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Abstract

In many industrial robot applications it is a fact that the robot is programmed
to do the same task repeatedly. By observing the control error in the different
iterations of the same task it becomes clear that it is actually highly repetitive.
Iterative Learning Control (ILC) allows to iteratively compensate for and, hence,
remove this repetitive error.

In the thesis different aspects of iterative learning control are covered. Although
stability is the most important in practice the design aspect is also highlighted.
Several design schemes for iterative learning control methods are presented, in-
cluding first order as well as second order iterative learning control. An adaptive
approach to iterative learning control is also discussed. Many of the suggested
design methods are also given with stability and robustness results.

The application, industrial robot control, that has been used as a testbed through-
out the thesis is described. The description includes a general discussion on robot
modeling and control as well as a specific discussion on the implementation of
the functions needed in the commercial robot control software in order to make it
possible to apply iterative learning control.

The suggested iterative learning control design methods are all tested on the robot.
Some practical aspects on the path following problem for industrial robots using
iterative learning control are discussed. A potential solution to the path tracking
problem using additional sensors is given, although it is not yet implemented on
the robot.
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In Part III, Chapter 8, additional results, compared to Norrlöf (1998), come from
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and the presented solution comes from

S. Gunnarsson and M. Norrlöf. terative learning control of a flexible mechan-
ical system using accelerometers. In Preprints of the 6th IFAC symposium
on robot control, Vienna, Austria, Sep 2000

The material in Part IV has previously appeared in,
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1

Introduction

Combining theory and practice is one of the aims of this work. In the thesis a
commercial control system has been used in order to compare different Iterative
Learning Control (ILC) strategies in, what could be, a possible industrial applica-
tion. The stability theory for linear systems using ILC is extensively covered and
many design methods for ILC updating schemes are presented.

1.1 Thesis Outline

The thesis is divided into six parts; I. Background, II. The Application, III.
Classical ILC, IV. Second Order ILC, V. An Adaptive Approach to ILC, and
finally VI. Final Remarks.

Part I consists of three chapters. The first, Chapter 2, gives a general introduction
to ILC, including the history of ILC as well as a first example showing the applica-
bility of ILC. Chapters 3 and 4 present the framework used throughout the thesis.
Chapter 3 focuses on the formulation of the ILC problem and the general descrip-
tion of ILC updating formulas. Definitions concerning stability of systems using
ILC are also included. In the thesis two different formulations of ILC are used, the
tracking formulation and the disturbance rejection formulation, in Chapter 3 the

1



2 Introduction

two formulations are described in detail. It is also shown how the two formulations
relate to each other in the case when the controlled system is linear. In the last
chapter of Part I a general theory for stability of systems using ILC is presented.
This theory is the base for the results in Parts III-V.

The application part, Part II, is more stand-alone than the other parts of the thesis.
The main reason for this is that the other parts are all based on Part I while the
application part can be read independently from the other. The first of the three
chapters in Part II (Chapter 5) gives a background to why the robot application
was chosen as the testbed for ILC in the thesis. It also contains a general discussion
on the work that has been done in the commercial robot control system in order to
make it possible to apply ILC. In Chapter 6 the robot application is described from
a general perspective, including robot modeling and control. This chapter gives a
review of material well known in the area, see e.g., Spong and Vidyasagar (1989),
Spong et al. (1992), and Stadler (1995). Chapter 6 also contains an overview of
the ABB industrial robot family. The actual platform used in all the experiments
in the thesis is described in Chapter 7. This chapter also includes a description of
how the models, used in the ILC design in Parts III – V, are found using data from
the system and standard tools for system identification (Ljung, 1995).

In Part III the classical ILC (as it is defined by the author) is discussed. Chapter 8
contains many design strategies for first order ILC and the proposed design methods
are also tested on the industrial robot. In Chapter 9 some limitations on ILC are
highlighted. The limitations stem from the fact that the controlled variable and
the measured variable are not the same in many applications. This implies that
although the measured error is minimized using ILC, the true control error is not
minimized. A possible solution for the case where ILC is applied to industrial
robots is also presented but implementing the proposed solution on the industrial
robot is left for future work.

Part IV gives a frequency domain approach to the second order ILC analysis and
design. In Chapters 10 and 11 a background and a general theory for stability of
second order ILC systems are given. Chapter 12 suggests possible design methods
for second order ILC and the methods are also applied to the industrial robot. Part
IV is concluded in Chapter 13.

Part V is the most recent work and it is on an adaptive approach to ILC. The
inspiration to this approach comes from the optimization based approach to ILC,
presented in Part III, and from general estimation theory, see for example Anderson
and Moore (1979). The resulting adaptive ILC algorithm is described in Chapter
14 and in Chapter 15 it is applied to the industrial robot. The conclusions from
this part are presented in Chapter 16. Finally, in Part VI the work is summarized
and some areas are pointed out where further work is needed.
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1.2 Contributions

The main contributions of the thesis are found in Part II, Chapter 7, and in Parts
IV–V. Some of the results in Part I, Chapter 4, and in Part III are also new. The
main contributions are summarized according to:

• The disturbance rejection formulation of ILC in Section 3.2, originally pre-
sented in Norrlöf (1998), and the ILC method based on disturbance estima-
tion in Section 3.5 and Section 4.3.

• A general framework for analysis of linear iterative systems in Section 4.1
using ideas from Norrlöf (1998). Section 4.1.4, the comparison of the stability
result in time domain with the result in frequency domain.

• The implementations of the functions needed in the commercial robot control
system in order to incorporate ILC, presented in Chapter 7.

• The experiments on the industrial robot, described in Chapter 8 for the first
order ILC, Chapter 12 for the second order ILC, and finally, Chapter 15 for
the adaptive approach to ILC.

• In Chapter 9, to highlight the possible limitations of ILC when the “true”
control error is not measurable. In the same chapter a possible solution is
presented for the path following problem in the industrial robot case. The
solution is based upon additional accelerometer sensors mounted on the wrist
of the robot.

• Frequency domain analysis of second order ILC systems in Part IV. The
frequency domain behavior described in Chapter 11 and the design schemes
resulting in two second order ILC algorithms in Chapter 12.

• Part V, the combination of an optimization based approach to ILC and ideas
from signal estimation theory. The filter interpretation of the matrix formula-
tion of the linear iterative systems in Section 8.2.5 and Chapter 14 leading to
an efficient implementation of the adaptive ILC algorithm in Section 14.1.6.

1.3 Reading Directions

For readers already familiar with ILC, Chapter 3 and Chapter 4 could be browsed
in order to catch up with the notation used in the thesis. Most important are
Section 3.1 and Section 3.2 where the ILC formulations used throughout the thesis
are presented. In Chapter 4, the stability results for ILC systems are given in Sec-
tion 4.2 and the theory behind these results is explained in Section 4.1. It is however
possible to use the stability results in Section 4.2 without reading Section 4.1.
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Part II can be skipped by readers only interested in the ILC theory. To completely
understand the application examples presented in Parts III–V it can however be
necessary to browse through Section 6.2. Also Chapter 5 is of general interest.

Part III to Part V contain more specialized material on ILC. An application ori-
ented reader finds probably what he/she needs in Part III, Chapter 8. For more
advanced applications where the controlled system is time variant and/or iteration
variant the adaptive ILC approach in Part V could be worth considering.

For the reader already familiar with first order ILC and first order ILC design
Chapter 8 can be skipped. Chapter 9 however should be read since it highlights a
problem that is present in many applications of ILC. In Chapter 9 ideas on how
to solve this problem are also presented. Part IV and Part V contain material of
general interest also for a reader familiar with ILC. Both parts are constructive
and results in design methods for ILC updating schemes.

The conclusions and the discussion on possible future work in Part VI is of general
interest.



Part I

Background
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2

Introducing the Ideas

2.1 Background

Before going into a more technical discussion on ILC we give a short note on the
history and a brief overview of possible connections with other areas in the control
field.

2.1.1 A brief history

The idea of using an iterative method to compensate for a repetitive error is not
new. When letting a machine do the same task repeatedly it is, at least from an
engineering point of view, very sound to use knowledge from previous iterations
of the same task to try to reduce the error next time the task is performed. The
first academic contribution to what today is called ILC appears to be a paper
by Uchiyama (1978). Since it was published in Japanese only, the ideas did not
become widely spread. What is a bit remarkable is however that an application for
a US patent on “Learning control of actuators in control systems” (Garden, 1971)
was done already in 1967 and it was accepted as a patent in 1971. The idea in the
patent is to store a “command signal” in a computer memory and iteratively update
this command signal using the error between the actual response and the desired

7
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response of the actuator. This is clearly an implementation of ILC, although the
actual ILC updating equation is not explicitly formulated in the patent.

From an academic perspective it was not until 1984 that ILC started to become an
active research area. In 1984 Arimoto et al. (1984a), Casalino and Bartolini (1984),
and Craig (1984), independently published papers about a method that iteratively
could compensate for model errors and disturbances. The name Iterative Learning
Control was first introduced in Arimoto et al. (1984b). In e.g., Arimoto et al.
(1984a), the method was simply referred to as a “bettering process”.

The development of ILC stems originally from the robotics area where repetitive
motions show up naturally in many applications. Examples of contributions where
ILC is applied in robotics are Arimoto et al. (1984a), Mita and Kato (1985), Ari-
moto (1985, 1991), Bondi et al. (1988), Poloni and Ulivi (1991), Burdet et al.
(1997), Casalino and Bartolini (1984), Guglielmo and Sadegh (1996), Horowitz
et al. (1991), Horowitz (1993), Jiang et al. (1999), and Lange and Hirzinger (1999).

Examples of surveys on ILC are, Horowitz (1993), Moore (1993), Moore (1998a),
and Bien and Xu (1998). Moore (1998a) contains a very good overview of the ILC
research. A categorization of much of the publications on ILC up to 1998 is also
given in the article.

The focus for the ILC research in the late 90’s and in the beginning of the 00’s is
not so easy to establish but it seems that it has moved from being very focused
on stability towards also considering design and performance. Examples in this
direction are Bien and Xu (1998), Norrlöf (2000a), Lee et al. (2000), and Longman
(2000).

2.1.2 ILC in relation to other techniques

The classical formulation of the Iterative Learning Control problem is, given a
reference trajectory and a system, find (using an iterative procedure) the input to
the system such that the output follows the desired trajectory as well as possible.
Clearly, if a description of the system is available, the optimal solution is to invert
this description (if possible) and use this to calculate the input that produces the
desired output. This is a one-step procedure which can be considered as a feed-
forward control scheme. This approach has been applied successfully in for example
robotics control where it is referred to as inverse dynamics (Spong and Vidyasagar,
1989).

If the system representation, describing the mapping from input to output, is not
completely known, then it is obvious that the inverse dynamics approach will never
achieve a perfect tracking. If instead it is assumed that the structure of the system
is known while the exact value of one or more of the parameters are unknown,
another well known technique can be applied, namely identification. Normally
identification together with control is referred to as adaptive control. The adaptive
control approach is very appealing since it will, theoretically, give a good behavior
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for all input signals, during all working conditions. It should be noted that this is
true as long as the structure of the system description is correct and some conditions
on excitation are met.

Iterative Learning Control is an alternative to the inverse dynamics and the adap-
tive control approaches in the case when, given a particular reference trajectory
and a system, the input signal shall be calculated such that the output follows
the desired output as well as possible. Using ILC the control signal is found by
an iterative procedure. This can be seen as an iterative search procedure which
obviously has to converge to give a successful result. Convergence, or stability as
it will be referred to in the thesis, has been and still is an important research field
for ILC. The research in the area focuses more and more on the transient behavior
and the design of ILC schemes that give a desired transient behavior. This means
that practical aspects such as convergence speed and robust performance become
more and more important.

2.2 An Introductory Example of ILC

The concepts of Iterative Learning Control are best presented in an example. As-
sume that a reference signal r(t) over a finite time interval [0, tf ] is given and that
a system should track this reference trajectory repeatedly with a high accuracy.
A typical application where this problem arises is in the control of robot arms,
see e.g., Arimoto et al. (1984a), Arimoto (1991), Horowitz et al. (1991), Horowitz
(1993), Craig (1988), and Burdet et al. (1997). The robot arm will also be used as
an example in the thesis and it is described in more detail in Part II.

Note that also other control strategies apply to the given control problem. For ex-
ample it is straightforward to apply an adaptive controller (Slotine and Li, 1991) or
a tuning scheme for the feedback and feedforward controller, e.g., iterative feedback
tuning (IFT) (Gunnarsson et al., 1999; Hjalmarsson et al., 1994).

Now consider the reference signal and the system depicted in Figure 2.1. Assume
that the reference signal is the position of one joint of a robot. The system GC
can be seen as a discrete time SISO model of the closed loop involving the robot
joint and its controller. The joint motion starts in the origin and it is assumed
that every time this motion is repeated the system starts from the same initial
condition, i.e., the same initial position, initial speed, and so on.

Assume that it exists an initial guess of the input to the system, denoted by u0(t).
Feeding the system with this signal gives,

y0(t) = GC(q)u0(t) (2.1)

where q is the time shift operator. The tracking error is defined as

e0(t) = r(t) − y0(t) (2.2)
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(b) The system using ILC.

Figure 2.1 An example of a system controlled using ILC.

i.e., the difference between the desired output and the actual system output.

The index on y, u, and e is called iteration index and indicates how many times
the iterative motion has been repeated. Note that the first time the motion is
performed there have been no repetitions, and accordingly the index is 0.

The idea behind ILC is now introduced. Assume that

1. the initial condition is reset every new iteration and

2. GC is time invariant.

These assumptions will be made more general in the next chapters.

This leads to the conclusion that the tracking error will be the same if the input
signal is kept the same. For simplicity it is assumed that there are no disturbances
acting on the system. The ILC algorithm utilizes the assumptions and, by using an
iterative search method, it finds the optimal input to the system. Optimal in this
particular case means to find the signal u(t) = G−1

C (q)r(t). One possible approach
to an ILC updating formula for the control input of the system is given by

u1(t) = u0(t) + L(q)e0(t) (2.3)

where L(q) is a linear discrete time filter. This updating formula is the most
common in the ILC literature, used in e.g., Arimoto et al. (1984a), Togai and
Yamano (1985), and Park and Hesketh (1993). The results in (2.2), (2.1), and
(2.3) can be generalized according to

ek(t) = r(t) − yk(t) (2.4a)
yk(t) = GC(q)uk(t) (2.4b)

uk+1(t) = uk(t) + L(q)ek(t) (2.4c)



2.2 An Introductory Example of ILC 11

This is a 2-dimensional problem with a time dimension and an iteration dimension.
The latter is introduced since there is a coupling between iterations by the updating
of the control signal in (2.4c). In Figure 2.1, the ILC algorithm is shown as a block
having uk and ek as input. The output is a sequence, {uk+1(t)}tf0 , of control
actions. The output is chosen like this to stress the fact that the ILC algorithm
does not have to be causal, i.e., uk+1(t) can depend on uk(t̄) and ek(t̄) for t̄ > t.

Using (2.4a), (2.4b), and (2.4c), it is possible to arrive at the following expression
for the transformation of the error between the iterations,

ek+1(t) = (1 −GC(q)L(q))ek(t) (2.5)

A sufficient condition for the error to decrease is that

|1−GC(eiω)L(eiω)| < 1 (2.6)

for all ω ∈ [−π, π]. The sampling time is here assumed to be 1. This has become
a standard stability criterion for the ILC updating formula in (2.4c) and it is
presented in this form in e.g., Mita and Kato (1985), Poloni and Ulivi (1991), and
Gunnarsson and Norrlöf (1997a).

To better understand the stability properties of the method we give a numerical
example.

Example 2.1 A Numerical Example

Consider the system

GC(q) =
0.09516q−1

1− 0.9048q−1
(2.7)

Assume that that it starts from zero initial condition and that the reference signal
is given by Figure 2.2(b). Two simulations using the updating formula for the
control signal in (2.4c) with two different L(q) are performed where L(q) is chosen
according to

L(q) = q (2.8)

and

L(q) = 1 (2.9)

The criterion for stability is given by (2.6). The expression can be interpreted
in the following way: The Nyquist curve for GC(q)L(q) should be contained in a
region in the complex plane given by a unit circle centered at 1. In Figure 2.2(a)
the Nyquist curves are shown for the two choices of L(q) given by (2.8) and (2.9).
When L(q) is chosen according to (2.8) the criterion is fulfilled for all frequencies.
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Figure 2.2 Analysis of the stability of the ILC feedback given by Example 2.1
by examining the criterion (2.6) and by doing simulations.
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Filter L Result from execution of
dhfnorm in MATLABTM

L(q) = q norm between 0.95002 and
0.95097 achieved near 3.1416

L(q) ≡ 1 norm between 1.05 and 1.051
achieved near 3.1416

Table 2.1 Results of ∞-norm calculation.

Choosing L(q) as in (2.9), however, gives a Nyquist curve that leaves the stability
region for high frequencies.

Another method of analyzing the stability is to calculate

sup
ω∈[−π,π]

|1−GC(eiω)L(eiω)| (2.10)

An approximate measure of (2.10) can be found in MATLABTM using the command
dhfnorm. Results from this calculation are shown in Table 2.1. Note that using
L(q) = q results in a norm less than 1 while using L(q) = 1 gives a norm greater
than 1. This is the same result as was found using the Nyquist diagram. Yet
another way of examining the stability is of course simulations. In Figure 2.2(c)
the result of feeding the system with the initial guess of the input, u0(t) = r(t), is
depicted. We can see that there is a small tracking error. By using the ILC method
the error can be reduced and in Figure 2.2(c) the results from two simulations using
the two different L(q) are shown. The figure shows how the 2-norm or the energy of
the error signal develops over time. Clearly, using L(q) = q gives a stable behavior
but L(q) = 1 results in a growing error after a first phase with rapidly decreasing
error. ❏

Note that, in the stable case, a non-causal filter L(q) was used.

Remark 2.1
Although the stability criterion in (2.6) is only sufficient it is shown in Figure 2.2(c)
that in the case when the criterion is not fulfilled in Example 2.1 it leads to a bad
behavior. The size of the error is reduced in the first iterations before it starts to
grow. The reason for this behavior can be understood by considering the frequency
response of |1−GC(eiω)L(eiω)| in (2.5). For low frequencies the amplitude is much
smaller than one but for high frequencies the error will be attenuated since the
amplitude is larger than one, cf. Figure 2.2(a). In Example 2.1 the energy of the
error is dominated by the low frequency components in the first iterations. With the
iterations this part of the error is however rapidly decreased. After some iterations
the high frequency part of the error will instead have grown so that the energy in
this part is greater than the low frequency part. This is what can be seen after
about 10 iterations in Figure 2.2(c).
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Remark 2.2
From an application point of view the difference between the two suggested ILC
algorithms in Example 2.1 might not be so evident since, normally, the learning is
switched off after a few iterations. As indicated by Figure 2.2(c) the difference is
not so large in the first 5-10 iterations.

In this introductory example of ILC a frequency domain approach for the stability
analysis is used. This approach has been applied in more general cases in, e.g.,
Gunnarsson and Norrlöf (1997b); Horowitz (1994); Mita and Kato (1985); Norrlöf
and Gunnarsson (1998), and it will be returned to in the analysis in Chapter 4. A
time domain approach to solve the same problem is used in e.g., Arimoto (1985);
Arimoto et al. (1984a, 1985). This is also covered in Chapter 4.

The essential ideas and properties of Iterative Learning Control can now be sum-
marized:

• The controlled system repeats the same course of events over and over again.
This is typically the case, for instance, in robotics where the same trajectory
is repeated every time the same robot program is executed.

• The system starts from the same initial conditions at every iteration.

• Applying ILC to the system leads to a reduced control error, measured in
some norm. This is a property that is required of the applied ILC updating
equation.

In the following chapters these items will be more thoroughly discussed.



3

Problem Description

In this chapter two formulations of the ILC problem will be discussed. The first,
called the tracking formulation, is a traditional formulation of the ILC problem,
cf. e.g., Moore (1993). The second, the disturbance rejection formulation, was
introduced in Norrlöf (1998) and it is an alternative way of posing the ILC problem.
As will be shown in the thesis, sometimes it will be an advantage to use the first
formulation while in other cases the second is to be prefered. Furthermore the ILC
updating formula is discussed and the definition of stability of an ILC system is
made.

3.1 The Tracking Formulation

Consider the system depicted in Figure 3.1. It is a system with four inputs, the
reference signal r(t), an externally generated control signal u(t), and two non-
controllable disturbances w(t) and v(t). The measured output is y(t) and the
controlled variable is denoted z(t). Note that the system T can have an internal
feedback.

The general goal in the tracking formulation is to use the information from the
measured output to iteratively update the control signal u(t) such that z(t) tracks

15
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the reference as well as possible. This can be seen as an optimization problem
where the optimization problem is solved iteratively, using the true system. The
problem of iteratively finding the optimal control input has been discussed in, e.g.,
Plant (1968) but the tracking problem is not covered there.

+ +

T

Tu

Tr

Tv

Tw

y(t)r(t)

u(t)

v(t)

w(t)

z(t)

Figure 3.1 The system representation used in the tracking formulation.

3.1.1 System description

Time domain representation

The system T that will be used in the thesis is given by

zk(t) = Tr(q)r(t) + Tu(q)uk(t) + Tw(q)wk(t) (3.1a)
yk(t) = zk(t) + Tv(q)vk(t) (3.1b)

This is obviously a special case of a more general system description. For example,
it might not always be true that a noise corrupted zk(t) can be measured as in
(3.1b). In Chapter 9 some problems concerning this will be discussed.

It is also possible to pose the system in (3.1) in a matrix form,

zk = T r,kr + T u,kuk + Tw,kwk (3.2a)
yk = zk + T v,kvk (3.2b)

with

zk =
(
zk(0), . . . , zk(n− 1)

)T (3.3)

and r, uk, wk and vk defined accordingly. Compared to (3.1a) this is a more
general description since it captures both time variant as well as iteration variant
systems.
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A linear time invariant and causal system, Tr(q), is in matrix form described by a
Toeplitz matrix

T r =


gTr(0) 0 . . . 0

gTr(1) gTr(0)
...

...
. . . 0

gTr (n− 1) gTr(n− 2) . . . gTr(0)

 (3.4)

where gTr (t), t ∈ [0, n− 1] are the impulse coefficients of Tr, the sampling time is
assumed to be 1, and n is the number of samples. The impulse coefficients represent
the response of the system to an impulse input. In (3.4) it is also assumed that
the system description is not k-dependent. If the system is linear time variant, the
matrix T r does not become a lower triangular Toeplitz matrix but instead a general
lower triangular matrix. The matrices T u, Tw, and T v are given in the same way.
The symbols describing the vectors and matrices in the matrix description are
throughout the thesis given in bold face to make it easier to distinguish between
the representation in (3.1) and the matrix description.

Note that the disturbances have been divided into two classes in the system de-
scriptions in (3.1) and (3.2). The first disturbance, wk(t), is a system disturbance,
which acts as a disturbance on the controlled variable. This disturbance should be
compensated for by the ILC algorithm. The other disturbance, vk(t), acts on the
measurements only and this disturbance should, if possible, be neglected by the
ILC algorithm.

Frequency domain representation

For the frequency domain analysis the system is assumed to be linear time invariant
as in (3.1) with Tr(q), Tu(q), Tw(q), and Tv(q) stable. The corresponding frequency
domain representation is found using the Fourier transform,

Tr(eiω) =
∞∑
l=0

gTr (l)e
−iωl (3.5)

where gTr (l) are the impulse coefficients for the system Tr(q). Given Tr(q), the
frequency domain representation can also be found by simply replacing q with eiω

in Tr(q). The frequency domain representations of Tu(q), Tw(q), and Tv(q) are
found in the same way.

The signals zk(t), r(t), uk(t), wk(t), yk(t), and vk(t) are transformed to the fre-
quency domain using

X(ω) =
∞∑
l=0

x(l)e−iωl (3.6)
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and it is assumed that this sum exists and is finite for all ω.

This gives the resulting frequency domain representation,

Zk(ω) = Tr(eiω)R(ω) + Tu(eiω)Uk(ω) + Tw(eiω)Wk(ω) (3.7a)

Yk(ω) = Zk(ω) + Tv(eiω)Vk(ω) (3.7b)

For iterative systems this is an approximation since in the calculations of the Fourier
transform it is assumed that the time horizon is infinite. For ILC systems this is
not the case. Instead, the tracking performance is considered over a finite time
horizon. When using the frequency domain representation to analyze ILC systems
the fact that it is an approximation has to be taken into account.

3.1.2 ILC formulation

Now the tracking formulation of ILC is defined.

Definition 3.1 (The tracking formulation of ILC)
Assume that a system T according to Figure 3.1 is given and that it can be described
by one of the system descriptions given in (3.1) and (3.2).

The tracking formulation of ILC uses an iterative updating formula for the control
signal, according to

uk+1 = h(r,yk, . . . ,yk−j ,uk,uk−1, . . . ,uk−l) j, l ≥ 0 (3.8)

to make the input uk and the controlled variable zk converge to the minimum of
some criterion function

V (r, zk,uk) ≥ 0 (3.9)

when k →∞. Additional constraints can be applied to the control signal, uk(t).

Remark 3.1
Note that in many of the presented ILC schemes, both in the literature as well as
in the thesis, the criterion that should be minimized is never explicitly stated.

Now an example of a case where the tracking formulation of ILC applies.

Example 3.1

An example of a realization of the system T from Figure 3.1 is shown in Figure 3.2.
In this case it contains both a feedback controller F and a feedforward controller Ff ,
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wk(t)
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vk(t)

yk(t)

uk(t)

Figure 3.2 An example of a realization of the system T .

controlling the system G. Given a reference signal and an ILC updating formula,
like (2.4c), the tracking formulation of ILC applies with,

Tr(q) =
(F (q) + Ff (q))G(q)

1 + F (q)G(q)

Tu(q) =
F (q)G(q)

1 + F (q)G(q)

Tw(q) =
G(q)

1 + F (q)G(q)

Tv(q) =
1

1 + F (q)G(q)

Note that a minimization criterion is not explicitly stated in this case, cf. Remark
3.1. ❏

Definition 3.1 is important in order to understand exactly what an ILC algorithm
formulated according to the tracking formulation actually does. In fact, most of
the ILC schemes found in the literature so far have the structure of the tracking
formulation. It is possible to add also yk+1 as an argument to the mapping in
(3.8). This generalization makes it possible to include in this formulation also some
approaches which adapt the feedback controller online, e.g., Owens and Munde
(1997), or that use measurements not only from the previous iteration but also
from the current iteration, e.g., Chen et al. (1996a,b). The latter approach is also
called Current Iteration Tracking Error approach (CITE). It is important to stress
that the feedback of the current iteration tracking error in ILC is nothing else than
what is called feedback in traditional control theory.

Before giving a general background to the ILC updating equations we shall describe
the disturbance rejection formulation of ILC.
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3.2 The Disturbance Rejection Formulation

In the previous section it was shown how ILC can be used to solve a tracking
problem. Another case where ILC can be applied is when an unknown but partly
repetitive disturbance is acting on a system. This will here be referred to as the
disturbance rejection formulation of ILC.

3.2.1 System description

The goal in ILC is usually to, iteratively, find the input to a system such that some
error is minimized. In the disturbance rejection formulation, the goal is to find an
input uk(t) such that the output zk(t) is minimized while possibly having some
restriction on the control signal. If the system is known and invertible, and the
disturbance dk(t) is known, the obvious approach would be to filter dk(t) through
the inverse of the system and then use the resulting uk(t) as a control input. This
means that the optimal input can be expressed as

uk(t) = −(G0(q))−1dk(t)

if it is assumed that the system is discrete time linear time invariant. More generally
the system description is considered to be

zk = G0uk + dk (3.10a)
yk = zk + nk (3.10b)

where, as described in Section 3.1, bold face letters are used to make it easier
to separate the scalar description, e.g., yk(t) = zk(t) + nk(t), from the vector
description. Assume that the disturbance dk can be described as

dk+1 = dk + ∆dk (3.11)

The vectors zk,uk,dk,yk,nk,∆dk ∈ Rn are defined according to (3.3) and the
matrices G0 ∈ Rn×n in the same way as in Section 3.1.1.

+ +G0
zk(t)uk(t) yk(t)

dk(t) nk(t)

Figure 3.3 The system considered in the disturbance rejection approach.
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3.2.2 ILC formulation

Using the system description from the previous section, the general disturbance
rejection formulation of ILC can now be defined.

Definition 3.2 (The Disturbance Rejection formulation of ILC)
Suppose that there is a system G0, as in Figure 3.3 that can be described by (3.10)
with a disturbance given by (3.11), acting on the output.

The disturbance rejection formulation of ILC uses an iterative updating formula
for the control signal, according to

uk+1 = h(yk, . . . ,yk−j ,uk,uk−1, . . . ,uk−l) j, l ≥ 0 (3.12)

to make the control signal, uk(t), and the output signal zk(t) converge such that
some criterion function

V (zk,uk) ≥ 0

is minimized when k → ∞. Additional constraints can be applied to the control
signal, uk(t).

In the next section the two formulations of ILC are compared in the case when the
system to which ILC is applied is linear.

3.3 Comparison of the Two ILC Formulations

The tracking formulation is a well established method of formulating the ILC prob-
lem and therefore it can be of general interest to see how it relates to the disturbance
rejection formulation.

First consider the introductory example of ILC in Section 2.2. This example is
formulated according to the tracking formulation but it can easily be transformed
into the disturbance rejection formulation and in Figure 3.4 this is shown. In the
disturbance rejection formulations the system GC is replaced with G0 = −GC ,
the output is redefined as yk(t) = ek(t). The goal in the disturbance rejection
formulation in Figure 3.4(b) becomes to find a control signal uk(t) such that the
disturbance d(t) = r(t) is completely compensated for.

It is also possible to reformulate the general tracking formulation in (3.1) as a
disturbance rejection problem. In the scalar case, let G0(q) = Tu(q), dk(t) =
(Tr(q)− 1)r(t) + Tw(q)wk(t), and nk(t) = Tvvk(t), to apply the disturbance rejec-
tion formulation of ILC. In this case the reference, r(t), is treated a bit different
compared to Figure 3.4(b) but for the ILC algorithm the goal is still to minimize
zk(t) and compensate for the disturbance dk(t).
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+
+

-

GC

ILC

yk(t)uk(t)

{uk+1(t)}tf0 r(t)ek(t)

(a) The ILC example from Section
2.2.

+
+

G0

ILC

uk(t)

{uk+1(t)}tf0 d(t)yk(t)

+

(b) Corresponding disturbance rejec-
tion formulation.

Figure 3.4 The example from Figure 2.1 and its corresponding disturbance
rejection formulation.

To transform the disturbance rejection formulation into a tracking formulation in
general, just let Tu(q) = G0(q), Tw(q) = 1, wk(t) = dk(t), Tv(q) = 1, vk(t) = nk(t),
and r(t) = 0. The goal for the ILC algorithm then becomes to track a zero reference
signal.

3.4 The ILC Updating Formula

In this section some different approaches to updating the signal uk(t) in the ILC
algorithms will be discussed. The ILC updating formulas can be categorized in two
groups according to how the information from previous iterations is utilized. The
two groups are now defined formally.

