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Abstract— This paper investigates methods for tool position
estimation of industrial robots. It is assumed that the motor
angular position and the tool acceleration are measured. The
considered observers are different versions of the extended
Kalman filter as well as a deterministic observer. A method
for tuning the observers is suggested and the robustness
of the methods is investigated. The observers are evaluated
experimentally on a commercial industrial robot.

I. INTRODUCTION

Current industrial robot development is focused on in-
creasing the robot performance, reducing the robot cost,
improving safety, and introducing new functionalities as
described in [1]. The need for cost reduction results in the use
of cost optimized robot components with increased elasticity
and larger individual variation, such as variation of gearbox
stiffness or in the parameters describing the mechanical arm.
Cost reduction also implies weight-optimized robots and thus
lower mechanical stiffness and more complicated vibration
modes. To maintain or improve the robot performance, the
motion control must be improved for this new generation
of robots. For robots with traditional measurement systems,
where only the motor angular position is measured, this
can be obtained by improving the model-based control as
described in [2]. Another option is to use inertial sensors to
improve the estimation of the robot tool position. This paper
investigates how the tool position can be estimated by the
use of observers.

One early contribution is [3], which describes how the
nonlinear dynamics of elastic robots can be handled. The
problems of gravity compensation for elastic robots is studied
in [4]. One commonly used observer is the linear Kalman
filter (KF) or the extended Kalman filter (EKF), used for
nonlinear systems. A KF is used for a single-axis robot arm
in [5] and [6]. EKFs are used in [7], and also in [8], where
a two-axis robot, with tool position and joint speed mea-
surements, are used. Estimation using motor measurements
only is studied in [9]. In [10], accelerometers are used, and
estimation is performed by particle filters as well as EKFs. A
deterministic observer, utilizing accelerometers, is described
in [11].

The estimated tool position can be used for on-line feed-
back control as a mean of increasing both the robust and
the nominal performance of the robot. Another possible use
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of tool estimation is iterative learning control (ILC) [12].
In [13] it is shown that motor side learning is insufficient
if the mechanical resonances are exited by the robot trajec-
tory. Other applications in need of tool position estimation
are, e.g., model identification, supervision, diagnostics, and
automatic controller tuning.

The estimation problem can be divided into one static
(low frequencies) and one dynamic (mid to high frequencies)
estimation problem. A large industrial robot typically has a
static volumetric accuracy of 2–15 mm due to gravity de-
flection, component tolerance, and variations in the assembly
procedure. One common solution to the static problem is to
perform an off-line identification of an extended kinematic
model and an elasto-static model, i.e., to solve the problem
by model-based control. In this way a static accuracy of
0.5 mm can be obtained. Thus, tool estimation by observers
is most interesting to investigate for the dynamic problem,
i.e., for frequencies larger than, e.g., 1 Hz1. The static and
dynamic estimates can then be fused, for example, in the
frequency domain.

This paper investigates methods for estimation of the
robot tool position. It is assumed that the motor angular
position and the tool acceleration are measured. Primarily,
the dynamic estimation problem is treated but the static
estimation problem is also briefly discussed. The observers
considered are different versions of the EKF as well as the
deterministic observer described in [11]. A method for tuning
the observers is suggested and the robustness of the methods
is investigated. The observers are evaluated experimentally
by using two axes of an industrial robot. However, the
methods can easily be adapted to a six degrees-of-freedom
(DOF) industrial robot.

II. FLEXIBLE ROBOT MODEL

The overall idea in this work is to investigate the use of
an accelerometer in order to improve the estimate of the
robot tool position. The estimators that will be introduced in
the subsequent section all rely on an accurate model of the
robot. Before we give the state-space model in Section II-B,
the relevant coordinate frames are introduced in Section II-A.

