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Abstract—Some control applications require the use of piece-
wise constant or impulse-type control signals, with as few
changes as possible. So as to achieve this type of control,
we consider the use of regularized model predictive control
(MPC), which allows us to impose this structure through the
use of regularization. It is then possible to regulate the trade-off
between control performance and control signal characteristics
by tuning the so-called regularization parameter. However,
since the mentioned trade-off is only indirectly affected by this
parameter, its tuning is often unintuitive and time-consuming.
In this paper, we propose an equivalent reformulation of the
regularized MPC, which enables us to configure the desired
trade-off in a more intuitive and computationally efficient
manner. This reformulation is inspired by the so-called ε-
constraint formulation of multi-objective optimization problems
and enables us to quantify the trade-off, by explicitly assigning
bounds over the control performance.

I. INTRODUCTION

Sparsity has been an important topic in estimation in
recent years. The origin for the current interests can be
traced to the Lasso algorithm, [1], which trades off the
number of estimated parameters in linear regressions to the
model fit. This is achieved by adding a regularization term
to the criterion of fit which penalizes the number of non-
zero elements. That idea has been used for a large variety
of problems in system identification, signal processing and
signal representation, see e.g., [2]–[4]. An advanced theory
of sparsity and compressed sensing has been developed in
[5], [6].
At the same time, in control theory, there has long been

a wish to not only curb the size of the input, like in
various optimization problems, but also restrict the number of
actual control actions, to spare control equipment. So called
lebesgue sampling has been suggested schedule control ac-
tions, [7]. The paper [8], for example, contained examples on
how to achieve good tracking or trajectory generation with
as few control interventions as possible.
In this contribution Model Predictive Control (MPC) will

be studied from a similar perspective. MPC has become a
leading control paradigm in industrial practice in the past
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decades. It will be shown that similar regularization terms
added to the standard MPC criterion will achieve sparseness
in control action. The trade-off between control accuracy
and the number of control actions is, as in the estimation
case, decided by the size of the regularization parameter.
This is a major tuning problem and a substantial part of this
contribution deals with rational choices for how this can be
solved using multi-objective optimization.

outline
This paper is organized as follows. In Section II, we for-

mulate the MPC problem and briefly review basic concepts in
MPC. Section III, provides a description of the regularized
model predictive control with sum-of-norms regularization
and discusses the importance of proper tuning of the so-
called regularization parameter. In Section IV, we formulate
an alternative formulation of the regularized MPC, and
illustrate the effectiveness of the proposed regularized MPC
formulation through some numerical examples in Section V.
We conclude the paper with some final remarks in Section
VI.

II. MODEL PREDICTIVE CONTROL
In this paper, we assume that the state dynamics of the

system to be controlled is described by

x(k + 1) = Ax(k) +Bu(k) (1)

where A ∈ Rn×n and B ∈ Rn×m. Given x0, we intend to
find a control sequence that is the minimizing argument of
the following optimization problem

minimize
∞
∑

k=1

[

x(k)
u(k − 1)

]T

Q

[

x(k)
u(k − 1)

]

+ qTx(k) + rTu(k − 1)

subj. to x(k + 1) = Ax(k) + Bu(k) k = 0, 1, · · ·

Cxx(k) + Cuu(k) ≤ d, k = 0, 1, · · ·

x(0) = x0,
(2)

where u(0), u(1) · · · , x(0), x(1) · · · are the optimization
variables, Cx ∈ Rp×n, Cu ∈ Rp×m and

Q =

[

Q S
ST R

]

" 0, (3)

with Q " 0 and R # 0. The cost function (defined by
data matrices Q, q, r) is usually chosen based on control
performance specifications and the linear equality and in-
equality constraints describe the feasible operating region
of the system. This control strategy is referred to as the
infinite horizon optimal control, [9], and requires the solution
to an infinite-dimensional optimization problem. In order to
avoid solving this infinite dimensional optimization problem,
often a suboptimal heuristic for solving the problem in (2),



is considered. This heuristic approach is referred to as the
model predictive control (MPC). In this heuristic method the
horizon of the control problem is truncated to a finite value,
H , and instead a receding horizon strategy is undertaken [9],
[10]. This means that, the control action at each time step
t and given x(t), is obtained by first solving the following
optimization problem

minimize
H−1
∑

k=0

[

x(k)
u(k − 1)