Definition 3.3 (First order ILC)
An ILC updating formula that only uses measurements from the previous iteration
is called a first order ILC.

An example of a first order ILC algorithm is the one used in Example 2.1.

Definition 3.4 (High order ILC)
When the ILC updating formula uses measurements from more than the previous
iteration it is called a high order ILC. The term second order, third order, etc., is
used when the order of the ILC algorithm should be emphasized.

An ILC algorithm is not only characterized by whether it is a first order or a high
order ILC algorithm. In the next two sections the ILC updating formula will be
divided into the linear case and the nonlinear case.
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3.4.1 Linear ILC

The class of linear ILC updating formulas are naturally divided into first order and
higher order ILC algorithms.

First order ILC

Several ILC algorithms and ILC algorithm structures have been suggested in liter-
ature. Common for most of the suggested algorithms, e.g., Arimoto et al. (1984a),
Arimoto (1985), Mita and Kato (1985), Hara et al. (1988), Tomizuka et al. (1989),
Moore (1993), Bien and Xu (1998), Craig (1988), Horowitz (1993), and de Roover
(1996a), is that the structure is given by

uk+1(t) = Q(q)(uk(t) + L(q)ek(t)) (3.13)

where Q(q) and L(q) are considered to be linear transfer operators or simply dis-
crete time filters. In many of the contributions, the ILC is considered to be im-
plemented in continuous time. This is, for example, the case in Arimoto et al.
(1984a). Equation (3.13) is easily adjusted to this case: Just change the delay
operator q to the derivative operator p. The general linear first order ILC in (3.13)
has been presented stepwise with early contributions by Togai and Yamano (1985),
and Mita and Kato (1985). The use of the Q filter is suggested in Hara et al. (1988)
and Tomizuka et al. (1989). In many of the references, the Q-filter is chosen as a
constant equal to 1.

An even more general form of the first order ILC updating formula, is given by the
following generalization of (3.13),

uk+1 = Qk(uk +Lkek) (3.14)

Here, the matrices Qk and Lk can be realizations (according to (3.4)) of iteration
as well as time variable filters.

High order ILC

Although most contributions on ILC have been on the first order case, the idea of
utilizing the measurements from more than the previous iteration has been covered
in many articles. In Liang and Looze (1993) two dimensional transforms are used
to analyze the behavior of the system in both the time and the iteration directions.
In the paper by Arimoto (1991) the errors from previous iterations are used in an
indirect way. Chen et al. have also investigated the use of high order ILC and the
main reference is Chen et al. (1998), but the issue is also discussed in Chen et al.
(1997a,b). High order ILC has also been covered in e.g., Bien and Huh (1989),
Bien and Xu (1998) and Norrlöf and Gunnarsson (1999).
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A general linear time invariant high order ILC can be written according to,

uk+1(t) =
k∑

j=k−N+1

(
Qk−j+1(q)

(
uj(t) + Lk−j+1(q)ej(t)

))
(3.15)

where Qj(q) and Lj(q), j = 1, . . . , N represent linear transfer operators. The
control signal for the next trial is calculated from the control signals and the errors
in the N previous iterations. This represents an Nth order ILC algorithm.

To understand the concept of high order ILC algorithms, assume that the filters
Lj are constants, i.e.,

Lj(q) = lj , j = 1, . . . , N (3.16)

and Q1 = 1, Qj = 0 for j > 1. From (3.15) it follows that,

uk+1(t) = uk(t) +
k∑

j=k−N+1

lk−j+1ej(t) (3.17)

The control signal at time t in iteration k+1 is equal to the previous control signal
plus a weighted sum of the errors at time t in the N previous iterations. This
can be interpreted as filtering of the error in the iteration direction with the filter
impulse coefficients lj .

The time shift operator q is well known, but here an iteration shift operator will
be introduced. This operator, denoted qk is defined as,

qkuk(t) = uk+1(t) (3.18)

For a first order ILC

uk+1(t) = uk(t) + γek(t) (3.19)

the corresponding filter interpretation

uk(t) = P (qk)ek(t)

becomes

P (qk) =
γ

qk − 1
(3.20)

i.e., a pure integrator. By introducing also ek−1 in the updating equation a second-
order ILC is obtained,

uk+1(t) = uk(t) + γ1ek(t) + γ2ek−1(t) (3.21)

This kind of ILC algorithm is often referred to as a two-step algorithm. The filter
corresponding to (3.21) is

P (qk) =
γ1qk + γ2

qk(qk − 1)
(3.22)
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which, in the interpretation of a controller, is of PI-type.

In Carlsson (2000) a kind of high order ILC is suggested that has the following
structure: The filters Qj , 1 ≤ j ≤ N , are chosen as

Qj(q) =

{
1 j = 1
0 j > 1

and the filters Lk,j(q) are chosen as

Lk,j(q) = γ(k)
L(q)
N

with L(q) designed using a design method for first order ILC algorithms. The
function γ(k) is defined as

γ(k) =

{
1 if k = N · l with l ∈ Z+

0 otherwise

With this method it is possible to run a batch of iterations and use the average of
the errors in the updating equation. This can be used as a way to reduce the effect
of measurement disturbances in the ILC algorithm. Other possible approaches for
doing this will be presented in Section 3.5 and in Part V.

General linear ILC

Inspired by the results from the previous section it is possible to introduce a gen-
eral linear ILC updating formula. As seen before, the updating formula can be
interpreted as a filtering of the error and the control signal in both the t- and the
k-direction. This can be formalized by introducing a 2-dimensional filter in the
ILC updating formula. The ILC algorithm is in this formalism given by,

uk(t) = P (qk, q)ek(t), k = 0, 1, 2, . . . t ∈ [0, tf ] (3.23)

with qk according to (3.18) and where P (qk, q) is a rational function

P (qk, q) =
PB(qk, q)
PA(qk, q)

(3.24)

The functions PA(·, ·) and PB(·, ·) are both polynomial functions in qk and q. The
polynomials PA and PB can be written as polynomials in qk with coefficients being
polynomials in q. This is shown in an example.
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Example 3.2

The ILC,

uk+1(t) = uk(t) + L1(q)ek(t) + L2(q)ek−1(t)

can be expressed using the representation with qk and qt as

uk+1(t) =
L1(q)qk + L2(q)

qk − 1
ek(t) =

PB(qk, q)
PA(qk, q)

ek(t)

where PB and PA are both polynomials in qk, with coefficients that are polynomials
in q. ❏

Next nonlinear ILC will be discussed briefly.

3.4.2 Nonlinear ILC

Most of the work in the area of ILC has been done on linear ILC updating for-
mulas. In the tracking formulation of ILC presented previously in this chapter the
description of the ILC updating equation was,

uk+1 = h(r,yk,yk−1, . . . ,yk−j ,uk,uk−1, . . . ,uk−l)

This mapping can be a general mapping from the reference signal, the previous
measurements, and the previous control signals. In this very general framework
not so many results are available. There are, however, some results in the survey on
ILC by Moore (1993) and in a recent book edited by Bien and Xu (1998). Moore
has devoted a chapter to a discussion on the use of Artificial Neural Networks
(ANN) in ILC. This can be seen as a kind of nonlinear black-box identification
approach and in this context not only the control signal changes over the iterations
but also the ILC algorithm. For a more thorough discussion of this kind of ILC
approach see Moore (1993), Bien and Xu (1998) and the references found there.

Another possible approach that leads to an overall nonlinear ILC is to combine
a system identification and model based design procedure for the ILC algorithm.
This is discussed in Norrlöf (2000a) and in Part V.

3.5 ILC Using Disturbance Estimation

After the general discussion on ILC updating formulas in the previous section an
example is now given on of how an ILC algorithm can be found in a systematic way.
This approach can be applied to both formulations of ILC but here the disturbance
rejection formulation will be used.
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If the system G0 in (3.10) is a discrete time linear time invariant system, then the
following equations give a mathematical description of the behavior of the system,

zk(t) = G0(q)uk(t) + d(t)
yk(t) = zk(t) + nk(t)

(3.25)

For simplicity it is assumed that the system disturbance d(t) is k-independent.

Now, assume G(q) to be a model of G0(q). Using the model of the system the
disturbance d(t) can be estimated using the measurement from the system and the
model,

ỹk(t) = yk(t)−G(q)uk(t) (3.26)

Let d̂k(t) be the estimate of the disturbance in the kth iteration. A straightforward
approach to estimate the disturbance is to minimize the loss function

Vk,t(d̂k(t)) =
1
2

k−1∑
j=0

(ỹj(t)− d̂k(t))2 (3.27)

and the corresponding estimate is given by,

d̂k(t) =
1
k

k−1∑
j=0

ỹj(t) (3.28)

This can also be written in a recursive form as,

d̂k+1(t) =
k

k + 1
d̂k(t) +

1
k + 1

ỹk(t) (3.29)

The corresponding ILC algorithm is an updating equation for the control sig-
nal uk(t). In order to minimize yk(t) the best choice for the input is uk+1(t) =
− 1
G(q) d̂k+1(t) which means that,

uk+1(t) = uk(t)− 1
(k + 1)G(q)

yk(t) (3.30)

Note the similarity with the standard first order ILC updating equation,

uk+1(t) = Q(q)(uk(t) + L(q)ek(t))

where ek(t) is the error. In the disturbance rejection approach this is simply the
output yk(t). In (3.30) the Q-filter is chosen as Q ≡ 1 and the L-filter is an iteration
dependent filter since the gain is reduced every iteration. This means that Lk(q) =
− 1

(k+1)G(q) which, normally, is a non-causal filter. Since ek(t), 0 ≤ t ≤ n − 1, is
available when calculating uk+1(t) this is not a problem.
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By just observing the output in the first iteration it is possible to find an estimate of
d. Since there is a measurement disturbance the estimate can however be improved
and this is what the algorithm iteratively will do. Note that since the gain of the
Lk-filter is reduced with k the algorithm will not work very well if d(t) is varying
as a function of iteration. The gain of the L-filter will actually tend to zero when
k →∞. An ILC algorithm that can work well also with a iteration varying d(t) is
presented in Part V. The analysis of the proposed algorithm is done in the next
chapter.

3.6 Stability

Stability is a general and very important property for a control system. For systems
using ILC questions related to stability and convergence are typically:

• Will the error approach zero as the number of iterations grow?

• If the error does not approach zero, is it bounded?

Before introducing the definitions on stability some underlying assumptions on the
controlled system are given.

3.6.1 Postulates

In order for the stability to be well defined there are some natural postulates that
have to be introduced about the system that is controlled using ILC. The postulates
are originally formulated by Arimoto and can be found in, e.g., Spong et al. (1992).
They are reformulated such that they fit the framework used in the thesis.

(P1) Every iteration ends in a fixed time of duration tf .

(P2) A desired output r(t) is given a priori over t ∈ [0, tf ].

(P3) Repetition of the initial setting is satisfied. This means that if the controlled
system is written in state space form the initial state xk(0) fulfills,

xk(0) = x0(0), k ∈ Z+

(P4) Invariance of the system dynamics is ensured throughout the iterations.

(P5) Every output zk(t) can be measured and therefore the tracking error signal,
εk(t) = r(t) − zk(t), can be utilized in the calculation of uk+1(t).

(P6) Given a reference trajectory r(t), t ∈ [0, tf ], with a piecewise continuous
derivative, it exists a unique input trajectory ud(t) on the same time interval
such that z(t) equals r(t).
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The postulates (P1) and (P2) are very basic and are also included in the description
of the two ILC formulations in Section 3.1 and Section 3.2. (P3) is a bit restrictive
and it is possible to formulate a more practical postulate:

(P3a) The system is initialized at the beginning of every iteration such that the
error in the initial state is limited. This means that if the controlled system
is written in state space form the initial state xk(0) fulfills,

|xk(0)− x0(0)| < ε k ∈ Z+

for some constant ε.

This is also found in Spong et al. (1992). As indicated in the system descriptions
in (3.2) and (3.10) (P5) is not realistic and it could instead be formulated as:

(P5a) A noise corrupted output, yk(t) = zk(t) +nk(t), is possible to measure where
nk(t) is a measurement disturbance.

In Chapter 9 a case is discussed where it is not possible to measure the noise
corrupted controlled variable as indicated above.

The last postulate, (P6), is important since it says that it actually exists an input
that makes it possible to track the desired reference signal.

3.6.2 Definitions

To describe the notion of stability for systems using ILC it is necessary to give
some definitions. First the definition of ε-convergence for a system using ILC is
considered. It is assumed that it exists an input ud that, according to postulate
(P6), gives exactly the desired output.

Definition 3.5 (ε-convergence)
A system using ILC is ε-convergent in a norm ‖ · ‖ if

lim sup
k→∞

‖ud − uk‖ < ε

A system using ILC is called stable if it is ε-convergent with ε < ∞. Note that
stability does not imply that the error when k →∞ is smaller than what is achieved
without using ILC.

An important difference between Definition 3.5 and most of the previous stability
definitions found in the literature, see e.g., Hideg (1992), is that there is no explicit
assumption that the ILC system will convergence to zero error.

Now it is possible to continue and define asymptotic stability, exponential stability
and global stability.
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Definition 3.6 (Asymptotic stability)
A system using ILC is asymptotically stable if,

lim sup
k→∞

‖ud − uk‖ = 0

Definition 3.7 (Exponential Stability)
A system using ILC is exponentially stable if

∃α, β > 0 =⇒ ∀k > 0, ‖ud − uk‖ ≤ α‖ud − u0‖e−λk

If the system controlled by the ILC algorithm is non-linear it might happen that
not all initial trajectories (z0 or u0) will be stable. If this is still the case, i.e.,
all initial trajectories lead to stability, then the word global can be added in the
definitions above. For linear time invariant systems, stability always implies global
stability.



4

Analysis

In this chapter, the stability of systems using ILC is analyzed for the two formu-
lations presented in the previous chapter. Before going into the analysis of the
stability and the performance, however, a system theoretic background to a class
of systems called linear iterative systems is given. This theory will be used in the
analysis of the ILC systems later in the chapter.

4.1 Linear Iterative Systems

First we give a motivation to why the linear iterative systems are introduced for
the analysis of ILC systems.

4.1.1 Motivation

In Norrlöf (1998) a class of systems called linear iterative systems is introduced. A
special case is the linear time invariant iterative system that can be described as

zk+1(t) = F (q)zk(t) + Fr(q)r(t) (4.1)

31
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where zk(t) ∈ RN , F (q) and Fr(q) are matrices of discrete time transfer operators,
and r(t) is a scalar. What characterizes an iterative system is that the time, t, is
discrete and assumed to be limited to a bounded interval.

As a motivation for the introduction of the system description in (4.1), Example 2.1
is used. From (2.4) it follows that

ek(t) = r(t) − yk(t)
yk(t) = GC(q)uk(t)

uk+1(t) = uk(t) + L(q)ek(t)

and the last equation can be written as

uk+1(t) = (1− L(q)GC(q))uk(t) + L(q)r(t) (4.2)

by simply using the definitions of ek and yk. With zk(t) = uk(t), F (q) = (1 −
L(q)GC(q)) and Fr(q) = L(q) it is clear that (4.2) is a special case of (4.1) and
this also motivates why a general theory for linear iterative systems can be useful
for the analysis of ILC systems.

The important stability property of the linear iterative system in (4.1) is bounded-
input, bounded-output (BIBO) stability which is defined as follows.

Definition 4.1 (BIBO stability)
A linear iterative system is BIBO stable if a bounded input, ‖r‖ <∞, generates a
bounded output, ‖zk‖ <∞, for all k.

The input r and the output zk are defined as

r =
(
r(0) r(1) . . . r(n− 1)

)T (4.3)

and

zk =
(
zTk (0) zTk (1) . . . zTk (n− 1)

)T (4.4)

respectively (the sampling time is assumed to be 1).

If BIBO stability can be established it is obvious that ‖zk‖ will be less than infinity
for all k. The BIBO stability for the linear iterative system therefore implies that
the corresponding ILC algorithm gives a stable ILC system. For the particular
case described by (4.2), BIBO stability of the corresponding linear iterative system
implies ε-convergence, for some non-specified ε <∞.

The class of systems that can be described by an iterative system is easily extended
by letting the system description become,

zk+1 = F kzk + F r,kr (4.5)

which includes both time and iteration variant systems and where zk and r are
defined as in (4.4) and (4.3).
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The linear iterative systems presented here can be seen as realizations of special
cases of repetitive systems, covered in Rogers and Owens (1992). In a general
repetitive systems it is assumed that the number of samples, n, is k-dependent.
Some conference articles, e.g., Amann et al. (1994) and Rogers and Owens (1994),
discuss the idea of using 2D-systems theory for the analysis of stability of ILC
systems. The approach taken here is however slightly different also compared to
the 2-D case since the transfer operator matrices are only one dimensional. They
depend on the time delay operator q only. In the 2D approach, the system in (4.1)
is instead written in operator form,

z(k + 1, t) = T (qk, q)z(k, t) + Fr(q)r(t) (4.6)

where T (qk, q) is assumed to be a rational function in the delay operators, qk
and q. The q operator is the standard time shift operator and qk is the iteration
shift operator defined in (3.18). Considering (4.6), the dimensionality of 2 of the
problem becomes obvious. This fact has also been discussed in, e.g., Rogers and
Owens (1992) and Galkowski et al. (1997). In their analysis it has been shown that
it is possible to apply results from the two dimensional systems theory.

Using the system description in (4.1) and (4.5) as a starting point, the time domain
and the frequency domain analysis tools and methods are now discussed.

4.1.2 Time domain

The time domain analysis is divided into two parts. The first part considers linear
iteration invariant systems while the second part deals with the linear iteration
variant case. The difference between the two cases is that in the first, the dynamics
does not change with k while in the second this might be the case. Most of the
results presented here are well known from linear systems theory, see for example
Rugh (1996) or Kailath (1980). Two different measures of the size of a matrix are
used. The first is the spectral radius which is defined as,

ρ(F ) = max
i=1,... ,n

|λi(F )| (4.7)

where λi(F ) is the ith eigenvalue of the matrix F ∈ Rn×n. The second is the
maximum singular value, defined as,

σ̄(F ) =
√
ρ(F TF ) (4.8)

The maximum singular value gives a bound of the gain of a matrix by the fact
that,

‖Fx‖ ≤ σ̄(F )‖x‖

If the maximum singular value is less than one it is clear that the norm of the
result decreases every time x is mapped by F . This is an important observation
that will be used in many of the stability results for linear iterative systems.
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Linear iteration invariant case

In the time domain analysis it is common that a matrix description of the system
is adopted. Obviously, if it is known that t is limited to an interval 0 ≤ t ≤ n− 1,
then

yk(t) = Tu(q)uk(t) (4.9)

can be written as

yk = T uuk (4.10)

where yk,uk ∈ Rn, and T u ∈ Rn×n. If Tu(q) is a causal system then realizing
(4.9) in the matrix form described in (4.10) will lead to a matrix T u in the same
form as in (3.4), i.e., a lower triangular Toeplitz matrix. The matrix description
of the system T u in (4.10) does not cover only linear time invariant systems, as
described by (4.9). T u can easily be used to describe a linear time variant causal
system by letting it become a general lower triangular matrix.

For a general linear iterative system in the matrix form,

zk+1 = Fzk + F rr (4.11)

it is possible to apply the stability results directly from linear systems theory, see
e.g., Rugh (1996). Uniform exponential stability, for example, is achieved if the
spectral radius, ρ(F ), is less than one. Uniform (exponential) stability is defined
as follows.

Definition 4.2 (Uniform (exponential) stability)
The linear iterative system,

zk+1 = F kzk + F r,kr

is uniformly stable if, for r(t) = 0 and any z0, k0,

‖zk‖ ≤ γ‖z0‖, k ≥ k0

where γ is a positive constant. Uniform exponential stability is achieved if, in
addition to the conditions above,

‖zk‖ ≤ γλk−k0‖z0‖, k ≥ k0

for 0 < λ ≤ 1.

The following theorem gives the condition for bounded-input, bounded-output sta-
bility, see for example a text book on linear systems theory e.g., Rugh (1996).
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Theorem 4.1 (BIBO stability)
If ρ(F ) < 1 in the linear iterative system,

zk+1 = Fzk + F rr

then the system is bounded-input, bounded-output stable.

BIBO stability is explained in Definition 4.1.

If the system described by F in (4.11) is causal linear time invariant and hav-
ing relative degree 0, then a necessary and sufficient condition for bounded-input,
bounded-output stability is that the first Markov parameter is less than 1, i.e., that
the diagonal elements of F are less than 1. This result has been discussed, e.g., in
Moore (1998b).

A useful result can be formulated as a corollary based on Theorem 4.1.

Corollary 4.1
When the conditions in Theorem 4.1 are satisfied the system described by (4.11)
will converge according to

z∞ = (I − F )−1F rr

Proof If the stability criterion is fulfilled the signal zk will converge and by letting
k →∞ in (4.11) the result follows. �

Although the result in Theorem 4.1 is necessary and sufficient for BIBO stability
of the linear iterative system in (4.11) it might not be enough from a transient
response point of view. The following well known result guarantees a monotonously
decreasing 2-norm when considering the homogenous part of (4.11).

Theorem 4.2
If the maximum singular value fulfills σ̄(F ) < 1 in

zk+1 = Fzk

then |zk+1| < |zk|.

Finally, one remark about the description in (4.11): It is possible to formulate and
analyze higher order linear iterative systems in the framework presented above.

Assume for example that

ζk+1 = F 1ζk + F 2ζk−1 + r (4.12)

where ζk, r ∈ Rn and F 1,F 2 ∈ Rn×n. This system can be written according to

zk =
[
ζk
ζk−1

]
, F =

[
F 1 F 2

I 0

]
, and F r =

[
I
0

]
(4.13)
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Using Theorem 4.1 it is obvious that the the resulting linear iterative system is
BIBO stable if ρ(F ) < 1. The fact that also higher order systems can be written
in this form has also been explored by, e.g., Rogers and Owens (1992) and Amann
et al. (1994).

Linear iteration variant case

As was noted in the previous section the matrix description in (4.10) is more general
than the description in (4.9). By letting the matrix T u be a general lower triangular
matrix the corresponding description captures a general, causal, linear time variant
system. The general linear time and iteration variant iterative system becomes

zk+1 = F kzk + F rr (4.14)

In the iteration invariant case it was enough to check the spectral radius of the
F -matrix in order to establish uniform exponential stability. When considering
the iteration variant case this test does not work alone. Next, some of the possible
ways to check for uniform exponential stability are given.

The first result involves assumptions on the structure of the variability. This result
is useful in the analysis of a class of adaptive ILC algorithms that will be discussed
in Part V.

Lemma 4.1 (Uniform exponential stability with structured variability)
Assume that k = 1, . . . ,M and F k = V JkV

−1 ∈ Cn×n with spectral radius
ρ(F k) < 1, ρm defined as

ρm = max
k=1,... ,M

ρ(F k) (4.15)

and Jk being a matrix with the following structure

Jk = diag(J1,k,J2,k, . . . ,J l,k)
J i,k = diag(J i1,k,J i2,k, . . . ,J imi,k)

J ij,k =



λi,k ck 0 . . . 0

0 λi,k ck
. . .

...
...

. . .
. . .

. . . 0
λi,k ck

0 . . . 0 λi,k

 ∈ C
nij×nij

then ∃ρ̄, ρm ≤ ρ̄ < 1, and γ <∞ (independent of M) such that ∀z0 ∈ Cn,

|FMFM−1 . . .F 1z0| ≤ γρ̄M |z0|

Proof For the proof see Appendix 4.B. �
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If the matrix F k fulfills the conditions in Lemma 4.1 it means that the correspond-
ing linear iterative system is uniformly exponentially stable.

Another result that can be used to show uniform exponential stability is the fol-
lowing.

Theorem 4.3 (Uniform exponential stability, slowly varying dynamics)
Suppose that for the linear state equation

zk+1 = F kzk + F r,kuk

there exist constants α > 0 and 0 ≤ µ < 1 such that for all k, ‖F k‖ ≤ α
and ρ(F k) ≤ µ. Then there exists a positive constant β such that the system
described by the linear state equation above is uniformly exponentially stable if
‖F k − F k−1‖ ≤ β for all k.

This is a standard result from linear systems theory, see e.g., Rugh (1996), and
it is here given without proof. This result applies immediately to the linear time
variant iterative systems. A drawback is however that it just gives the existence of
a limit of the variation of the dynamics.

Finally, a useful result for showing uniform exponential stability of time variant
systems is presented. This is a slightly reformulated version of Theorem 24.2 and
Corollary 24.4 in Rugh (1996).

Theorem 4.4 (Uniform exponential stability)
The linear time variant iterative system in (4.14) is uniformly exponentially stable
if it exists a constant C and a constant λ, 0 ≤ λ < 1, such that the maximum
singular value of the matrices F i fulfill

k∏
i=j

σ̄(F i) ≤ Cλk−j

for all k, j such that k ≥ j.

Proof The solution to (4.11) is uniformly exponentially stable if there exist constants
C1 and 0 ≤ λ1 < 1,

‖zk‖ ≤ C1λ
k−k0
1 ‖z0‖, k ≥ k0

for all k0 and z0. Obviously

‖zk‖ = ‖F kF k−1 . . .F 0z0‖ ≤
k∏
i=0

σ̄(F i)‖z0‖ ≤ Cλk‖z0‖ = C2λ
k−k0‖z0‖

where the last equality holds for C2 = Cλk0 and the result follows since 0 ≤ λ < 1. �



38 Analysis

The condition in Theorem 4.4 is rather restrictive but can be useful to prove sta-
bility for some linear time variant iterative systems. It is also possible to formulate
a corollary based on the theorem.

Corollary 4.2
If σ̄(F k) < 1 for all k then the linear iterative system in (4.11) is uniformly expo-
nentially stable.

Proof Follows from Theorem 4.4 by choosing

λ = max
k=0,1,...

σ̄(F k).

�

To show BIBO stability for the system in (4.14), some standard results from linear
system theory can be used. The following result is given without proof (for the
proof see e.g., Rugh (1996)).

Lemma 4.2 (BIBO stability)
Given a uniformly exponentially stable linear state equation

zk+1 = F kzk + F r,kr

If there exists a finite constant β such that

‖F r,k‖ ≤ β

for all k, then the system is uniformly bounded-input, bounded-output stable.

This result applies immediately to the system description in (4.11) since the matrix
F r does not depend on k. If there is a k dependency for the F r-matrix, then the
condition ‖F r,k‖ ≤ β for some finite constant β has to be checked.

To use the result in Lemma 4.2 it is necessary to establish uniform exponential
stability. As was shown in the previous section: If the system is iteration invariant
it is just to check that the spectral radius fulfills ρ(F ) < 1. For an iteration variant
case the results in Lemma 4.1, Theorem 4.3, Theorem 4.4, or Corollary 4.2 have
to be used. These are not the only results that can be used. Many other results
from the linear system theory apply, the reader is referred to e.g., Rugh (1996) and
Kailath (1980) where general linear systems theory is discussed in detail.

4.1.3 Frequency domain

This section is based on Norrlöf (2000b), Norrlöf (2000c), and Norrlöf and Gunnars-
son (1999), where the use of linear iterative systems for ILC analysis is discussed.
The system that will be considered in this section is given by

Zk+1(ω) = F (eiω)Zk(ω) + Fr(eiω)R(ω) (4.16)
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where Zk(ω) and R(ω) are derived from the time representation in (4.1) as defined
in (3.6). The frequency domain representation of F (q) and Fr(q) in (4.1) is found
according to (3.5) and the discussion in Section 3.1.1.

For the frequency domain representation to be well defined it is necessary that F (q)
and Fr(q) are stable. It is also important to stress that for the case when the signals
are time limited (as is the case in linear iterative systems) the frequency domain
representation is an approximation. This will be investigated more thoroughly in
the next section. The results given in this section are for the case when the number
of samples n goes to infinity, i.e., they are only valid asymptotically.

First a result that will be used in the analysis of stability for linear iterative systems
in the form (4.1) is presented.

Corollary 4.3 (An upper bound for a linear mapping)
Assume F ∈ Cn×n, the spectral radius ρ(F ) < 1, and v∈Cn then

|FMv| ≤ Cρ̄M

where ρ(F ) ≤ ρ̄ < 1 and C <∞ independent of M .

Proof Follows as a special case of Lemma 4.1 when F k = F for all k. �

Now, a theorem is formulated that gives the condition for BIBO stability using the
frequency domain representation of the linear iterative system.

Theorem 4.5 (BIBO stability)
The linear iterative system,

Zk+1(ω) = F (eiω)Zk(ω) + Fr(eiω)R(ω)

is BIBO stable if the spectral radius fulfill

ρ̄ = sup
ω∈[0,π]

ρ(F (eiω)) < 1

Proof For the proof see Appendix 4.C. �

The description in (4.1) can also be used for high order linear iterative systems,
e.g.,

ζk+1(t) = F1(q)ζk(t) + F2(q)ζk−1(t) + r(t) (4.17)

cf. Section 4.1.2. This iterative system can be written in the same form as (4.1)
where

zk(t) =
[
ζk(t)
ζk−1(t)

]
, F (q) =

[
F1(q) F2(q)

1 0

]
, and Fr(q) =

[
1
0

]
(4.18)

Theorem 4.5 gives the BIBO stability condition, ρ(F (eiω)) < 1, ∀ω.
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4.1.4 Relations between the two domains

First it is shown that the frequency domain result actually implies the time domain
result in the case when zk(t) is a scalar.

Theorem 4.6
When F (q) is causal and zk(t) is a scalar, then if

sup
ω∈[0,π]

|F (eiω)| < 1

the first impulse coefficient fulfill,

|gf(0)| < 1

Proof Follows by using that

|gf (0)| =
∣∣∣ 1

2π

∫ π

−π
F (eiω)dω

∣∣∣ < 1

since |F (eiω)| < 1 for all ω. �

This result says that from the frequency domain representation, F (eiω), it is pos-
sible to say about the time domain matrix formulation,

zk+1 = Fzk + F rr

that ρ(F ) < 1. This follows from the fact that F is a lower triangular Toeplitz
matrix with constant diagonal elements equal to gf(0). All the eigenvalues to this
matrix becomes equal to gf (0) and since the absolute value is less than one the
linear iterative system is BIBO stable (according to Theorem 4.1).

Note that, if the first impulse coefficient fulfill |gf(0)| < 1 it does not imply
|F (eiω)| < 1. The result in Theorem 4.6 gives a relation between the frequency
domain results and the time domain results for a finite time horizon. It is actually
possible to formulate a result even stronger than ρ(F ) < 1 in the time domain
realization (cf. Theorem 4.6).

Theorem 4.7
Suppose F (q) stable and causal, zk(t) scalar, and

sup
ω∈[0,π]

|F (eiω)| < 1

then the largest singular value of F n ∈ Rn×n in the matrix representation of the
linear iterative system

zk+1 = F nzk + F rr

fulfills,

σ̄(F n) < 1
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Proof Follows from Section 9.6 in Grenander and Szegö (1984) where it is shown that

σ̄(F n) ≤ σ̄(F n+1) ≤ . . . ≤ lim
n→∞

σ̄(F n) = sup
ω∈[0,π]

|F (eiω)|

and since |F (eiω)| < 1 for all ω the result follows. �

Next an example shows that although the linear iterative system is BIBO stable,
|F (eiω)| is not necessarily less than 1.