A. Coordinate Frames

The robot geometry is described using the world (w) coor-
dinate frame, which is fixed in the robot base. The absolute
position of the robot tool pw is resolved in this frame. The
accelerometer is attached to the robot tool, implying that it

1The frequency should be well below the lowest mechanical resonance
of the robot.
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Fig. 1. Coordinate frames used in modeling the 2-DOF robot. The world
(w) frame is attached to the robot base and the sensor (s) frame is attached
to the accelerometer.

is moving with the robot. The sensor coordinate frame (s)
is attached to the accelerometer. For an illustration of the
involved coordinate frames we refer to Fig. 1. The two arm
angles qa1 and qa2 are defined relative to the fixed reference
provided by the world frame.

B. State-Space Model

A robot is always subject to a load due to its own weight
and possibly also due to exterior forces. This implies that the
compliance of the structure will result in a certain deflection.
This compliance is also referred to as elasticity and it will in
this work be modeled using flexible joints, whereas the links
are still considered being rigid. In order to accomplish this
it is no longer sufficient to use only one angle per joint, as
discussed above. Instead each joint will be described using
two angles, the arm angle qai, previously introduced, and the
motor angle qmi. Now, the difference qai− qmi describes the
deflection in joint i.

The state vector is given by

x =
(
qTa qTm q̇Ta q̇Tm

)T
, (1)

where qa =
(
qa1 qa2

)T
, qm =

(
qm1 qm2

)T
, contain the

arm angles qa and the motor angles qm of both joints. In order
to get a feeling for the model, we provide it in state-space
form below. Engaging in a full description and derivation
of the model falls outside the scope of this paper. However,
the interested reader can refer to [14] for all the details. The
model accounts for flexibilities in the joints via nonlinear
stiffness, nonlinear friction and linear viscous damping.

ẋ =


x3

x4

M−1
a (x1)

(
− C(x1, x3)−G(x1)−A(x)

)
M−1
m

(
A(x) + κ(x4) + u

)
 , (2)

where A(x) = D(x3 − x4) + τs(x1, x2). A(x) accounts for
the flexibilities in the joints, via the linear viscous damping
D(x3 − x4) and the nonlinear stiffness τs(x1, x2). In other
words, if we dispense with A(x), we are back at a standard
rigid robot model. Furthermore, Ma(x1) and Mm are the
mass matrices for the arm and motor, C(x1, x3) accounts for
the centrifugal and centripetal torques, and G(x1) accounts
for the effect of gravity on the links. The nonlinear friction is

described by κ(x3) and u represents the motor torque applied
to the robot. All the estimators introduced in this paper are
based on this model or a simplified version of it, as is further
described in the subsequent section.

III. ESTIMATION

Given the general nonlinear model (2) the estimation of
the unknown states can be made in many different ways.
Here two main approaches are investigated. The first is
to use an extended Kalman filter [15] and this results in
three different implementations, where the model and the
measurements are used differently. The second approach is to
use a nonlinear deterministic observer [11], where the model
structure is explicitly used to create an observer based upon
motor position and accelerometer measurements.

A. Extended Kalman Filter
The EKF addresses the estimation problem for a general

nonlinear discrete-time system,

xk+1 = F (xk, uk) + vk, vk ∼ N (0, Qk), (3a)
zk = h(xk, uk) + wk, wk ∼ N (0, Rk). (3b)

In order to compute estimates of the states, the system
is linearized around the previous estimate and the EKF is
implemented as a two-step procedure, consisting of measure-
ment update

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1, uk)), (4a)
Pk|k = Pk|k−1 −KkHkPk|k−1, (4b)

and the time update

x̂k+1|k = F (x̂k|k, uk), (5a)

Pk+1|k = AkPk|kA
T
k +Qk, (5b)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1. (5c)

The following representation is used for the linearized system
and output matrices,

Ak =
∂F (x, uk)

∂x

∣∣∣∣
x=x̂k|k

, Hk =
∂h(x, uk)

∂x

∣∣∣∣
x=x̂k|k−1

.

