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Abstract—Classification of motion mode (walking, running,
standing still) and device mode (hand-held, in pocket, in back-
pack) is an enabler in personal navigation systems for the purpose
of saving energy and design parameter settings and also for its
own sake. Our main contribution is to publish one of the most
extensive datasets for this problem, including inertial data from
eight users, each one performing three pre-defined trajectories
carrying four smartphones and seventeen inertial measurement
units on the body. All kind of metadata is available such as the
ground truth of all modes and position. A second contribution
is the first study on a joint classifier of motion and device
mode, respectively, where preliminary but promising results are
presented.

I. INTRODUCTION

Pedestrian navigation systems (PNS) are used in a range
of applications, from pure navigation and guidance tools,
healthcare assistance systems to infotainment applications and
more generally location based services. The main goal of a
PNS is to have an accurate and reliable position estimate,
but there are certain metadata that can provide additional
information in itself. In this contribution, the problem of
classifying the activity mode (standing still, walking, running)
and the device mode (handheld in view, handheld in swinging
hand, in front/back pocket, and in a backpack) is considered.

Our study is based on an extensive experimental study
where different users repeated the same trajectories and se-
quences of modes. We logged data from low cost micro-
electromechanical systems (MEMS) sensors including accel-
eration, angular rate, magnetic field, barometric pressure and
also GPS as a position reference. Data were measured by
using four smartphones and 17 inertial measurement units
(IMUs) configured in a body suit. The IMUs generate data of
somewhat higher accuracy than the smartphones, and the body
suit software makes use of advanced biomechanical models
to provide accurate description of true motion of all body
parts, which in turn could be used to simulate data from
any other part of the body. Ground truth of the device and
motion mode is available from the experimental setup. Table I
summarizes different device and motion modes. In order to
simplify referring to each of these scenarios, Table I also
assigns a specific class to each of them. We believe this to
be one of the most extensive datasets publicly available for
PNS.

TABLE I: Motion-Device mode Classification
XXXXXXXXXXXDevice Mode

Motion
Mode Standing Still

(SS)
Walking

(W)
Running

(R)

Fixed hand (1)
Class SS

Class W1 Class R1
Swinging hand (2) Class W2 Class R2

Pocket (3) Class W3 Class R3
Backpack (4) Class W4 Class R4

The activity mode is a key feature in sports and healthcare
applications, where it is logged for its own sake. The activity
mode can also select a set of appropriate internal parameters
in the PNS, such as step length and step detection thresh-
olds [1]. It can also be an enabler for energy efficient PNS.
For instance, in outdoor applications, an energy demanding
GPS fix can be obtained first when the user has moved a
certain distance, and here it is useful to know if the user is
standing still, walking or running. Similar compromises about
using additional information sources from infrastructure can
be made in indoor PNS. For certain personnel such as guards
and rangers, running may indicate danger and a sudden and
unexpected stand still can indicate an accident, and in both
cases officers can be automatically alerted.

The device mode is crucial for the design and performance
of a PNS. For instance, if it is known that the device is rigidly
attached to a foot, special tricks can be used [2]–[4]. Most
importantly, using the knowledge that the foot is at rest at least
for a short while in each stance, the bias in the accelerometer
and gyroscope can be read off directly, This is referred to as
zero velocity updates (ZUPTs) and zero angular rate updates
(ZARUs), respectively. The elimination of bias enables the
use of dead-reckoning principles to integrate acceleration and
angular rate into a precise trajectory.

Other assumptions on the device mode include that the IMU
is fixed on the waist rather than the foot [5], [6], located in
the front pocket [7], carried horizontally in hand [8] or carried
in hand not necessarily horizontally [9]–[12].

Classification of various motion modes could be one step
towards more realistic scenarios in which the smartphone is
allowed to switch arbitrarily among different device modes,
just as normal users operate their smartphones. Classification
of motion and device modes is a less studied area in literature,
where we here mention a few studies. The classifier introduced
in [13] is based on accelerations and magnetic field data978-1-5090-6299-7/17$31.00 c� 2017 IEEE



recorded with a hand-held unit. Another study dealing with
different motion models and device modes is performed and
reported in [14], where standing still and walking patterns are
studied. An extended investigation is to add also the running
mode as in [12]. The classification of motion mode is also
studied in [15]–[18].