Example 4.1

Consider the following transfer function F (q),

F (q) =
0.9014− 1.387q−1 + 0.6207q−2 − 0.1353q−3

1− 1.154q−1 + 0.657q−2 − 0.1353q−3
(4.19)

The poles of F (q) are 0.3931± 0.4619i and 0.3678 all with absolute value less than
1. The corresponding Nyquist diagram is shown in Figure 4.1(a) and it goes outside
the unit circle for some frequencies. This means that |F (eiω)| < 1 is not fulfilled for
all frequencies. Calculating the first Markov parameter for F (q) gives f(0) = 0.90,
which is less than 1. In Figure 4.1(b) the 2-norm of zk is shown where z0(t) is
chosen as a sequence of 15 random numbers and

zk+1(t) = F (q)zk(t), k ≥ 0, 0 < t ≤ 14

The simulation shows that, although the value of the 2-norm first grows during a
few hundred iterations it goes to zero as the number of iterations grows. ❏

Of course, in practice the behavior shown in Figure 4.1(b) might not be desirable.
Instead it would be better to have a case where the 2-norm decreases as a function
of iteration, i.e., never exceeds the level achieved in iteration zero. As shown in
Theorem 4.7 this is achieved when |F (eiω)| < 1 for all ω and hence this can be
considered to be a good design goal. At least if the aim is to achieve a well behaved
linear iterative system. In the ILC literature the behavior shown in Figure 4.1 has
been discussed in, e.g., Longman (2000). The choice of design criterion in the
frequency domain comes as a natural conclusion also in Longman (2000), although
the result in Theorem 4.7 is not presented explicitly.

4.2 The Tracking Formulation

Now the actual convergence of ILC systems using the tracking formulation will
be analyzed. The analysis leads to requirements that have to be met in order to
establish stability (according to the discussion in Section 3.6.2).



42 Analysis

−1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(a) Nyquist diagram for F (q) in (4.19).

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8
x 10

4

Iteration

‖z
k
‖ 2

(b) The 2-norm of zk(t) when zk+1(t) =

F (q)zk(t).

Figure 4.1 Example showing that the frequency domain result is not necessary
for asymptotic stability.

The analysis will be done using the results from the previous section. The results
will be formulated in time domain as well as in the frequency domain. Initially the
disturbance free case will be studied.

4.2.1 Disturbance free case

The starting point for the stability discussion is the disturbance free case. This
means that the disturbances vk(t) and wk(t) are neglected. The system description
therefore becomes completely deterministic and in the matrix form the system is
described by,

yk = T r,kr + T u,kuk (4.20)

The “optimal input” for this case is found by letting yk = r and solve for ud,k,

ud,k = T †u,k(I − T r,k)r (4.21)

where T †u,k is the pseudo inverse, defined as

T †u,k = T Tu,k(T u,kT Tu,k)−1

Remark 4.1
If the system Tu is non-minimum phase, then the inverse transfer function becomes
unstable. When considering a finite time horizon, as in the linear iterative systems
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case, the gain of the matrix T †u will not become infinite but the gain will still be
considerable. This means that ‖ud‖ might be very big and in practice impossible
to achieve.

We will return to, and do a short note on, the case of non-minimum phase systems
in Section 8.2.5. Now assume that the ILC updating formula is of first order type.

First order ILC

Here the ILC updating formula according to (3.14) is used,

uk+1 = Q(uk +Lek) (4.22)

where Q and L can be matrix realizations of linear time invariant filters Q(q) and
L(q), or realizations of time variant systems, Q and L. It is also possible to have
iteration dependent Q and L matrices, as in (3.14), but first it will be assumed
that this is not the case.

Now, using the system description in (4.20) and the ILC updating formula in (4.22)
, it is clear that

uk+1 = Q(uk +Lek) = Q(I −LT u,k)uk +L(I − T r,k)r (4.23)

Using the results from Section 4.1 it is possible to find conditions for stability of
the ILC system created by controlling the system in (4.20) using the ILC algorithm
in (4.22).

Corollary 4.4 (Stability, slowly varying dynamics)
There exists a constant γ > 0 such that the system

yk = T r,kr + T u,kuk

controlled with the ILC updating equation

uk+1 = Q(uk +Lek)

is stable if, for all k,

1. ‖L(I − T r,k)‖ and ‖F k‖ are bounded by some constants,

2. ρ(Q(I −LT u,k)) < 1, and

3. ‖L(T u,k − T u,k−1)‖ < γ.

Proof Use ud,k from (4.21). From the results in Lemma 4.2, and Theorem 4.3 it follows
that the system is BIBO stable. This means that

sup
k=0,1,...

‖ud,k − uk‖ <∞

and there exists an ε such that ε-convergence can be established. �
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Corollary 4.5 (Stability, singular value condition)
The system

yk = T r,kr + T u,kuk

controlled with the ILC updating equation

uk+1 = Q(uk +Lek)

is stable if

1. for all k, ‖L(I − T r,k)‖ is bounded by some constant and

2. there exist constants C and 0 ≤ λ < 1 such that the singular values fulfill,

k∏
i=j

σ̄(Q(I −LT u,i)) ≤ Cλk−j

for all k, j such that k ≥ j.

Proof Similar to the proof of Corollary 4.4 but using the results from Lemma 4.2 and
Theorem 4.4. �

The second condition in Corollary 4.5 can be replaced, according to Corollary 4.2,
by σ̄(Q(I −LT u,i)) < 1 if this is fulfilled.

When the controlled system is linear time invariant the following result gives a
condition for stability.

Corollary 4.6 (Stability, linear iteration invariant case)
The system

yk = T rr + T uuk

controlled using the ILC updating equation

uk+1 = Q(uk +Lek)

is stable if ρ(Q(I −LT u)) < 1.

Proof Follows from Theorem 4.1 and the fact that there exists an ε <∞ such that

sup
k=0,1,...

‖ud − uk‖ < ε

since Theorem 4.1 implies BIBO stability. ud is from (4.21) when the system matrices
are non k-dependent. �
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Before considering the actual convergence rate of the ILC control signal the asymp-
totic value of the control signal is presented in a lemma.

Lemma 4.3
If the system

yk = T rr + T uuk

controlled using the ILC updating equation

uk+1 = Q(uk +Lek)

is stable, then the control signal will converge to

u∞ =
(
I −Q(I −LT u)

)−1
QL(I − T r)r

which implies that the asymptotic error will be

e∞ = r − y∞ =
(
I − T r − T u

(
I −Q(I −LT u)

)−1
QL(I − T r)

)
r

Proof Use the same technique as in the proof of Corollary 4.1. Solve

u∞ = Q(u∞ + Le∞)

with

e∞ = r − y∞ = r − T rr − T uu∞

and the result follows. �

Another useful result that has an impact on the design of the ILC updating formulas
is the following.

Theorem 4.8 (Condition for monotone exponential convergence of uk)
If the system

yk = T rr + T uuk

is controlled using the ILC updating equation

uk+1 = Q(uk +Lek)

and σ̄(Q(I −LT u)) < 1 then the ILC system is stable and

‖u∞ − uk‖ ≤ λk‖u∞ − u0‖

with u∞ defined according to Lemma 4.3.
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Proof ρ(A) < σ̄(A) for a general matrix A which implies stability according to Corollary
4.6. If σ̄(Q(I − LT u)) < 1 then ũk = u∞ − uk will converge according to

‖ũk+1‖ = ‖Q(I − LT u)ũk‖ ≤ ‖Q(I − LT u)‖‖ũk‖ ≤ λk+1‖ũ0‖

where ‖Q(I −LT u)‖ = σ̄(Q(I − LT u)) ≤ λ < 1. �

From Theorem 4.7 it follows that the condition on the maximum singular value in
Theorem 4.8 can be replaced by a condition on the frequency domain representation
according to

|1− L(eiωt)Tu(eiωt)| < |Q−1(eiωt)|, ∀ω (4.24)

This coincides with the very common frequency domain condition given in the ILC
literature. In Theorem 4.8 it is also shown that when this condition is fulfilled
uk will converge to the limit value, u∞, exponentially and without overshoot. The
result does not say anything about the resulting error compared to the true optimal
input ud(t). This will be discussed next.

The true performance

It is not only stability that is of interest when designing an ILC updating formula.
Also in the disturbance free case it is interesting to see what the true error becomes
asymptotically.

Theorem 4.9 (Zero error convergence in the disturbance free case)
If the system

yk = T rr + T uuk

with the ILC updating equation

uk+1 = uk +Lek

is stable, then ‖Le∞‖ = 0.

Proof From the stability assumption, convergence of uk to u∞ follows. Now consider

u∞ = (I + ε)u∞ + (I + ε)Le∞

with Q = I + ε. This means that

‖εu∞‖ = ‖(I + ε)Le∞‖

and for ε = 0, i.e., Q = I , the result follows. �
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Note that ‖Le∞‖ = 0 does not imply ‖e∞‖ = 0. If L has a null space with rank
greater than 0 it is possible that ‖e∞‖ 6= 0. There is no risk, however, that ‖ek‖
will grow infinitely because

ek = r − yk = (I − T r)r − T u,kuk

and since ‖uk‖ < ∞ from the stability assumption, ‖ek‖ will be bounded. It is
also clear that when ‖Lek‖ = 0

uk+1 = uk +Lek = uk

and since uk+1 = uk it is true that ek+1 = ek in the disturbance free case.

When Q is not chosen as an identity matrix (Q(q) chosen as something else than
1) it is possible to calculate the asymptotic control signal and the corresponding
error using Lemma 4.3.

High order ILC

It is also possible to formulate some results for stability using high order ILC
updating formulas according to Section 3.4.1. Consider the ILC algorithm from
(3.15) in the matrix form,

uk+1 =
k∑

j=k−N+1

(
Qk−j+1

(
uj +Lk−j+1ej

))
(4.25)

Using the definition of ek, this can be rewritten as

uk+1 =
k∑

j=k−N+1

Qk−j+1(I −Lk−j+1T u)uj +
N∑
j=1

QjLj(I − T r)r (4.26)

Define Uk as

Uk =
[
uTk uTk−1 . . . uTk−N+1

]T
(4.27)

this means that (4.26) can be written as

Uk+1 =


F 1 F 2 . . . FN

I 0 . . . 0
. . . . . .

...
0 . . . I 0

Uk +


∑N

j=1QjLj(I − T r)
0
...
0

 r (4.28)

with F j = Qj(I −LjT u). The condition for stability of the system using the high
order ILC algorithm can be formulated according to the next corollary.
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Corollary 4.7 (Stability, linear iteration invariant case)
The system

yk = T rr + T uuk

controlled with the ILC updating equation

uk+1 =
k∑

j=k−N+1

(
Qk−j+1

(
uj +Lk−j+1ej

))
is stable if the spectral radius fulfills

ρ

(
F 1 F 2 . . . FN
I 0 . . . 0

. . .
. . .

...
0 . . . I 0


)
< 1

where F j = Qj(I −LjT u).

Proof It is straightforward to apply Theorem 4.1 in order to show BIBO stability which
implies that it exists an ε <∞ such that

lim
k→∞

‖U d −U k‖ < ε

U d is a vector according to (4.27) with all elements equal to ud defined as in (4.21). �

If the condition on the spectral radius in Corollary 4.7 can be replaced with the
maximum singular value then the system is stable and ‖U∞ −Uk‖ will converge
monotonically and exponentially towards zero (cf. Theorem 4.8).

A result similar to Corollary 4.5 can be formulated also for the high order ILC
case. First let

Uk+1 = F kUk + F r,kr (4.29)

with

F k =


F 1,k F 2,k . . . FN,k
I 0 . . . 0

. . . . . .
...

0 . . . I 0

 ,

F r,k =


∑k
j=k−N+1Qk−j+1Lk−j+1(I − T r,j)

0
...
0


(4.30)

and F j,k = Qj(I −LjT u,(k−j+1)).
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Corollary 4.8 (Stability, slowly varying dynamics)
There exists a constant γ > 0 such that the system

yk = T r,kr + T u,kuk

controlled by the ILC updating formula

uk+1 =
k∑

j=k−N+1

(
Qk−j+1

(
uj +Lk−j+1ej

))
is stable if, for all k,

1. ‖F k‖ and ‖F r,k‖ are bounded by some constants,

2. ρ(F k) < 1, and

3. ‖F k − F k−1‖ < γ

with F k and F r,k according to (4.30).

Proof Similar to the proof of Corollary 4.4. �

Corollary 4.9 (Stability, singular value condition)
The system

yk = T r,kr + T u,kuk

controlled by the ILC updating formula

uk+1 =
k∑

j=k−N+1

(
Qk−j+1

(
uj +Lk−j+1ej

))
is stable if

1. for all k, ‖F r,k‖ is bounded by some constant and

2. there exist constants C and 0 ≤ λ < 1 such that the singular values fulfill,

k∏
i=j

σ̄(F k) ≤ Cλk−j

for all k, j such that k ≥ j.

Proof Similar to the proof of Corollary 4.5. �

If σ̄(F k) < 1 for all k stability follows as was shown in Corollary 4.2.

The frequency domain results will be discussed for the case of a second order ILC
algorithm in Part IV. Next the case where the disturbances cannot be neglected
will be discussed.
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4.2.2 Disturbance aspects for the first order ILC

In this section we will discuss questions related to what happens when ILC is
applied to systems where the disturbances can not be neglected. The system de-
scription that will be used here is from (3.1), i.e.,

zk(t) = Tr(q)r(t) + Tu(q)uk(t) + Tw(q)wk(t)
yk(t) = zk(t) + Tv(q)vk(t)

with the ILC updating equation

uk+1(t) = Q(q)(uk(t) + L(q)ek(t)

from (3.13). The error ek(t) is defined as

ek(t) = r(t) − yk(t)

Next the equation relating the errors in two iterations will be discussed.

Error equation

A fundamental issue for a successful ILC algorithm is that the error is reduced as
a function of iteration. The error is here defined as

εk(t) = r(t) − zk(t) (4.31)

First the equation that describes how the error evolves is presented, the result is
limited to the case where the system is scalar.

Lemma 4.4 (Error equation)
Consider the system

zk(t) = Tr(q)r(t) + Tu(q)uk(t) + Tw(q)wk(t)
yk(t) = zk(t) + Tv(q)vk(t)

with the ILC updating equation

uk+1(t) = Q(q)
(
uk(t) + L(q)ek(t)

)
with ek(t) = r(t) − yk(t). Define ε̃ as

ε̃(t) = (1− Tr(q))r(t) (4.32)

i.e., the disturbance free error signal obtained without ILC when u(t) = 0. The
error, εk(t) = r(t)− zk(t), is updated as

εk+1(t) = Q(q)(1 − Tu(q)L(q))εk(t) + (1−Q(q))ε̃(t)
+ Tu(q)Q(q)L(q)Tv(q)vk(t) + Tw(q)(Q(q)wk(t)− wk+1(t))
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Proof Using the system description and the ILC algorithm the following expression for
εk+1 can be found,

εk+1(t) = ε̃(t)− Tu(q)Q(q)uk(t)− Tu(q)Q(q)(εk(t)− Tv(q)vk)− Tw(q)wk+1(t)

and from the fact that

−Tu(q)uk(t) = εk(t)− ε̃(t) + Tw(q)wk(t)

the result follows. �

A similar result as in Lemma 4.4 is also presented in Panzieri and Ulivi (1995)
for an open loop case (Tu(q) represents an open loop system) and for the system
disturbance only.

Lemma 4.4 shows that there are three types of driving terms for the error. There
is the term ε̃(t) that comes from the fact that the true system does not exactly cor-
respond to the ideal system. The other driving terms come from the measurement
noise and the system disturbance, and they enter the equation in slightly different
ways. The long term effects of the two last terms will be discussed in the next
sections.

System disturbances

Neglect the measurement disturbance, vk(t), i.e., let vk(t) = 0, and assume that
wk(t) = w(t), i.e., the system disturbance is not k-dependent. If one of the stability
conditions from Section 4.2.1 is fulfilled, then the final value of the error becomes,

lim
k→∞

εk(t) =
(1−Q(q))ε̃+ Tw(q)(Q(q) − 1)w(t)

1−Q(q)(1 − Tu(q)L(q))
(4.33)

It is possible to interpret the result in (4.33) in the frequency domain,

lim
k→∞

Ek(ω) =
(1−Q(eiω))Ẽ(ω) + Tw(eiω)(Q(eiωt)− 1)W (eiω)

I −Q(eiω)(1 − Tu(eiω)L(eiω))
(4.34)

where the transformation to the frequency domain is done as discussed in Section
3.1.1. This expression illustrates that the frequency content of the system distur-
bance wk(t), and the cut-off frequencies of Tw(eiω) and 1−Q(eiω) respectively, will
determine how well the ILC algorithm handles system disturbances of repetitive
character.

When the measurement disturbance is neglected, we get from Lemma 4.4,

εk+1(t) = Q(q)(1 − L(q)Tu(q))εk(t) + (1−Q(q))ε̃(t)
+ Tw(q)(Q(q)wk(t)− wk+1(t))
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If Q(q) = 1 then the system disturbances contribute to the error by their differ-
ence between the iterations. If the disturbances are repetitive, in the sense that
the disturbance signals wk(t) = w(t) for all k, then the contribution to the error
difference equation is zero.

When Q(q) 6= 1, the system disturbance will act as a driving term similar to the
initial error ε̃(t). In a typical case are Tw(q) and Q(q) both of low pass type, which
means that 1 − Q(q) is of high pass type. Multiplying these two will give a band
pass filter and the possibilities to reduce the effects of the load disturbance hence
depends on the relationship between the frequency content of the load disturbance
and the cut-off frequency of the filters Tw(q) and Q(q).

Measurement disturbances

To study the effect of measurement disturbances alone, assume that the reference
input and the system disturbance are equal to zero. This means that r(t) = 0 and
wk(t) = 0. Using Lemma 4.4 the error can therefore be expressed as

εk+1(t) = Q(q)(1 − Tu(q)L(q))εk(t) + Tu(q)Q(q)L(q)Tv(q)vk(t) (4.35)

Assume that the measurement disturbance vk(t) = ν(k · t) where ν is a stationary
stochastic process with spectral density Φν(ω). Asymptotically this means that
the spectral density of the error Φε(ω) can be written according to

Φε(ω) =
|Tu(eiω)Q(eiω)L(eiω)Tv(eiω)|2

1− |Q(eiω)(1− Tu(eiω)L(eiω))|2 Φν(ω) (4.36)

It is clear from (4.36) that the magnitude of the error spectral density will be very
large for frequencies where |Q(eiω)(1−L(eiω)Tu(eiω))| is close to one. Obviously the
Q-filter can be used to make |Q(eiω)(1−L(eiω)Tu(eiω))| less than one by choosing
|Q(eiω)| small when |(1 − L(eiω)Tu(eiω))| is close to one.

Simulations

To illustrate the disturbance properties a simulation example is used. For details
see Norrlöf and Gunnarsson (2000a). In Figure 3.2 the controlled system is shown
as a block diagram. It is a simplified description of a single robot joint modeled as a
double integrator. The robot joint is controlled by a discrete time PD-regulator and
the feed-forward filter is, simply, a double backward differentiation approximation.

The filter L(q) is chosen in a model based way according to

L(q) = T̂−1
u (q)(1 −HB(q)) (4.37)

where T̂u(q) denotes a nominal closed loop transfer function obtained using the
model of the open loop system and the known controller. The design algorithm
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Figure 4.2 Tu (dotted), TuL for L designed using a nominal model (solid) and

|Q−1(ee
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)| for Q = 1 and Q chosen as a low pass filter (dash-
dotted).

will be presented in more detail in Chapter 8. It is assumed that there is a 30%
model error in the moment of inertia in the model of the system. The filter HB

is a Butterworth high pass filter (here of second order) for which the gain tends
to one for high frequencies. Choosing L according to this design rule, with cut-off
frequency of the high pass filter equal to 0.4 times the Nyquist frequency, gives the
Nyquist curve depicted in Figure 4.2. Tu is also shown in Figure 4.2 for comparison.

Figure 4.2 also shows the right hand side of (4.24) for Q = 1 and Q chosen as
a low-pass filter respectively and it is possible to see how the stability region is
increased when Q is chosen as a low-pass filter.

The first goal is to investigate how the system disturbance influences the ILC
algorithm. A disturbance signal, w(t) in Figure 3.2, is applied at the same time
every cycle as a repetitive disturbance. Figure 4.3 shows the spectrum of εk as a
function of iteration. Clearly the introduction of a filter Q reduces the convergence
speed of the ILC algorithm and the convergence will no longer be to an error having
zero size. Already after one iteration, when the filter Q is used, the energy in the
error has almost reached its final value and also in the spectrum it is possible to
see that there is not much change after the first iteration.

The next step is to introduce a measurement disturbance, vk. This disturbance is
chosen as a discrete time white noise process with a constant standard deviation.
The frequency domain properties of the resulting errors are shown in Figure 4.4.
The plot of the energy clearly illustrates that the use of the Q-filter reduces the
error energy caused by the measurement disturbance. In Norrlöf and Gunnarsson
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Figure 4.3 Error signal spectrum without Q filter (left) and error signal spec-
trum with Q filter (right).
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Figure 4.4 Error signal spectrum, without Q filter (left) and error signal spec-
trum with Q filter (right).

(2000a) it is shown that the maximum error in time domain behaves in a similar
way for the two choices of Q. This is explained by the fact that the maximum
error is of low frequency character and hence not affected by the choice of Q. In
Figure 4.4 the spectrum of the position error signal r−zk is shown with and without
Q filter. The reduction of the high frequency part of the error spectrum is clearly
shown.

As was shown in the example it is possible to reduce the measurement disturbance
impact on the ILC algorithm by introducing the Q-filter. The price for this, as was
shown in Theorem 4.9, is that the asymptotic error, not even in the disturbance free
case, is guaranteed to be zero. Trajectory following and measurement disturbance
rejection will in this sense be contradictory.
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4.3 The Disturbance Rejection Formulation

Now we will analyze an ILC algorithm using the disturbance rejection formulation.
The analysis is limited to the algorithm proposed in Section 3.5. The aim is to
show some aspects of iteration variant ILC updating schemes and the continuation
of this work is presented in Part V.

Before doing the analysis, some assumptions on the disturbances and the system
is presented.

4.3.1 Assumptions

The system description that will be used here is the LTI version of (3.10), i.e.,

zk(t) = G0(q)uk(t) + d(t)
yk(t) = zk(t) + nk(t)

(4.38)

with the ILC updating equation from (3.30),

uk+1(t) = uk(t)− 1
(k + 1)G(q)

yk(t) (4.39)

where u0(t) is chosen as u0(t) = 0. In the system description in (4.38) it is assumed
that the system disturbance d(t) is repetitive, i.e., does not depend on the iteration
k. The measurement disturbance nk(t) is assumed to be equal to ν(t̄) where t̄ =
k · t and ν(t̄) represents a white stationary stochastic process with zero mean
and variance rn. The expected value, E{nk(t)}, is therefore with respect to the
underlying process ν, and

E{nk(t)} = 0

The variance becomes

Var{nk(t)} = rn

and since ν is white E{ni(t)nj(t)} equal rn if and only if i = j and 0 otherwise.
This is true also for different t in the same iteration, i.e., E{nk(t1)nk(t2)}. Note
that since d(t) is a deterministic signal, the expected value becomes E{d(t)} = d(t).

The goal for the ILC algorithm applied to the system in (4.38) is to find an input
signal uk(t) such that the disturbance d(t) is completely compensated for. Clearly
the optimal solution is to find a uk such that

uk(t) =
(
G0(q)

)−1
d(t)

which has also been discussed in Section 3.2.2. In the next sections, different
iterative solutions to this problem will be discussed.
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4.3.2 G0(q) is known

Consider the estimator from (3.28),

d̂k(t) =
1
k

k−1∑
j=0

(
yk(t)−G(q)uk(t)

)
When the system is known, i.e., G(q) = G0(q), and the disturbance nk(t) is de-
fined as in Section 4.3.1, then asymptotically, it gives an unbiased estimate of the
disturbance d(t),

lim
k→∞

d̂k(t) = lim
k→∞

1
k

k−1∑
j=0

(
d(t) + nj(t)

)
= d(t) (4.40)

From the ILC perspective this implies that the algorithm will converge to zero
error. Obviously, it is not only the fact that the estimate is unbiased that is of
interest. Also the variance of the estimate is an important property. The variance
is given by,

Var(d̂k(t)) = E{d̂2
k(t)} − (E{d̂k(t)})2 =

E
{ 1
k2

k−1∑
i=0

(
d(t) + ni(t)

) k−1∑
j=0

(
d(t) + nj(t)

)}
− d2(t) =

1
k2

k−1∑
i=0

k−1∑
j=0

E{d2(t) + d(t)(ni(t) + nj(t)) + ni(t)nj(t)} − d2(t) =
rn
k

(4.41)

Where the last equality follows from the fact that d(t) is deterministic, E{ni(t)} =
0, and that E{ni(t)nj(t)} = rn if i = j and 0 otherwise, see Section 4.3.1.

Interesting is also to see how the resulting control, uk(t), develops. Using the
updating equation in (4.39) with the true system G0(q) instead of G(q) and u0(t) =
0 the output z1(t) becomes,

z1(t) = G0(q)u1(t) + d(t) = −G0(q)
1

G0(q)
(d(t) + n0(t)) + d(t) = −n0(t) (4.42)

This means that d(t) is completely compensated for and the mathematical expec-
tation of z1(t) = 0 when the system is known. What can be improved is however
the variance of zk(t). The variance of z1 is readily calculated as

Var(z1(t)) = rn (4.43)

The best result that can be achieved is when the disturbance d(t) is perfectly
known. This gives

z(t) = −G0(q)
1

G0(q)
d(t) + d(t) = 0 (4.44)
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i.e., zero variance.

The proposed algorithm from (4.39) is evaluated in a simulation. The measure
utilized in the evaluation is

Vk =
1
rn
· 1
n− 1

∑
t∈[0,tf ]

z2
k(t) (4.45)

i.e., the variance of zk normalized with the variance of the measurement distur-
bance. From (4.43) it is clear that V1 = 1 which is also shown in Figure 4.5. For
k = 0 the measure V0 does not correspond to a variance since z0(t) = d(t). V0 there-
fore depends only on the size of the disturbance d(t). The simulation is however
done to show what happens with the variance of the output zk(t) for k ≥ 1.

A rapid decrease of Vk can be seen in the first iterations. After 10 iterations, for
example, the measure is reduced to 0.1. To reduce the last 0.1 units down to 0,
however, takes infinitely many iterations. The conclusion from this simulation is
that the use of the proposed ILC algorithm gives an increased performance in the
case when the system is completely known but the disturbance is unknown. In the
next section the properties of the method will be examined when the system is not
completely known.
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Figure 4.5 Evaluation of Vk from (4.45) in a simulation.

4.3.3 Some notes on the asymptotic and transient behavior

In practice it is clear that a model of the true system has to be used in the ILC
algorithm. In this section some results based on simulations will be discussed. The
transient behavior of the proposed algorithm is highlighted and compared with
another algorithm. In applications it is often required that the algorithm should
give a small error after, perhaps, the first 10 iterations. If it takes 100 iterations
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or more to get the desired level of the errors the method will probably not be
considered useful at all.

Consider the following ILC updating scheme,

uk+1(t) = uk(t)− Lk(q)yk(t) (4.46)

applied to the system in (4.38) with the following choices of the filter Lk(q),

Lk(q) = (G0(q))−1 (4.47a)

Lk(q) = (G(q))−1 (4.47b)

Lk(q) =
1

k + 1
(G0(q))−1 (4.47c)

Lk(q) =
1

k + 1
(G(q))−1 (4.47d)

Assume that the ILC updating scheme in (4.46) gives a stable ILC system for all
the different Lk-filters in (4.47). The system G0 is given by

G0(q) =
0.07q−1

1− 0.93q−1
(4.48)

and the model G by

G(q) =
0.15q−1

1− 0.9q−1
(4.49)

To compare the transient behavior of the four ILC schemes created by using the
updating scheme from (4.46) and the filters from (4.47) a simulation is performed.
The system used in the simulation is given by (4.38) and the actual system descrip-
tion by (4.48). The model of the system, available for the ILC control scheme, is
given by (4.49). The variance of the additive noise, nk(t), is set to 10−3.

To evaluate the result from the simulations the following measure is used

V (zk) =
1

n− 1

n∑
t=1

z2
k(t) (4.50)

which is an estimate of the variance if zk is a random variable with zero mean. In
Figure 4.6 the results from the simulations are shown. In the first iteration V (z0)
contains only the value of V (d) and for the d used in the simulations V (d) = 0.182.
Obviously the ILC schemes, (4.47a) and (4.47c), give similar results in iteration
1 since both use the inverse of the true system to find the next control input.
The pair, (4.47b) and (4.47d), give for the same reason similar results after one
iteration.

Figure 4.6 shows the general behavior that can be expected from the different
ILC approaches covered by (4.46) and (4.47). It is clear that among the methods
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Figure 4.6 The transient behavior of Vk for the 4 different ILC schemes given
by (4.46) and (4.47).

described here the approach given by (4.47c) is the best choice, although this
method requires that the system description is completely known. If the system is
not known as in (4.47d) the result may be not so good, cf. Figure 4.6.

For the asymptotic analysis the case when the Lk-filter is chosen according to
(4.47a) is first considered. Since u0(t) = 0, this means that z0(t) = d(t). From
(4.38) it now follows that

y0(t) = d(t) + nk(t)

and therefore

u1(t) = −(G0)−1(d(t) + n0(t))

As was shown in (4.42), the corresponding z1(t) becomes z1(t) = −n0(t). This
means that

u2(t) = −(G0)−1(d(t) + n1(t))

and z2(t) = −n1(t). The asymptotic value of V (zk) for k > 0 therefore becomes
equal to rn since with this approach zk(t) = −nk−1(t), k > 0.

A more general case is when a model of the system G0 is used in the L-filter. This
corresponds to the choice of filter for the ILC according to (4.47b). Obviously it
is true that z0(t) = d(t) again. Now assume that the relation between the true
system and the model can be described according to

G0(q) = (1 + ∆G(q))G(q) (4.51)
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where ∆G(q) is a relative model uncertainty. Using the ILC updating scheme in
(4.46) and the filter in (4.47b), it is straightforward to arrive at

z1(t) = −∆G(q)d(t)− (1 + ∆G(q))n0(t) = −∆G(q)z0(t)− (1 + ∆G(q))n0(t)

and in the general case

zk(t) = −∆G(q)zk−1(t)− (1 + ∆G(q))nk−1(t) (4.52)

which can be expanded into the following finite sum

zk(t) = −(1 + ∆G(q))
k∑
j=1

(−∆G(q))j−1nk−j(t) + (−∆G(q))kd(t) (4.53)

Clearly (4.52) and (4.53) are valid also for the case when there is no model error,
i.e., ∆G(q) = 0.