In Section III-C a method to find values of the noise
covariances Qk and Rk from data will be outlined. Three
different implementations of the EKF are used throughout
the rest of the paper. The nonlinear continuous-time model is
discretized using an Euler forward difference approximation.

1) EKF Complete: In the EKF Complete the model de-
scribed in Section II is fully utilized, including friction and
nonlinear stiffness. The measurement equation (3b) includes
the motor measurements as well as the accelerometer mea-
surements,

h(xk, uk) =
[

x2k

ρ̈s(xk)

]
, (6)

where

ρ̈s(xk) = Rsw(x1k)(J(x1k)ẋ3k + J̇(x1k)x3k +Gw). (7)

Since ẋ3 is not a state, it is replaced by the ẋ3 equation in
(2). J(x1) is the Jacobian of the manipulator kinematics and
Gw is the gravity vector measured by the accelerometer.



2) EKF Motor: The EKF Motor is used as a base line
for what can be achieved without having the additional
accelerometer sensor. The measurement equation uses only
the motor angular positions,

h(xk, uk) = x2k,

while the dynamic model is fully utilized.
3) EKF Integrated: What characterizes the EKF Com-

plete and the corresponding measurement equation (6), is
that the dynamics appears explicitly in the expression for
the accelerometer measurement. In the EKF Integrated the
accelerometer measurement is rotated into the fixed frame
and then integrated to get a velocity,

ρ̇Mw (k) =
∫ tk

0

ρ̈Mw (t)dt =
∫ tk

0

Rws (t)ρ̈Ms (t)−Gwdt.

The integral is solved numerically from the discrete-time
data. The measurement equation now becomes,

h(xk, uk) =
[

x2k

J(x1k)x3k

]
, (8)

which is much simpler than the one in (6). The explicit
dependence on the dynamic model is now removed from the
measurement equation. Instead it only depends on the kine-
matic model which, in general, has much less uncertainty.

B. Deterministic Observer

The EKFs are compared with the result from a deter-
ministic observer by de Luca et al. [11]. A very important
characteristic of the deterministic observer is the compu-
tational complexity, which is significantly lower than the
EKF. This implies that the deterministic observer could be
used in feedback implementations while the EKF, with the
available computer power in current commercial industrial
manipulators, only can be aimed at off-line computations
for controller tuning or ILC. The deterministic observer in
[11] relies heavily on the model structure and it is assumed
that the robot is an N -DOF robot with linear joint elasticity.
The system equation (2) can be transformed into

ẋ =

 x3

x4

0
M−1

m (K(x1 − x2) + D(x3 − x4))

 +

 0
0

fnonlin(x)
M−1

m u


where K(x1 − x2) is a linear approximation of τs(x1, x2),

fnonlin(x) =M−1
a (x1)(−C(x1, x3)−G(x1)
−K(x1 − x2)−D(x3 − x4)),

and the state is defined according to (1). Now use the
equation for the acceleration measurement in (7), which can
be solved for ẋ3 when Rsw(x1)J(x1) is non-singular. Let q̈Ma
be the computed acceleration value,

q̈Ma = (Rsw(x1)J(x1))
−1(ρ̈Ms −Rsw(x1)(J̇(x1)x3 +Gw)).

An observer for the system can then be expressed as

˙̂x = A0x̂+G0

[
q̈Ma (ρ̈Ms , x̂)

u

]
+ L(qMm − C0x̂),

where L ∈ R4N×N and C0 ∈ RN×4N are defined to get a
well behaved observer, and so that C0x̂ = q̂m. The choice of
poles for the deterministic observer is discussed in the next
section.

