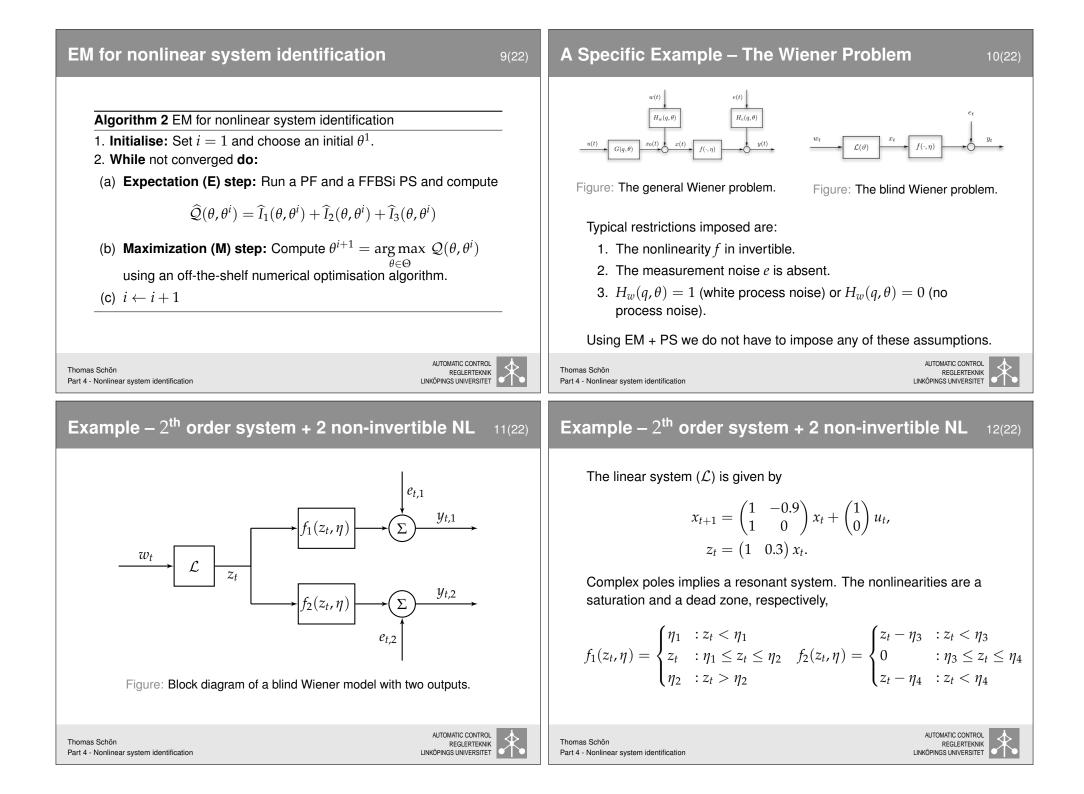
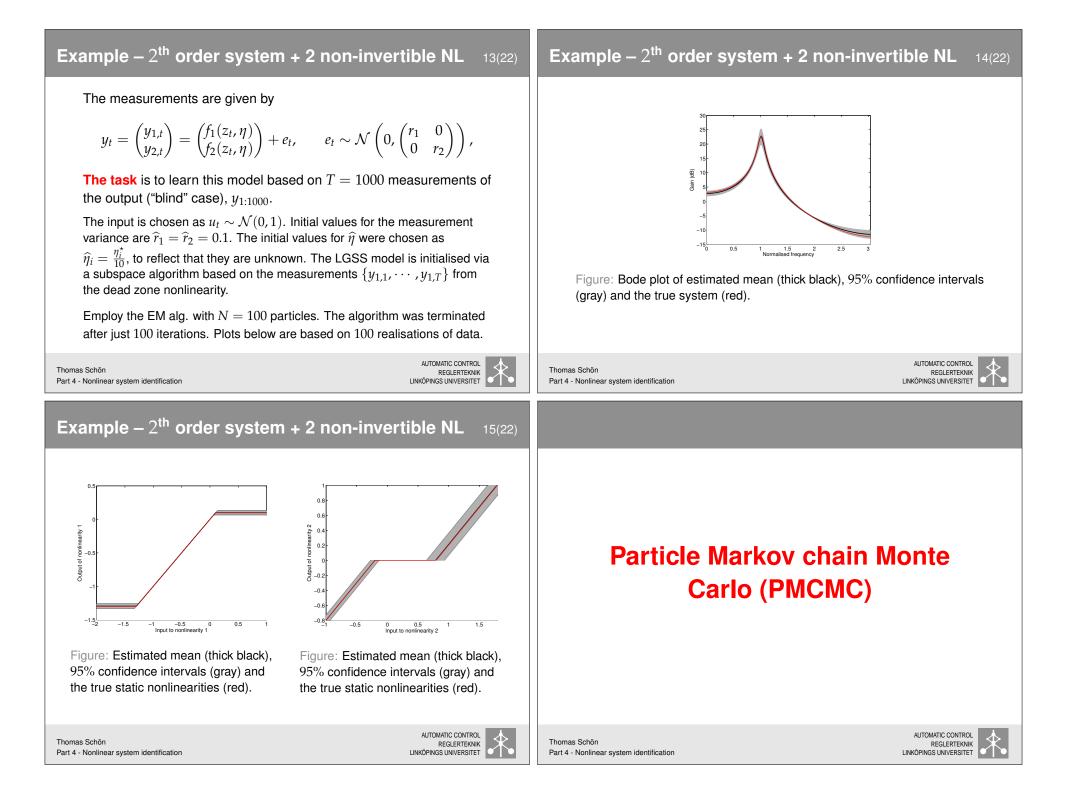