The importance of the modes classification for PNS can be
summarized as follows. The main design parameters include
the step length and the step detection threshold determining
when the magnitude of the measured acceleration is deemed
to be caused by a step. Both these depend on the motion
mode. Basically, the smaller step length, the smaller threshold
is required. The device mode can simplify the model further.
For instance, if the device is hand held flat, the heading corre-
sponding to the projection (rotation) to the horizontal plane
(heading) can be computed by just integrating the angular
rate around the gravity vector. There are many other similar
tricks described in literature. There is one recent proposal of
a multi-mode PDR algorithm [17], otherwise mode-switching
algorithms seem to be rare in literature.

The rest of the paper is organized as follows: Sec. II
explains experimental setup in details, followed by description
of available data in Sec. III. In Sec. IV data analysis and initial
classification results, are presented. Finally, Sec. V concludes
the work.

II. EXPERIMENT SETUP

In this section, we first introduce the hardware used in the
experiments, then all measurement scenarios are described in
detail. Finally, characteristics of all participants are presented
to give a better comparison on signal behavior for different
subjects with different attributes.

A. Sensors
The hardware can be grouped into two categories; high and

low quality; MVN and Nexus 5, respectively. Subsequently,
the signals from the mobile phones will be compared with the
MVN system to have a better classification for mobile signals.

1) Xsens MVN Motion Capture: The Xsens MVN system
has been used to capture the whole body motion. In the
experiments the “MVN Awinda” system has been used. It
contains 17 wireless Motion Trackers (MTw), an Awinda
station, and MTw full body velcro straps.

The MTw is a miniature inertial measurement unit contain-
ing a 3D linear accelerometer, a 3D rate gyroscope, a 3D
magnetometer, and a barometer.

The 17 trackers are placed at strategic locations on the
body (secured by the straps), to measure motion of each body
segment. Fig. 1 shows the location of the straps and attached
MTws. The MVN system is controlled by the MVN studio
software. A snapshot of the MVN system is shown In Fig. 2.

2) Nexus 5: Four Nexus 5 smartphones are carried by
the subjects in the experiments. The Nexus 5 is equipped
with multiple sensors; The sensors that are considered in this
work are the A-GPS, the 3D linear accelerometer, the 3D rate
gyroscope, and the barometer.
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Shoulder

Fig. 1: MVN Awinda Straps [19].

Fig. 2: MVN Studio BIOMECH application

The sensor fusion Android app [20], [21], installed on the
Nexus 5 phones, is used to log the sensors measurements from
the phones.

All phone locations used in the experiment are presented in
Table I. A summary of the details about both the MVN system
and the phone is provided in Table II; applications, sampling
frequency, sensor’s positions, and IMU sensors.

TABLE II: Measurement device specifications.

Device Application
Sampeling
Frequency

[Hz]
Position Sensors

Xsens MVN
Awinda 60

Head
Shoulders

Upper Arms
Fore Arms
Upper Legs
Lower Legs

Hands
Feet

Pelvis

Accelerometer
Gyroscope

Magnetometer
Barometer

Nexus 5
Sensor
Fusion

app
100

Hand
Front Pocket
Back Pocket

Backpack

GPS
Accelerometer

Gyroscope
Magnetometer

Barometer



B. Scenarios
Measurements were collected in a building at Twente uni-

versity. During the experiments the subjects walked three
different paths, with a mixture of different motion modes,
as represented in Table I. We followed certain rules when
gathering the data so that the obtained measurements should
mimic reality. For instance, to avoid any abnormal behavior
the subjects were asked to carry one smartphone in the hand
at each time. One run-through of the scenarios including a
preparation phase lasts around 45–60 min.