C. Automatic Tuning

1) EKF: The tuning of the noise covariances in the differ-
ent EKF implementations can be stated as a general system
identification problem. It is here solved by minimizing the
prediction error using a set of measurement data where the
motor angles and the tool acceleration are available, together
with measurements of the true tool position. The covariance
matrices are parameterized as

R̃λ =


λ1I

2×2 0 0 0
0 λ2I

2×2 0 0
0 0 λ3I

2×2 0
0 0 0 λ4I

2×2

 R̃,
W̃λ =

[
λ5I

2×2 0
0 I2×2

]
W̃ ,

where R̃ and W̃ represent initial guesses and λi, i =
1, . . . , 5 are free variables in the optimization. The objective
function is to minimize the 2-norm of the prediction error
in the two Cartesian dimensions. The resulting optimization
problem is solved using the COMPLEXRF algorithm [16],
which is a heuristic optimization method. It has a build-
in randomization component that should help to avoid local
minima. However, there is no guarantee for the algorithm to
result in a global minimum.

2) Deterministic Observer: For the deterministic observer
eight poles have to be specified and to solve this an optimiza-
tion problem is posed and solved. The objective function and
the optimization algorithm, COMPLEXRF [16], are the same
as in the EKF tuning. However, the constraints and the free
variables are different, and the poles are parameterized in
terms of their eigenfrequency ωi > 0 and damping ζi > 0.
No guarantee for the optimization algorithm to converge to
a global optimum exists. However, in the next section it will
be clear that a sufficiently good observer can be found with
this technique.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental comparison of the observers will be
carried out by using measurements collected from a 6-DOF
ABB industrial robot where only the second and third joints
are used for the motions, see Fig. 2. An analog 3-axis
Crossbow accelerometer from the GP Series [17] is attached
to the robot tool and integrated with the standard robot
control system. The robot tool is rigid and has maximum
allowed weight for the robot. Measurement data from the
resulting motor torques, motor angular positions, and tool
acceleration are sampled at 2 kHz and exported to MATLAB.
To evaluate the performance of the observers, the tool
position is also measured by a Leica laser tracker [18],
which gives measurement data at 1 kHz with an accuracy
of 0.01 mm.



1.7 1.75 1.8 1.85

−0.8

−0.75

−0.7

−0.65

−0.6

x direction [m]

z 
di

re
ct

io
n 

[m
]

Fig. 2. Left: The ABB 6-DOF manipulator IRB4600 used in the
experiments. Right: Illustration of the two different paths and their location
in the robot workspace. Thick line: P1, thin line: P2. Gray line: selected
part showed in Fig. 4–6, where ’o’ indicates the start and ’x’ the end of the
selected part.

For the evaluation, the following two data sets will be
used, corresponding to different paths of the robot tool:

P1: A triangular path according to Fig. 2 with a motion
of 15–20 cm.

P2: A path according to Fig. 2, which is a smaller
motion compared to P1, and located in a slightly
different part of the working area to evaluate ro-
bustness.

To create external disturbance forces, the tool is also hit a
couple of times by a rubber hammer in both paths. Note that
the model parameters that are used by the observers in the
experiments come from a separate identification procedure
(see, e.g., [19]). This means that they are not tuned to
obtain optimal performance for the observers. It is only the
noise model that is tuned for the EKFs (and observer poles
for the deterministic observer) according to Section III-C.
This is in contrast to [11], where the model parameters are
included in the tuning of the deterministic observer. This
could also be carried out here, both for the EKFs and the
deterministic observer, and the resulting solution would then
be closely related to identification using nonlinear prediction-
error methods [20].

B. Nominal Performance

In this section, the four different observers from Section III
will be evaluated on path P1. The covariance matrices for
each of the three EKFs, as well as the poles of the deter-
ministic observer, are optimized according to Section III-
C by using the measurement data. This is done in order
to get comparable results for the different observers. As
comparison, the tool position is also calculated from the
motor angles by using the rigid robot kinematics, ignoring
all static and dynamic elastic effects.