]T

Q

[

x(k)
u(k − 1)

]

+ qTx(k) + rTu(k − 1)

+ x(H)TQHx(H) + qTHx(H)

subj. to x(k + 1) = Ax(k) +Bu(k), k = 0, 1, · · ·H − 1

Cxx(k) + Cuu(k) ≤ d, k = 1, · · · ,H − 1

CHx(H) ≤ dH , C0u(0) ≤ d0

x(0) = x(t),
(4)

where u(0), · · · , u(H−1), x(0), · · · , x(H) are the optimiza-
tion variables, CH ∈ RpH×n, C0 ∈ Rq0×m and QH " 0.
Solving this optimization problem results in the optimal
solution, u∗(0), · · · , u∗(H − 1) and x∗(1), · · · , x∗(H). The
MPC controller then, as the next control input to the system,
uses u(t) = u∗(0) and repeats the same procedure at time
step t + 1 for the starting point x(t + 1). Note that the
formulation in (4), also covers other classical presentations
of MPC, [10]. In order to guarantee stability and recursive
feasibility in the receding horizon strategy, CH , dH , QH and
qH have to be chosen with care, [9]–[13]. In the following
we assume that these matrices are chosen accordingly so
that we would not have to concern about the stability and
feasibility issues of the problem in (4).
The problem in (4) defines a quadratic program (QP),

which is convex and can be solved efficiently, using for
instance interior point methods, [14]. Particularly, it was
shown in [15] that solving the problem in (4) using interior
point methods would require O(H(m + n)3) floating point
operations (flops). If the data matrices that define this QP are
chosen properly, then MPC generates control input sequences
that will guarantee stability, will be feasible and will produce
satisfactory control performance. However, we are interested
in control inputs that have special structures, particularly
control signals that are either piecewise constant with small
number of changes or have impulse-type format uniformly in
all channels, and it is not clear how one can tune these data
matrices to produce control actions with these structures. One
of the possible remedies for this issue is through the use of
non-smooth regularization. This is discussed in Section III.

III. REGULARIZED MODEL PREDICTIVE CONTROL
The use of regularizing terms for inducing sparsity or other

special structures on solutions of optimization problems has
been previously used in other areas such as signal processing,
system identification, etc, [1], [5], [16]–[19], and has also
recently found interest in control, [8], [20], [21]. In this
paper we also employ a similar strategy for inducing special
structure or sparsity on the generated control signals. To this
end, we modify the cost function of the problem in (4) as

H−1
∑

k=0

[

x(k)
u(k − 1)

]T

Q

[

x(k)
u(k − 1)

]

+ qTx(k)

+ r
T
u(k − 1) + x(H)TQHx(H) + q

T
Hx(H)

+ λ ‖(‖R1U‖p, . . . , ‖RrU‖p)‖0 ,
(5)

where U = (u(0), . . . , u(H−1)). The additional term in the
cost function penalizes the existence of non-zero elements
in vector (‖R1U‖p, . . . , ‖RrU‖p) with penalty parameter λ.
We refer to this parameter as the regularization parameter,
and it sets the trade-off between the control performance and
desired control signal characteristics. We refer to this prob-
lem as the regularized MPC. Note that by choosing R, λ and
p properly, regularized MPC will provide us with a control
signal sequence that satisfies our predefined specifications.
Introducing the "0-norm, however, changes the underlying
optimization problem from a convex minimization problem
into a non-convex one. In order to circumvent this issue,
the "0-norm is often approximated by its convex envelop
which is the "1-norm, [1], [5], [16], [18]. By using this
approximation, (5) can be rewritten as

H−1
∑

k=0

[

x(k)
u(k − 1)

]T

Q

[

x(k)
u(k − 1)

]

+ q
T
x(k) + r

T
u(k − 1)