Fig. 3 illustrates three different paths on top of the map of
the area where measurements were obtained. The paths on
the maps are for illustrative purposes and are inexact. For
each path in Fig. 3, the subject holds one mobile phone in
the hand, two more phones in front and back pockets, and
one in the backpack. In this section, we thoroughly present
the three measurement scenarios studied in this work. One
scenario contains outdoor-only measurements, while the other
two scenarios combine both outdoor and indoor paths. All
three scenarios share the property that the measurement begins
and ends at the same point, in an outdoor environment.

1) Outdoor-only, Standing Still, Walking and Running: The
simplest scenario corresponds to Fig. 3a where the whole
measurement is performed outdoors where the GPS signal
is available. In this scenario, measurements are performed
while the subject covers several motion and device modes,
corresponding to Case 1 in Table III.

2) Outdoor-indoor, Walking: As in the previous scenario,
the measurement starts and ends at the same point outside
the building. However, a bit in to the track, the subject gets
into the building and walks across a corridor, as illustrated in
Fig. 3b. In this scenario, measurements are performed while
the subject walks the whole path and holds the smartphon flat
and fixed in the hand, corresponding to Case 2 in Table III.

3) Outdoor-indoor, Standing Still, Walking and Running: In
this scenario, we consider the most complex behavior in terms
of motion modes and also the experiment path. Along the path
depicted in Fig. 3c, the subject starts outside the building, then
gets into the building and passes one corridor, takes the stairs
up and passes a certain distance, followed by taking the stairs
down and getting back to the starting point. The designed path
in this scenario, is measured for two different cases:

• Case 3: The subject walks along the path for both sets of
device modes presented in Table III (each set is performed
separately).

• Case 4: The subject has several motion modes along the
path for both sets of device modes presented in Table III
(each set is performed separately).

C. Participants
The described experiments were performed by twelve vol-

unteers, 7 males and 5 females, with ages ranging from 25 to
45 years old. Due to some technical and practical issues (GPS
signal loss outdoors, physical difficulties making it impossible
for subjects to perform all the experiments), only 6 men and
2 women performed all the explained scenarios.

TABLE III: Measurement Scenarios. Device and motion modes are
presented in Table I. Paths corresponding to each case are depicted
in Fig. 3

Scenario Device
Mode

Motion
Mode Participants

Duration
(average)

[s]

Case 1 1,2,3,4 W,R,SS 5 Males
2 Females 190

Case 2 1,3,4 W 6 Males
2 Females 200

Case 3 1,3,4;
2,3,4

W
Upstairs

Downstairs

6 Males
2 Female 280

Case 4 1,3,4;
2,3,4

W,R,SS
Upstairs

Downstairs

6 Males
2 Female 270

III. AVAILABLE DATA

This section provides a detailed explanation of how the
data was collected followed by a description of the ground
truth. Finally, we clarify the data structure as well as provide
instructions on accessing different parts of the available data
summarized in Table III.

A. Collected Data

Data is gathered from the scenarios in Sec. II-B using the
hardware specified in Sec. II-A. Before each experiment/data
collection, the MVN Awinda is calibrated. The calibration can
be done by MVN studio in a less disturbed magnetic field
area while the subject is standing in a fixed pose for around 5
seconds. Table III summarizes all the different scenarios. It is
worth noting that the laptop connected to the Awinda station
must be near the subjects while recording measurements due
to short signal range. Fig. 4 shows a subject while doing an
experiment. She is wearing Xsens suit and carrying several
phones.

The available data for both smartphone and Xsens suits
together with units of each measurement are presented in
Table IV. Both the raw sensory data as well as the virtual
IMU measurements from the Biomechanical (BM) model are
extracted from MVN studio and provided in the dataset.
Although MTws are equipped with a barometer, the MVN
studio cannot extract this feature, therefore, the MTw data for
the barometer is not given.

The phone data is only available in raw version. The GPS
signal from the phones is converted to East-North-Up (ENU)
coordinates, with the first measured GPS position considered
as the reference point.