As can be seen in Fig. 3, it is obvious that the estimation
of the tool position is insufficient. The performance of all the
observers is worse than if using the rigid robot kinematics,
and especially EKF Integrated and the deterministic observer
have a major drift. However, it is important to note that
this result was expected for several reasons. Firstly, to get
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Fig. 3. Estimated tool position for path P1. The four observers are plotted
together with the true position (measured by the Leica laser tracker) and
the estimate using rigid robot kinematics.

a good estimate of the static or low-frequency behavior the
model must be very accurate, including a calibrated elasto-
static kinematic model that describes kinematic errors as
well as deflections due to gravitational forces. Secondly, the
observers are tuned for mid-range frequencies, in this case
3–30 Hz, since that is an important frequency range where
the current techniques (e.g. rigid robot kinematics) fail to
produce sufficiently accurate estimates. To emphasize the
mid-range frequencies the estimated tool position is therefore
filtered with a bandpass filter. The result can be seen in Fig. 4
and Table I, where the max and mean error are given for all
the observers. EKF Integrated is omitted in the bandpass-
filtered figures, but gives almost indistinguishable results as
the deterministic observer (see Table I). From Table I it is
evident that the observers give superior estimates for mid-
range frequencies, compared to only using the rigid robot
kinematics (a factor 2–4 in reduced mean error). In terms of
max error, EKF Motor is best, mainly due to the response
of the hammer strike at time 1.5–1.7 s in Fig. 4. However,
in terms of mean error and at other time instances, EKF
Motor gives a noisy and less accurate estimate compared to
the other observers. EKF Integrated and the deterministic ob-
server give the best mean error, followed by EKF Complete.
To see the differences between the observers more clearly,
we will next consider how sensitive the performance is to
the observer tuning and model errors.

C. Robustness

Since the observers in Section IV-B were tuned for that
particular path before the actual estimation, the immediate
question is what happens if they are used under slightly
different conditions. Therefore the same tuning as in Sec-
tion IV-B is used, but the observers are applied to path P2.



TABLE I
MAX AND MEAN ESTIMATION ERROR (IN MILLIMETERS) FOR THE DIFFERENT OBSERVERS, BOTH FOR ALL FREQUENCIES AND THE MID-RANGE

FREQUENCIES 3–30 HZ. ALL OBSERVERS ARE TUNED FOR PATH P1 AND EVALUATED ON PATH P1 (Nominal), PATH P2 (Tuning), AND PATH P1 WITH

REDUCED STIFFNESS PARAMETERS (Model Errors).

EKF Complete EKF Motor EKF Integrated Det. Observer Rigid kinematics
Max Mean Max Mean Max Mean Max Mean Max Mean

Nominal
All 17.6 9.7 16.2 7.2 174.3 101.0 97.0 59.9 5.6 2.7

3–30 Hz 1.007 0.070 0.914 0.111 1.114 0.056 1.121 0.057 2.142 0.221

Tuning
All 9.4 7.2 16.3 6.0 82.0 36.4 43.3 28.6 2.1 0.5

3–30 Hz 0.135 0.027 0.698 0.122 0.110 0.018 0.108 0.020 1.351 0.219
Model
Errors

All 24.0 16.3 24.0 13.2 163.3 94.3 69.8 45.4 5.6 2.7
3–30 Hz 1.070 0.090 2.803 0.340 1.113 0.056 1.120 0.057 2.142 0.221
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Fig. 4. Estimated tool x-position, band-pass filtered to 3–30 Hz, for a
selected part of path P1. The results from the observers are plotted together
with the true position (measured by the Leica laser tracker).

The estimated tool position is still poor in terms of static
accuracy, with a similar behavior as in Fig. 3. The band-
pass filtered result can be seen in Fig. 5. From Table I, the
major conclusion is that EKF Motor is really sensitive to the
tuning. In the nominal case, the mean error is increased by
2% (deterministic observer), 25% (EKF Complete), and 98%
(EKF Motor) compared to the EKF Integrated. For path P2,
these numbers are 11%, 50%, and 580%.