+ x(H)TQHx(H) + q
T
Hx(H) + λ

r
∑

i=1

‖RiU‖p, (6)

and as a result, the underlying optimization problem in
regularized MPC can be formulated as

minimize
H−1
∑

k=0

[

x(k)
u(k − 1)

]T

Q

[

x(k)
u(k − 1)

]

+ qT x(k) + rTu(k − 1)

+ x(H)TQHx(H) + qTHx(H) + λ

r
∑

i=1

‖RiU‖p

subj. to x(k + 1) = Ax(k) + Bu(k), k = 0, 1, · · ·H − 1

Cxx(k) + Cuu(k) ≤ d, k = 1, · · · , H − 1

CHx(H) ≤ dH , C0u(0) ≤ d0

x(0) = x(t).
(7)

The most common choices of regularization term are with
p = 1, 2, which are the so-called "1-norm and sum-of-norms
regularization respectively. It is known that using the "1-norm
regularization forces many elements in the vectors RiU, i =
1, . . . , r, to be equal to zero. We refer to this sparsity as
the element-wise sparsity. Similarly, utilizing sum-of-norms
regularization will also generate sparsity in vectors RiU , i =
1, . . . , r. However, unlike the "1-norm regularization, this
regularization term is known to produce solutions with whole
vectors RiU = 0. This is the so-called group sparsity. In this
paper we focus on using the sum-of-norms regularization,
i.e., p = 2. We can use this characteristic of sum-of-norms
regularization to induce piecewise constant or impulse-type
properties on the computed control signals. To be more
precise, let RT

i = (ei + ei+1) ⊗ Im for i = 1, . . . , H − 1,
with ei denoting the ith column of the identity matrix. Using
the regularization term can then induce piecewise constant
structure on the control inputs produced using regularized
MPC,

‖u(0)− u(t− 1)‖2 +
H−1
∑

i=1

‖u(i− 1)− u(i)‖2, (8)

where u(t− 1) is the last used input (the input used at time
step t − 1). The use of the first term in (8) is motivated to



penalize the difference between the produced control input
at different time steps. Using this regularization term in
regularized MPC punishes the variations of the control signal
within the horizon H . Consequently, the controller tends to
use piecewise constant control signals with minimal number
of changes. Similarly, let RT

i = ei ⊗ Im, which will result
in the following regularization term

H−1
∑

i=0

‖u(i)‖2. (9)

This choice of regularization term penalizes the use of
nonzero control inputs, and will hence produce control
signals that mimic the behavior of impulse control. Note that
due to the use of "2-norm, at each time step, the mentioned
structures would appear uniformly in all m control channels.
This will not be the case if one chooses to use "1-norm
regularization.
It goes without saying that the choice of regularization

parameter, λ, affects the resulting solution, and achieving
a satisfactory solution requires performing rigorous tuning
of this parameter, at each time step. As was mentioned
before, this parameter describes the trade-off between the two
competing terms in the objective value, which correspond to
the control performance and the desired control structure.
Despite the importance of proper tuning of this parameter,
this problem is not given enough attention and is currently
done by ad-hoc procedures, e.g., for example in signal
processing applications see [17], [22], that can be quite
time consuming, counter-intuitive and cumbersome. This is
because by changing this parameter, we can only make
qualitative predictions regarding the yielded trade-off, and in
order to study quantitative properties of the resulting trade-
off we would need to solve the corresponding optimization
problem. Consequently, tuning λ, such that the controller
would provide us with a satisfactory result, would require
solving the underlying optimization problem several times
(at each time step). This can become computationaly costly,
particularly due to the fact that solving the minimization
problem in (7), with p = 2, requires solving a second order
cone program (SOCP), [14], which can be considerably more
computationally demanding than solving a QP. In Section IV,
we propose an equivalent reformulation of the regularized
MPC problem, that would allow us to set the desired trade-
off in a more intuitive manner and hence, computationally
efficient manner.