B. Ground Truth

The ground truth plays an important role in the classification
process. The classifier uses part of the data for which the
corresponding class is known as training data in order to
establish the discriminating criteria. The part of the ground
truth which was not used for training purposes will afterwards
be used for the assessment of the classification accuracy. The
remaining data with unknown class could then be assigned to
a class.
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(a) Outdoor-only scenario with all classes
(Case 1).

(b) Outdoor-Indoor scenario containing the W1
class (Case 2).

W

Stair	
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SS
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(c) Outdoor-Indoor scenario containing all classes.
Forward and backward paths are indicated with red
and purple colors, respectively (Case 3 and Case 4).

Fig. 3: Different measurement scenarios. The start and end points are indicated by green and cyan dots, respectively. All the motion modes
and classes are defined based on Table I.

TABLE IV: Dataset details given from both smartphone and MTws.
Signals from MTws are available in two versions; “Raw” data and
filtered by some Biomechanical algorithms (BM). Smartphone data
is only available in “Raw” version.

Variable Names Unit MTw data Phone data
3D AccR (Raw) [m/s2] * *

3D AngVelR(Raw) [rad/s] * *
3D OriR (Raw) [�] * *
3D MagR (Raw) [Gauss] * *

GPS [m] - *
Pressure [Pa] - *

Mtw Position [cm] * -
Velocity [m/s] * -

3D Acc (BM) [m/s2] * -
3D AngVel(BM) [rad/s] * -

3D Ang.Acc (BM) [rad/s2] * -
Ori (BM) [�] * -

Joint Angle [�] * -
Ground Truth (GT) - * *

The classification accuracy refers to the correspondence
between the class label assigned to each sample and the “true”
class obtain by the ground truth. Fuzzy class boundaries and
incorrectly assigned classes are two main degrading factors of
classification accuracy. Additionally, if the ground truth does
not represent all classes adequately the classification result and
the corresponding accuracy may be unpredictable.

As Fig. 2 shows, MVN studio provides a movie of all
the subject activities. We visually inspect these movies to
determine the time of switch between the modes. However, the
provided output of the MVN studio is a downsampled version
of the signal. Thus, the visually obtained times need to be
matched by the samples of the signal. We use the extracted
output of the MVN studio that gives the exact time of each
sample with miliseconds accuracy. All the samples are then
labeled to appropriate classes using the derived time stamps
used to form the ground truth.

The ground truth is separately formed for high and low

quality devices using the labels obtained. Depending on the
device mode, signals obtained from appropriate MTws should
be considered. For example, if the goal is to investigate the
scenario in which the smartphone is being carried in hand,
the hand-mounted sensor is the one that mimics that behaviors
best. Another example is the case where the phone is in pocket
where the most appropriate MTw revealing same properties
is the one mounted on the upper leg. Similarly, we further
assumed the MTw on the pelvis to simulate the scenario where
the phone is being carried in backpack.

C. Acquire Data

The dataset containing the scenarios defined in Table III and
is available from [22]. The logged data from the phones and
the MVN studio are extracted with 100 and 60 Hz sampling
frequencies, respectively. Data from both devices are merged
into a MATLAB ‘.mat’-file. The naming of experiments is in
line with the structure given in Table III. This file contains
the structure of the data and attributes corresponding to each
subject. For example, all measurements related to Case 4, are
stored in Case4 dataset and Case4.Subject(1) provides
the data for all sensors and attributes associated with subject 1.

Table IV represents all available data for both devices in
the measurement scenarios dataset. During the post-analysis
phase of the data, some signals were identified as either
corrupted or missing. As a result, the dataset contains some
empty fields. The dataset contains 4 measurement scenarios
with 7–8 measurement sets each, depending on the number
of participants. To further simplify working with the dataset,
a toy example with MATLAB code to extract the data is
provided together with the dataset. The first measurement
scenario (Case 1) for first subject is set as default. More
details about setting variables and extracting desired outputs
is provided in a README file attached to the dataset.



