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The aim – Part 4 2(29)

The aim in part 4 is to show how EM together with SMC and MCMC
together with SMC can be used to solve challenging nonlinear

system identification problems.

In other words, we will here make use of most of the building blocks
introduced throughout the course in order to show how they can be

combined to solve nonlinear system identification problems.
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Outline 3(29)

1. Computing ML estimates using EM and PS.
a) Derive the algorithm
b) Example - parametric Wiener model

2. Computing Bayesian estimates using particle MCMC (PMCMC)
a) Particle Metropolis Hastings (PMH)
b) Example - semiparametric Wiener model
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ML problem formulation 4(29)

Task: Compute the ML estimate of the parameters θ in the SSM

xt+1 | xt ∼ fθ(xt+1 | xt, ut),
yt | xt ∼ hθ(yt | xt, ut),

x1 ∼ µθ(x1),

The ML estimate is obtained by solving the following optimisation
problem,

θ̂
ML

= arg max
θ

Lθ(y1:N),

where the log-likelihood function is given by

Lθ(y1:N) = log pθ(y1:N) =
N

∑
t=1

log pθ(yt | y1:t−1)
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EM revisited 5(29)

The expectation maximisation (EM) algorithm computes ML
estimates of unknown parameters in probabilistic models involving
latent variables.

Algorithm 1 Expectation Maximization (EM)

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θi) = Eθi [log pθ(Z, Y) | Y] =
∫

log pθ(Z, Y)pθi(Z | Y)dZ

(b) Maximization (M) step: Compute θi+1 = arg max
θ∈Θ

Q(θ, θi)

(c) i← i + 1
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EM for nonlinear system identification 6(29)

The key property rendering EM an appealing approach for
computing maximum likelihood estimates in nonlinear SSMs is that
the intermediate quantity Q(θ, θi) and its derivatives can be
approximated arbitrarily well using particle smoothers.

EM provides a strategy for breaking down the problem into two
manageable subproblems

1. A nonlinear state smoothing problem

2. A nonlinear optimisation problem

each of which can be handled using readily available algorithms.
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Approximation of the Q-function 7(29)

The intermediate quantity Q(θ, θi) is approximated according to
(using the particle smoother (FFBSi))

Q̂(θ, θi) = Î1(θ, θi) + Î2(θ, θi) + Î3(θ, θi),

where

Î1(θ, θi) =
1
N

N

∑
i=1

log µθ(xi
1),

Î2(θ, θi) =
1
N

N

∑
i=1

T−1

∑
t=1

log fθ(xi
t+1 | xi

t),

Î3(θ, θi) =
1
N

N

∑
i=1

T

∑
t=1

log hθ(yt | xi
t).
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Maximisation (M) step 8(29)

Use a numerical nonlinear optimisation algorithm, e.g., BFGS. The
gradient is computed according to

∇θQ(θ, θi) = ∇θI1(θ, θi) +∇θI2(θ, θi) +∇θI3(θ, θi),

and based on Q̂(θ, θi) it is straightforward to approximate these
gradients according to,

∇θI1(θ, θi) ≈ 1
N

N

∑
i=1
∇θ log µθ(xi

1),

∇θI2(θ, θi) ≈ 1
N

N

∑
i=1

T−1

∑
t=1
∇θ log fθ(xi

t+1 | xi
t),

∇θI3(θ, θi) ≈ 1
N

N

∑
i=1

T

∑
t=1
∇θ log hθ(yt | xi

t).
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EM for nonlinear system identification 9(29)

Algorithm 2 EM for nonlinear system identification

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Run a PF and a FFBSi PS and compute

Q̂(θ, θi) = Î1(θ, θi) + Î2(θ, θi) + Î3(θ, θi)

(b) Maximization (M) step: Compute θi+1 = arg max
θ∈Θ

Q(θ, θi)

using an off-the-shelf numerical optimisation algorithm.

(c) i← i + 1
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A Specific Example – The Wiener Problem (I/II) 10(29)

As an example we will study how to learn a Wiener model.

Lut h(·) Σ

vt et

yt
zt

A Wiener model is a linear dynamical model (L) followed by a static
nonlinearity (h(·)).

Learning problem: Find L and h(·) based on {u1:T, y1:T}.
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A Specific Example – The Wiener Problem (II/II) 11(29)

Most of the existing work deals with special cases of the general
problem. Typical restrictions imposed are:

• The nonlinearity h(·) is assumed to be invertible.

• The measurement noise et is absent.

• The LGSS model is deterministic (vt is absent).

• The LGSS model is stochastic, but vt is assumed white.

Using EM + PS we do not have to impose any of these assumptions.
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Example – blind Wiener learning 12(29)

Lut

h1(zt, β)

h2(zt, β)

Σ

e1,t

y1,t

Σ

e2,t

y2,t

zt

xt+1 =
(
A B

) (xt
ut

)
, ut ∼ N (0, Q),

zt = Cxt, yt = h(zt, β) + et, et ∼ N (0, R).