IV. A REFORMULATION OF THE REGULARIZED MODEL
PREDICTIVE CONTROL

The optimization problem in (7) can also be regarded as
a multi-objective optimization problem given as

minimize

[

l(X,U)
∑r

i=1 ‖RiU‖p

]

subj. to (X,U) ∈ C

(10)

where X = (x(0), . . . , x(H)), the set C represents the
feasible region described in problem in (7) and l(X,U)

denotes the cost function for the problem in (4). The aim
of this optimization problem is to minimize both terms in
the objective vector, simultaneously, while satisfying the
constraints. Note that in essence and originally we are
interested in finding the solution to this problem, and the
problem in (7) is only defined as a consequence.
One of the ways of computing the so-called Pareto optimal

solutions, [14], [23], for this problem is by means of the
weighted sum method which results in the formulation given
in (7), [14], [23]. Such techniques intend to find all the
Pareto optimal solutions by studying the solutions of the
problem in (7) for all positive values of λ. By doing so one
can achieve the so-called barrier frontier, [14], and can then
choose the optimal solution that suits them best (usually the
knee of the frontier). Although this approach is perhaps the
most widely used one, it is not necessarily the best way of
handling (10). This is because, the weighted sum method
requires exploring the frontier barrier which can be very
time consuming and counter-intuitive. There are also other
methods for solving the problem in (10), (or verifying Pareto
optimality of solutions for (10)), namely, Benson’s method,
ε-constraint method, hybrid methods and elastic constraint
method, [23]–[26]. These methods, including the weighted
sum method, belong to a wider class of multi-objective op-
timization approaches, called scalarization techniques, [23].
Next, we explore the possibility of utilizing the ε-constraint
method for solving the problem in (10).

A. ε-constraint Method
After the weighted sum method, the ε-constraint method

is perhaps the best known apparatus for solving multi-
objective optimization problems. This method was proposed
by [24], and is based on solving constrained optimization
problems formed based on the original problem. Consider
the following multi-objective optimization problem

minimize
x∈X







f1(x)
...

fN (x)







. (11)

This optimization problem can be handled through solving
a set of ε-constrained problems defined as

minimize fj(x)

subj. to fi(x) ≤ εi i = 1, . . . , N, i (= j.

x ∈ X

(12)

It was shown by [27], that in case X and all fis are all
convex, for any optimal solution of the problem in (12), x∗,
for some j, there exist λi ≥ 0 such that x∗ is also an optimal
solution for

minimize
N
∑

i=1

λifi(x). (13)

As a result, using this approach, one can compute the Pareto
optimal solutions for the problem in (11), by changing εis.
Note that both the weighted sum and ε-constraint methods
still suffer from the same problem while searching for Pareto



solutions, where in order to find the desired Pareto solution
one may have to perform time consuming tuning of λis
and εis. However, for our case (i.e., the regularized MPC
problem) using this method for solving the problem enables
us to look for the desired solution in a much more intuitive
manner. This is investigated in the following section.

B. ε-constraint Formulation of Regularized MPC

By following the guidelines presented in the previous
section, the regularized MPC problem can be cast in the
form of an ε-constraint problem as below

minimize
X,U

r
∑

i=1

‖RiU‖p (14a)

subj. to l(X,U) ≤ ε (14b)
(X,U) ∈ C (14c)

In this formulation the objective function only concerns
the regularization of the control variables and the term
concerning the control performance has been formulated as
a constraint. One of the shortcomings of this formulation in
comparison to the formulation in (7) is that, the problem
in (14) is not necessarily feasible with respect to all choices
of ε. In order to avoid this issue, we choose ε = p∗(1 + εp)
where p∗ is the optimal objective value for the problem in (4)
and εp > 0 is referred to as the tolerated ε-optimality which
is a design parameter. Note that p∗ is the achieved optimal
control performance, which is obtained without forcing any
structure on the control input, i.e., with no regularization
term. With this choice of ε, not only feasibility of the
problem in (4) would imply feasibility of the problem in (14),
but also it is possible to show that the formulations are in
fact very closely related.