(a) The subject is walking constantly with almost constant
speed and carrying a smartphone in flat and fixed hand.

(b) The subject is running and carrying phone in swinging hand.

Fig. 4: photo from measurement campaign.

IV. DATA ANALYSIS

We apply a classification algorithm to the data to assign
them to the defined classes in Table I. This is done in two
steps; feature extraction on the raw signals, followed by a
classification step.

A. Feature Extraction
Feature extraction is a way to try to better bring out the

inherent information in the available data, and reduce the
dimensionality of the raw/pre-processed data in order to be
able to apply classification algorithms on it.

The feature extraction phase is performed by dividing the
inertial data in sliding windows of N samples with no overlap.
The window size must be selected such that it satisfies two
different objectives. On one hand, it must be long enough to
cover at least one gait cycle. On the other hand, it should
be short enough to identify sudden motion mode transitions.
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(a) Accelerometer norm of signal.
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(b) Gyroscope norm of signal.

Fig. 5: Signal norm for 4 different motion trackers together with
the signal from the smartphones. The subject performed the Case
1 from Fig. 3. Black lines separate the different classes. Related
class for each section is indicated in the figures. The subject carried
a smartphone in the right hand and one in the front right pocket.
The device carried by hand is switching between fixed and swinging
mode.

In this work, we set the window size to 0.5 seconds. This
translates to 50 and 30 samples for phone and motion trackers,
respectively, imposed by their sampling frequencies.

In the rest of this section we define the features we feed
to the classifier and provide more specific examples from the
dataset. All given examples correspond to Case 1 described in
Table III where the subject intentionally switches between the
fixed and swinging device modes.

1) Signal Norm: For a generic signal S[n], kSk
max

denotes
the maximum norm over the sampling window as follow,

kSk
max

= max

n
kS[n]k.

The norm contains useful information used discriminate be-
tween different modes. More precisely, any change of motion
mode results in a large difference in the values of accelerom-
eter norm, kak

max

. This enables the identification of a change
in the motion mode. In addition, large difference in the values
of the gyroscope norm k!k

max

can be translated into a switch
in the device mode.

To further illustrate the behavior of kak
max

relative to the
change in the motion mode see Fig. 5, where the norms of
signals are depicted while the smartphone is in both fixed
and swinging modes. These signals correspond to the Case 1
in Fig. 3. Fig. 5b further presents how the gyroscope norm,
k!k

max

, assists in device mode discrimination.
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(b) Gyroscope energy signal.

Fig. 6: Energy signal for 4 different motion trackers together with the
signal from the smartphones. The sensor locations and measurement
scenario are the same as the one described in Fig. 5.

2) Signal Energy: Let S[n] be a generic signal, e.g. a single
accelerometer/gyroscope direction or accelerometer/gyroscope
norm. The energy of the signal ES is obtained by taking the
squared norm of S[n] and summing and normalizing it over
the sliding window:

ES =

1

N

N�1X

n=0

S[n]2.

The obtained energy is a useful feature allowing us to distin-
guish fixed or moving device modes due to rapid response to
mode transition. For example, the gyroscope will have higher
energies in swinging hand device mode than the fixed hand
scenario.

Fig. 6 shows the energy signal for both accelerometer
and gyroscope. As shown in Fig. 6a each transition between
motion modes, results in a noticeable change in the energy of
the accelerometer signal. The effect of the device mode on the
energy signal is illustrated in Fig. 6b, where it is shown that
switching from fixed to swinging mode increases the angular
velocity energies drastically.

3) Signal variance: For any generic signal S[n] the average
of the squared differences from the mean, the variance signal,
is defined as follows:

�2

S =

1

N � 1

N�1X

n=0

 
kS[n]k � 1

N

N�1X

n=0

kS[n]k
!

2

.

The variance signal assists to discriminate between high and
low intensity movements. For example, the estimated variance
of both accelerometer and gyroscope is highly informative
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(a) Accelerometer signal variance.
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(b) Gyroscope signal variance.

