8) uses measured, hence noisy, in-
ertial quantities as input signals. These noises are ac-
counted for by the process noise using linearisation.
Alternatively, the inertial quantities can be treated as
measurement signals and not as input signals. In that
case they have to be included in the state vector and
consequently its dimension is increased from 10 to 16
states. An advantage with including the angular ve-
locities and the accelerations in the state vector is that
they can be predicted.

3.2 Observation model

The computer vision algorithm discussed in Section 2.2
returns a list of 2D/3D correspondences, consisting
of 3D positions (zw) and corresponding image coor-
dinates (zi). These quantities are related to each
other through a camera model. When working with
calibrated images, the simple pinhole camera model
is applicable. It defines the map zc 7→ zi, with
zc = [x, y, z]T and zi = [ξ, ψ]T as[

ξ
ψ

]
=

[
fx/z
fy/z

]
, (12a)

or equivalently,

0 =
[
zξ − fx
zψ − fy

]
=

[
−fI2 zi

]
zc. (12b)

Here, f is the focal length of the camera. zc can be
calculated from its corresponding scene model entry
(zw). Inserting this provides the following observation
model

0 =
[
−fI2 zi

]
RcsRsw[zw − cw] + vc, (13a)

with measurement noise vc ∼ N(0,Σc), where

Σc =

−fI2zi,T

zc
zI2

T [
RcwΣwR

wc 0
0 Σi

]−fI2zi,T

zc
zI2

 . (13b)

The noise affecting the image coordinates and the po-
sition of the feature is assumed to be Gaussian, with
zero-mean and covariances Σi and Σw, respectively.
Currently, educated guesses are used for the values of
these covariances. However, calculating feature and
measurement dependent values is a topic under inves-
tigation.

4 Results

The process and observation models of the previous
section have been implemented in an EKF [19]. The
performance of this filter using measured inertial data
combined with simulated correspondences will be pre-
sented in this section.

Several realistic camera motions have been carried
out:

• Pedestal: The camera is mounted on a pedestal,
which typically used for studio TV recordings.
This results in very smooth motions with slow
movements.

• Hand held: A camera man is walking around
with the camera on his shoulder. Hence, the mo-
tion is still relatively smooth, but faster move-
ments are introduced.

• Rapid: The camera is carried by a camera man
who is running through the scene. This type of
motion has relatively fast movements, since high
accelerations and fast turns are present.

The three motion types described above differ in how
violent the camera motion is. This is illustrated in
Figure 6. The studio is also equipped with the free-d
system [2], a conventional AR-tracking system requir-
ing a heavy infrastructure (lots of marker on the ceil-
ing). The pose estimates from this system can be used
as ground truth data, which are used to evaluate the
estimate produced by the filter proposed in this paper.
To estimate the influence of various scene parameters,
2D/3D correspondences have been simulated by pro-
jecting an artificial scene onto the image plane whose
position and orientation is given by the ground truth
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Figure 6: Power spectrum of the gyroscopes for the
pedestal (light gray), hand held (dark gray) and rapid
(black) motion types.

data. These virtual correspondences have been fed,
with realistic noise, to the pose filter together with the
captured IMU data.

The pose filter based on the proposed models per-
forms very satisfactorily as shown in Figure 7. Note
that the gaps in the error plot arise due to the fact
that there is no ground truth data available during this
time. This figure, generated with parameters shown in
Table 1 and 2, shows the typical behaviour for the type
of motion of camera man running trough the scene.

Table 1: Specifications of the sensors
IMU

gyroscope range ± 15.7 rad/s
gyroscope noise 0.01 rad/s
gyroscope bandwidth 40 Hz
accelerometer range ± 20 m/s2

accelerometer noise 0.01 m/s2

accelerometer bw. 30 Hz
sample rate 100 Hz

Camera
resolution 640×480 pixels
pixel size 10×7 µm/pixel
focal length 900 pixels
sample rate 50 Hz

This motion type is among the more extreme ones in
terms of fast and large movements made by humans.
Using only computer vision, tracking is lost almost im-
mediately, which clearly shows the benefit of adding an
IMU. For slower movements the performance is even
better, as illustrated by Figure 8.

It should be noted that the described system is very
sensitive to calibration parameters. For instance, small
errors in the hand-eye calibration (qcs) or in the in-
trinsic parameters of the camera will result in rapid
deterioration of the tracking. Hence, design of accu-
rate calibration methods or adaptive algorithms is of
utmost importance for proper operation of the filter.
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Figure 7: Pose filter estimates and errors for the rapid
motion type. (a) position (x). (b) orientation (yaw).
99%-confidence levels are shown in gray. The other po-
sitions (y, z) and orientations (roll, pitch) show similar
behaviour.

5 Conclusions

In this paper process and observation models are pro-
posed for fusing computer vision and inertial measure-
ments to obtain robust and accurate real-time camera
pose tracking. The models have been implemented and
tested using authentic inertial measurements and sim-
ulated 2D/3D correspondences. Comparing the results
to a reference system shows stable and accurate track-
ing over an extended period of time for a camera that
undergoes fast motion.

Even though the system works quite well, several
topics require further investigation. These include de-
sign of accurate self-calibration methods, including un-
certainty measures for the computer vision measure-
ments and adding SLAM functionality for on-line scene
modelling.



Table 2: Pose filter parameters
IMU sample rate 100 Hz
Camera sample rate 25 Hz
Gyroscope noise 0.014 rad/s
Gyroscope bias noise 1·10−4 rad/s
Accelerometer noise 0.4 m/s2

Accelerometer bias noise 1·10−4 m/s2

Scene model noise 0.01 m
Pixel noise 1 pixel
Focal length 900 pixels
Number of correspondences 30
Feature depth 5 m
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Figure 8: RMSE of position (black) and orientation
(gray) for the different motion types.
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