C. Relation Between the Formulations of the Regularized
MPC Problem

Recall that C is a polyhedral constraint, and the set D =
{(X,U) ∈ C | l(X,U) < ε} is nonempty. As a result the
Slater’s constraint qualification holds and we have strong
duality, [14]. Consider the KKT optimality conditions, for
this problem given below

l(X∗, U∗) ≤ ε (15a)
ν∗(ε) ≥ 0 (15b)
ν∗(l(X∗, U∗)− ε) = 0 (15c)

(X∗, U∗) = arg min
(X,U)∈C

{

r
∑

i=1

‖RiU‖p + ν∗(l(X,U)− ε)

}

(15d)

where ν∗(ε) is the optimal Lagrange multiplier for the
constraint in (14b), and X∗, U∗ are the optimal primal
variables. The notation ν∗(ε) has been used for denoting the
optimal Lagrange multiplier to emphasize its dependence on
the chosen ε. Assume that ν∗(ε) > 0. Then, by (15d), the
optimal primal variables are the solutions of the following

optimization problem

minimize ν∗(ε)l(X,U) +
r

∑

i=1

‖RiU‖p

subj. to (X,U) ∈ C.

Note that this optimization problem is equivalent to the
problem in (7), with λ = 1/ν∗(ε). Also since we have
strong duality, the complementary slackness implies that
l(X∗, U∗) = ε. This states that, the solution (X∗, U∗)
constitutes a εpp∗-suboptimal solution for the MPC problem
in (4), and shows how much comprise with respect to control
performance had to be made to achieve the obtained control
signal properties.
In case ν∗(ε) = 0, the optimality conditions in (15), imply

that the optimal primal variables (X∗, U∗) are obtained by
solving the following optimization problem

minimize
r

∑

i=1

‖RiU‖p

subj. to (X,U) ∈ C.

(16)

Compare the problem in (7) with the one in (16). In this case,
it is as though in the problem in (7), the chosen λ = ∞, and
it is equivalent to neglecting the term corresponding to the
control performance in the cost function. This is because
even using (X∗, U∗), which only minimizes the regulariza-
tion term, will in the worst case be εpp∗-suboptimal.
Using the formulation in (14) of the regularized MPC

problem enables us to evade the tuning of the regularization
parameter, and we instead would need to tune εp. However,
unlike λ, tuning εp is more intuitive. This is because εp
quantitatively sets how much of the control performance we
are willing to sacrifice to obtain a control input that has a
certain characteristic. This is particularly beneficial, if the
control designer knows what is the maximum allowed sub-
optimality in control performance. Also note that forming
the problem in (14) will then only require solving a QP,
which can be solved efficiently, [13]. This is in contrast to
using the formulation in (7), which in the worst case, requires
solving the problem in (7) several times to find a suitable
λ. Next, we study the performance of the regularized MPC
using numerical simulations.
Remark 1: If the constraint set C is described using only

affine equality constraints, it is possible to compute p∗ in
closed form.
Remark 2: In case the condition in Remark 1 were satis-

fied, we would not need to approximate the "0-norm by its
convex envelop. It is then possible to employ the so-called
greedy methods to solve the regularized MPC problem, [28].

V. NUMERICAL EXAMPLES
In this section, we employ the regularized MPC for con-

trolling a drone while loitering above a designated location
with a certain loitering radius, rl, and speed, ω. The aim is
to use piecewise constant control signal to reduce the wear
of the actuators which control the heading of the vehicle.
These actuators are only activated when we switch between



two levels in the required control signals. As a result, using
piecewise control signals with minimal number of changes,
reduces the usage of these actuators and will hence reduce
the possibility of failure of them while loitering for long
periods of time.
The discrete-time state dynamics model of this system is

given as below

xs(k + 1) =







1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1







xs(k) +







0.005 0
0 0.005
1 0
0 1







[

u1(k)
u2(k)

]

,

where xs(k) =
[

x(k) y(k) vx(k) vy(k)
]T . We apply

the regular MPC to this control problem, as it is stated
in (4), where at each time step t and given xs(t), u(t − 1)
and xref(k), for k = 1, . . . , H , we solve the following
optimization problem

minimize
H
∑

k=1

([

x(k)
y(k)

]

− xref(k)

)T

Q

([

x(k)
y(k)

]

− xref(k)

)

+
H−1
∑

k=1

(u(k)− u(k − 1))T R (u(k)− u(k − 1))