To understand why, in this case, using a model of the system gives better asymptotic
performance compared to using the true system, consider (4.52) and (4.53). If
‖∆G‖ < 1 then, for a large enough k, the influence of d(t) can be neglected, since
‖∆G‖k becomes small. Now assume that the model uncertainty is mainly a scaling
error, i.e., the dynamics are captured by the model. This means that ∆G(q) = δ
for some δ, with |δ| < 1. Since the effect of d(t) in zk(t) is neglected the expected
value of zk(t) becomes equal to 0. The variance expression is found using, e.g.,
(4.52) and

rz,k = E{z2
k(t)} ≈ δ2rz,k−1 + (1 + δ)2rn (4.54)

Asymptotically this means that

rz,∞ ≈ rn ·
1 + δ

1− δ (4.55)

In the example when Lk(q) from (4.47b) is used, δ ≈ − 1
2 and using the result in

(4.55) it follows that rz,∞ ≈ rn
3 , i.e., rz,∞ ≈ 0.3 · 10−3. In fact this is also what is

shown in Figure 4.6. The conclusion from this is that it is possible to get a lower
value of V (zk) asymptotically by choosing a model such that G0(q) = κG(q) for
some 0 < κ < 1 and let L(q) = (G(q))−1. Clearly this is the answer why it is, in
this case, better to use a model of the system.

When the true model is known and used in the filter according to (4.47c), then the
value of V (zk) becomes equal to rn

k for k > 0. For k = 0, V (z0) is equal to V (d)
since z0 = d. If the true system is not known and the model based approach in
(4.47d) is used, then the equation corresponding to (4.52) becomes

zk+1(t) =
k −∆G(q)
k + 1

zk(t)− 1 + ∆G(q)
k + 1

nk(t) (4.56)
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with z0(t) = d(t). To prove stability and find the asymptotic value of V (z) for
(4.56) is left for future work. From Figure 4.6 is however clear that this method
does not always give a good transient behavior. This depends on the fact that
the disturbance d(t) is not completely compensated for in the first iteration. Since
the gain is decreased at every iteration the amount of the disturbance, d(t), that
will be compensated for will decrease in every iteration. This means that instead
of being dominated by the random disturbance the measure V (z) will instead be
dominated by a term depending on the disturbance d(t). In Part V a method that
adaptively compensate for this will be presented.



Appendix

4.A The Jordan canonical form

The Jordan canonical representation for matrices is a standard result from linear
algebra given here for readability.

Theorem 4.A.10 (Jordan canonical representation)
For any square matrix F ∈ Cn×n,
there exists a nonsingular matrix V such that

F = V JV −1 (4.A.57)

where

J = diag(J1,J2, . . . ,J l)
J i = diag(J i1,J i2, . . . ,J imi)

J ij =


λi 1

λi 1
. . .

. . .

λi 1
λi

 ∈ Cnij×nij
(4.A.58)

with zeros outside the diagonals,
∑l

i=1

∑mi
j=1 nij = n, and with λi i = 1, . . . , l as

the distinct eigenvalues of F .

The transformation V can be expressed in the following way,

V =
[
V 1 V 2 . . . V l

]
V i =

[
V i1 V i2 . . . V imi

]
V ij =

[
vij1 vij2 . . . vijnij

] (4.A.59)

62
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where vij1 are the eigenvectors of F , Fvij1 = λivij1. For vijk with k ≥ 2 the
following relation holds

Fvijk = λivijk + vij(k−1) (4.A.60)

and these vectors are called generalized eigenvectors of F .

4.B Proof of Lemma 4.1

The following lemma will prove useful in showing the result.

Lemma 4.B.5
If 0 < ρ < 1, then it is true that there exists a constant C and ρ̄ such that

kρk < Cρ̄k

with ρ < ρ̄ < 1.

Proof Using that ln k < C0k for some k > k0 and by choosing C0 = − 1
2

ln ρ it is easy
to see that

kρk = ek ln ρ+lnk < ek
1
2 ln ρ =

√
ρk

for k > k0. Let ρ̄ be chosen as
√
ρ < ρ̄ < 1 and C such that

kρk < Cρ̄k

also for k = 1, . . . , k0. This concludes the proof. �

To get an upper bound of |FMFM−1 . . .F 1z0| the mapping of one general column
of V , vijk , is considered. From (4.A.60) it follows that if k ≤ nij , then

FMFM−1 . . .F 1vijk = σi,kvijk + σi,k−1vij(k−1) + . . .+ σi,1vij1 (4.B.61)

where each σi,s is a sum of all combinations of products created by taking (without
replacement) s terms from the set {λi,M , λi,M−1, . . . , λi,1} and k − s terms from
the set {cM , cM−1, . . . , c1}. This means that the number of terms in σi,s becomes(
M
k−s
)
. If ck = 1 and λi is constant, such that Fk is constant for all k, the standard

result from Norrlöf (2000b) follows. An upper bound for (4.B.61) can be formulated
as

|FMFM−1 . . .F 1vijk| ≤ max
s=1,... ,M

|λi,s|M−k+1

(
M

k − 1

)
k max
p=1,... ,k

|vijp| (4.B.62)
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where the triangular inequality is applied to the sum (4.B.61) and the coefficients
of the vectors in the sum are taken as

max
s=1,... ,M

|λi,s|M−k+1

(
M

k − 1

)
which is an upper bound of the coefficients in (4.B.61). As an upper limit for the
norm of the vectors in (4.B.61) the maximum value of the norm of all the vectors
is used. The k in (4.B.62) comes from the fact that there are k terms in the sum
in (4.B.61).

Now an upper limit for the mapping, independent of the choice of column in V ,
can be formulated based on the result in (4.B.62).

|FMFM−1 . . .F 1vijk| ≤ ρM−nm+1
m

(
M

nm − 1

)
nm max

i=1,... ,l
j=1,... ,mi
p=1,... ,nij

|vijp|

= ρMm

(
M

nm − 1

)
K1

(4.B.63)

where ρm is defined according to (4.15) and

nm = max
i=1,... ,l
j=1,... ,mi

nij

and K1 <∞ independent of M . The result in (4.B.63) gives the worst case upper
bound and it is important to note that by choosing M big enough this limit can be
made arbitrarily small. This follows form the fact that for fixed nm the binomial
coefficient is a polynomial in M which does not grow faster than the exponential
term ρMm .

Now, in the general case the following relation holds

|FMFM−1 . . .F 1z0| = |FMFM−1 . . .F 1V V
−1z0|

≤ nρMm
(

M

nm − 1

)
K1 max

i=1,... ,n
|(V −1z0)i|

= ρMm

(
M

nm − 1

)
K2

(4.B.64)

where K2 < ∞ and independent of M . The upper limit is found by replacing the
vector u = V −1v with the vector ũ = 1 max |ui|, i.e., a vector containing only the
biggest component in u. This is why the n shows up after the first inequality. It is
possible to move one step further and use the fact that the binomial term

(
M

nm−1

)
is a polynomial in M for fixed nm. Each of the terms in the resulting polynomial
is multiplied by ρMm and using the result from Lemma 4.B.5 this can be written as

|FMFM−1 . . .F 1z0| ≤ γρ̄M |z0| (4.B.65)

for some γ and ρm < ρ̄ < 1.
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4.C Proof of Theorem 4.5

The proof is done in two steps. The first is to show uniform exponential stability
and the second is to show that it exists a coordinate transformation such that
the system with input is transformed into an exponentially stable system without
input.

Step 1. From Definition 4.2 it follows that a linear iterative system,

zk+1 = F kzk + F r,kr

is uniformly exponentially stable if there exist a constant γ > 0 and a λ,
0 < λ ≤ 1 such that

‖zk‖ ≤ γλk−k0‖z0‖, k ≥ k0

Using Parseval’s identity it follows that

‖zk‖2 =
1

2π

∫ π

−π
|Zk(ω)|2dω =

1
2π

∫ π

−π
|F (eiω)Z0(ω)|2dω (4.C.66)

With

ρ̄ = sup
ω∈[0,π]

ρ(F (eiω)

and Corollary 4.3 it is possible to find a bound for |F (eiω)Z0(ω)|,

|F (eiω)Z0(ω)| ≤ γρ̄k|Z0(ω)|, ω ∈ [0, π]

where γ is chosen such that the inequality holds for ω ∈ [0, π]. From (4.C.66)
it now follows that

‖zk‖2 ≤
1

2π

∫ π

−π
γ2ρ̄2k|Z0(ω)|2dω = γ2ρ̄2k‖z0‖2

which exactly corresponds to Definition 4.2.

Step 2. Let,

Z̃k(ω) = Zk(ω)− (I − F (eiω))−1R̄(ω)

with R̄(ω) = Fr(eiω)R(ω). Using (4.16) it follows that

Z̃k+1(ω) = F (eiω)(Z̃k(ω) + (I − F (eiω))−1R̄(ω)) + R̄(ω)

− (I − F (eiω))−1R̄(ω)

= F (eiω)Z̃k(ω)

From the result in step 1 above,

‖z̃k‖ ≤ γρ̄k‖z̃0‖

for all k and BIBO stability is shown.
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5

Background

In this part of the thesis the application, industrial robots, chosen in the thesis
for the evaluation of different ILC algorithms is described. Next chapter gives
a general description of industrial robot modeling and control and in Chapter 7
the actual platform used in the experiments is presented more in detail. In this
chapter a “soft” introduction to the two more technical chapters is given. This
includes a motivation to why the robot application has been chosen and also a
brief description on how the platform for the experiments has been developed in
practice.

5.1 Why the Robot Application?

The most important reason to choose the robot application stems from the fact
that this project has been carried out within NUTEK’s competence center ISIS
(Information Systems for Industrial Control and Supervision) at Linköping Uni-
versity. Within the competence center, research is performed in different areas,
focusing on problems that are important for the industry. One of the companies
that has joined as partner in ISIS is ABB Robotics and robotic applications are
clearly the main interest for them. By using the industrial robots of ABB it was
also possible to take advantage of the knowledge already gained from many years
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of experience from robot design and robot control.

It should also be stressed that the most common applications for ILC have been,
and still are, in the robotics area, see e.g., Arimoto et al. (1984a), Mita and Kato
(1985), Arimoto (1985, 1991), Bondi et al. (1988), Poloni and Ulivi (1991), Bur-
det et al. (1997), Casalino and Bartolini (1984), Guglielmo and Sadegh (1996),
Horowitz et al. (1991), Horowitz (1993), Jiang et al. (1999), and Lange and Hirzinger
(1999). It is natural to view many of the production processes performed by indus-
trial robots as iterative processes. An industrial robot often repeats the same task
over and over again with a high repetition accuracy. This means that the same
task is repeated in the same way with a very small deviation in the tracking error.
If it was possible to compensate for systematic and repeatable errors this could be
a great gain in many practical production problems. This leads naturally to the
idea of applying ILC.

5.2 Using a Commercial System for Research

One of the great challenges of the work presented in the thesis is that it has been
implemented in a commercial system. The modifications that have been done to the
system can hence be made a part of the commercial software quite easily. For the
company the main contribution, however, has probably been to show what actually
can be done using ILC. The fact that the system is a commercial system puts also
some limitations on what can be achieved, at least with a descent amount of work.
In fact, the code used in the test platform has been developed over a period of
more than three years with an effective time of production of about 3-5 months.
Most of the work has been done by the author alone.

In order to implement the functions in the robot control system, needed to apply
the ILC method, a complete understanding of the software that runs the control
algorithms had to be achieved. This kind of knowledge is only found by discussing
with people that have designed and written the code. If the people at the company
had not had time for this it would have been impossible to complete the exercise
and the project would most certainly have been a failure.

When using commercial code in a research program, a problem of security obviously
arises. Sometimes the code in itself contains company secrets and it is therefore
not allowed to be brought to the public. The solution that has been adopted in this
project is that all the programming in the controller has been done at the site of
the company. This has proved to be a very good solution and it has also shown to
be a good way to transfer knowledge from the research community to the company
as well as vice versa.

To reduce the amount of code needed in the commercial robot control system the
ILC algorithms are implemented in MATLABTM on a PC. This makes it also easy
to try new ILC algorithms without rewriting the code of the controller.



6

Industrial Robots

In this part of the thesis the application, industrial robots, used in the experiments
will be presented. The presentation in this chapter includes robot modeling and
control in general and a short description of the ABB industrial robot family. In
the next chapter the robot used in the implementation of ILC is presented together
with an overview of the implementation of the programs necessary to apply ILC
to the commercial robot control system.

6.1 Introduction

In the thesis, the term robot refers to a mechanical arm, as shown in Figure 6.1(a).
This is a classical industrial manipulator, in this case an ABB IRB 1400. In this
chapter some of the important properties of this type of robot will be examined
starting from the modeling aspect. Many survey articles and books have been
written on the kinematics, dynamics and control of robots, see e.g., Spong and
Vidyasagar (1989), Spong et al. (1992), and Craig (1988).
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(a) A mechanical
manipulator. In
the thesis generally
referred to as a
robot.
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(b) The frames associated with the joints of the IRB1400 using an algorithm

from Spong and Vidyasagar (1989).

Figure 6.1 Two different views of the robot.
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6.2 Modeling

The modeling of industrial robots is usually divided into kinematic and dynamic
modeling. The first part that will be discussed here is the kinematics, i.e., the
geometrical description of the manipulator. The material in this section is partly
based on Norrlöf (1999) and Spong and Vidyasagar (1989).

6.2.1 Kinematics

Kinematics of a robot refers to the geometric relationship between the motion of
the robot in joint space and the motion of the tool frame in the task space. In
Figure 6.1(b) the two frames are represented by the coordinate systems o0x0y0z0

and o6x6y6z6 respectively.

The robot joint coordinates are given by a vector φ = (φ1, φ2 . . . , φn)T . The joint
angles, φi, are limited by the mechanical design of the robot. Cables mounted
on the robot to serve for example a spot welding device can also give additional
constraints.

A realization of the vector φ is called a configuration of the robot. Note that, for a
six degree-of-freedom (DOF) robot, as the one in Figure 6.1, different configurations
can give the same position and orientation of the tool frame with respect to the
base frame. The position of the tool frame, the tool center point (TCP), can be
expressed as a coordinate point in the base frame coordinate system and it is
represented by a vector x ∈ R3. The orientation of the tool frame is represented
by an orientation matrix , R ∈ R3×3. The TCP together with the orientation
matrix is enough to describe the coordinate transformation from the base frame
to the tool frame. The matrix R is orthogonal and satisfies detR = +1. Even
though R contains 9 elements, it describes only 3-DOF and can, accordingly, be
represented with only 3 parameters, for example the Euler angles. The Euler angle
representation will be denoted by r ∈ R3. The Euler angles specify the orientation
of a coordinate frame, frame1, relative to another coordinate frame, frame2, by
using three angles, (α, β, γ). The orientation of frame2 relative to frame1 is found
by: First rotate about the z axis of frame1 by the angle β. Next rotate about the
current y axis by the angle α. Finally rotate about the current z axis by the angle
γ.

Sometimes quaternions are used to represent orientation. A quaternion can be
written as a mathematical object as,

q = q1 + iq2 + jq3 + kq4 (6.1)

where qn ∈ R, n ∈ [1, 4], and i, j, k are mutually orthogonal imaginary units having
the property,

i2 = j2 = k2 = ijk = −1, ij = k, jk = i, ki = j (6.2)
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A quaternion can also, as suggested in Funda and Paul (1988), be written as a tuple,
q = [s,< x, y, z >] = [s, v]. Where v is a vector with three elements. Obviously
the quaternion is over-specified, having 4 elements. By putting the additional
constraint that the size of the quaternion is equal to 1, this problem is however
eliminated. More on quaternions and the computational aspects of quaternions can
be found in, e.g., Funda and Paul (1988), Shoemake (1985), Funda et al. (1990),
and Dobrovodsky (1994).

Position kinematics

A kinematic description refers to the geometric relationship between the motion
of the robot in joint space and the motion of the tool frame in task space, usually
defined in Cartesian coordinates. The description is without consideration of the
forces needed to really perform the motion of the robot. The forward kinematic
problem is to determine the mapping

X0 =
[
x(φ)
r(φ)

]
= f0(φ) (6.3)

from joint space to task space. The inverse kinematic problem is to determine the
inverse of this mapping, i.e., given a position and rotation of the tool frame calculate
the corresponding robot joint configuration. As noted before, the inverse kinematic
problem has many solutions while, for a serial link robot as in Figure 6.1(b), the
forward kinematic problem has a unique solution. A systematic way of building the
forward kinematic model is the Denavit-Hartenberg representation. In, for example
Norrlöf (1999), an algorithm is presented to build forward kinematics model using
the D-H representation. An example is also used to show how it actually works on
the ABB IRB1400 robot. In Norrlöf (1999) the inverse kinematics problem is also
discussed, using the ABB IRB1400 as an example.

Velocity kinematics

The velocity kinematics define the relationship between the joint velocities, φ̇, and
the translational and the angular velocities of the tool frame. Similar to (6.3) the
velocity kinematics can be written as

V =
[
v
ω

]
= J0(φ)φ̇ (6.4)

where J0(φ) ∈ R6×n is defined as the manipulator Jacobian, and V represents
the linear and angular velocities of the tool frame. The vector v ∈ R3 is just the
derivative with respect to time of the position vector x(φ) in (6.3) and the angular
velocity is given by ω = (ωx, ωy, ωz)T ∈ R3. One way to calculate the velocity
kinematics is to use the forward kinematic description in (6.3) and differentiate
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with respect to time,

Ẋ1 =
∂f0(φ)
∂φ

φ̇ = J1(φ)φ̇ (6.5)

where the Jacobian is given by J1(φ) = ∂
∂φf0(φ). The points called singular points

where the Jacobian looses rank are important because they can be interpreted as
the points in the work space where a serial type robot looses one or more degrees
of freedom. When planning a trajectory it is important to try to avoid passing
through singular points.

6.2.2 Dynamics

The Euler-Lagrange equations are a tool from analytical mechanics that can be
used to derive the equations of motion for a mechanical system. In this approach
the joint variables, φ, are considered as generalized coordinates. The kinetic energy
of the manipulator can be calculated as,

K(φ, φ̇) =
1
2
φ̇TD(φ)φ̇ (6.6)

where D(φ) > 0 is the inertia matrix. Let P : Rn → R be a continuously differen-
tiable function, called the potential energy. For a rigid robot, the potential energy
is due to gravity only. For a flexible robot the potential energy also stems from the
elasticity. Now, define the Lagrangian function according to

L(φ, φ̇) = K(φ, φ̇)− P (φ) (6.7)

The dynamics of the manipulator are described by Lagrange’s equations

d

dt

∂L
∂φ̇k

− ∂L
∂φk

= τk, k = 1, . . . , n (6.8)

where τ1, . . . , τn represent generalized input forces. Inserting the kinetic energy and
the potential energy for the Lagrangian L above leads to the matrix description,

D(φ)φ̈ + C(φ, φ̇)φ̇+ g(φ) = τ (6.9)

where D(φ) > 0, D(φ) = DT (φ) is the inertia matrix, C(φ, φ̇)φ̇ is generally referred
to as the velocity dependent term, containing the centrifugal and Coriolis effects,
and g(φ) is the gravitational term.

There are some important properties of the Lagrangian dynamics of (6.9) that are
helpful in the analysis and design of the manipulator control system. Among these
properties are (from Spong and Vidyasagar (1989)):

1. The inertia matrix D(φ) is positive definite and symmetric and there exist
scalars such that

µ1(φ)I ≤ D(φ) ≤ µ2(φ)I (6.10)

If all joints are revolute, then µ1 and µ2 are constants.
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2. The matrix W (φ, φ̇) = Ḋ(φ) − 2C(φ, φ̇) is skew symmetric.

3. The mapping τ → φ̇ is passive, i.e., there exists β ≥ 0 such that∫ T

0

φ̇T (u)τ(u)dt ≥ −β (6.11)

4. Rigid robot manipulators are fully actuated. This means that there is an
independent control input for each degree-of-freedom. Robots that have joint
or link flexibilities are no longer fully actuated and the control problem is in
general more difficult.

5. The equations of motion given in (6.9) are linear in the inertia parameters.

All these properties have been used in different proofs concerning, for example,
stability and convergence of adaptive and robust controllers for robots.

6.2.3 High level control

In the early days of robot development the manipulators were mainly used for set-
point tracking. This means that the robots were programmed to move to a certain
point but that the trajectory they followed in order to do so were not well defined.
The controllers that were used in these robots were of PD-type or sometimes PID-
type. This remarkably simple controller structure shows good results for the set-
point tracking problem and it can also be shown that the PD controller actually
makes the system globally asymptotically stable. A proof is given in, e.g., Slotine
and Li (1991).

High level planning and control

In general, the motion control problem of manipulators is divided into three stages,

• motion planning,

• trajectory generation, and

• trajectory tracking.

These steps are now going to be described briefly.

Motion planning

The motion planning level includes activities such as checking if the robot can
move from one point to another without hitting an obstacle, or determining how
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the work should be performed on a specific work object. In industrial applications
this part is mainly done by a system separate from the robot control system. The
motion planning is performed by the operator or by a computer program, e.g., a
CAD/CAM tool. In the car industry, CAD programs that can simulate all the
different levels of the motion control of the robots are used. The simulations also
give very accurate predictions for the cycle time. The car manufacturers use such
tools to, off-line, optimize the motion of the robot in order to reduce the cycle time
and the production time. When the production rate is several units per minute,
a reduction of the cycle time of only a 10th of a second will imply a considerable
gain in production.

Trajectory generation

The trajectory generation problem is the problem of generating trajectories with
position, speed, and acceleration given as functions of time. The problem also
includes the consideration of the actual robot dynamics and kinematics since the
trajectories must be feasible, i.e., the manipulator must be able to follow the tra-
jectories that are generated. In many cases it is also a question of finding the
optimal paths where the maximum speed and acceleration is used. The goal in
many applications is to perform a given task in the least possible time and in this
sense the trajectory planning problem is very important. Of course the motion
planning gives some restrictions on what can be achieved.

The trajectory generation is often made in a chain of steps where, in a first step,
a few points are planned on the trajectory and in the next steps the trajectory is
refined and more points are created. Finally, the trajectory is well enough defined
to be used for control, i.e., the trajectory tracking algorithms. The motion planning
and also the trajectory generation are often made in the task space. To use the
reference for control the trajectory must be transformed into configuration space,
i.e., joint space.

Trajectory tracking

Since in most applications it is not possible to measure the actual joint positions,
the motor positions are used to control the robot. This implies that the coordinates
in the joint space must be scaled in order to compensate for the gear ratios. If the
gear incorporates known flexibilities, those can also be compensated for in this step.
The trajectory tracking problem can be defined as the problem of controlling the
robot arms in such a way that the tool frame follows the trajectory calculated by
the trajectory generator. The trajectory is defined both by the tool frame position
and the tool frame orientation relative to the base frame.

A typical architecture for solving the robot control problem is shown in Figure 6.2,
for more details on the planning and trajectory generation problems see e.g., Spong
and Vidyasagar (1989).
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Motion
planner

Trajectory
planner

Controller Sensors

Figure 6.2 Block diagram showing the components in the robot control prob-
lem.

6.2.4 Control design

Next some methods to design the controller in a robot control system will be
discussed.

Feedback linearization

Feedback linearization is a relatively recent tool in nonlinear control design. Because
of the rapid development of microprocessor technology it has also been possible to
apply this technique to real control systems. The idea of feedback linearization is
to algebraically transform a nonlinear dynamic system into a linear one. In practice
this is done by using nonlinear coordinate transformation and nonlinear feedback.
In the robotics context the feedback linearization technique is known as inverse
dynamics. The idea is,

1. to compensate all the coupling nonlinearities in the Lagrangian dynamics and

2. to design a linear compensator based on a linear decoupled plant.

The feedback linearization can be made in the joint space coordinates or in the
task space coordinates. An example of the first type will now be presented.

Given a plant model

M(φ)φ̈ + C(φ, φ̇)φ̇+ g(φ) = τ (6.12)

as shown in (6.9). Here the inertia of the motor and gear has been included in the
inertia matrix,

M(φ) = D(φ) +A(φ) (6.13)

A(φ) is a diagonal matrix with elements air2
i ; ai is the ith actuator inertia and ri

is the gear ratio. The following control law is used

τ = M(φ)aφ + C(φ, φ̇)q̇ + g(φ) (6.14)
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where aφ ∈ Rn is an intermediate control input. Since the inertia matrix, M(φ), is
positive definite and therefore invertible for all φ, the closed loop system reduces
to the decoupled double integrator

φ̈ = aφ (6.15)

If a reference trajectory, r(t) = φd(t), is assumed to be given, then one possible
choice of aφ is

aφ = φ̈d +Kd(φ̇d − φ̇) +Kp(φd − φ) (6.16)

i.e., a PD controller with a feedforward of the reference acceleration. Combining
(6.15) and (6.16), using

φ̃ = φd − φ (6.17)

the result becomes

¨̃
φ+Kd

˙̃
φ+Kpφ̃ = 0 (6.18)

In fact, by choosing the parameters Kd and Kp it is possible to place the poles of
the error characteristic equation, (6.18), arbitrarily. In the real system, restrictions
will of course be posed on the control signal. This will limit also the possible
bandwidth of the system and, hence, put more restrictions on the parameters Kd

and Kp.

This method of controlling the robot makes it possible to have two different levels
of control. For example, the inner loop controller can take care of the linearization,
creating a closed loop system that gives the impression of being a linear system
from the reference to the output. The outer loop controller, giving the overall
control system the desired properties, can therefore be designed using linear tech-
niques. For ILC this is also an advantage since there are methods to design the
ILC algorithms for the linear case but it is more difficult in the nonlinear case. To
be able to do the linearization it is necessary to have full knowledge of the system
dynamics. In practice this is, of course, not plausible. Possible solutions to this
problem are to introduce adaptive or robust controllers (Craig, 1988; Slotine and
Li, 1991) which will be discussed next, or to use ILC.

Robust and adaptive control

As was discussed previously, using the feedback linearization method gives raise
to new problems. The model of the system must be very accurate and in many
applications there are parameters that can not be specified in advance, e.g., the
load parameters. Robust and adaptive methods have the advantage that they can
incorporate this kind of uncertainty in the design process and give good results
also for this case. Robust and adaptive controllers differ on one important point.
The adaptive algorithm uses some kind of online parameter estimation method
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to cope with the changes in the system parameters. The robust methods, on the
other hand, take care of the parameter uncertainties already in the controller design
process, i.e., before the controller is actually applied to the system.

Robust feedback linearization

Many different techniques from linear and nonlinear control theory have been ap-
plied to the problem of robust feedback linearization for manipulators. Among
these are

• sliding modes,

• Lyapunov’s second method,

• method of stable factorization.

Consider again the dynamic equations for the n-link manipulator,

M0(φ)φ̈ + C0(φ, φ̇)φ̇+ g0(φ) = τ (6.19)

with the control input given by

τ = M(φ)aφ + C(φ, φ̇)φ̇+ g(φ) (6.20)

where M , C, and g represent the nominal values of the true system M0, C0, and
g0. Now a model error, (̃·) = (·)0−(·), is introduced, indicating that exact feedback
linearization can not be achieved in reality. The term aφ may be used to compensate
for the resulting perturbation terms. Let

aφ = φ̈d +Kd(φ̇d − φ̇) +Kp(φd − φ)− δa (6.21)

where δa is an extra compensation to be chosen, and substitute (6.20) and (6.21)
into (6.19). After some algebra the following expression is obtained,

¨̃φ+Kd
˙̃φ+Kpφ̃ = δa + η(φ, φ̇, δa, t) (6.22)

where

η = M−1
0

(
M̃(φ̈d +Kd

˙̃φ+Kpφ̃− δa) + C̃φ̇+ g̃
)

(6.23)

The result of (6.22) can be formulated as a linear state-space description

ẋ = Ax+B(δa + η) (6.24)

where

x =

[
φ̃
˙̃φ

]
, A =

[
0 I
−Kp −Kd

]
, B =

[
0
I

]
(6.25)
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The goal is now to find a time-varying scalar bound, ρ(x, t) ≥ 0, on the uncertainty
η,

‖η‖ ≤ ρ(x, t) (6.26)

and to design the additional input term, δa, such that the state trajectory in (6.24)
is bounded or, if possible, converges to zero. It is in general difficult to calculate
ρ in (6.26) since the term η is a complex expression involving also the additional
control term δa. One approach that has been tried is to design δa using sliding
mode theory (Spong and Vidyasagar, 1989). The simplest sliding mode controller
results from choosing δa,i according to

δa,i = ρi(x, t)sign(si), i = 1, . . . , n (6.27)

where ρi is the bound on the i-th component of η, si = ˙̃q+λiq̃i represents a sliding
surface in the state-space and sign(·) is the sign function.

An alternative approach is the so-called theory of guaranteed stability of uncertain
systems, based on Lyapunov’s second method. The matrix A in (6.24) is Hurwitz,
which means that ∀Q > 0, Q = QT =⇒ ∃P > 0 with P = PT , satisfying the
Lyapunov equation,

ATP + PA = −Q (6.28)

This follows from the Lyapunov stability theory for LTI systems, see e.g., Slotine
and Li (1991). Using the matrix P , the term δa can be chosen as

δa =

{
−ρ(x, t) BTPx

‖BTPx‖ if ‖BTPx‖ 6= 0

0 otherwise
(6.29)

With the Lyapunov function V = xTPx it is now possible to show that V̇ is
negative definite along solution trajectories of the system given by (6.24).

In practice these two approaches will lead to chattering, i.e., small but fast changes
in the state x. This is due to the fact that the switching can not be made with
nonzero delay. This chattering is undesirable because it involves high control ac-
tivity and it may also excite high frequency dynamics neglected in the modeling
of the system. Many refinements and extensions to the two approaches to robust
feedback linearization have been proposed. Mainly the idea is to simplify the cal-
culations of the uncertainty bounds, ρ(x, t), and to smooth the chattering in the
control signal (Spong et al., 1992).

The method of stable factorizations has also been applied to the robust feedback
linearization problem. This approach will not be covered here, the reader is referred
to Spong et al. (1992) with references.

Adaptive Feedback Linearization

The work on adaptive control of robot manipulators can be divided into two phases
according to Spong et al. (1992), the approximation phase (1979 - 1985) and the
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linear parameterization phase (1986-present). In the approximation phase the as-
sumptions are that the robot dynamics can be linearized, that decoupling is pos-
sible for the joints, and that the inertia matrix varies slowly. The breakthrough
for adaptive feedback linearization came about 1985 when it became widely known
that the manipulator dynamics could be written as a linear parameterization. Con-
sider again the dynamics, described by (6.19), but suppose that the parameters in
(6.20) are not fixed. Instead, assume that they are time varying estimates of the
true parameters. Let

aφ = φ̈d +Kd(φ̇d − φ̇) +Kp(φd − φ) (6.30)

Substitute (6.20) and (6.30) into (6.19). After some algebra the following expression
is obtained,

¨̃
φ+Kd

˙̃
φ+Kpφ̃ = M̂−1ϕ(φ, φ̇, φ̈)θ̃ (6.31)

where ϕ is a regressor, and θ̃ = θ̂− θ, where θ̂ is a parameter vector estimate. The
system in (6.31) can now be written as

ẋ = Ax+BΦθ̃ (6.32)

where

x =

[
φ̃
˙̃φ

]
, A =

[
0 I
−Kp −Kd

]
, B =

[
0
I

]
, Φ = M̂−1ϕ(φ, φ̇, φ̈) (6.33)

The PD controller parameters, Kp and Kd, are chosen such that the matrix A is
Hurwitz. Suppose that the output, y = Cx, of (6.32), is such that the transfer
function C(pI − A)−1B is strictly positive real (SPR). It then follows from the
Kalman-Yakubovich lemma that there exist positive definite matrices P and Q
such that

ATP + PA = −Q (6.34a)

BTP = C (6.34b)

If the parameter updating law is chosen as

˙̂
θ = −Γ−1ΦTCx (6.35)

where Γ is symmetric and positive definite, the global convergence to zero of the
tracking error with all internal signals remaining bounded can be shown using the
Lyapunov function

V = xTPx+
1
2
θ̃TΓθ̃ (6.36)

This approach has some drawbacks.
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• The parameter updating law uses the acceleration, φ̈, as a known parameter,
which is usually very noisy.