Fig. 7: Signal variance for 4 different motion trackers together
with the signal from the smartphones. The sensor locations and
measurement scenario are the same as the one described in Fig. 5.

while the objective is to distinguish between swinging mode
with any other less intense movement scenarios.

Fig. 7 shows the signal variance of both accelerometer
and gyroscope. One advantage of the variance signal is to
enhance robustness of the classification algorithm in motion
mode recognition. Running leads to more intense movements
than both walking and standing still. Higher peaks in the signal
variance, as shown in Fig. 7a, can then be identified once the
user switches to this mode. Additionally, the signal variance
analysis can be used to recognize device mode switches. The
variation of the variance signal illustrated in Fig. 7b shows
how changing between classes with different device modes,
W1 and W2 for example, can be distinguished.

4) Frequency Analysis: This feature allows us to identify
any movement such as periodic movement from aperiodic
ones. Different activities have different frequencies, resulting
in a varying power spectrum that assists in activity identifica-
tion. Thus, the analysis of the frequency domain of inertial
signals recorded with hand-held devices allows capturing
the periodicity of the accelerometer/gyroscope signals due to
the subject’s activity. Presence or absence of peaks in the
spectogram of the inertial signals gives useful insights whether
the subject is having a periodic movement or standing still.

The spectogram of the gyroscope signal is obtained using
Short Time Fourier Transform (STFT) and reported in Fig. 8.
The periodicity of the walking and running is visible in the



frequency peaks of the spectogram while it is possible to
identify a static case around time 300.
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Fig. 8: Spectrogram of the gyroscope signal for the right hand from
a smartphone. The subject performed the Case 1 from Fig. 3.

B. Classification

As a final step in characterizing the data, a classifier is
applied to the features to try extract the motion and device
modes as defined in Table I.

Different machine learning algorithms can be used for the
classification. For example, [14] applies a decision tree for
classification purposes while [12] uses multi-layer perceptron
(MLP) and a support vector machine (SVM) to improve the
performance in terms of recognition of human activity.

Two datasets, are formed for phone and motion tracker
signals as described in Sec. III-B, separately. Each set con-
tains eight features constructed from four signal attributes
introduced in Sec. IV for both gyroscope and accelerometer.
Since the classes are labeled accurately for each dataset,
a supervised learning approach is applied. A multivariate
decision tree classifier is trained using MATLAB; Machine
learning toolbox. The classifier is validated with 10-fold cross-
validation.

The performance of the classifier for both devices are
summarized in the confusion matrices given in Tables Va
and Vb. In the MTw data, having a sensor to mimic the
behavior of the phone data carried by backpack is challenging.
As Table Va reports, the mode detection success rate for MTw
sensors are over 70% for all classes. SS and W1 classes
are missclassified with W4 class corresponding to the pelvis
sensor. To explain this observation, one needs to note how the
pelvis sensor is rigidly mounted on the body. This leads to
miss-classification with other low intensity modes. With phone
data, the classification results are promising as represented by
Table Vb. All the classes are detected correctly with over 75%
for walking and standing still modes and over 56% for running
mode. Running mode recognition is challenging as the phone

has movement. Missclassification of R1 with R4 and W1 with
W4 can be explained by the fact that the phone is fixed in
either of these situations.

V. CONCLUSION

This paper presents an extensive dataset for classification
and investigation of the motion and device mode for pedes-
trian navigation systems (PNS), where many device modes,
a number of users and a few motion modes are logged for
three different trajectories. All data are fully annotated with
ground truth classes, and other metadata such as position and
accurate full body motion using biomeachnical models. We
have discussed how the motion and device mode relate to
pedestrain dead-reckoning algorithms, the working horse of
PNS, and how PNS can otherwise benefit from improved and
extended mode classification. The larger part of the paper
described the field tests in detail. The last part suggests a
few features that can be computed from the logged data,
and applies a straight forward classifier on these features.
The result is quite promising, yet preliminary. The dataset is
publicly available [22], and we hope the research community
can benefit from this to improve the classification results
further.
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