Another important practical question is how robust the
observers are to model errors. The joint stiffness parameters
are therefore reduced by 50 % and the result can be seen in
Fig. 6 and Table I. Now the differences between the observers
are even more obvious. For mid-range frequencies, EKF
Integrated and the deterministic observer are not affected
at all in terms of mean and max error. For EKF Motor
and EKF Complete the mean error is increased with 206%
and 29%, respectively, compared to the nominal case. The
advantage of integrating the accelerometer signal is therefore
evident. Since only the robot kinematic model is used in
the measurement equation (8) for EKF Integrated, the errors
are much smaller compared to the other EKFs that rely
more heavily on a correct description of the dynamics. EKF
Motor gives extremely poor estimates, as could be expected
since it relies entirely on the motor measurements and the
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Fig. 5. Estimated tool x-position, band-pass filtered to 3–30 Hz, for a
selected part of path P2. The observers are plotted together with the true
position (measured by the Leica laser tracker).
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Fig. 6. Estimated tool x-position, band-pass filtered to 3–30 Hz, for a
selected part of path P1. The observers have a stiffness error of 50 % and
are plotted together with the true position (measured by the Leica laser
tracker).



dynamic model to estimate the tool position. EKF Complete
slightly distorts the accelerometer measurements through its
complicated measurement equation (6) that depends on the
dynamics.

D. Discussion

The computational complexity varies quite much between
the different observers. This, of course, depends on the
implementation, but to get a flavor, EKF Complete requires
4.9 s to estimate 1 s of data, EKF Integrated 2.6 s, EKF Motor
2.1 s, and the deterministic observer 0.17 s. Increasing the
model complexity to 3 or 6 DOF will of course demand much
more computational resources and the deterministic observer
is therefore really interesting if real-time implementation
becomes an issue.

The stability problem (drift) of the deterministic observer
and EKF Integrated must be solved to make them practi-
cally useful. For the deterministic observer, the singularity
problem associated with the inverse Jacobian must also be
handled.

V. CONCLUSIONS AND FUTURE WORK

The main conclusion from this experimental comparison
is that accelerometers in combination with observers can
significantly increase the accuracy of the tool position es-
timate compared to simply using the motor position and the
kinematics, or only using the motor position measurement
and an observer. Except in the nominal case none of the
observers produced very good estimation results at low fre-
quencies and the results showed a large drift when introduced
to model errors. The best results for low frequencies were
achieved by EKF Complete and EKF Motor, but since the
tuning was performed to achieve a good result for mid-range
frequencies,the result could be improved with a different
tuning principle. With a calibrated kinematic model, the low-
frequency errors would also be drastically reduced. In the
mid-frequency range that can be considered most important
from a control perspective, for example for disturbance rejec-
tion and compensation of dynamic deflections, the observers
performed very well. The best result was achieved by EKF
Integrated, utilizing the complete dynamic model but with
a simplified measurement equation where the accelerometer
signal is integrated to get a speed signal. The deterministic
observer also had a similar performance, but has proved to
be slightly more sensitive to tuning errors. In some cases the
deterministic observer even became unstable, which must be
further investigated. The main advantage of the deterministic
observer is the computational complexity which is at least
an order-of-magnitude lower than for the EKFs.

A next step would be to fully use the 6-DOF capabilities
of the robot and extend the robot model to this case. The
computational complexity of the EKF will increase even
more and therefore other implementations based on numeri-
cal computation of the Jacobian should be tested. One such
example is the Unscented Kalman Filter [21]. The sensor
system could be extended as well and a first step would
be to include a gyro to get a 6-DOF measurement. Another

important issue is the robustness with respect to trajectory
and configuration in work area, i.e., to investigate the need
for observer gain scheduling. Robustness for different robot
individuals and tools must also be further studied. Another
obvious future work is to calibrate the kinematic model
to obtain accurate estimates also for low frequencies. This
also includes to handle the drift in EKF Integrated and the
deterministic observer.
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