• The estimated inertia matrix, M̂ , must be invertible. This can, however, be
made possible by using projection in the parameter space.

Later work has been devoted to overcome these drawbacks and it has been proved
possible by using so-called indirect approaches based on a filtered prediction errors
Slotine and Li (1991).

Aspects on robot design and robot control

The structure of the manipulator has a great impact on the difficulty of the control
problem. By using gears, for example, it is possible to reduce the nonlinear coupling
between the axes of the robot. This, of course, to the price of friction, backlash,
and flexibilities. If the position is measured on the motor side, i.e., before the gears,
the static measurement accuracy will be increased r times by the gears, where r is
the gear ratio. Because of the flexibilities introduced by the gears it is not so sure,
however, that the dynamic accuracy is increased in the same way.

Today the gears contribute to a significant part of the cost when producing a
robot. Cutting this cost by using less expensive gears would be preferable. A goal
for the control designers should be to reach the same or better performance with
cheaper gears having more flexibilities and more friction. ILC can be one concept
that makes it possible to use cheaper robot components. More advanced control
strategies, including for example adaptive control, could be another possibility to
reach the same goal.

6.3 The ABB IRB Family

After the general description of robot manipulators and robot control the focus
will now be on the type of robot that is used in the experiments. The ABB robot
system used in this work consists of a controller, version S4C, and the manipulator,
an IRB1400. In Figure 6.3 the two components are depicted.

Figure 6.3(b) shows that the manipulator has 6-DOF. Note also that axes 1, 2 and
3 are all controlled by motors placed on the lower part of the robot. Motors for
axes 4, 5 and 6 are mounted on the rear part of the upper arm, next to joint 3.
This makes the robot lighter and more balanced, and hence it can move faster with
less motor torque. Before describing the robot in more detail some background on
ABB robots in general is given.
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(a) The controller, ABB S4C.

(b) The manipulator, ABB IRB
1400.

Figure 6.3 The two main components in the robot system.

6.3.1 Background

The first generation of robots from Asea/ABB was presented on the market in
1974 (Nilsson, 1996). The controller family was called S1 and the robots available
were the IRB-6 and the IRB-60. The next generation, called S2, was presented in
1982 together with some new manipulators, e.g., the spot welding robot IRB-90.
In 1986, S3, the third generation controllers and a new family of manipulators
were presented. During 1994, S4, the fourth generation of the control system,
was launched. The main contributions in S4 were the new programming language,
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RAPIDTM, and a model-based motion control strategy. The language, RAPIDTM,
is used by the operator when programming the robot.

Figure 6.4 An example of a gantry robot.

Since 1994 a lot of new robots have been presented on the market and today ABB
has a full range of traditional industrial robots for different applications, ranging
in size from the IRB140, reaching about 0.8 m, to the IRB6400, reaching up to 3
m from the foot of the robot. ABB Robotics has also a family of gantry robots
and some more specialized manipulators like the IRB640 flex palletizer having
only 4-DOF. A gantry robot is a robot that is mounted on a track as displayed in
Figure 6.4 making it possible for the robot to move in a plane parallel with the
floor. A typical application for a gantry robot is a pick and place operation, e.g.,
moving a heavy object from one production line to another. ABB Robotics has also
a high speed pick and place robot, the IRB340, using the DELTA robot structure
(Burdet et al., 1997).

As the number of applications grows the demands on the controller grow. The
controller is today the same for all the different robots and this is possible by using
a highly parameterized system where almost all the functions can be controlled by
parameters in a database implemented in the robot system.

Each individual robot has its unique database file. This makes it possible to ad-
just and compensate for small differences, caused by, e.g., the inaccuracy in the
production of the mechanical manipulator.

6.3.2 The controller, S4C

The controller, depicted in Figure 6.3(a), consists of the cabinet and the teach
pendant. Inside the cabinet, the hardware that runs the control program is found.
The main computer that takes care of the high level control is a Motorola 68060
processor in the generation of the cabinet used in the experiments. The low level
control is performed using a DSP from Texas Instrument. In the cabinet the
two computers are physically separated on two different boards, called the main
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computer board and the robot computer board. There is also a separate board
for the memory used by the computers. The controller used in the experiments
has 16Mb of RAM. An optional board for the Ethernet communication is also
installed in the system. It is also possible to connect devices for digital and analogue
I/O to the robot control system and the cabinet is prepared for standard bus
communication with other equipment such as PLCs.

In the standard configuration the cabinet is equipped with 4 or 6 drive units,
depending upon the number of DOF of the robot. Sometimes a cell is equipped
with external axes, controlled by the cabinet. For this reason it is possible to control
up to a total of 12 axes from inside the cabinet. This could be for example a 6-DOF
robot plus three 2-DOF robots, moving work objects. A common configuration in
arc welding applications is to use one extra 2-DOF robot, giving a total of 8-DOF
in the cell.

Figure 6.5 The teach pendant.

In Figure 6.5 the device that the operator uses when programming the robot is
depicted. The device is called the teach pendant and is equipped with a joystick
having 3-DOF. Using the joystick it is possible to control

• the position of the tool in a Cartesian coordinate system in, e.g., the base
frame, or

• the orientation of the tool, or

• the individual axes of the robot.

It is also possible to control external axes using the teach pendant. On the teach
pendant there is a display and a keyboard that makes it possible for the operator to
program and run the robot while being in the working cell close to the manipulator.



6.3 The ABB IRB Family 87

6.3.3 The manipulator, IRB1400

The manipulator used in the experiments is an IRB1400. It is a 6-DOF manipulator
with the structure of the joints according to Figure 6.3(b). The motors are of AC
type and all the motors that drive the axes 1 to 3 are placed on the base of the
robot. The motors for the wrist, axes 4 to 6, are placed on the back of the upper
arm and the torques are transmitted via a transmission in the upper arm to joints
4, 5 and 6. In Figure 6.6 the measures of the arms are depicted to give an idea
of the size of the manipulator. Note the springs that are mounted in parallel with

balancing 
springs

Figure 6.6 To give an idea of the size of the manipulator.

the lower arm, rotating around joint 2 (cf. Figure 6.3(b)). The springs are used to
balance the robot and to decrease the static load of the motor for joint 2.

The resolvers measuring the joint angles of the robot are mounted on the motor
axis and, hence, the position measured is the motor position. The goal is of course
to control the arm position and ultimately the tool position and orientation. On
the IRB1400 the flexibilities are not as notable as they are on the larger robots
but it is still a problem that has to be dealt with. Using a dynamical model and
the TrueMoveTM function the ABB robots are very accurate. For the IRB1400 the
positional repeatability is ±0.05 mm, maximum speed for the TCP is 2.1 m/s and
the maximum acceleration is 15 m/s2. It is obvious that these measures are not
valid for the robot in the whole working range. Changing the robot configuration
will mean changing the performance of the robot considerably.
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7

Platform for the Experiments

After making a general discussion of industrial robot modeling and control as well
as an overview of the ABB IRB family in the previous chapter, it is now time to
describe the platform used in the experiments. This includes the different compo-
nents that are necessary in order to apply ILC to a commercial system. A short
note on the possible future extensions to the software is also given. The chapter
is concluded with a discussion on the methods used in the modeling process of the
system.

7.1 The Implementation

The implementation is now going to be presented from a system theoretic point
of view. In Figure 7.1 an abstract view of the implementation is depicted. The
two functions data-logger and data-input are shown as dashed arrows going in to
and out of the system, respectively. The system inside the bold rectangle is the
robot control system which, in this case, is not possible to change. The data-input
function makes it however possible to add a control signal {uk(t)}tf0 to the system.
This makes it possible to evaluate ILC on the commercial control system. Next the
components that make it possible to apply ILC to the commercial robot control
system are described in more detail.

89
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+ GC

rint(t) yk(t)

{uk(t)}tf0

{rk(t)}tf0 {yk(t)}tf0

Figure 7.1 Abstract view of the implementation.

7.1.1 The interface

The interface means here the connection between MATLABTM and the robot control
system. This includes the high level synchronization of the ILC and the robot
control system. The data exchange between the robot controller and the PC, the
dashed arrows in Figure 7.1, is made using the file system. Since the two systems
run completely in parallel some kind of synchronization is necessary. A standard
solution when dealing with concurrent systems is to use semaphores (Stallings,
1992).

The two systems can be represented as two processes that have to be synchronized.
The first one is the execution of the iteration or movement of the robot, called
process A. The second is the calculation of the compensation signal in the PC
using MATLABTM, this process is called process B. Since the data are not available
until the file is completely written to the disk, process B has to wait until process
A is completely finished before the processing can start, as shown in Figure 7.2.

Process A

Process B

time

Figure 7.2 The execution of the processes A and B.

To show how the problem is solved using semaphores two primitives are introduced,
wait(semaphore), and signal(semaphore). The semaphore can be seen as an
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Process A: Process B:
repeat repeat
wait(semA); wait(semB);
perform_programmed_motion; load_data;
log_data; process_data;
save_logged_data; save_processed_data;
signal(semB); signal(semA);

until readyA until readyB

Figure 7.3 The resulting processes A and B, using the semaphore for mutual
exclusion.

integer value that can be initialized to an arbitrary value. When doing a wait
the semaphore value is decreased by one and if the value becomes negative the
process that executed the wait statement is blocked. The signal function increases
the value of the semaphore by one. If the value becomes positive when applying
the signal statement the process waiting is unblocked. Using the semaphores to
synchronize the processes A and B will result in the code shown in Figure 7.3.

A problem, also with only two processes, is to decide which one of the two processes
that will start running. This problem is taken care of by an initializing procedure
that creates the semaphores in a way that makes the execution of the two processes
deterministic. In the case with the processes A and B, the initialization procedure
runs in the PC and executes the following steps,

1. create semA and semB having the value 0,

2. write an empty control signal, u0, to the disk, and

3. execute signal(semA).

In this way the robot will first move, i.e., process A will execute before process B.
After process A has finished the new correction term can be calculated, based on
the error when u0 was applied.

In the test environment, the implementation of the semaphores is made using files.
The two primitives above correspond to creation and deletion of the files semA and
semB. The expression wait(semA) means, wait until there is a file named semA,
delete this file, then continue. The primitive signal(semA) creates the file semA
and then the execution continues. This implementation uses a binary semaphore
because the semaphore can only take the values 0 or 1 (Stallings, 1992), file does
not exist and file exists, respectively. For this application, however, this is enough
and when the interface changes to another kind of communication media, e.g., a
direct link between the processes, the synchronization can easily be replaced by a
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+ GC
rint(t) yk(t)

{uk(t)}tf0

{rk(t)}tf0 {yk(t)}tf0

q−δkq−δk

Figure 7.4 The actual function of the implementation.

new implementation. This makes the chosen solution of the synchronization and
mutual exclusion very general.

7.1.2 The robot controller

In the previous section the synchronization of the terminal and the robot control
system was discussed. Now, consider again the system depicted in Figure 7.1. In
practice it is necessary to consider the internal synchronization of the data-input
and the data-logger function. In the system depicted in Figure 7.4 this problem is
shown. The synchronization problem can be seen as the problem of identifying the
delay, δk, that is present in the data-logger.

In practice this is solved by logging an additional synchronization signal that can
be used in the identification of the delay δk. Comparing the synchronization signal
from different experiments makes is possible to keep track of how the delay δk
evolves. The difficult part is to get an accurate estimate of δ0. For this a “back
door” in the system is used which enables the possibility to, simultaneously, add
the compensation signal u(t) and log the signal rint(t). If u(t) is chosen as zero,
rint and r (logged by the data-logger) will coincide when compensated for the delay
δk. This technique is used in the first iteration only and then the other technique,
mentioned above, with additional synchronization signals is used.
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7.1.3 The terminal

The program execution of the robot is controlled from the terminal. By altering
the programs or creating new programs using, e.g., MATLABTM, it is possible to
control the motion of the robot from a process running on the terminal. The
synchronization of the processes on the terminal and the robot controller is made
using semaphores, as described in Section 7.1.1.

The data-logger and the data-input function on the robot uses the hard-disk of the
terminal for data storage. In MATLABTM two functions, readlog and writelog,
are implemented for reading/writing data to the data-logger and the data-input
function respectively.

7.1.4 Summary

By using the different components described in this section, ILC can be evaluated
on the robot. The interface makes it possible to communicate and synchronize the
robot control system and the PC. This is a condition for the ILC system to work.
The data-logger and the data-input function are, of course, also vital for the ILC
method. In order to evaluate ILC on the robot system two new functions have
been implemented, the data-input function and the synchronization between the
data-logger and the data-input function. The ILC algorithm is implemented in
MATLABTM. Using these functions, an environment is created where it is possible
to try and compare different ILC updating formulas.

7.2 Future extensions to the software

As has been understood from the discussion in the previous sections there are some
crucial points in the implementation that can be improved. These points will now
be summarized and a pointer towards what should be done in the implementation
to significantly improve the functionality is also given.

7.2.1 The interface

Today the file system is used as the interface between the robot system and the
terminal. It would be a major improvement to connect the two systems directly
by using a link with the TCP/IP protocol. This kind of interface will make the
communication between the robot and the terminal much faster. In the current
implementation it takes a couple of seconds before the system reacts after that a
signal is sent to the semaphore. The transfer time of data from the data-logger to
the terminal and to the data-input function from the terminal should also be much
decreased.
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7.2.2 The robot controller

There are some problems with the software in the robot controller that have to be
understood and solved in order to make the ILC method completely reliable in the
system. The, sometimes random, delays should be removed and a better solution
for the synchronization of the data-input function and the data-logger has to be
found.

7.2.3 The terminal

The major extension and improvement needed for the software in the terminal is a
more user friendly man-machine interface. In the current system the test environ-
ment is run using a terminal program on the PC. A direct link from MATLABTM

to the robot controller would make it possible to control the robot directly from
MATLABTM. The graphical user interface support in MATLABTM would make it
easier, also for beginners, to use the advanced functions that are available in the
data-input and the data-logger functions. It should, of course, also be possible to
use other functions in the test environment.

+ + + +
-

1

2

r(t)
F

Ff

wk(t) vk(t)

yk(t)

Figure 7.5 A simplified view of the robot system used in the experiment.

7.3 Modeling and Identification

Now the identification experiments that have been performed on the robot will be
discussed. The system model that is used is shown in Figure 7.5. Next this model
will be presented and a parameterized version will be identified.
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7.3.1 A simplified view of the robot control system

In Figure 7.5 a simplified view of the robot control system is shown, with the
blocks representing the robot and the controllers Ff and F , respectively. The
robot is a non-linear system, having 6 inputs and 6 outputs. The feedforward
controller, Ff , takes care of the decoupling and linearization of the system and
also most of the actual control of the system. Since there are always model errors
a feedback controller, F , is used to take care of the resulting control error. The
actual implementation of the controllers in the robot is confidential but in principle
the control scheme of Figure 7.5 gives an idea of how it works.

The input to the system in Figure 7.5 is the motor reference position r(t), this signal
is calculated from the arm reference position using a model based approach. How
this works in principle was discussed in the previous chapter. Using the calculated
motor position reference a feedforward torque signal is calculated and the resulting
control error is taken care of by the feedback controller.

The disturbances dk(t) and nk(t) are load disturbances and measurement distur-
bances respectively. In the robot system the two types of disturbances are caused
by, e.g., ripple in the torque applied to the motors and ripple of the resolver signals.

7.3.2 Applying ILC

Using the data-input function, implemented in the robot control system, the ILC
input signal can only be applied at the points marked ① and ② in Figure 7.5, i.e.,
at the position reference and at the torque reference to the robot. In the thesis the
ILC input signal is applied at ① using the error defined by

ek(t) = r(t) − yk(t) (7.1)

With the data-logger it is possible to sample the reference signal, r(t), and the
motor position signal, yk(t), cf. Figure 7.5. With the definition of the error signal
as in (7.1) the ILC input signal can be calculated using, e.g., the updating formula

uk+1(t) = Q(q)(uk(t) + L(q)ek(t)) (7.2)

cf. Chapter 3. Of course it is possible to implement more general ILC schemes (as
will be shown in the following chapters of the thesis).

If it is assumed that the closed loop system is completely decoupled and also linear,
it is enough to consider only the SISO case. Since the ILC algorithms covered here
only consider the control errors on the motor side the pre-filter of the reference
signal will not have to be considered in the analysis. Using Theorem 4.8 with

Tu(q) = Gyuk(q) =
F (q)G(q)

1 + F (q)G(q)
(7.3a)

Tr(q) = (Ff (q)F−1(q) + 1)Gyuk(q) (7.3b)
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where G(q) is assumed to be a linearized model of a robot joint, a sufficient condi-
tion for stability becomes

|1− L(eiω)Tu(eiω)| < |Q−1(eiω)|, ∀ ω (7.4)

Note that this criterion only contains the closed loop system, which is designed to
be well behaved.

7.3.3 Identification

In order to identify Tu a signal uk(t) is applied at the point ①. From the schematic
view of the robot control system in Figure 7.5 it is clear that feedforward of the
torque is used in the system. To identify the closed loop system seen from point ①
it is necessary to do an experiment where the effect of the feedforward is removed.

The experiment described here is performed as an identification experiment on axis
1 of the IRB 1400 industrial robot. To see only the effect of the input, u(t), on
the output it is necessary to run two experiments. The first is with the input u1(t)
equal to zero and the second with u2(t) as shown in Figure 7.6(a). The input u2(t)
is taken from an ILC experiment. There are systematic ways to create input signals
for identification experiments (Ljung, 1987), but the discussion here is focused on
showing how the identification process can be performed on the system considered
in the thesis.

By taking the difference of the output in the second and the first experiment it
is possible to find the resulting output from applying the input u2(t) alone (since
u1(t) = 0). This means that

∆y(t) = y2(t)− y1(t) = Tu(q)u2(t) (7.5)

where it is now left to choose the model structure of the system Tu(q). The tool used
in the modeling is the System Identification Toolbox (Ljung, 1995) for MATLABTM

which provides a model from the data shown in Figure 7.6(a).

The identification procedure is not presented in detail here, the interested reader is
referred to e.g., Ljung (1987). A few words about the model structure will however
be given. The model structure used here is an ARX model structure,

y(t) + a1y(t− 1) + . . .+anay(t− na)
=b1u(t− nk) + . . .+ bnbu(t− nb − nk + 1) + e(t)

(7.6)

In the identification process, one design choice is the number of parameters that
should be estimated, na and nb. There is also a parameter nk indicating the time
delay in the system. From the set of possible models we have chosen two. One
with many parameters and one with just a few parameters. The first model is an
ARX model having, na = 1, nb = 1, and nk = 1 and the model is given by

T̂u(q) =
0.07q−1

1− 0.93q−1
(7.7)
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(b) Amplitude plots of the models ob-
tained. ARX na=1, nb=1, and
nk=1 (solid). ARX na=8, nb=8,
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on physical knowledge of the sys-
tem (dotted).

Figure 7.6 The data used to build the model of the closed loop system from ref-
erence position to motor position and the resulting models shown
in the frequency domain.

In Figure 7.6(b) the amplitude plot of the model is shown together with a model
calculated based on a stiff robot model G and the controller parameters. A high
order ARX model with na = 8, nb = 8, and nk = 1, is also estimated and in Figure
7.6(b) the amplitude curve for this model is shown. The actual parameters for the
high order model are not given here.

7.3.4 Model validation

The amplitude plots of the different models in Figure 7.6(b) give a validation of
the models in the frequency domain. The calculated physical model is based on
nominal parameters and a rigid body model for the joint of the robot. This is
of course a simplification. The conclusion from the validation in the frequency
domain is that the bandwidth of the estimated closed loop system corresponds
to the one achieved using the continuous time model and the knowledge of the
controller parameters.

A validation of the model is also carried out using another set of data from the
system. The actual output from the system is compared to the output that is
simulated by the ARX models. In Figure 7.7 the result from this validation is
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shown and it can be seen that the simulation of the models nearly exactly gives the
same behavior of the output as the real system. The very fast switching that can
be seen in the prediction error is caused by quantization of the measured motor
angles.
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Figure 7.7 Validation of the two models using validation data from the system.
Above: predicted value (solid), measured value (dotted). Below:
prediction error.



Part III

Classical ILC
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8

Design Strategies with Examples

The interpretation of classical ILC might differ among researchers but the inter-
pretation that will be adopted here is that classical ILC is first order ILC with
iteration independent filters. This means that the updating equation for the ILC
can be written according to (4.22), i.e.,

uk+1 = Q(uk +Lek)

with the updating equation in (3.13) as a special case.

In this chapter some design strategies for the classical ILC will be presented. Ex-
amples will also be given where the applicability of the design schemes are shown in
simulations as well as in experiments performed on the industrial robot described
in Part II.

8.1 Introduction

The ILC synthesis problem is to find the ILC algorithm given a system to control
and a specification of the wanted behavior. It is a fact that in the ILC literature
the synthesis of ILC updating formulas has not been addressed very much. The
focus has instead been on the analysis of stability.
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Among the works that actually have been done on the design, an important part has
been on synthesis based on linear quadratic optimal ILC. Within this framework
Professor Owens’ group has made contributions in e.g., Amann and Owens (1994)
and Amann et al. (1995b, 1997), while other contributions are for example Lee and
Lee (1998) and Lee et al. (2000). An early contribution in this direction is also
Togai and Yamano (1985). This kind of approach will be discussed later on in this
chapter. ILC synthesis based onH∞ methods has been covered in contributions by,
e.g., Park and Hesketh (1993), Liang and Looze (1993), and de Roover (1996a,b).
The work in Park and Hesketh (1993) does not involve the Q filter in the ILC, but
this is included in the work of de Roover (1996a,b), and also to some extent in
Liang and Looze (1993). In the next section some explicit formulations of design
schemes for ILC will be presented.

8.2 Algorithms for ILC Synthesis

To design a stable and efficient ILC algorithm it is necessary to have a model of
the system that will be controlled. The level of detail of the model will differ
between the different design algorithms but it is always true that it is necessary
to have some knowledge of the system to make the design. The knowledge might
be replaced by experiments where the ILC algorithm is adjusted according to the
result from the experiments. Obviously the data from the experiments can be used
also for modeling of the process and therefore this kind of ILC method will not be
considered here.

8.2.1 A heuristic approach

The first design algorithm uses a system model to check that the stability criterion
is fulfilled. The knowledge about the system could also be reduced to only the
time delay of the system and, to be sure of the stability, the size of the first
Markov parameter of the controlled system. This might however give very poor
performance. The algorithm is here called “heuristic” but sometimes it has also
been referred to as P-type in the literature.

Algorithm 8.1 (A heuristic design procedure)

1. Choose the Q filter as a low-pass filter with cut-off frequency such that the
band-width of the learning algorithm is sufficient.

2. Let L(q) = κqδ. Choose κ and δ such that the stability criterion, formulated in
the frequency domain |1 − L(eiω)Tu(eiω)| < |Q−1(eiω)|, is fulfilled. Normally
it is sufficient to choose δ as the time delay and 0 < κ ≤ 1 to get a stable ILC
system.
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If the necessary and sufficient condition for stability is used instead, i.e., δ is chosen
as the time delay and κ is chosen such that κ times the first Markov parameter
is less than 1, then the algorithm will result in a stable ILC scheme. In the next
example it is shown that the performance might not be so good if there is an
uncertainty in the time delay of the system.

Example 8.1 Example 2.1 revisited

Assume that the system Tu(q) = GC(q) is given by (2.7) and the filter L(q) is chosen
according to (2.8) and (2.9). The first choice corresponds to the true system while
the second choice comes as a result when the system model is incorrect and it is
assumed that there is no delay in the system. In Example 2.1 the bandwidth of
the ILC algorithm is not limited since Q(q) = 1. In order to fulfill the stability
condition for the given system, κ has to be chosen such that

|1− κ0.09516| < 1

in the first case. This means that κ has to be chosen in the interval

0 < κ < 21

In the second case the necessary and sufficient stability condition in Corollary 4.6
is not fulfilled since ρ(I − T u) = 1. This implies that convergence will not be
achieved for any κ. ❏

If the delay in the system is over-estimated instead of under-estimated as in the
example above, then it is not true that with Q = 1 the system will be guaranteed
to be stable. In Figure 8.1 the absolute value of the eigenvalues of I − LT u are
shown for different L. When L(q) = q the matrix I −LT u is lower triangular and
the diagonal elements are constant and equal to 1 − 0.09516. For L(q) = q2 the
diagonal elements are still constant but the matrix is no longer lower triangular
and therefore the eigenvalues are no longer constant. Moreover, it is clear from
Figure 8.1 that the stability condition is not met since ρ(I−LT u) > 1. This shows
how important it is to have a correct estimate of the delay of the system.

To have stability in the example discussed above, when κ = 1 and Q = 1, it is
necessary to have an exact value of the delay. By using the Q-filter it is however
possible to get a convergent ILC scheme also for L(q) = q2. In Figure 8.1 the dotted
curve corresponds to the eigenvalues of Q(I − LT u) when Q(q) is a zero phase
low-pass filter with cut-off frequency 0.3 of the Nyquist frequency. Obviously the
convergence criterion is now satisfied. The price paid for this is that the convergence
will no longer be guaranteed to be to a zero error, cf. Theorem 4.9.
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Figure 8.1 Absolute value of the eigenvalues (number of eigenvalues on the
x-axis) of Q(I − LT u) when Q(q) = 1, L(q) = q (solid), Q(q) =
1, L(q) = q2 (dashed), and when Q is a zero phase low-pass filter
and L(q) = q2 (dotted).

8.2.2 A model-based approach

The design procedure presented in this section has also been discussed in Gunnars-
son and Norrlöf (1997a,c) and Norrlöf (1998). The idea is similar to the approach
by de Roover (1996a,b) but he uses a model matching approach based on H∞
methods while here an algebraic approach is used. The transfer function Tu(eiω) is
the transfer function from the ILC input, uk(t), to the output of the system, yk(t).

Algorithm 8.2 (A model-based design procedure)

1. Build a model of the relation between the ILC input and the resulting correc-
tion on the output, i.e., find a model T̂u of Tu.

2. Choose a filter HB(q) such that it represents the desired convergence rate for
each frequency. Normally this means a high-pass filter.

3. Calculate L by L(q) = T̂−1
u (q)(1 −HB(q)).

4. Choose the filter Q(eiω) as a low-pass filter with cut-off frequency such that
the band-width of the resulting ILC is high enough and the desired robustness
is achieved.

To explain the use of the filter HB(q) in step 2, consider Lemma 4.4. When
Q(q) = 1 and the disturbances are neglected the updating equation for the error
becomes,

εk+1(t) = (1− Tu(q)L(q))εk(t)
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Clearly the choice of HB(q) will decide the nominal convergence rate for the error.
In the frequency domain the filter HB can be adjusted to give, e.g., a slower but
more robust convergence for some frequencies. The choice ofHB must be realizable.
It is clearly not possible to choose HB small for frequencies where the model is very
uncertain since this will most likely lead to a divergent behavior of the resulting
ILC. The choice of HB has, therefore, also to include robustness considerations,
although robustness is also achieved with the Q-filter.

The resulting L-filter might have an unnecessary high degree, therefore it can be
possible to make a model reduction of L using some model reduction technique,
e.g., balanced truncation.

Next a method that uses H∞ control theory to systematically design the filters Q
and L is reviewed.

8.2.3 An approach based on µ-synthesis

The design process for the filtersQ and L presented here is a review of the algorithm
in de Roover (1996a,b). The notation is however changed to fit the framework used
in the thesis. The algorithm is based on optimal H∞ control theory (Zhou et al.,
1996).

Before formulating the algorithm some prerequisites will be discussed. The stan-
dard plant format, depicted in Figure 8.2(a) is used in the discussion. Within this
framework, tools (for example in MATLABTM (Balas et al., 1994)) are available for
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(a) Standard plant.
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(b) Standard plant interpretation for the ILC
synthesis problem.

Figure 8.2 Standard plant description for µ-synthesis.
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computing a stabilizing K that minimizes ‖Tzw‖∞. It is assumed that the real
system can be described by a nominal model T 0

u , having an output multiplicative
uncertainty. The uncertainty is described in the frequency domain by a stable
and inversely stable weighting function W (eiω). The true system is found in the
following set of systems,

Tu(q) = {(I +W (q)∆(q))T 0
u (q)

∣∣ ‖∆(q)‖∞ < 1} (8.1)

Now the ILC design problem can be formulated in the µ-synthesis framework using
the representation shown in Figure 8.2(b). Given

K = L(q) and T =

 0 −Tu(q) 0
0 Q(q) Q(q)

W (q) −Tu(q) 0

 (8.2)

the optimization problem can be solved using µ-synthesis. The solution is based
on the D-K iteration technique, the reader is referred to e.g., Zhou et al. (1996),
for a thorough discussion. It is important to note that the D-K iterations do not
necessarily need to converge to the optimum. Many applications have, although,
shown that the technique works (Balas et al., 1994). The proposed algorithm is
now presented.

Algorithm 8.3 (A µ-synthesis based approach)

1. Build a model T̂u of the transfer function Tu together with an upper bound
on the model uncertainty, according to (8.1).

2. Choose the Q-filter as a low-pass weighting filter with cut-off frequency ωc.

3. For given T̂u and Q, find a filter L that minimizes ‖Tzw‖∞ using µ-synthesis
(Balas et al., 1994).

4. If a filter L can be found such that ‖Tzw‖ < 1, increase the bandwidth of
the filter Q and perform step 3 again; else decrease ωc. Perform step 2 and 3
repeatedly until the maximum of ωc is reached.

The algorithm has been tested in de Roover (1996a) on an xyφ-stage, which is a
type of high accuracy positioning mechanism. The model with uncertainty, accord-
ing to (8.1), is identified using data from the plant and two different ILC updating
formulas are evaluated. One based on the nominal model, designed according to
Algorithm 8.2, and one using the robust approach in Algorithm 8.3. Not surpris-
ingly, the performance is better with the ILC algorithm based on the nominal model
compared to the robust algorithm. The reader is referred to de Roover (1996a,b)
and the references there for more details.
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8.2.4 A DFT based approach

In Manabe and Miyazaki (1994), a method to update the ILC signal, uk, in the
frequency domain is presented. The idea is to use the DFT of the output and
the input to the plant. Using the ETFE, i.e., the ratio between the DFT:s of the
output and the input signals, a (local) model is identified in each iteration. The
inverse of the ETFE is then used in the updating of the learning control signal.
This corresponds to the ideas presented in Algorithm 8.2 were the L filter is chosen
to be the inverse of the transfer function from uk to yk.