Learning problem: Find L and β, r1, r2 based on {y1,1:T, y2,1:T}.
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Example – blind Wiener learning 13(29)

The linear system (L) is given by

xt+1 =

(
1 −0.9
1 0

)
xt +

(
1
0

)
ut,

zt =
(
1 0.3

)
xt.

Complex poles implies a resonant system. The nonlinearities are a
saturation and a dead zone, respectively,

h1(zt, β) =





β1 : zt < β1

zt : β1 ≤ zt ≤ β2

β2 : zt > β2

h2(zt, β) =





zt − β3 : zt < β3

0 : β3 ≤ zt ≤ β4

zt − β4 : zt < β4
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Example – blind Wiener learning 14(29)

The measurements are given by

yt =

(
y1,t
y2,t

)
=

(
h1(zt, β)
h2(zt, β)

)
+ et, et ∼ N

(
0,
(

r1 0
0 r2

))
,

The task is to learn this model based on T = 1000 measurements of
the output (“blind” case), y1:1000.

The input is chosen as ut ∼ N (0, 1). Initial values for the measurement
variance are r̂1 = r̂2 = 0.1. The initial values for η̂ were chosen as

η̂i =
η?i
10 , to reflect that they are unknown. The LGSS model is initialised via

a subspace algorithm based on the measurements {y1,1, · · · , y1,T} from
the dead zone nonlinearity.

Employ the EM alg. with N = 100 particles. The algorithm was terminated
after just 100 iterations. Plots below are based on 100 realisations of data.
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Example – blind Wiener learning 15(29)
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Bode plot of estimated mean (black), true system (red) and the result
for all 100 realisations (gray).
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Example – blind Wiener learning 16(29)
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Estimated mean (black), true static nonlinearity (red) and the result
for all 100 realisations (gray).

Adrian Wills, Thomas B. Schön, Lennart Ljung and Brett Ninness. Identification of Hammerstein-Wiener Models.
Automatica, 2012. (Accepted for publication)

Thomas Schön
Part 4 - Nonlinear system identification

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Bayesian inference using Particle
Markov chain Monte Carlo

(PMCMC)
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Bayesian inference in a general SSM 18(29)

The task is to compute the pdf p(θ | y1:T) for a model on the form

xt+1 | xt ∼ ft(xt+1 | xt, ut, θ),
yt | xt ∼ h,t(yt | xt, ut, θ),

x1 ∼ µ(x1, θ),
θ ∼ p(θ).

Can we set up an MCMC sampler to solve this problem?

Directly targeting π(θ) = p(θ | y1:T) is not possible, since
p(θ | y1:T) cannot be evaluated pointwise. Recall,

p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)
,

where it is not possible to pointwise evaluate the likelihood
p(y1:T | θ) for the SSM above.
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Bayesian inference in a general SSM 19(29)

Way forward: Target π(θ, x1:T) = p(θ, x1:T | y1:T) instead. In order
to understand why this works, note that

p(θ, x1:T | y1:T) =
p(x1:T, y1:T | θ)p(θ)

p(y1:T)
,

where

p(x1:T, y1:T | θ) = µ(x1 | θ)
T−1

∏
t=1

f (xt+1 | xt, θ)
T

∏
t=1

h(yt | xt, θ).

This means that we can now evaluate the target density pointwise.
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Bayesian inference in a general SSM 20(29)

We need one more thing for a working MCMC algorithm

How do we create a proposal distribution capable of proposing
samples from relevant parts of the state space?

The state space X T ×Θ is huge. Hence, it is key that it is explored
in an efficient manner!

How can this be done?
Make use of

• the model,

• and the observed measurements y1:T.

Together they provide a lot of information about which parts of the
state space that are most interesting.
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Bayesian inference in a general SSM 21(29)

Indeed, using SMC algorithms we can then turn the information in

• the model,

• and the observed measurements y1:T

into an efficient proposal distribution that captures what we know
about where in the state space to propose new samples.

The result is a family of algorithms referred to as particle MCMC
(PMCMC).

The fundamental idea underlying PMCMC is to make use of an
SMC sampler to construct a proposal for an MCMC sampler.

We will focus on the particle Metropolis Hastings (PMH) sampler in
this course.
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SMC again 22(29)

Notation: wt , {w1
t , . . . , wN

t }.

Algorithm 3 Sequential Monte Carlo (SMC)

1. Initialise: Sample xi
1 ∼ Q1(x1) and set wi

1 = W1(xi
1). Set t = 1.

2. For t = 2 : T do:

(a) Resampling: ai
t ∼ R(at | wt−1).