Part 4 - Nonlinear system identification

LINKÖPINGS UNIVERSITET

EM revisited	5(22) EM for nonlinear system identification 6(22)
The expectation maximisation (EM) algorithm computes ML estimates of unknown parameters in probabilistic models involving latent variables. Algorithm 1 Expectation Maximization (EM) 1. Initialise: Set $i = 1$ and choose an initial θ^1 . 2. While not converged do: (a) Expectation (E) step: Compute $Q(\theta, \theta^i) = E_{\theta^i} [\log p_{\theta}(Z, Y) Y] = \int \log p_{\theta}(Z, Y) p_{\theta^i}(Z Y) dZ$ (b) Maximization (M) step: Compute $\theta^{i+1} = \underset{\theta \in \Theta}{\arg \max} Q(\theta, \theta^i)$ (c) $i \leftarrow i + 1$	The key property rendering EM an appealing approach for computing maximum likelihood estimates in nonlinear SSM's is that the intermediate quantity $Q(\theta, \theta^i)$ and its derivatives can be approximated arbitrarily well using particle smoothers. EM provides a strategy for breaking down the problem into two manageable subproblems 1. A nonlinear state smoothing problem 2. A nonlinear optimisation problem each of which can be handled using readily available algorithms.
Thomas Schön AUTOMATIC CONTROL REGLERTEKNIK Part 4 - Nonlinear system identification LINKÖPINGS UNIVERSITET	Thomas Schön AutoMatic control REGLERTERNIK LINKÖPINGS UNIVERSITET
Approximation of the Q -function	7(22) Maximisation (M) step 8(22)
The intermediate quantity $\mathcal{Q}(\theta, \theta^i)$ is approximated according to (using the particle smoother (FFBSi))	Use a numerical nonlinear optimisation algorithm, e.g., BFGS. The gradient is computed according to
$\widehat{\mathcal{Q}}(heta, heta^i) = \widehat{I}_1(heta, heta^i) + \widehat{I}_2(heta, heta^i) + \widehat{I}_3(heta, heta^i),$	$ abla_ heta \mathcal{Q}(heta, heta^i) = abla_ heta I_1(heta, heta^i) + abla_ heta I_2(heta, heta^i) + abla_ heta I_3(heta, heta^i),$
$\mathcal{Q}(\theta,\theta') = I_1(\theta,\theta') + I_2(\theta,\theta') + I_3(\theta,\theta'),$ where	and based on $\widehat{\mathcal{Q}}(\theta, \theta^i)$ it is straightforward to approximate these gradients according to,
$\widehat{I}_1(heta, heta^i) = rac{1}{N}\sum_{i=1}^N \log \mu_ heta(x_1^i),$	$ abla_ heta I_1(heta, heta^i) pprox rac{1}{N} \sum_{i=1}^N abla_ heta \log \mu_ heta(x_1^i),$
. N. T. 1	$\nabla L(0,0^{i}) \sim \frac{1}{N} \sum_{i=1}^{N} \nabla L(0,0^{i}) + n^{i}$
$\widehat{I}_2(heta, heta^i) = rac{1}{N}\sum_{i=1}^N\sum_{t=1}^{T-1} \mathrm{log} f_ heta(x^i_{t+1} \mid x^i_t),$	$ abla_ heta I_2(heta, heta^i) pprox rac{1}{N} \sum_{i=1}^N \sum_{t=1}^{l-1} abla_ heta \log f_ heta(x^i_{t+1} \mid x^i_t),$
$egin{aligned} \widehat{I}_2(heta, heta^i) &= rac{1}{N}\sum_{i=1}^N\sum_{t=1}^{I-1}\log f_ heta(x^i_{t+1}\mid x^i_t), \ \widehat{I}_3(heta, heta^i) &= rac{1}{N}\sum_{i=1}^N\sum_{t=1}^T\log h_ heta(y_t\mid x^i_t). \end{aligned}$	$ abla_{ heta I_2(heta, heta \)} \approx rac{1}{N} \sum_{i=1}^{T} \sum_{t=1}^{V_ heta} \log f_ heta(x_{t+1} \mid x_t), $ $ abla_{ heta I_3(heta, heta^i)} pprox rac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} abla_{ heta} \log h_ heta(y_t \mid x_t^i). $