8.2.5 Design based on optimization

Previous contributions to the optimization based approach to ILC can be found in
e.g., Gorinevsky et al. (1995), Phan (1998), Lee and Lee (1998), and Amann et al.
(1995a,b). Some approaches based on ideas from unconstrained optimization and
minimization techniques are presented by Togai and Yamano (1985). For a general
discussion on unconstrained minimization see, e.g., the book by J.E. Dennis and
Schnabel (1983). The material presented in this section is based on Gunnarsson
and Norrlöf (1999a,b).

Algorithm derivation

Assume that the system is in matrix form as described by (3.2), i.e.,

zk = T rr + T uuk + Twwk (8.3a)
yk = zk + T vvk (8.3b)

where it is also assumed that the system description is the same at each iteration
(cf. (3.2)). Let the quadratic criterion be formulated according to

Jk+1 = eTk+1W eek+1 + uk+1W uuk+1

where ek+1 = r − yk+1. The idea is to determine uk+1 in such a way that the
error ek+1 becomes as small as possible with respect to the criterion. The weight-
ing matrices decide the trade off between performance and input energy and the
matrices can be used for both frequency as well as time weighting. The criterion
is minimized subject to the constraint

(uk+1 − uk)T (uk+1 − uk) ≤ δ

Introducing the Lagrange multiplier yields the criterion

J̄k+1 = eTk+1W eek+1 + uTk+1W uuk+1 + λ((uk+1 − uk)T (uk+1 − uk)− δ) (8.4)

From (8.3) it follows that ek+1 is given by

ek+1 = (I − T r)r − T uuk+1 − Twwk+1
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Using this result together with (8.4) makes it possible to do a straightforward
differentiation of J̄k+1 with respect to uk+1. This gives

−T TuW eek+1 +W uuk+1 + λ(uk+1 − uk) = 0 (8.5)

where the optimum is achieved when the derivative equals zero. Using a statistical
description of wk and vk i.e., the system and the measurement disturbances, it is
possible to use a prediction of the error in the next iteration as in e.g., (Lee and
Lee, 1998). This possibility will however not be utilized here and the disturbances
are instead predicted using the corresponding mean values, which are assumed to
be zero. The error ek+1 is hence represented as

êk+1 = (I − T̂ r)r − T̂ uuk+1 (8.6)

where T̂ r and T̂ u denote a nominal model of the closed loop system and the transfer
function from the ILC input to the output respectively. This implies that some a
priori knowledge of the system to be controlled is available. Using (8.6) in (8.5)
gives

−T̂
T

uW e(I − T̂ r)r + T̂
T

uW eT̂ uuk+1 +W uuk+1 + λ(uk+1 − uk) = 0 (8.7)

which implies

uk+1 = (W u + λ · I + T̂
T

uW eT̂ u)−1(λuk + T̂
T

uW e(I − T̂ r)r) (8.8)

This equation does not contain any measurements from the system but from (8.8)
it is possible to establish the convergence criterion for the proposed method.

Theorem 8.1
If λ > 0 and the nominal model corresponds to the true system then the proposed
optimization based ILC algorithm always gives a stable ILC system.

Proof A sufficient condition for stability, according to Theorem 4.8, is that the maximum
singular value of

(W u + λ · I + T̂
T

uW eT̂ u)−1λI (8.9)

is less than one. Since W u + T̂
T

uW eT̂ u is symmetric and positive definite it is possible
to write (8.9) according to

(V (λI + Σ)V T )−1 = V (λI + Σ)−1V T

where V ΣV T is the SVD of W u + T̂
T

uW eT̂ u. Let σi be the elements of the diagonal of
Σ, i.e., the corresponding singular values. The singular values of (8.9) become

λ

λ+ σi
< 1

since σi > 0 from the positive definiteness mentioned above. �
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From (8.6) it follows that

(I − T̂ r)r = êk + T̂ uuk

This means that the result in (8.8) can be reformulated into

uk+1 = (W u + λ · I + T̂
T

uW eT̂ u)−1((λ · I + T̂
T

uW eT̂ u)uk + T̂
T

uW eêk) (8.10)

i.e.,

uk+1 = Q(uk +Lêk) (8.11)

where

Q = (W u + λ · I + T̂
T

uW eT̂ u)−1(λ · I + T̂
T

uW eT̂ u) (8.12)

and

L = (λ · I + T̂
T

uW eT̂ u)−1T̂
T

uW e (8.13)

The updating matrices Q and L hence depend on the nominal model T̂ u and
the weighting matrices W u and W e. The Lagrange multiplier λ is not computed
explicitly but instead used as a design variable.

In equation (8.11) the error signal is formed using the nominal model of the system,
while in real use the actual error signal from the system is used. The normal
definition of the error ek = r − yk leads to

uk+1 = Q(uk +Lek) (8.14)

where Q and L are given by (8.12) and (8.13).

Before discussing design aspects for the optimization based ILC design some re-
marks will be given to some trivial choices of weighting matrices and Lagrange
multipliers.

First, if the penalty on the input signal in (8.12) is set to zero, W u = 0, this
implies that Q = I. The result is an updating equation without any weighting of
the previous input signal. The same effect is achieved by minimizing a criterion of
the type

J = eTk+1ek+1 + ρ(uk+1 − uk)T (uk+1 − uk) (8.15)

as studied in e.g., Amann and Owens (1994) and Amann et al. (1995b). As will be
seen below, the use of W u > 0 i.e., Q 6= I is useful, both for robustness reasons as
well as when dealing with non-minimum phase systems.

Second, by instead putting λ = 0, i.e., removing the constraint on the updating
step, the computation of uk+1 can be expressed as

uk+1 = (W u + T̂
T

uW eT̂ u)−1T̂
T

uW e(I − T̂ r)r (8.16)
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This means that the computation of the input vector becomes a one-step procedure
which relates more to a feed-forward control law than to ILC.

The third and last remark is that choosing both W u = 0 and λ = 0 results in the
choice (assuming that the inverse exists)

uk+1 = T̂
−1

u (I − T̂ r)r

This corresponds to the choice L(q) = T−1
u (q) in the classical ILC updating equa-

tion,

uk+1(t) = Q(q)(uk(t) + L(q)ek(t))

which is also discussed in Section 4.2. Now the actual design algorithm can be
formulated.

Algorithm 8.4 (Optimization based ILC design)

1. Build a model of the relation between the ILC input and the resulting correc-
tion on the output, i.e., find a model T̂ u of T u.

2. Choose the weights W e and W u and the Lagrange multiplier λ in the crite-
rion.

3. Calculate the matrices Q and L according to (8.12) and (8.13).

4. Use the ILC updating equation according to (8.14) with u0 for example chosen
as u0 = 0.

In the next sections it will be discussed more on the different design parameters
and how different choices effect the resulting ILC system.

Non-minimum phase systems

The ultimate goal in ILC is, when it is possible, to generate a signal which is the
reference signal filtered through the inverse of the system, it is obvious that there
will be problems when the system has some zeros outside the unit circle. Now it
will be shown how the optimization based ILC algorithm deals with this problem
but first to a general discussion on non-minimum phase zeros.

In, e.g., Åström and Wittenmark (1984) the following result can be found. Consider
an n:th order continuous time systemG(s) with m zeros zi, i = 1, . . . ,m. Assuming
that zero order hold is applied, the corresponding discrete time system GT (q) will
have the following properties as T tends to zero:

• The discrete time system GT (q) will have n− 1 zeros.
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• m zeros of GT (q) will be given by eziT .

• The remaining r = n − 1 −m zeros will be the zeros of a polynomial Pr(q),
which for r = 1 has the zero −1 and for r > 1 has zeros outside the unit
circle.

This means that for a continuous time system with relative degree larger than one
the discrete time system will, for short sampling intervals, have zeros on or outside
the stability boundary.

It will now be shown how the design variables in the optimization approach can be
used to handle this situation. Recall the updating equation (8.14)

uk+1 = Q(uk +Lek) = Quk +QLek

with Q and L given by equations (8.12) and (8.13) respectively. The asymptotic
input vector (with respect to k) is given by

u∞ = (I −Q+QLT u)−1QL(I − T r)r (8.17)

in the general case, and

u∞ = (W u + T TuW eT u)−1T TuW e(I − T r)r (8.18)

in the optimization case. In (8.18) it has been assumed that the nominal model
equals the true system, i.e., T̂ u = T u. The properties of the algorithm will be
studied by investigating the 2-norm, i.e., the largest singular value, of the matrices
Q, QL and (W u + T TuW eT u)−1T TuW e. The discussion is furthermore confined
to the case W e = I and W u = ρ · I. The following result can then be stated.

Theorem 8.2
Consider the matrices Q and QL where Q and L are given by equations (8.12)
and (8.13) in the situation W e = I and W u = ρ · I, where ρ > 0. Then

‖Q‖2 < 1

‖QL‖2 ≤
1

2 ·
√
ρ+ λ

and

‖(ρ · I + T TuT u)−1T Tu ‖2 ≤
1

2 · √ρ

Proof Introduce the SVD of the matrix T u

T u = ŪΣV̄
T
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where the singular values of T u, i.e., the diagonal element of Σ, are denoted by σi. Intro-
ducing this representation in the definitions of Q and L together with the assumptions
for W u and W e gives

Q = V̄
T
ΣQV̄

where the diagonal elements of ΣQ are given by

σQi =
σ2
i + λ

σ2
i + λ+ ρ

This is a monotonous function of σi asymptotically tending to one. Similar calculations
give that

QL = V̄ ΣQLŪ
T

where the diagonal elements σQLi are given by

σQLi =
σi

ρ+ λ+ σ2
i

Maximizing the right hand side of this expression w.r.t. σi ≥ 0 gives that

σQLi ≤ 1

2
√
ρ+ λ

∀ i

Finally similar calculations give

(ρ · I + T TuT u)−1T Tu = V̄ Σ∞Ū
T

where the diagonal elements of Σ∞ are given by

σ∞i =
σi

ρ+ σ2
i

Maximizing the right hand side gives that

σ∞i ≤
1

2
√
ρ
∀ i

�

The conclusions of the discussion above are the following. When dealing with
computer control of real systems it is rather likely that the corresponding discrete
time model will have some zero outside the stability region. It can easily be seen
using simple examples that this corresponds to very small singular values of the
corresponding matrix T u. The use of the input weighting in the criterion W u > 0,
which implies Q 6= I then offers a method to control the “gain” from the error (or
reference) signal to the applied input signal.
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Frequency Domain Interpretation

The derivation and analysis of the optimization based ILC algorithm have so far
been carried out in the time domain. In many cases however useful insights and
interpretations of an ILC algorithm are achieved by considering the problem in
the frequency domain. The aim in this section is to present a frequency domain
interpretation of the ILC algorithm derived using optimization and illustrate some
of its properties.

The starting point when deriving a frequency domain interpretation of the updating
equation (8.14) is to use equation (8.3) in its simplest version, i.e.,

y = T uu

Consider now a discrete time system with impulse response gTu(l), l = 0, . . . ,∞
and transfer operator Tu(q) defined by

Tu(q) =
∞∑
l=0

gTu(l)q−l

where q denotes the shift operator. Applying an input signal u(t) which is zero for
t < 0 the output can be written

y(t) =
t∑
l=0

gTu(l)u(t− l)

i.e.,

y(t) = Tu(q)u(t)

Provided that the inverse exists the relationship

y = T−1
u u

corresponds to the filtering

y(t) =
1

Tu(q)
u(t)

Furthermore the operation

y = T Tuu

corresponds to a non-causal filtering

y(t) = gTu(0)u(t) + gTu(1)u(t+ 1) + . . .+ gTu(n− t)u(n) =

=
n−t∑
l=0

gTu(l)u(t+ l) =
n−t∑
l=0

gTu(l)(
1
q

)−lu(t) = Tu(
1
q

)u(t)
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Hence the operation

y = T TuT uu

corresponds to

y(t) = Tu(q)Tu(
1
q

)u(t)

or, in the frequency domain,

Y (ω) =| Tu(eiω) |2 U(ω)

i.e., a filtering operation that gives zero phase shift. One implementation of this
operation is provided by the MATLABTM command filtfilt.

Now consider again (8.14)

uk+1 = Q(uk +Lek) (8.19)

where putting W e = I and W u = ρ · I the matrices Q and L are given by

Q = (ρ · I + λ · I + T TuT u)−1(λ · I + T TuT u)

and

L = (λ · I + T TuT u)−1T Tu

It is now possible to express (8.19) as filter operators,

Q(q) =
λ+ Tu(q)Tu(q−1)

ρ+ λ+ Tu(q)Tu(q−1)
(8.20)

and

L(q) =
Tu(q−1)

λ+ Tu(q)Tu(q−1)
(8.21)

Equations (8.20) and (8.21) hence represent particular choices of the filters in equa-
tion (3.13). It is now possible to formulate a second, simplified, version of Algorithm
8.4.

Algorithm 8.5 (Optimization based ILC design, filter implementation)

1. Build a model of the relation between the ILC input and the resulting correc-
tion on the output, i.e., find a model T̂u(q) of Tu(q).

2. Choose the weight Wu = ρ (We is chosen as 1) and the Lagrange multiplier λ
in the criterion.
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3. Calculate Q(q) and L(q) according to (8.20) and (8.21).

4. Use the ILC updating equation,

uk+1(t) = Q(q)(uk(t) + L(q)ek(t)) (8.22)

with u0 for example chosen as u0 = 0.

It should be observed that all boundary effects in the beginning and the end of the
data sequences are neglected in the derivation of the transfer function formulation.
Hence the updating equations (8.22) and (8.14) do not give exactly the same results.
If the length of the iterations, n, is large the frequency domain expressions give a
useful interpretation of the optimization based ILC algorithm.

Assuming that the nominal model equals the true system the stability criterion

| Q(eiω) || 1− L(eiω)Tu(eiω) |< 1

from Theorem 4.8 becomes

λ

λ+ ρ+ | Tu(eiω) |2 < 1 (8.23)

This condition is satisfied for all ω provided that ρ > 0, cf. Theorem 8.1. Since
the gain of the system tends to zero for high frequencies the left hand side of the
inequality tends to λ/(λ+ ρ) for high frequencies. It is also of interest to compute
the asymptotic error that is obtained provided that the ILC algorithm converges
and this is given by

e∞(t) =
ρ

ρ+ Tu(q)Tu(q−1)
e0(t) (8.24)

The value of ρ hence influences the magnitude of the error after it has converged.
Choosing ρ > 0 guarantees that the condition in (8.23) holds, but the price is that
there will still be a remaining error also asymptotically. This is a well known fact
in ILC but here this trade off is concentrated in one scalar parameter.

Numerical Example

In this section an example will be given where the properties of the filters L(q) and
Q(q) are investigated. The example will be based on the first order discrete-time
system

Tu(q) =
0.07q−1

1− 0.93q−1
(8.25)

obtained by identification of an ABB IRB 1400, see Section 7.3.3. This model will
also be used in the experiments in Section 8.3.1. The data used for the identification
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were collected while the robot was controlled by the conventional control system.
This means that Tu(q) in (8.25) is a model of the closed loop system from the ILC
input signal uk(t) to the output signal yk(t). See also Figure 7.5.

The filter L(q) is determined by the nominal model Tu(q) and the parameter λ. In
(8.21) it can be seen that when λ decreases the filter tends towards the inverse of
the nominal model. In Figure 8.3 the gain of L(eiω) is shown for different values of
λ. For small values of λ the gain of L(eiω) is close to the gain of T−1

u (eiω) while for
larger values it obtains more low-pass character. The phase of L(eiω) is however
not effected by λ and it is equal to the phase of T−1

u (eiω) for all values of ρ.
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Figure 8.3 Magnitude of T−1
u (z) (solid) and L(z) for λ = 10−3 (dashed), λ =

10−2 (dotted), and λ = 10−1 (dash-dotted).

The properties of Q(eiω) are determined by both λ and ρ and the shape of Q(eiω)
depends on both their values and their relative size. Provided that the gain of
Tu(eiω) decreases as ω increases, the gain ofQ(eiω) tends to λ/(λ+ρ) as ω increases.
This means that the value of ρ has to be of the same order of magnitude as λ in
order to give a significant low pass behavior of Q(eiω). When ρ is essentially
smaller than λ the high frequency gain of Q(eiω) is close to unity. This can be seen
in Figure 8.5. The low frequency gain of Q(eiω) also depends on the low frequency
gain of the nominal model Tu(eiω). Some examples are given in Figure 8.4 and
Figure 8.5 respectively.
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8.3 Examples

Next, three of the presented algorithms are implemented and evaluated on the
industrial robot described in Chapter 6. The algorithms that will be tested are,
Algorithm 8.1, Algorithm 8.2, and Algorithm 8.4. The models that are used for
the design are found according to the description in Section 7.3. Two different test
cases have been used in the evaluation. The first is a 1 joint experiment, involving
only axis one on the robot. The second experiment is an example of a multiple
joint motion where ILC is applied to three of the joints of the robot.

8.3.1 One joint motion experiment

Description of the test case

The first experiment involves one of the joints of the robot, as shown in Figure 8.6
(cf. Figure 6.3(b)). The reference trajectory for the motor angle is depicted at
the right of Figure 8.6. On the arm side the motion corresponds to a rotation,
counter-clockwise, of 1 rad of axis 1. Since the motion on the arm side is 1 rad
it follows that the gear ratio is about 120:1 because on the motor side the motion
stops at, about, 120 rad. To give an idea of the distance that the tool has moved
in this case, the length of the upper arm, link 3, is about 1 m. Moving 1 rad means
therfore a trajectory length of 1 m. This motion is performed in about one second
and this means a speed of about 1 m/s which also correspond to the programmed
speed of the TCP.

The model of the system from the ILC input to the output is given by

T̂u(q) =
0.07q−1

1− 0.93q−1
(8.26)

i.e., a system having low pass characteristics.

Design 1: Heuristic design, Algorithm 8.1

The design of the first ILC algorithm follows the design scheme in Algorithm 8.1.

1. The Q-filter is chosen as a zero-phase filter Q(q) = Q̄(q)Q̄(1
q ) with Q̄(q) as a

Butterworth filter of second order with cut-off frequency 0.2 of the Nyquist
frequency. In MATLABTM this filter can be calculated by using the following
command,

>> [Qb,Qa] = butter(2,0.2);

and a zero-phase filter is achieved by using the function filtfilt. In Figure
8.7 the amplitude diagram for Q̄(eiωts) is depicted. The sampling time, ts, is
here 0.004 s.
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Figure 8.6 Illustration of the motion in the one joint experiment. Axis 1
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Figure 8.7 The amplitude plot for the filter Q̄.

The bandwidth of the low-pass filter is chosen such that the bandwidth of
the ILC algorithm is sufficiently high. A Butterworth filter is chosen, simply,
because it is easy to find using MATLABTM.

2. The L-filter is chosen as

L(q) = 0.9q (8.27)

i.e., κ = 0.9 and δ = 1. This corresponds to what is referred to as “normal”
choice in the algorithm since the static gain of the system equals 1 and the
time delay also equals 1. The condition |Q(eiωts)(1− L(eiωts)Tu(eiωts))| < 1
is also fulfilled for the model, T̂u and this choice of L-filter.
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Design 2: Model-based design, Algorithm 8.2

Following Algorithm 8.2 the result becomes:

1. The model T̂u is given by (8.26).

2. An aggressive approach is applied here where HB(q) is chosen as HB(q) = 0.
Robustness is achieved using the Q-filter.

3. The choice of HB above gives L(q) = T̂−1
u (q), i.e., the inverse of the system

model.

4. The filter Q is chosen as in the heuristic design above, i.e., a zero-phase filter
Q(q) = Q̄(q)Q̄(1

q ) with Q̄(q) as a Butterworth filter of second order with
cut-off frequency 0.2 of the Nyquist frequency.

Design 3: Optimization based design, Algorithm 8.4

The optimization based design is implemented according to the description in Algo-
rithm 8.4 using the matrix formulation. The choices of weight matrices are however
inspired by the design in Algorithm 8.5.

1. The model T̂u is the same as above, i.e., given by (8.26). The matrix T̂ u is
simply the lower triangular Toeplitz matrix created from the impulse response
of (8.26).

2. The weight matrices are chosen as W e = I, and W u = ρ · I, with ρ = 0.01.
The Lagrange multiplier is chosen as λ = 0.001.

3. Q and L in the ILC algorithm are calculated according to

Q = ((ρ+ λ) · I + T̂
T

u T̂ u)−1(λ · I + T̂
T

u T̂ u)

and

L = (λ · I + T̂
T

u T̂ u)−1T̂ u

The resulting ILC algorithms are next applied to the industrial robot in the test
case described earlier.

Results from the one joint motion experiments

The three different ILC designs have run for a total of 11 iterations each, where
in the first iteration the control signal u0 ≡ 0 has been used. In Figure 8.8 the
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resulting normalized maximum value,

V∞k,i =
‖ek,i‖∞

max
j=1,2,3

‖e0,j‖∞
i = 1, 2, 3 (8.28)

is shown together with the normalized 2-norm,

V 2
k,i =

‖ek,i‖2
max
j=1,2,3

‖e0,j‖2
i = 1, 2, 3 (8.29)

which corresponds to a measure of the energy of the error. The normalization
factor is chosen such that, after the normalization, V∞0,i and V 2

0,i are less than or
equal to 1 for all the algorithms (i = 1, 2, 3). From Figure 8.8 it is clear that the
three different ILC algorithms give the same initial values of the two norms, since
V pk,i = 1 for p = 2,∞.
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Figure 8.8 Normalized maximum error (left) and normalized error energy
(right) for design 1 (×), design 2 (�), and design 3 (o).

Figure 8.8 shows that the fastest convergence is achieved with the model based
design, i.e., design 2. This approach gives the best behavior when considering
either of the measures in Figure 8.8. The second best is the optimization based
approach, design 3, and the difference is very small when evaluating the 2-norm
while the difference in the maximum value is a bit greater. Common for the two
best approaches is that they both use, explicitly, the system model in the ILC
updating equation. The heuristic design can not compete with the two other ILC
implementations in the rapid convergence but, clearly, after 4 iteration the level of
the error is the same for all the different suggested algorithms and if it is acceptable
to run a total of 5 iterations instead of 3 or 4 iterations, which is the case for the
other ILC schemes, the heuristic design can be chosen.

In Figure 8.9 the resulting normalized errors for the different ILC schemes are
shown in the time domain. It is clear that the low frequency components are



122 Design Strategies with Examples

0

5

10 0
0.5

1
1.5

−0.5

0

0.5

1

Time [s]
Iteration

N
or

m
al

iz
ed

 e
rr

or

(a)

0

5

10 0
0.5

1
1.5

−0.5

0

0.5

1

Time [s]
Iteration

N
or

m
al

iz
ed

 e
rr

or

(b)

0

5

10 0
0.5

1
1.5

−0.5

0

0.5

1

Time [s]
Iteration

N
or

m
al

iz
ed

 e
rr

or

(c)

Figure 8.9 The errors ek in the time domain, from design 1 (a), design 2 (b)
and design 3 (c).

compensated for rapidly by all the three methods and that the damping rate for
high frequencies is much lower. The small step in the error after about 1 second is
not completely compensated for after 10 iterations using any of the three methods.
It is also clear why only one of the two measures in Figure 8.8 can not, alone,
give a good measure of the error. A large but very short peak in the error gives
a high maximum absolute value of the error but it does not increase the 2-norm
of the error very much. On the other hand, a small but constant error does not
necessarily have to effect the maximum value of the error but it might give an
increased energy of the error signal.



8.3 Examples 123

8.3.2 Multiple joint motion experiment

Description of the test case

In the second test case ILC is applied to 3 of the total 6 joints of the IRB 1400. Each
of the 3 joints is modeled as a transfer function description from the ILC input to
the measured motor position on the robot. The conventional feedback controller,
implemented by ABB in the S4C control system, works in parallel with the ILC
algorithms. Since the controller is working well, the closed loop from reference
angular position to measured angular can be described using a low order linear
discrete time model. The models are obtained by applying system identification to
the closed loop system according to Section 7.3.

In Figure 8.11 the program used in the experiment is shown together with the
desired trajectory on the arm-side of the robot. The program in Figure 8.11 is sim-
plified, syntactically, compared to the true program. Semantically, however, the
programs are the same. The instruction moveL p2,v100,z1 refers to an instruction
that produces a straight line on the arm-side of the robot. The line starts from
the current position, not explicitly stated, and ends in p2. The speed along the
path is in this case programmed to be 100 mm/s. The last parameter z1 indicates
that the point p2 is a zone point. This means that the robot will pass in a neigh-
borhood of the point with a distance not more than 1 mm. This can also be seen
in Figure 8.11. The moveL instruction is a simplified version of the corresponding
instruction MoveL in the RAPID programming language. The actual position of
p1 in the base coordinate system is x = 1300 mm, y = 100 mm, and z = 660 mm.
The configuration of the robot is also shown in Figure 8.10.

As a first step in the design of the ILC schemes an identification experiment is

Figure 8.10 The ABB IRB1400 manipulator.
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%% starting at p1
moveL p2,v100,z1;
moveL p3,v100,z1;
moveL p4,v100,z1;
moveL p5,v100,z1;
moveL p6,v100,z1;
moveL p1,v100,fine;
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Figure 8.11 The program used to produce the trajectory used in the example
(left) and the resulting trajectory on the arm-side translated such
that p1 is in the origin (right).

performed. This step is simply done by using the ILC input u according to the
discussion in Section 7.3. The result from this step is three models, one for each
joint. The models are calculated using System Identification Toolbox (Ljung, 1995)
and the models are of ARX type with na = 1, nb = 1, and nk = 1, The models
used in the multiple joint motion experiment are

T̂u,1(q) = T̂u,2(q) =
0.1q−1

1− 0.9q−1
(8.30)

T̂u,3(q) =
0.13q−1

1− 0.87q−1
(8.31)

The models are now utilized in order to design the different ILC algorithms.

Design 1: Heuristic design, Algorithm 8.1

The design follows the steps in the heuristic design, Algorithm 8.1.

1. The Q-filter is chosen as a zero-phase low-pass filter, Q(q) = Q̄(q)Q̄(1
q ). Q̄(q)

is a second order Butterworth filter with cut-off frequency 0.2 of the Nyquist
frequency.
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2. The L-filter has been chosen the same for the three joints,

L(q) = 0.9q4

i.e., κ = 0.9 and δ = 4. This choice can be explained by calculating

sup
ω∈[0,π/ts]

|Q(eiωts)(1 − L(eiωts)T̂u(eiωts))|

for different choices of δ. For robustness reasons this should be as low as
possible and, as was also pointed out in Norrlöf (1998), it has a minimum for
δ = 5. The choice here is, however, δ = 4 which gives nearly the same value
of the expression above.

Design 2: Model-based design, Algorithm 8.2

1. The models are given by (8.30) and (8.31).

2. The same aggressive approach is employed as in the one joint motion exper-
iment and HB is chosen as HB(q) = 0.

3. With the choice of HB the L-filters become

Li(q) = T−1
u,i (q), i = 1, 2, 3

4. The Q-filter is chosen as in design 1 above, i.e., as a zero-phase low-pass filter.

Design 3: Optimization based design, Algorithm 8.4

Here two different values of the parameters in the design of the optimization based
ILC algorithm have been chosen. The resulting algorithms will be referred to as,
design 3a, and design 3b, respectively.

1. The models of the three joints are given in (8.30) and (8.31) and the matrices
T̂ u,1, T̂ u,2, and T̂ u,3 are found in the same way as in design 3, Section 8.3.1.

2. The weight matrices are chosen asW e = I, andW u = ρ·I with ρa = 0.01 and
ρb = 0.1 in design 3a and design 3b, respectively. The Lagrange multiplier is
chosen as λ = 0.1.

3. The matrices in the ILC updating equations Qi and Li, for i = 1, 2, 3, are
calculated according to

Qi = ((ρ+ λ) · I + T̂
T

u,iT̂ u,i)
−1(λ · I + T̂

T

u,iT̂ u,i)
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Figure 8.12 The frequency interpretation of the Q-filter (upper) and the L-
filter (lower) for joints 1 and 2 (left) and joint 3 (right), design
3a (solid) and design 3b (dashed).

and

Li = (λ · I + T̂
T

u,iT̂ u,i)
−1T̂ u,i

where ρa and ρb are used. In Figure 8.12 the frequency domain interpretation
of the resulting Q and L filters are shown.

Note that the choice of ρ only has an effect on the Q-filter, i.e., the robustness of
the ILC system. Clearly an increased ρ gives a more robust algorithm but also a
lower bandwidth as shown in Figure 8.12.

Results from the multiple joint motion experiments

The four different ILC algorithms resulting from the three design algorithms have
been running for a total of 11 iterations, as in the one joint motion experiments.
The resulting normalized maximum errors for design 1 and 2 are shown in Figure
8.13 and the corresponding results for the designs 3a and 3b are shown in Figure
8.14. In Figure 8.13 and Figure 8.14 the normalized 2-norm of the error is also
presented. The two measures are calculated similar to (8.28) and (8.29) but with
the factor in the denominator being maximum also of the 3 joints.
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From the upper row of diagrams in Figure 8.13 it can, for example, be seen that
the maximum value of the error of joint 1 is about 50 % of what is achieved by joint
2. The initial value of the maximum error as well as the energy in the different
experiments is not exactly the same but the behavior of the different algorithms
can still be evaluated.

From Figure 8.13 and Figure 8.14 it is clear that the best result is achieved with the
two (explicitly) model based ILC algorithms, i.e., design 2 and design 3. Clearly,
by adjusting the design parameters in design 3 it is possible to get a slower and
more robust scheme, as in design 3b, or a faster and less robust one, as in design 3a.
Also in this more complicated motion the resulting behavior after 5-6 iterations is
very similar for the different ILC algorithms. If it is acceptable to run 5-6 iterations
then any of the ILC algorithms can be chosen. The algorithm in design 3b has,
however, the disadvantage that there is a large steady state error. This is caused
by the fact that the gain of the Q-filter is less than 1 for all frequencies, as can be
seen in Figure 8.12.

Another way of evaluating the result of applying ILC to the robot is to transform
the measured motor angles to the arm-side using the kinematic model of the robot,
as was discussed in Chapter 6. In Figure 8.15 and Figure 8.16 the result from this
operation is depicted for design 1 and 2, and design 3a and 3b, respectively. It is
clear that the error when doing a transformation to the arm-side is not very big
but it is important to stress that the transformation has been carried out under
the assumption that the robot is stiff which is not true. In the next chapter the
true path done by the robot will be evaluated and a possible solution including an
additional sensor for measuring this path is also discussed.

8.4 Summary and Conclusions

Four different design strategies have been presented in detail and three of them have
also been implemented on the industrial robot in different experiments. Three
of the four design methods use explicitly a model of the system which can be
considered a bit in contradiction with the original ILC idea. Often ILC is presented
as a non model based approach which, as has been shown here, is not the case.
Also the first approach, the heuristic approach, uses a model to secure stability of
the ILC system.