+ (u(0) − u(t− 1))T R (u(0) − u(t − 1))

subj. to xs(k + 1) = Axs(k) + Bu(k), k = 0, 1, · · ·H − 1

− 50 $

[

x(k)
y(k)

]

$ 50, −60 $

[

vx(k)
vy(k)

]

$ 60,

k = 1, · · · ,H − 1

− 120 $ u(k) $ 120, k = 0, · · · ,H − 1

− 20 $ u(k)− u(k − 1) $ 20, k = 1, · · · , H − 1

xs(0) = xs(t),

(17)

where Q = 10I2, R = 8.45I2 and H = 5. Note that the tun-
ing of these parameters have been performed meticulousely,
particularly to quantify the trade off between the tracking of
the reference and size of changes in control input in a proper
manner. The tracking reference is generated recursively at
each time step, where at first the current position of the flying
object is projected onto the circle centered at the designated
location with radius rl, and then the reference for the next
H time steps is generated by simulating the movement of
the object along the circle with constant angular velocity ω.
Figures 1 and 2, illustrate the achieved performance using
this controller when rl = 20 and ω = 1. As can be seen
from Figure 1, the controller provides a good enough tacking
performance. However, the generated control signals are
always changing and on average include 94 switches between
consecutive values. In case we, instead, use the regularized
MPC, with the following formulation

minimize ‖u(0) − u(t − 1)‖2 +
H−1
∑

i=1

‖u(i− 1)− u(i)‖2

subj. to xs(k + 1) = Axs(k) + Bu(k), k = 0, 1, · · ·H − 1

− 50 $

[

x(k)
y(k)

]

$ 50, −60 $

[

vx(k)
vy(k)

]

$ 60,

k = 1, · · · ,H − 1

− 120 $ u(k) $ 120, k = 0, · · · ,H − 1

− 20 $ u(k)− u(k − 1) $ 20, k = 1, · · · , H − 1

l(X) ≤ ε

xs(0) = xs(t),

(18)

where l(X) =
∑H

k=1

([

x(k)
y(k)

]

− xref(k)
)T

Q
([

x(k)
y(k)

]

− xref(k)
)

,
and we have chosen εp = 0.3. This means that we have
decided to sacrifice 30% of the tracking performance to
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Fig. 1. The obtained tracking performance using MPC. The solid line
illustrates the generated reference at each time instant, and the dashed line
presents the position of the drone.
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Fig. 2. The generated control input signals using MPC.

achieve a piecewise constant control signal. Figures 3
and 4, illustrate the performance of this controller. As
can be observed form Figure 3, is even more uniform
than the previous case and this has been obtained by only
allowing 69 changes in the control signal, which illustrates
the effectiveness of the sum-of-norms regularization. This
results in 27% reduction in the usage of actuators.

VI. CONCLUSIONS
Sparse control has attained considerable attention lately.

Its ability to produce infrequently changing controls is mo-
tivated by applications where changes in the control signal
is associated with a cost or might wear out actuators. On
the other hand, sparse control is known to lead to com-
binatorial optimization problems and hence only solvable
for small problems. Sparse control has therefore not seen
much practical use. Recent developments in compressed
sensing and "1 regularization has inspired novel convex
formulations of sparse controls. These recent developments
might make sparse control practical and are therefore of great
interest. In this paper, we investigated the effectiveness of
sum-of-norms regularized MPC. Producing a good control



−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

x [m ]

y
[m

]

Fig. 3. The obtained tracking performance using regularized MPC. The
solid line illustrates the generated reference at each time instant, and the
dashed line presents the position of the drone.
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Fig. 4. The generated control input signals using regularized MPC.

performance using this control strategy, requires rigorous
and time-consuming tuning of the so-called regularization
parameter. The regularization parameter controls the tradeoff
between sparsity and the control performance. We, hence,
proposed an alternative formulation of the regularized MPC
problem, which allowed us to set the trade-off between the
control performance and regularization term, in a much more
intuitive and efficient manner, by setting the bound over the
control performance. This enabled us to produce the sparsest
solution possible, by sacrificing a preset amount of control
performance.
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