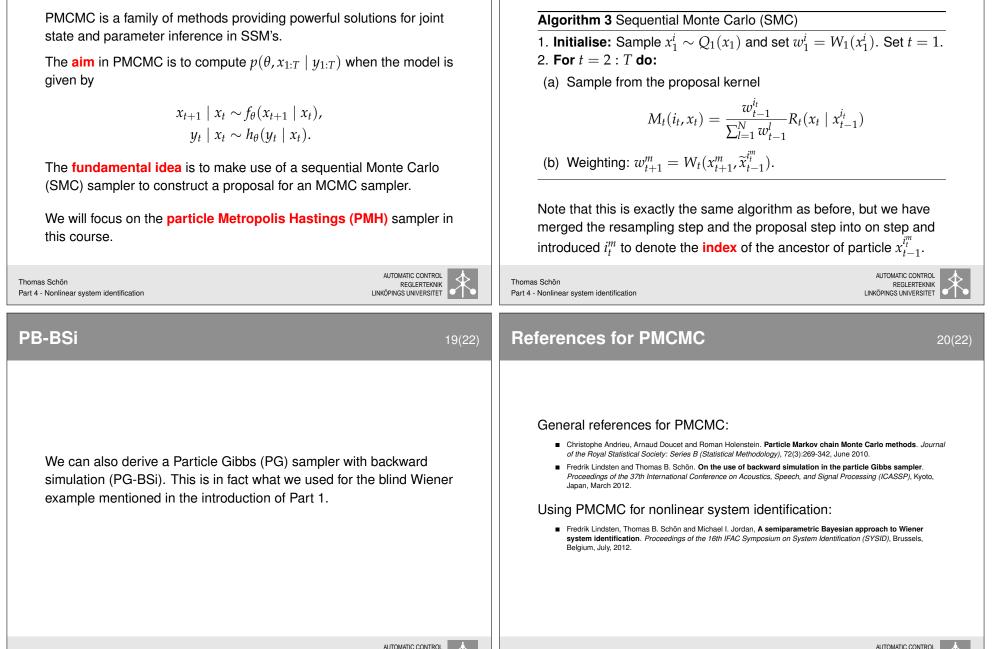




PMCMC background and aim

SMC again

17(22)



The aim of this course

Thomas Schön

Part 4 - Nonlinear system identification

21(22)

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

REGLERTEKNIK

The **aim of this course** has been to provide an introduction to the theory and application of (new) computational methods for inference in dynamical systems.

The key computational methods we refere to are,

- Sequential Monte Carlo (SMC) methods (particle filters and particle smoothers) for nonlinear state inference problems.
- Expectation maximisation (EM) and Markov chain Monte Carlo (MCMC) methods for nonlinear system identification.

Much interesting research remains to be done in solving nonlinear estimation problems using SMC and/or MCMC methods!!

We are organising an **invited session** for SYSID on this topic and many of the leading researchers in the area have accepted the invitation. Drop by if you are interested!

Thank you for listening!!

Thomas Schön Part 4 - Nonlinear system identification