To decide the best choice of design strategy is not so easy, but there are two general
comments that can be made. First, “try simple things first”, which means that if
Algorithm 8.1 gives sufficient performance this is the algorithm that should be
used. If the performance is not enough a model based approach has to be chosen.
The optimization based approach, as it is presented in Algorithm 8.5, has only
two scalar design parameters to tune the performance/robustness of the algorithm.
The deign based on Algorithm 8.2 is also straightforward to apply, at least as it
has been done in the two experiments described in this chapter. What can be a
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Figure 8.13 Normalized maximum error (upper) and normalized energy of the
error (lower) for joint 1 to joint 3 from left to right, design 1 (�)
and design 2 (×).

risk is, however, that the inverse system model solution is too aggressive and might
lead to instability. The Q-filter makes the algorithm more robust but it also limits
the bandwidth of the ILC system. The second, and final, comment is, “use all
information available”. This means that if a good model is available this model
should be used for the analysis and also for simulations to evaluate the resulting
design.
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and design 3b (×).
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Figure 8.15 Resulting trajectory tranformed to the arm-side using the forward
kinematics (solid) and the reference trajectory (dotted). Upper
row, design 1, and lower row, design 2, iteration 0, 1, and 5, from
left to right.
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Figure 8.16 Resulting trajectory tranformed to the arm-side using the forward
kinematics (solid) and the reference trajectory (dotted). Upper
row, design 3a, and lower row, design 3b, iteration 0, 1, and 5,
from left to right.
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9

Limitations and Possibilities

In this chapter some basic limitations of ILC will be covered. The discussion will
be done from the industrial robot application perspective and this will also be the
example used throughout the chapter.

9.1 Trajectory Tracking

In the trajectory tracking formulation of ILC, presented in Chapter 3, there is
an important implicit assumption that the error that should be minimized is also
available as a measurement. In the presented ILC updating equations, both in the
thesis as well as in the literature, this assumption shows up in practice in the fact
that the error is constructed according to

ek(t) = r(t) − yk(t)

In general this measure is also what the ILC method tries to minimize.

Throughout the thesis it is assumed that the error ek(t) is also a measure of the true
error εk(t), that the control algorithm actually should minimize. In the tracking
formulation in Section 3.1, it is assumed that yk(t) is a direct measure of zk(t),
except the measurement noise. In most cases this is also true in applications of

133
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ILC but sometimes it is not possible to measure directly the controlled variable. It
might, of course, be that another signal that depends indirectly on the actual error
can be measured and in this case it is possible to calculate the controlled variable,
zk(t), from the measured variable, yk(t).

For the application studied in the thesis, path following for industrial robots, it
is actually true that the actual error is not measurable directly. In the examples
presented in the thesis, the error on the motor side of the robot is studied and
used in the ILC algorithm. Of course, the goal is to minimize the error on the
arm side and it is possible to find cases where this is not so successful. Consider
the program and the path shown in Figure 8.11. If the result on the arm-side is
considered instead of the motor-side as done in the example in Section 8.3.2, then
a result according to Figure 9.1 is achieved.

(a) Trajectory
with-
out
ILC.

(b) Design 1, Section 8.3.2,

iteration 5 (left) and it-
eration 10 (right).

Figure 9.1 Results on the arm-side of the robot.

Although the first path in Figure 9.1(a) does not exactly correspond to the pro-
grammed path, it does look much more like the reference path than what is achieved
after 5 and 10 iterations using ILC, as shown in Figure 9.1(b).

This is because the ILC algorithm, as implemented here, assumes that if it is
possible to make the measured output (the motor angle) follow the reference as well
as possible, then this also implies that the correct path is followed on the arm-side.
If the gearbox and the arm were completely rigid, without friction and backlash,
etc., this is actually true. Moreover, if it were possible to model the dynamics and
compensate by filtering the motor reference position through the inverse dynamics,
it would be possible to make the robot perfectly track the reference path also on the
arm-side. Of course, modeling all the involved dynamics is difficult and the final
result depends very much on the accuracy of the model. Additional measurements
from the tool position should make the problem much easier and a method using
ILC together with an additional measurement system has been implemented by
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ABB Robotics with very successful results in industrial applications. This work
has also resulted in an application for a patent (Gunnarsson et al., 2000). Next a
possible extension for ILC on the arm-side of the robot is presented.

9.2 ILC Using Additional Measurements

The main contribution in this section is to present some initial experiences from
the use of accelerometers when ILC is applied to flexible mechanical systems. This
will be done by presenting a simulation study where ILC is used to control the
motion of the second mass in a system consisting of two masses connected via a
spring and a damper. Different learning strategies applied to flexible mechanical
systems have been studied previously in e.g., Panzieri and Ulivi (1995), Velthuis
et al. (1996) and Lange and Hirzinger (1999). In these papers it is assumed that
the position (angle) of the mass to be controlled can be measured. Here it will
instead be assumed that only the acceleration of the mass to be controlled can be
measured. In Miyazaki et al. (1986), which also deals with a flexible system, an
acceleration signal is used in an ILC algorithm. The way it is used and the design
methodology for the ILC algorithm differ however completely from the approach
presented here.

The presentation will be restricted to discrete-time, linear SISO systems.

9.2.1 The ILC algorithm

The ILC design method used here is the optimization based approach presented
in the previous chapter. This approach has previously been considered in e.g.,
Gorinevsky et al. (1995), Lee and Lee (1998) and Phan (1998). This algorithm can
however be interpreted as a more conventional filter based algorithm, as described
in Gunnarsson and Norrlöf (1999a,b) as well as the previous chapter.

9.2.2 A flexible system

The main interest here is the application of ILC to systems containing flexibilities.
As an example of this situation a linear model of a flexible servo will be studied, as
shown in Figure 9.2. Here θm and θa denote motor angle and load angle respectively
and u is the applied torque, which is the input signal. This can be viewed as a
simplified description of a one link robot arm with the flexibility concentrated in the
joint. It is assumed that the system is working in a position where the gravitational
effects can be neglected. Furthermore the gear ratio is assumed to be equal to 1.

Torque balances yield the following equations

Jmθ̈m + fmθ̇m + k(θm − θa) + d(θ̇m − θ̇a) = u (9.1)
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Figure 9.2 Two-mass model.

and

Jaθ̈a + faθ̇a − k(θm − θa)− d(θ̇m − θ̇a) = 0 (9.2)

where Jm and Ja denote the moment of inertia of each mass while fm and fa denote
the viscous friction coefficient of each mass. Finally k and d denote the stiffness
and damping respectively of the flexibility between the two masses. Using the state
variables

x1 = θm x2 = θ̇m x3 = θa x4 = θ̇a (9.3)

the system can be described in state space form as

ẋ = Ax+Bu y = Cx =
(
θm
θ̈a

)
(9.4)

since the available measurements are the position of the first mass and the accel-
eration of the second mass.

It is important to note that the main control goal is that the load angle θa follows a
desired trajectory, like the one given by Figure 9.3. Note that this differs from the
formulation used so far in the thesis. Before, it has always been assumed that the
reference trajectory is given on the motor side. This is because the common case
in many robot systems is that only the motor angle θm can be measured. Measure-
ments of the load angle (position) are normally not available. The aim here is to
investigate how the addition of an accelerometer measuring the load acceleration
can be used in an ILC algorithm in order to improve the servo performance. In
practice the accelerometer is mounted at the tool of the robot, measuring the ac-
celeration of the tool in a Cartesian coordinate system. The problem of performing
sensor-fusion with the measurements of the motor angle position and the Cartesian
acceleration measurements will not be covered here but is left to future research. In
Figure 9.4 a possible configuration of the accelerometer on the IRB1400 is shown.

The system is controlled using a conventional two-degrees of freedom controller
structure giving the servo performance shown in Figure 9.3. The aim in the re-
maining part of this section is to investigate how ILC can be used to improve the
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Figure 9.3 Load angle reference (solid) and load angle (dashed) without ILC.

Figure 9.4 A possible configuration of the accelerometer on the IRB1400.

servo properties both with respect to speed as well as to damping. In the sim-
ulations presented below the ILC signal is added to the original reference signal,
which means that the ILC iterations generate a stepwise reshaping of the reference
signal. It is also possible to add the ILC input to the control signal generated by
the existing control system, which means that the ILC input will act as a torque
feed-forward signal but this will not be covered here.

9.2.3 Estimating the load angle

The main idea here is to use an estimate of the load angle in the ILC algorithm.
This estimate is formed as a combination of load acceleration and motor angle by
using a state estimator based on the nominal relationship between the motor and
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load angles. Recall equation (9.2)

Jaθ̈a + faθ̇a − k(θm − θa) = 0 (9.5)

where for simplicity the damping coefficient d is set to zero. Introducing the state
variables x̄1 = θa and x̄2 = θ̇a and the measured signal ȳ(t) = θ̈a equation (9.5)
can be expressed in state space form as

˙̄x = Āx̄+ B̄θm ȳ = C̄x̄+ D̄θm (9.6)

A Kalman filter for this system is then given by

˙̄̂x = Āˆ̄x+ B̄θm +K(ȳ − C ˆ̄x − D̄θm) (9.7)

The estimated load angle can then be expressed using transfer functions as

Θ̂a(s) = ˆ̄X1(s) = Fȳ(s)Ȳ (s) + Fθm(s)Θm(s) (9.8)

where

Fȳ(s) =
(
1 0

)
(sI − Ā+KC̄)−1K (9.9)

and

Fθm(s) =
(
1 0

)
(sI − Ā+KC̄)−1(B̄ −KD̄) (9.10)

When designing the Kalman filter the variance R2 of the load acceleration signal
can be used as a design variable that effects the balance between the measured
load acceleration and the measured motor angle. Choosing a high value of R2

implies that the load acceleration is almost neglected. The resulting filter from θm
to θ̂a is then almost exactly the transfer function obtained from equation (9.5).
The load angle estimate is then obtained by feeding the motor angle through the
nominal transfer function from motor angle to load angle. In the nominal case this
of course gives a good estimate of the load angle but the estimate is very sensitive
to model errors. For example, a 20% error in Ja gives approximately 10% change
in ωa =

√
k/Ja, determining the location of the peak in the transfer function. On

the other hand, choosing a low value of R2 implies that the load acceleration plays
a large role in the estimation of load angle. The filters Fȳ and Fθm for this case
are shown in Figure 9.5. In the considered frequency range the gain of the filters
is almost constant. This is justified by (9.5) since a slight reformulation of gives

θa = θm −
Ja
k
θ̈a −

fa
k
θ̇a (9.11)

If good measurements of θ̈a are available an approximation of the load angle is
given by

θ̂a = θm −
Ĵa

k̂
θ̈a (9.12)
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where the effect of the viscous friction has been neglected. Furthermore k̂ and Ĵa
denote estimates of the spring constant and the moment of inertia. The left part of
Figure 9.5 hence corresponds to the constant − Ĵa

k̂
while the right part corresponds

to the unit factor in front of θm. In order to analyze how sensitive the estimation
procedure is the following calculations can be made. The relationship between the
motor angle and the load angle is, using (9.2), given by

Θa(s) = Ga(s)Θm(s) (9.13)

The measured load acceleration can therefore be expressed as

Ȳ (s) = s2Ga(s)Θm(s) (9.14)

Using (9.12) this gives

Θ̂a(s) = (1− Ĵa

k̂
s2Ga(s))Θm(s) (9.15)

The transfer function

Ĝa(s) = (1− Ĵa

k̂
s2Ga(s)) (9.16)

giving the estimated load angle can now be compared with the transfer function
Ga(s) giving the true load angle. Figure 9.6 shows the Bode diagram of Ga(s)
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and Ĝa(s) for some different values of Ĵa. Around the resonance frequency the
true Ga(s) and the estimate Ĝa(s) are very close while they differ more for higher
frequencies. It can also be seen that the gain of Ĝa(s) is systematically higher in
the high frequency range than for Ga(s). It therefore seems reasonable to low-pass
filter the load angle estimate before using it in the ILC algorithm.
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Figure 9.6 Ga(s) (solid) and Ĝa(s), Ĵa = Ja (dashed), Ĵa = 1.2Ja (dotted),
and Ĵa = 0.8Ja (dash-dotted).

9.2.4 ILC using estimated load angle error

The idea presented above is now evaluated in some simulations. The ILC input is
computed as

uk+1 = Q(uk +Lêk) (9.17)

where êk is the error between load angle reference and estimated load angle.

In the first simulation example (the nominal case) it is assumed that the correct
value of the ratio Ja/k is available and can be used in (9.12). The design variables
are chosen as W e = I,W u = 10−2 · I and λ = 10−2. Figure 9.7 shows the
maximum absolute value of the error during 20 iterations. Figure 9.8 shows the
reference load angle and achieved load angle after the last iteration.

In the next simulations the value of Ja differs from the nominal value used when de-
signing the ILC algorithm. In the simulations the value of Ĵa is 20% larger/smaller
than the true one. Figure 9.9 shows the evolution of the max error during the
iterations in these two cases. The convergence is somewhat affected and the error
settles at a slightly higher value.
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Figure 9.8 Load reference angle and load angle after 20 iterations.

Finally, the robustness against unmodeled dynamics is evaluated by applying the
ILC algorithm to a system of higher order. The higher order system is obtained
by splitting the second mass into two parts, each having moment of inertia Ja/2.
The two masses are connected via a spring with spring constant 4.5 · k. Both
masses are affected by viscous friction with friction constant fa. It is assumed
that the angle of interest is the angle of the third mass and that the corresponding
acceleration is measured. Straightforward application of the ILC algorithm used
above immediately leads to the well known behavior of ILC algorithms that the
size of the error initially decreases when the low frequency components of the error
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Figure 9.9 Max error when Ĵa = 1.2Ja (solid) and Ĵa = 0.8Ja (dashed).

dominate. while, after some iterations, it starts to grow when the high frequency
components begin dominating the error (cf. Example 2.1). Since the performance
requirements in the nominal case were high the instability was not so surprising. In
order to improve the robustness of the ILC algorithm a zero-phase low pass filter
is applied to the estimated load error. A low pass filtering can also be obtained
by increasing λ in this case but the cut-off frequency and roll-off of the low pass
filtering depend on the nominal model and can hence not be chosen freely. Instead
a second order low pass-filter with cut-off frequency 6.25 Hz (0.05% of the Nyquist
frequency) is applied to the estimated load angle error. Since the filtering is carried
out off-line it can be done as a zero-phase filtering. The evolution of the error is
shown in Figure 9.10.

9.2.5 Robustness considerations

The ILC algorithm using estimated load position has so far only been evaluated in
one particular example, and it is therefore difficult to draw any general conclusions
about the properties of the method. It can however still be of interest to point out
some of the robustness aspects.

From Chapter 4 and Theorem 4.8 the following frequency domain sufficient con-
vergence condition follows

| Q(eiωts) | | 1− L(eiωts)Tu(eiωts) |< 1 (9.18)

where Q(q) and L(q) are the filters in the ILC updating equation. The matrices Q
and L resulting from the optimization approach can be given a frequency domain
interpretation as shown in Gunnarsson and Norrlöf (1999a,b) and the previous
chapter.
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Figure 9.10 Max error for sixth order system.

Equation (9.18) can be obtained by considering the homogeneous part of a differ-
ence equation, in iteration index k, for the error ek(t). In the algorithm studied in
this section there are two candidates for such an analysis. The most logical alter-
native would be to study ek(t) = r(t) − θa,k(t), but it turns out to be simpler to
study instead êk(t) = r(t)− θ̂a,k(t). If the load angle can be measured the transfer
function Tu(q) represents the true transfer function between ILC input and the
load angle. This transfer function can then be written

Tu(q) = Gcm(q)Ga(q) (9.19)

where Gcm(q) is the transfer operator from ILC input to motor angle θm(t), and
as before Ga(q) is the transfer operator from motor angle to load angle. Corre-
spondingly the transfer function from ILC input to estimated load angle can be
written

T̂u(q) = Gcm(q)Ĝa(q) (9.20)

The estimated load angle can hence be written

θ̂a,k(t) = Gcm(q)Ĝa(q)uk(t) (9.21)

Then

êk+1(t) = r(t) − T̂u(q)uk+1(t) (9.22)
= r(t) −Q(q)T̂u(q)uk(t)−Q(q)L(q)T̂u(q)êk(t)
= (1−Q(q))r(t) +Q(q)(1− L(q)T̂u(q))êk(t)

Hence the corresponding convergence criterion becomes

| Q(eiωts) || 1− L(eiωts)T̂u(eiωts) |< 1 (9.23)
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To illustrate this condition Figure 9.11 shows the left hand side of (9.18) together
with the left hand side of (9.23) when Ĵa = Ja, Ĵa = 1.2 ·Ja and when Ĵa = 0.8 ·Ja.
Further evaluation of the criterion predicts that Ĵa has to be chosen in the interval
0.75 · Ja < Ĵa < 1.4 · Ja in order to satisfy equation (9.23). This prediction agrees
very well with simulations. By reducing the performance requirements the stable
interval for Ĵa is increased.
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Figure 9.11 Left hand side of equation (9.18) (solid). Left hand side of (9.23)
with Ĵa = Ja (dashed), Ĵa = 0.8Ja (dash-dotted) and Ĵa = 1.2Ja
(dotted).

9.3 Conclusions and Comments

In the the first part of the chapter some limitations of the ILC approach presented
in the thesis are discussed and it is shown in a practical example how the proposed
ILC scheme actually can perform worse than not applying the method at all. In the
second part of the chapter a possible solution to the problem is presented when ILC
is applied to a flexible mechanical system. An ILC algorithm that uses estimated
load angle shows promising properties in simulations. The load angle is estimated
using a Kalman filter where the load acceleration is regarded as system output and
motor angle is regarded as system input.

The results are based on an idealized description of the accelerometer and fur-
ther work is needed in order to evaluate the sensitivity against measurement and
load disturbances. Since the considered model is very simple it is of interest to
investigate if the approach can be used on systems with higher order dynamics.
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Background

Much of the work on ILC in the research community has, so far, been devoted to
first order ILC. In the first order ILC, knowledge from only the previous iteration
is used explicitly in updating the control signal, see e.g., Mita and Kato (1985),
Craig (1988), Horowitz (1993), de Roover (1996a), and Chapters 3 and 4. Higher
order ILC, i.e., using explicitly information not only from the previous iteration but
also from two or more of the previous iterations, has not been analyzed so much
in literature, although there exist some examples in, e.g., Bien and Huh (1989),
Chen et al. (1998) and Bien and Xu (1998). In Chen et al. (1998); Chen and Wen
(1999) it is shown that using a higher order ILC can give better performance with
respect to convergence speed and robustness when applied to a single robot arm.
In this part of the thesis the properties of a second order ILC updating law applied
to LTI systems are thoroughly investigated. The results presented here are based
on Norrlöf and Gunnarsson (1999) and on Norrlöf (2000b,c).

10.1 Problem Formulation

The system description follows the one in the ILC tracking formulation in Section
3.1. Since only LTI systems will be considered, the system can be described by

yk(t) = Tr(q)r(t) + Tu(q)uk(t) (10.1)

147
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where y(t), r(t), and u(t) are the output signal, the reference signal, and the input
signal respectively. The transfer operators Tr(q) and Tu(q) are assumed to be ra-
tional functions in the delay operator q, representing the transfer operators from
reference and control input respectively. The results presented here are for the dis-
turbance free case which explains why the system disturbance and the measurement
disturbance are omitted in (10.1).

The system is assumed to be of single input, single output (SISO) type, i.e., y(t),
u(t), and r(t) are all scalars. As usual the reference signal, r(t), is defined over an
interval [0, tf ] and the system repeats the same exercise over and over again, i.e.,
starting from the same initial conditions and following the same reference signal
repeatedly.

As was shown in Section 3.4, considering only linear operations a general high order
ILC updating formula can be expressed as,

uk+1(t) =
k∑

j=k−N+1

(
Qk−j+1(q)

(
uk(t) + Lk−j+1(q)ej(t)

))
(10.2)

where N is the order of the ILC. This general form of updating equation is often
simplified to the case where uk+1 is a function of data from only the previous
iteration, i.e., r(t), yk(t) and uk(t), with t ∈ [0, tf ]. Let the error be defined as
ek(t) = r(t) − yk(t), from Section 3.4 the well known first order ILC updating
equation is formulated as,

uk+1(t) = Q(q)(uk(t) + L(q)ek(t))

which implies that in (10.2), N = 1, Q1(q) = Q(q) and L1(q) = L(q).

The second order ILC updating formula that will be considered here is given by,

uk+1(t) = Q1(q)
(
uk(t) + L1(q)ek(t)

)
+Q2(q)

(
uk−1(t) + L2(q)ek−1(t)

)
(10.3)

In the general formulation (10.2) this means that N = 2.

Using the ILC updating formulas presented above together with the system de-
scription in (10.1) it is possible to formulate a criterion for the stability of the ILC
system. In Section 4.2 the result for the first order ILC applied to the system in
(10.1) is given as Corollary 4.6 in the time domain, and Theorem 4.8 in the fre-
quency domain. The stability for the second order ILC case will be discussed in
the next section.

10.2 Stability Properties

As was pointed out in Chapter 4 the general results from Section 4.1 can be used
for the analysis of second order ILC systems. The first result that will be explored
here is the stability for higher order ILC using the notion of linear iterative systems
from Section 4.1.



10.2 Stability Properties 149

10.2.1 Stability results formulated in the frequency domain

Using the traditional first order ILC updating formula on the system described by
(10.1) the well known stability criterion from Section 4.2 becomes,

|1− L(eiω)Tu(eiω)| < |Q−1(eiω)|, ∀ω (10.4)

where the Q-filter can be used to increase the stability region. From the results in
Section 4.2 it follows that when Q 6= 1 the input signal, uk(t), will no longer be
guaranteed to converge to the input signal ud(t) that gives a zero error.

When using the second order ILC updating formula (10.3) on the system described
by (10.1) the updating equation becomes,

uk+1(t) =Q1(q)
(
(1− L1(q)Tu(q))uk(t)

)
+Q2(q)

(
1− L2(q)Tu(q)uk−1(t)

)
+(

Q1(q)L1(q) +Q2(q)L2(q)
)(

1− Tr(q)
)
r(t)

(10.5)

and by choosing

zk(t) =
[
uk(t)
uk−1(t)

]
, F (q) =

[
Q1(q)(1 − L1(q)Tu(q)) Q2(q)(1 − L2(q)Tu(q))

1 0

]
Fr(q) =

[
(Q1(q)L1(q) +Q2(q)L2(q))(1− Tr(q))

0

]
(10.6)

as in Section 4.2, it is possible to apply the general stability result of Theorem 4.5
on the second order case. The stability criterion can be expressed as: the system
is stable if the eigenvalues of F (eiω) have an absolute value less than one. The
special structure of the matrix F will be explored in the next section.

10.2.2 Analysis based on the F -matrix structure

The matrix F corresponding to the linear iterative system studied here has a com-
panion matrix structure. This is now going to be explored.

Stability bounds on the elements in a companion matrix

In this section the special structure of the matrix F will be explored and by a
geometrical discussion it will be possible to find bounds on the elements such that
the eigenvalues of the matrix,

F =
[
f1 −f2

1 0

]
, f1, f2 ∈ C (10.7)



150 Background

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re

Im

m1

m2

f1

(a) Diagram showing S√ + f1 (thick line)
when f1 = 1.2− 0.5i.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re

Im

(b) Diagram of S√ (dotted), the bounds

on f2
1 − 4f2 (thin), and the set Sf2

(thick line).

Figure 10.1 An example showing some bounds related to the stability of the
F -matrix (that will give ρ(F ) < 1).

have an absolute value less than one, i.e., the spectral radius ρ(F ) < 1. The eigen-
values of the F -matrix can easily be calculated from the characteristic equation,

λ2 − f1λ+ f2 = 0⇒ 2λ = f1 ±
√
f2

1 − 4f2 (10.8)

The assumption that |λ| < 1 leads immediately to the following condition for
stability, ∣∣f1 ±

√
f2

1 − 4f2

∣∣ < 2 (10.9)

and the eigenvalues can be found using (10.8).

Assume now that f1 is known and that a set, Sf2 , should be found such that when
f2 is chosen in this set the inequality in (10.9) is satisfied. Here, a geometrical
approach will be used in order to find this set. Consider Figure 10.1(a) where
an example of a possible f1 is shown together with the bound on the square root
expression in (10.9). The set is obviously determined by the circle segment reaching
from m1 to m2, where m1 and m2 are calculated as

m1 = f1 +
if1

|f1|

√
4− f2

1 , m2 = f1 −
if1

|f1|

√
4− f2

1 (10.10)
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The set that gives the bound on the square root expression in (10.9) can now be
expressed as,

S√· = {x ∈ C
∣∣ |x| < |2eiv − f1|, v ∈ [argm2, argm1]} (10.11)

It is also possible to write down a description of the set in which f2 has to be
chosen in order to have ρ(F ) < 1. This set will be called the stabilizing set and it
can be described by,

Sf2 = {x ∈ C
∣∣ |x− f2

1

4
| < |e2iv − f1e

iv +
f2

1

4
|, v ∈ [argm2, argm1]} (10.12)

In Figure 10.1(b) the set S√· in (10.11) is shown as the area closed by the dotted
curve and the set,

S(·) = f(S√·), f(x) = x2 (10.13)

is depicted as the region bounded by the thin solid line. The stabilizing set that
f2 has to be chosen from, Sf2 , is bounded by the thick solid line shown in Fig-
ure 10.1(b). Note that in this particular case zero is not part of Sf2 which means
that |f2| = 0 will not give ρ(F ) < 1.

Now some further results on the particular structure of F will be derived.

Eigenvectors of a 2× 2 companion matrix

Consider the matrix in (10.7) again,

F =
[
f1 −f2

1 0

]
where f1 and f2 are complex numbers. According to the result in Theorem 4.A.10
the matrix can be made diagonal if and only if the eigenvalues are distinct. In this
case the eigenvectors v1 and v2, corresponding to each of the eigenvalues λ1 and
λ2, fulfill the following relation

Fvi = λivi, i = 1, 2

By expanding this relation it is possible to find the eigenvectors as[
f1 −f2

1 0

] [
x1

x2

]
=
[
f1x1 − f2x2

x1

]
= λi

[
x1

x2

]
(10.14)

which implies that an eigenvector of F is given by

vi = κi

[
λi
1

]
(10.15)



152 Background

The other case that has to be considered is when λ1 = λ2. For the matrix F this
happens when f2 = f2

1
4 and the eigenvector corresponding to the eigenvalue λ is

the same as in (10.15). The generalized eigenvector can be calculated as[
f1 −f2

1 0

] [
x1

x2

]
=
[
f1x1 − f2x2

x1

]
= λ

[
x1

x2

]
+ κ

[
λ
1

]
(10.16)

and therefore x1 = λx2 + κ. By choosing, e.g., x2 = 0 the generalized eigenvector
becomes,

v2 =
[
κ
0

]
(10.17)

The vector v2 is therefore mapped by F according to Fv2 = λv2 + v1 which can
have a bigger absolute value than v2 (although λ < 1). For some M , however,
|FMv2| < |v2| since Theorem 4.5 applies.

Note that, in the case of two distinct eigenvalues, a general vector in C2,

r =
[
r1

r2

]
(10.18)

can be written as a linear combination of the eigenvectors. To do this two constants
κ1 and κ2 have to be chosen such that r = κ1v1 + κ2v2. If there is only one
eigenvalue the vector r can be written as a linear combination of the eigenvector
and the generalized eigenvector.



11

Convergence Properties

Using the results from the previous chapter it is possible to derive some results on
the behavior of as well as the convergence speed for a second order ILC algorithm.

11.1 Background

First recall the description of the linear iterative system in the frequency domain
from Section 4.1.3,

Zk+1(ω) = F (eiω)Zk(ω) + Fr(eiω)R(ω) (11.1)

From (10.6) it follows that

F (eiω) =
[
× ×
1 0

]
, Fr(eiω) =

[
×
0

]
(11.2)

where the positions marked by × in the matrices might be different from zero.
Instead of considering the system in (11.1) the following homogeneous system will
be considered,

Z̃k+1,ω = F (eiω)Z̃k,ω (11.3)

153
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where Z̃k,ω is defined as,

Z̃k,ω = Z∞(ω)− Zk(ω) (11.4)

In the above it is assumed that

sup
ω
ρ(F (eiω)) < 1 (11.5)

and that Z∞(ω) is defined as limk→∞ Zk(ω), i.e., the limit value from Corollary
4.1 (since (11.5) guarantees convergence) transformed into the frequency domain.

11.2 Behavior of a Second Order ILC Updating

Law

Using the definition of Zk(ω) from (10.6) it is obvious that Z̃k,ω becomes

Z̃k,ω =
[
Ũk,ω
Ũk−1,ω

]
(11.6)

with

Ũk,ω = U∞(ω)− Uk(ω) (11.7)

The initial value, Z̃0,ω, is defined as

Z̃0,ω = Ũ0,ω

[
1
1

]
(11.8)

where Ũ0,ω = U∞(ω). This follows from the assumption that U0 and U−1 both are
equivalent to zero.

To study and understand the behavior of a second order ILC algorithm applied to
an LTI system consider (11.3) for a fixed ω. Let Fω = F (eiω) have the particular
structure given by (11.2). According to the results in Section 10.2.2 Fω has either
one or two eigenvectors depending upon whether the matrix Fω has one or two
distinct eigenvalues.

The analysis is divided into the two cases, starting with the case when Fω has two
distinct eigenvalues.

11.2.1 Fω has two distinct eigenvalues

When the matrix Fω has two distinct eigenvalues, λ1,ω and λ2,ω , it has also two
eigenvectors,

e1,ω =
[
λ1,ω

1

]
, e2,ω =

[
λ2,ω

1

]
(11.9)
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as was shown in Section 10.2.2. The initial value Z̃0(eiω) can now be expressed
using the eigenvectors as

Z̃0,ω = Ũ0,ω(κ1,ωe1,ω + κ2,ωe2,ω) (11.10)

where Ũ0,ω, κ1,ω, κ2,ω ∈ C. From the definition of Z̃0,ω in (11.8) it is possible to
calculate κ1,ω and κ2,ω from[

1
1

]
= κ1,ωe1,ω + κ2,ωe2,ω (11.11)

Solving for κi,ω gives

κ1,ω =
1− λ2,ω

λ1,ω − λ2,ω
, κ2,ω =

λ1,ω − 1
λ1,ω − λ2,ω

(11.12)

Using the fact that the eigenvectors of the matrix Fω are mapped according to
Fωei,ω = λi,ωei,ω, and the definitions in (11.3) and (11.10) it follows that

Z̃k,ω = F kω Z̃0,ω = Ũ0,ωF
k
ω (κ1,ωe1,ω + κ2,ωe2,ω)

= Ũ0,ω(κ1,ωλ
k
1,ωe1,ω + κ2,ωλ

k
2,ωe2,ω)

(11.13)

The following useful result can now be formulated.

Theorem 11.1 (Eigenvalue decomposition of Ũk,ω)
It is possible to write Ũk,ω in the following decomposed form,

Ũk,ω = Ũ0,ω(κ1,ωλ
k+1
1,ω + κ2,ωλ

k+1
2,ω ) (11.14)

where Ũ0,ω is defined according to (11.7), κ1,ω, κ2,ω are given by (11.12) and,
finally, λ1,ω, λ2,ω are the eigenvalues of the matrix Fω .