(b) Sample from the proposal kernel: xi
t ∼ Qt(xt | xai

t
1:t−1) and set

xi
1:t = {x

ai
t

1:t−1, xi
t}.

(c) Weighting: wi
t+1 = Wt(xi

t+1, x̃ai
t

t−1).

Here: ai
t to denote the index of the parent/ancestor at time t− 1 of

particle xi
t.
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SMC again 23(29)

Just like any algorithm that is used to generate random numbers
there is an underlying distribution also for the SMC sampler that
encodes the probabilistic properties of the involved stochastic
variables.

The SMC sampler generates a realisation of the random variables
X1:T and A2:T, where the pdf is

ψ(x1:T, a2:T) =

{
N

∏
i=1

Q1(xi
1)

}

︸ ︷︷ ︸
initialisation





T

∏
t=2

N

∏
i=1

R(ai
t | wt−1)︸ ︷︷ ︸

Resampling

Qt

(
xi

t | xai
t

1:t−1

)

︸ ︷︷ ︸
Proposing new particles





and it is defined on the space X TN × {1, . . . , N}(T−1)N.
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PMMH target 24(29)

Use the following target distribution

φ(θ, x1:T, a2:T, k) , π(θ, xk
1:T)

NT
ψθ(x1:T, a2:T)

Qθ
1(x

bk
1

1 )∏T
t=2 Mθ

t

(
ak

t , xbk
t

t

)

Using this target we can now show that the acceptance probability is
given by

a = min
(

1,
p̂(y1:T | θ∗)p(θ∗)q(θ[m− 1] | θ∗)

p̂(y1:T | θ[m− 1])p(θ[m− 1])q(θ∗ | θ[m− 1])

)
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PMMH algorithm 25(29)

1. Initialise: Set θ[0] and run an SMC sampler targeting
p(x1:T | θ[0], y1:T), sample x1:T[0] ∼ p̂N(x1:T | θ[0], y1:T) and
compute p̂(y1:T | θ[0]).
2. for m = 1 to M do
(a) Sample θ∗ ∼ q(θ | θ[m− 1]).
(b) Run an SMC sampler targeting p(x1:T | θ∗, y1:T), sample

x∗1:T ∼ p̂N(x1:T | θ∗, y1:T) and compute the p̂(y1:T | θ∗).
(c) Compute the acceptance probability

a = min
(

1,
p̂(y1:T | θ∗)p(θ∗)q(θ[m− 1] | θ∗)

p̂(y1:T | θ[m− 1])p(θ[m− 1])q(θ∗ | θ[m− 1])

)

(d) With probability a, set the next state z[m] = {θ[m], x1:T[m]} of
the Markov chain to {θ∗, x∗1:T} and p̂(y1:T | θ[m]) = p̂(y1:T | θ∗)
and with probability 1− a set z[m] = {θ[m− 1], x1:T[m− 1]}
and p̂(y1:T | θ[m]) = p̂(y1:T | θ[m− 1]).
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PMMH 26(29)

The PMMH sampler is a standard MCMC sampler on a
non-standard space.

Put slightly differently, the PMMH sampler is a standard MCMC
sampler targeting a non-standard target distribution.

We can also derive a Particle Gibbs (PG) sampler with backward
simulation (PG-BS). This is in fact what we used for the blind Wiener
example mentioned in the introduction of Part 1.
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References for PMCMC 27(29)

General references for PMCMC:
• Christophe Andrieu, Arnaud Doucet and Roman Holenstein. Particle Markov chain Monte Carlo methods. Journal

of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269-342, June 2010.

• Fredrik Lindsten and Thomas B. Schön. On the use of backward simulation in the particle Gibbs sampler.
Proceedings of the 37th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto,
Japan, March 2012.

• Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Ancestral Sampling for Particle Gibbs. Proceedings of
Neural Information Processing Systems (NIPS), Lake Tahoe, NV, US, December, 2012. (Accepted for publication)

Using PMCMC for nonlinear system identification:
• Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan, A semiparametric Bayesian approach to Wiener

system identification. Proceedings of the 16th IFAC Symposium on System Identification (SYSID), Brussels,
Belgium, July, 2012.
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The aim of this course 28(29)

The aim of this course has been to provide an introduction to the
theory and application of (new) computational methods for inference

in dynamical systems.

The key computational methods we refere to are,

• Sequential Monte Carlo (SMC) methods (particle filters and particle
smoothers) for nonlinear state inference problems.

• Expectation maximisation (EM) and Markov chain Monte Carlo
(MCMC) methods for nonlinear system identification.
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Great opportunities for research!! 29(29)

Much interesting research remains to be done in solving nonlinear
inference/learning problems using SMC and/or MCMC methods!!

Feel free to contact me (now or later) in case you have questions or
want to discuss things.

All feedback (small and big) on how to improve the lectures and the
lecture notes are very welcome

Thank you for listening!!
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