Proof Follows from (11.13) and the definition in (11.6). �

From Theorem 11.1 it is clear that the effect of the two eigenvalues can be consid-
ered separately. Each of the two eigenvalues contributes with a term,

κi,ωŨ0,ωλ
k+1
i,ω = |κi,ωŨ0,ω||λi,ω |k+1ei((k+1) arg λi,ω+arg κi,ω+arg Ũ0,ω) (11.15)

In the complex plane the different terms can be considered as functions of iteration,
k, as will be shown in the following example.
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Example 11.1 Behavior of a linear iterative system

Assume Ũ0,ω = 1+0.75i, λ1,ω = 0.8, and λ2,ω = 0.7+0.6i. The resulting eigenvalue
decomposition, according to Theorem 11.1, gives two terms. The evolution over
the iterations is shown for each of the two components in Figure 11.1(a) and Figure
11.1(b), respectively. When λi,ω is positive and real the behavior becomes as shown
in Figure 11.1(a) while for a complex eigenvalue the behavior will instead be as
depicted in Figure 11.1(b). The resulting Ũk,ω is shown in Figure 11.1(c). ❏
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(a) Real eigenvalue, λ =
0.8.
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(b) Complex eigenvalue,
λ = 0.7 + 0.6i.
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(c) Sum of the contri-
bution from one real
eigenvalue, λ1,ω =
0.8, and one complex
eigenvalue, λ2,ω =
0.7 + 0.6i.

Figure 11.1 Example of the behavior of Ũ0,ωλ
k+1
i,ω for a real and a complex

eigenvalue when Ũ0,ω = 1+0.75i. The upper row shows the value

of Ũk,ω and the lower row the correspondent absolute value as a
function of iteration.

The dotted lines connecting the ’×’ in Figure 11.1 have been added for readability,
the iterative system is only well defined for integer k.
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An important remark from the example is that the absolute value of Ũk,ω is not
decreasing monotonously for this choice of eigenvalues. Here this is shown for a
particular frequency but this can also be observed when considering the 2-norm
or the energy of all the signal, see for example Chapters 6 and 18 in Bien and Xu
(1998) or Chen et al. (1998).

11.2.2 Fω has only one distinct eigenvalue

When the matrix Fω has only one distinct eigenvalue a result corresponding to
Theorem 11.1 can be formulated in the following way.

Corollary 11.1
When Fω has only one distinct eigenvalue Ũk,ω can be written as

Ũk,ω = Ũ0,ωλ
k
ω(k(1− λω) + 1) (11.16)

Proof The result follows from Theorem 11.1 by letting λ1,ω = λ and λ2,ω = λ+ε. Using
(11.12), (11.14) and the definitions of λ1,ω and λ2,ω it is possible to write,

Ũk,ω

Ũ0,ω

=
ε+ λ− 1

ε
λk+1 +

1− λ
ε

(λ+ ε)k+1 = λk+1 +
λ− 1

ε
(λk+1 − (λ+ ε)k+1) (11.17)

The power series expansion of (λ+ ε)k+1 is

(λ+ ε)k+1 = λk+1(1 +
ε

λ
)k+1 = λk+1

(
1 + (k + 1)

ε

λ
+

(k + 1)k

2!

( ε
λ

)2

+ . . .

+

(
k + 1
m

) ( ε
λ

)m
+ . . .+

( ε
λ

)k+1) (11.18)

where 0 ≤ m ≤ k + 1.

Now let ε→ 0 in (11.17) while using the result from (11.18),

lim
ε→0

(
λk+1 +

λ− 1

ε
(λk+1 − (λ+ ε)k+1)

)
= λk(λ− (λ− 1)(k + 1))

= λk(1 + k(1− λ))

(11.19)

�

It is possible to derive Corollary 11.1 using the eigenvector decomposition method-
ology, used in the previous section for the case where Fω had two distinct eigenval-
ues. In this case there will be only one eigenvector, cf. Section 10.2.2. This single
eigenvector corresponds to the eigenvalue, λω , and becomes

eω =
[
λω
1

]
(11.20)
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The generalized eigenvector, eg,ω, becomes

eg,ω =
[
1
0

]
(11.21)

Z̃0,ω can now be expressed in the basis consisting of the eigenvector and the gen-
eralized eigenvector

Z̃0,ω = Ũ0,ω(κ1,ωeω + κ2,ωeg,ω) (11.22)

From (11.8) it follows that [
1
1

]
= κ1,ωeω + κ2,ωeg,ω (11.23)

and using (11.20) and (11.21) the parameters κ1,ω and κ2,ω can easily be calculated,

κ1,ω = 1, κ2,ω = 1− λω (11.24)

The generalized eigenvector is mapped as Fωeg,ω = λωeg,ω+eω and the eigenvector
is mapped according to Fωeω = λωeω. The definition in (11.3) now gives

Z̃k,ω = F kω Z̃0,ω = Ũ0,ωF
k
ω (κ1,ωeω + κ2,ωeg,ω)

= Ũ0,ωλ
k−1
ω ((κ1,ωλω + kκ2,ω)eω + κ2,ωλωeg,ω)

(11.25)

From (11.25) and the definition in (11.6) it follows that,

Ũk,ω = Ũ0,ωλ
k
ω(λω + k(1− λω) + (1− λω)) = Ũ0,ωλ

k
ω(k(1− λω) + 1) (11.26)

where also κi,ω from (11.24) is used. This is obviously the same result as given in
Corollary 11.1.

To show two typical cases for the behavior of the iterative system when there is
only one distinct eigenvalue consider the following example.

Example 11.2 Behavior of Linear Iterative Systems

Assume first that the single eigenvalue of the iterative system is real and positive,
λ = 0.8. The behavior at the frequency ω for this choice of eigenvalue is shown in
Figure 11.2(a). As a second case assume the eigenvalue to be λω = 0.7 + 0.6i. The
behavior for this choice of eigenvalue is shown in Figure 11.2(b). ❏

Note that also here it is not sure that the absolute value of Ũk,ω is monotonously
decreasing, cf. Example 11.1. It is also worth to note that the behavior for the
individual components in Example 11.1 is similar to the behavior in Example 11.2.
The difference of behavior is explained by the term k(1− λω). In the next section
the absolute value of the linear iterative systems will be studied in more detail.
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(a) Example when the eigenvalue is real, λω = 0.8. In the left plot Ũk,ω is
shown in the complex plane as a function of iteration k. The right plot
shows |Ũk,ω|.
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(b) Example when the eigenvalue is complex, λω = 0.7 + 0.6i. In the left

plot Ũk,ω is shown in the complex plane as a function of iteration k.

The right plot shows |Ũk,ω|

Figure 11.2 Different examples of the behavior of Ũk,ω for different values of

the eigenvalue, λω when Ũ0,ω = 1 + 0.75i.
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11.3 Transient Behavior for |Ũk,ω|

The most important property of a linear iterative system is stability. When stability
is ensured the transient behavior becomes equally important. In the previous
section some examples of the behavior of linear iterative systems are shown. They
are all stable systems but the transient behavior of |Ũk,ω | varies a lot.

For a typical application the value of |Ũk,ω| is not allowed to have an overshoot as is
the case in the example in Figure 11.2(b). In this section the transient behavior of
|Ũk,ω| is going to be addressed. This will lead to some basic rules on how to choose
the eigenvalues of the matrix Fω in order to achieve a good behavior of |Ũk,ω|.

11.3.1 Behavior of |Ũk,ω| when Fω has two distinct eigenvalues

From the analysis of the behavior of Ũk,ω in the previous section it is obvious that
at least for some choices of eigenvalues, cf. Example 11.1, the value |Ũk,ω| does not
converge monotonously to zero. Instead an oscillatory behavior can be recognized.
To understand this consider the following way of exactly representing |Ũk,ω |

2

|Ũ0,ω |2
,

|Ũk,ω|2

|Ũ0,ω|2
=
∣∣∣κ1,ωλ

k+1
1,ω + κ2,ωλ

k+1
2,ω

∣∣∣2 =∣∣∣|κ1,ω||λ1,ω|k+1(cos((k + 1) argλ1,ω + arg κ1,ω) + i sin((k + 1) argλ1,ω + arg κ1,ω)) +

|κ2,ω||λ2,ω|k+1(cos((k + 1) argλ2,ω + argκ2,ω) + i sin((k + 1) argλ2,ω + argκ2,ω))
∣∣∣2

= |κ1,ω|2|λ1,ω|2(k+1) + |κ2,ω|2|λ2,ω|2(k+1) +

2|κ1,ωκ2,ω||λ1,ωλ2,ω|k+1 cos((k + 1)(argλ1,ω − argλ2,ω) + argκ1,ω − arg κ2,ω)
(11.27)

where the cause of the oscillation becomes evident. The value of the cos-factor
depends on arg κi,ω for i = 1, 2. From the definition of κi,ω we get

argκ1,ω − argκ2,ω = arg
1− λ2,ω

λ1,ω − λ2,ω
− arg

λ1,ω − 1
λ1,ω − λ2,ω

= arg(1− λ2,ω)− arg(λ1,ω − 1)
(11.28)

which shows the actual dependence on the eigenvalues. The last expression in
(11.27) therefore consists of three terms where the two first are exponentially de-
creasing (since λi,ω < 1) and the last term is oscillating with exponentially decreas-
ing amplitude.

The following result can now be formulated.
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Theorem 11.2
When Fω has two distinct eigenvalues

∣∣∣|κ1,ω||λ1,ω|k+1 − |κ2,ω||λ2,ω|k+1
∣∣∣ ≤ |Ũk,ω |
|Ũ0,ω|

≤ |κ1,ω||λ1,ω|k+1 + |κ2,ω||λ2,ω|k+1

where the expression on the lefthand side and the right hand side of the inequalities
will be referred to as the lower bound and the upper bound respectively.

Proof Using (11.27) the bounds follow immediately from the fact that −1 ≤ cos(·) ≤ 1.
�

Now an example to show how this result can be applied.

Example 11.3 A lower and an upper bound for |Ũk,ω|

Consider the same choice of eigenvalues as in Example 11.1, i.e., λ1,ω = 0.8 and
λ2,ω = 0.7 + 0.6i. In Figure 11.3 the normalized value of |Ũk,ω| is shown together
with the upper and the lower bounds. Note that the upper bound is a monotonous
decreasing function of iteration while the lower bound is not. ❏
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Figure 11.3 Example of the lower and upper bound for |Ũk,ω | when the eigen-
values are chosen as λ1,ω = 0.8 and λ2,ω = 0.7 + 0.6i.

It is important to stress that, although the upper bound in Theorem 11.2 is
monotonously decreasing this does not imply that the function |Ũk,ω| decreases
monotonously. The initial value of the upper bound contains the sum of the ab-
solute values of κ1,ω and κ2,ω. From (11.12) it follows that κ2,ω = 1 − κ1,ω and
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that

κ1,ω =
1− λ2,ω

λ1,ω − λ2,ω
(11.29)

Clearly the numerator of (11.29) is bounded according to 0 < |1− λ2,ω | < 2. Also
the absolute value of the denominator is bounded by 0 < |λ1,ω − λ2,ω | < 2, but
when λ1,ω → λ2,ω, or vice versa, the value of κ1,ω and κ2,ω will tend to infinity.
This, in turn, imply that the upper bound is no longer very useful. At least for
k = 0 where it is clear that |Ũk,ω||Ũ0,ω|

= 1.

The upper and the lower bounds for |Ũk,ω| give however in most cases a great help
in the analysis of the behavior of |Ũk,ω |. It is important from a design perspective
to find conditions that the eigenvalues have to fulfill in order to give a specified
behavior. The first requirement that will be formulated here is that |Ũk,ω| should
never be greater or equal to |Ũ0,ω|. The following sufficient condition for |Ũk,ω | to
be less than |Ũ0,ω| is easy to find.

Corollary 11.2 (Sufficient condition for
|Ũk,ω |
|Ũ0,ω |

< 1 for k ∈ Z+)

In the case when the matrix Fω has two distinct eigenvalues, λ1,ω and λ2,ω , a
sufficient condition for

|Ũk,ω|
|Ũ0,ω|

< 1 (11.30)

for all k ∈ Z+ is that

|λ1,ω|2|1− λ2,ω|+ |λ2,ω|2|λ1,ω − 1| < |λ1,ω − λ2,ω | (11.31)

Proof Follows from the fact that the upper bound in Theorem 11.2 is monotonously
decreasing and therefore if it is less than 1 for k = 1 it will be less than 1 for all k ≥ 1.

�

Now an example showing how the result in Corollary 11.2 can be used in prac-
tice.

Example 11.4

Consider again the choice of eigenvalues from Example 11.1, i.e., λ1,ω = 0.8, and
λ2,ω = 0.7 + 0.6i. In this case

|λ1,ω|2|1− λ2,ω |+ |λ2,ω |2|λ1,ω − 1| = 0.5993 < |λ1,ω − λ2,ω | = 0.6083
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which means that it is guaranteed that

|Ũk,ω|
|Ũ0,ω|

< 1

for all k ∈ Z+. This result can also be verified in Figure 11.3. ❏

A problem with the result in Corollary 11.2 is that the condition is easily violated
when λ1,ω and λ2,ω are close to each other, i.e., when the right hand side of the
inequality in the condition is close to zero. As the condition is only sufficient the
violation will, however, not guarantee that ∃k ∈ Z+ such that |Ũk,ω| ≥ |Ũ0,ω|.

11.3.2 Behavior of |Ũk,ω| when Fω has two real eigenvalues

It is possible to draw general conclusions about the behavior of the linear itera-
tive system when it is known that the eigenvalues are real. First the case when
signλ1,ω 6= signλ2,ω. Note that the case when there is only one distinct real eigen-
value is not covered in this section, this is instead included in the discussion in the
next section.

Lemma 11.1
When λ1,ω , λ2,ω ∈ R and signλ1,ω 6= signλ2,ω it is true that

|Ũk,ω|
|Ũ0,ω|

< 1

for all k ∈ Z+.

Proof Follows from (11.27) using the fact that if arg λ1,ω = 0 then arg λ2,ω = π and if
arg λ1,ω = π then arg λ2,ω = 0 and, accordingly, that arg(1−λ2,ω) = 0, and arg(λ1,ω−1) =
π. The result becomes that

|Ũk,ω|2

|Ũ0,ω |2
= |κ1,ω|2|λ1,ω|2(k+1) + |κ2,ω |2|λ2,ω|2(k+1)

+ 2|κ1,ωκ2,ω||λ1,ωλ2,ω|k+1 cos(σ(k + 1)π − π)

(11.32)

where σ = sign(λ2,ω). For k = 0 the cos-term will equal +1 and the expression in
(11.32) will coincide with the upper bound in Theorem 11.2. Since the upper bound is
a monotonously decreasing function of k it is sure that Lemma 11.1 is fulfilled for all
k ∈ Z+. �

Note that the cos-term in (11.32) when k = 1 will be equal to −1 which, in fact,
makes the value of (11.32) equal to the lower bound in Theorem 11.2. This means
that for real eigenvalues that fulfill signλ1,ω 6= signλ2,ω, the value of |Ũk,ω ||Ũ0,ω |

will
actually oscillate between the upper bound, for even k, and the lower bound, for
odd k.
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Lemma 11.2
When λ1,ω , λ2,ω ∈ R and signλ1,ω = signλ2,ω it is true that

|Ũk,ω|
|Ũ0,ω|

=
∣∣∣|κ1,ω||λ1,ω |k+1 − |κ2,ω||λ2,ω|k+1

∣∣∣
i.e., the lower bound in Theorem 11.2.

Proof Follows from (11.27) using the fact that if argλ1,ω = 0 then arg λ2,ω = 0 and
if arg λ1,ω = π then arg λ2,ω = π and for all real eigenvalues arg(1 − λ2,ω) = 0, and
arg(λ1,ω − 1) = π. Clearly, the result becomes that

|Ũk,ω|2

|Ũ0,ω|2
= |κ1,ω |2|λ1,ω|2(k+1) + |κ2,ω |2|λ2,ω|2(k+1)

+ 2|κ1,ωκ2,ω||λ1,ωλ2,ω|k+1 cos π

(11.33)

and since cosπ = −1 the equality follows. �

Note that the result in Lemma 11.2 does not imply that |Ũk,ω||Ũ0,ω|
< 1. Try for example

λ1,ω = −0.9 and λ2,ω = −0.1.

The following result is a positive result showing how to choose the eigenvalues in
order to be sure that the lower bound is always less than one.

Lemma 11.3
If λi,ω ∈ R and |λi,ω | < 1, then it is true that∣∣∣|κ1,ω||λ1,ω |k+1 − |κ2,ω||λ2,ω|k+1

∣∣∣ < 1

for all k ∈ Z+ iff

max
( |λ1,ω| − 1
|λ1,ω|+ 1

,−1
)
< λ2,ω < 1 (11.34)

Proof For the proof see Appendix 11.A. �

Using Lemma 11.1 to Lemma 11.3 it is possible to formulate the following conclud-
ing result on the case when λ1,ω, λ2,ω ∈ R.

Theorem 11.3 (Condition for |Ũk,ω| < |Ũ0,ω|)
A necessary and sufficient condition for

|Ũk,ω| < |Ũ0,ω|, ∀k ∈ Z+

when λ1,ω, λ2,ω ∈ R, λ1,ω 6= λ2,ω is that

−1 < λ1,ω < 1 and max
( |λ1,ω| − 1
|λ1,ω|+ 1

,−1
)
< λ2,ω < 1
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Proof Follows from Lemma 11.1, Lemma 11.2, and Lemma 11.3. �

The regions given by Theorem 11.3 are shown in Figure 11.4.
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Figure 11.4 The regions where to choose real (distinct) eigenvalues, λ1,ω and

λ2,ω, in order to have |Ũk,ω| < |Ũ0,ω| for all k ∈ Z+.

11.3.3 Behavior of |Ũk,ω| when Fω has one distinct eigenvalue

When the two eigenvalues in the Fω matrix become one, i.e., when λ1,ω → λ2,ω or
vice versa, the bounds given by Theorem 11.2 become useless since

0 ≤ |Ũk,ω|
|Ũ0,ω|

≤ ∞

The exact value of |Ũk,ω| is easily found from Corollary 11.1,

|Ũk,ω| = |Ũ0,ω||λω|k|k(1 − λω) + 1| (11.35)

A possible choice for the upper and lower bounds is instead given by the following
theorem.

Theorem 11.4
When Fω has only one distinct eigenvalue, then

|λω |k ≤
|Ũk,ω|
|Ũ0,ω|

≤ |λω |k(k|1− λω|+ 1) (11.36)
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Proof The lower bound is found by minimizing the second factor of (11.35) by assuming
λω = 1. The upper bound is simply the result of applying the triangle inequality. �

Note that, compared to the result in Theorem 11.2, the lower bound is a monotonously
decreasing function of iteration while the upper bound is not. For the special case
when λω ∈ R the following result follows from Theorem 11.4.

Corollary 11.3
When λω ∈ R and −1 < λω < 1 then

|Ũk,ω|
|Ũ0,ω|

= |λω|k(k(1 − λω) + 1)

i.e., the upper bound in Theorem 11.4.

Proof Follows from the fact that 1− λω > 0 for all −1 < λω < 1. �

Now an example showing an application of Theorem 11.4.

Example 11.5 A lower and an upper bound for |Ũk,ω|

With the same choice of eigenvalues as in Example 11.2, i.e., λω = 0.8 and λω =
0.7 + 0.6i, the corresponding upper and lower bounds become as in Figure 11.5(a)
and 11.5(b). ❏

According to the discussion in the previous section, it might be important that
|Ũk,ω| is less than |Ũ0,ω| for all k ∈ Z+. The following theorem gives a necessary
and sufficient condition for this to be true.

Theorem 11.5 (Condition for |Ũk,ω| < |Ũ0,ω|)
A necessary and sufficient condition for

|Ũk,ω| < |Ũ0,ω|, ∀k ∈ Z+

when |λω| < 1 is that

|2− λω| <
1
|λω |

Proof For the proof see Appendix 11.B. �

The region for λω given by Theorem 11.5 is shown in the complex plane in Fig-
ure 11.6. Note that for a real eigenvalue the theorem is fulfilled for 1−

√
2 < λω < 1

which is exactly the line dividing the two regions in Figure 11.4.
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Figure 11.5 Example of the upper and lower bounds for |Ũk,ω| for two different
choices of eigenvalue, λω.

11.3.4 Relations between the different cases

From the results in Theorem 11.3 and Theorem 11.5 it is possible to formulate the
following corollary.

Corollary 11.4 (Condition for |Ũk,ω| < |Ũ0,ω| ∀k ∈ Z+)
Suppose λ1,ω, λ2,ω ∈ R in the case of two distinct eigenvalues, or λω ∈ R for the
case of one distinct eigenvalue. A necessary and sufficient condition for

|Ũk,ω| < |Ũ0,ω|, ∀k ∈ Z+

is that

−1 < λ1,ω < 1 and max
( |λ1,ω| − 1
|λ1,ω|+ 1

,−1
)
< λ2,ω < 1

for two distinct eigenvalues and

1−
√

2 < λω < 1

for only one distinct eigenvalue.

Proof Follows from Theorem 11.3 and Theorem 11.5. �

The region can be depicted in the λ-space according to Figure 11.7.
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Figure 11.6 The region in which to choose the eigenvalue, when Fω has only
one distinct eigenvalue, to ensure that |Ũk,ω | < |Ũ0,ω| for all k ∈
Z+.
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Figure 11.7 The region in which to choose the real eigenvalues to ensure that
|Ũk,ω| < |Ũ0,ω| for all k ∈ Z+.
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In the proof of Corollary 11.1 it becomes clear that the case with one distinct
eigenvalue follows from the general case where Fω has two distinct eigenvalues.
Using this result it is possible to formulate the following robustness condition.

Theorem 11.6 (Robustness, nominal design has one distinct eigenvalue)
When the eigenvalues of the matrix Fω can be described by

λ1,ω = λω(1 + δ1,ω), λ2,ω = λω(1 + δ2,ω)

where it is assumed that the relative uncertainty δi,ω ∈ C and |δi,ω | < γω for

i = 1, 2 it is possible to find an upper bound for
|Ũk,ω |
|Ũ0,ω |

according to

|Ũk,ω|
|Ũ0,ω|

≤ |λω |k(1 + γω)k(k(|1 − λω|+ γω|λω|) + 1)

Proof For the general case with two distinct eigenvalues it is true that

|Ũk,ω|
|Ũ0,ω|

=
∣∣∣ k∑
j=0

λk−j1,ω λ
j
2,ω − λ1,ωλ2,ω

k−1∑
j=0

λk−1−j
1,ω λj2,ω

∣∣∣
= |λω|k

∣∣∣ k∑
j=0

∆k−j
1,ω ∆j

2,ω − λω∆1,ω∆2,ω

k−1∑
j=0

∆k−1−j
1,ω ∆j

2,ω

∣∣∣ (11.37)

where ∆i,ω is defined as ∆i,ω = 1 + δi,ω. Let

Σω =

k−1∑
j=0

∆k−1−j
1,ω ∆j

2,ω

Using Σω it is possible to rewrite (11.37) according to

|λω|k
∣∣∆1,ωΣω + ∆k

2,ω − λω∆1,ω∆2,ωΣω
∣∣ = |λω|k

∣∣∆1,ωΣω(1− λω∆2,ω) + ∆k
2,ω

∣∣
≤ |λω|k

(
|∆1,ωΣω||1− λω∆2,ω |+ |∆2,ω|k

)
≤ |λω|k|1 + γω|k

(
k(|1− λω|+ γω|λω|) + 1

)
where it is used that

|∆i,ω| = |1 + δi,ω| ≤ 1 + γω, |1− λω∆2,ω| = |1− λω − δ2,ωλω| ≤ |1− λω|+ γω|λω|

and

|Σω | ≤
k−1∑
j=0

|∆1,ω |k−1−j |∆2,ω |j ≤
k−1∑
j=0

(1 + γω)k−1 = k(1 + γω)k−1

which concludes the proof. �
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From a design perspective the result in Theorem 11.6 is very important since it
says something about the behavior of the second order ILC when the eigenvalues
are uncertain. Note that the stability region for the result in Theorem 11.6 is given
by

|λω|(1 + γω) < 1

i.e., all eigenvalues in the uncertainty set have to be stable.

The following example shows how the result can be used.

Example 11.6

Assume that for a certain frequency it is known that there is a nominal eigenvalue
λω . The design has an uncertainty which has resulted in that the actual eigenvalues
can be in a region around λω given by

S(λω, γω) = {λ1,ω, λ2,ω ∈ C
∣∣ λi,ω = λω(1 + δi,ω), |δi,ω| < γω, i = 1, 2}

Now assume λω = 0.1 and that the relative error is 100%, i.e., γω = 1. The resulting
uncertainty region is shown in Figure 11.8(a) and the nominal convergence of |Ũk,ω ||Ũ0,ω |
together with the worst case convergence speed is depicted in Figure 11.8(b). ❏

The result in Theorem 11.6 gives an upper bound for the actual convergence speed
when the nominal design gives only one distinct eigenvalue. Important is, of course,
to find a similar result when there are two distinct eigenvalues in the nominal case
and the two eigenvalues have individual uncertainties.

Theorem 11.7 (Robustness, nominal design has two distinct eigenvalues)
Suppose the eigenvalues of the matrix Fω can be described by

λ1,ω = λ̄1,ω + δ1,ω, λ2,ω = λ̄2,ω + δ2,ω

where λ̄i,ω is the nominal value and δi,ω is a bounded uncertainty, δi,ω ∈ C and

|δi,ω| < γi,ω for i = 1, 2. An upper bound for
|Ũk,ω |
|Ũ0,ω |

is given by

|Ũk,ω |
|Ũ0,ω|

≤ 1
|λ̄1,ω − λ̄2,ω |

(
(|1− λ̄2,ω |+ γ2,ω)(|λ̄1,ω |+ γ1,ω)k+1

+ (|λ̄1,ω − 1|+ γ1,ω)(|λ̄2,ω |+ γ2,ω)k+1
)

were it is also assumed that the uncertainty regions for λi,ω do not overlap.

Proof Using the upper bound in Theorem 11.2 it follows that

|Ũk,ω|
|Ũ0,ω |

≤ |κ1,ω ||λ1,ω|k+1 + |κ2,ω||λ2,ω |k+1
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Figure 11.8 Illustration of the result in Theorem 11.6.

where

|κi,ω| =
|1− λi,ω|
|λ1,ω − λ2,ω|

≤ |1− λ̄i,ω|+ γi,ω

|λ̄1,ω − λ̄2,ω| − (γ1,ω + γ2,ω)

since

|1− λi,ω| ≤ |1− λ̂i,ω|+ γi,ω

|λ1,ω − λ2,ω| ≥ |λ̄1,ω − λ̄2,ω| − (γ1,ω + γ2,ω)

|λi,ω| ≤ |λ̂i,ω|+ γi,ω

and the result of the the theorem follows readily. Note that it is assumed that the regions
are not overlapping since |λ̄1,ω − λ̄2,ω| − (γ1,ω + γ2,ω) is assumed to be positive. �

One case that can be interesting to consider is a special case of the result in Theorem
11.6. This is when the eigenvalues are different but have the same argument, i.e.,
argλ1,ω = argλ2,ω. The result is given as a corollary.

Corollary 11.5
When the nominal eigenvalues fulfill the condition

λ̄1,ω = λ̄ω , λ̄2,ω = αλ̄ω

for 0 < α < 1 and the true eigenvalues are in a uncertainty set described by

λ1,ω = λ̄ω(1 + δ1,ω), λ2,ω = αλ̄ω(1 + δ2,ω)
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where δi,ω ∈ C and |δiω | < γω it is possible to find an upper bound for
|Ũk,ω |
|Ũ0,ω |

according to

|Ũk,ω|
|Ũ0,ω|

≤ |λ̄ω |k(1 + γω)k(
αk − 1
α− 1

(|1 − αλ̄ω |+ α|λ̄ω |γω) + αk)

Proof Following the same path as in the proof of Theorem 11.6 it is possible to arrive
at a similar equation as in (11.37)

|Ũk,ω |
|Ũ0,ω |

=
∣∣∣ k∑
j=0

λk−j1,ω λ
j
2,ω − λ1,ωλ2,ω

k−1∑
j=0

λk−1−j
1,ω λj2,ω

∣∣∣
= |λω|k

∣∣∣ k∑
j=0

∆k−j
1,ω α

j∆j
2,ω − αλ̄ω∆1,ω∆2,ω

k−1∑
j=0

∆k−1−j
1,ω αj∆j

2,ω

∣∣∣ (11.38)

where ∆i,ω is defined as ∆i,ω = 1 + δi,ω. Now define

Σω =

k−1∑
j=0

∆k−1−j
1,ω αj∆j

2,ω

and rewrite (11.38) according to

|λω|k
∣∣∣∆1,ωΣω + (α∆2,ω)k − αλ̄ω∆1,ω∆2,ωΣω

∣∣∣
≤ |λω|k

(
|∆1,ωΣω| |1− αλ̄ω∆2,ω|+ |α∆2,ω|k

)
≤ |λω|k(1 + γω)k

(αk − 1

α− 1
(|1− αλ̄ω|+ α|λ̄ω|γω) + αk

)
where the last inequality follows from the fact that

|Σω| ≤
k−1∑
j=0

|∆1,ω |k−1−jαj |∆2,ω|j ≤ (1 + γω)k−1
k−1∑
j=0

αj = (1 + γω)k−1α
k − 1

α− 1

and

|1− αλ̄ω∆2,ω| ≤ |1− αλ̄ω|+ α|λ̄ω|γω

This concludes the proof. �

After considering the robustness of the second order system the actual behavior of
Uk,ω will be considered.
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11.4 Actual Behavior of Uk,ω

When applying a second order ILC algorithm it is not only important that the
value of |Ũk,ω | converges rapidly to zero. It is equally important that the limit
value, U∞,ω, actually produces an acceptable error level. From the first order ILC
theory it is well known that after introducing a Q-filter the error is not sure to
converge to zero, also in the nominal case. For the second order ILC algorithms it
is of course important to find a similar condition. One such condition is given by
the following theorem.

Theorem 11.8 (Sufficient condition for |E∞,ω| = 0)
A sufficient condition for E∞,ω to be equal to zero for a convergent second order
ILC algorithm is that

Q1,ω +Q2,ω = 1

and

|Q1,ωL1,ω +Q2,ωL2,ω| 6= 0.

Proof Follows from the fact that

Uk+1,ω = Q1,ω(Uk,ω + L1,ωEk,ω) +Q2,ω(Uk−1,ω + L2,ωEk−1,ω)

and when k →∞, Uk,ω tends to U∞,ω. Use Q1,ω +Q2,ω = 1 and it follows that

|Q1,ωL1,ω +Q2,ωL2,ω||E∞,ω| = 0

This is only true if |E∞,ω| = 0. �

The result in Theorem 11.8 is of great practical importance and will have an impact
on all the design methods for second order ILC algorithms presented in the next
chapter. A similar condition formulated in the time domain is found in Bien and
Huh (1989).



Appendix

11.A Proof of Lemma 11.3

First it is shown that if λi,ω is chosen in the set described by (11.34) the lower
bound is less than 1.

When signλ1,ω 6= signλ2,ω the result follows trivially from Lemma 11.1 since the
lower bound is always less than or equal to the upper bound.

Now consider the case when λi,ω > 0. Expanding the definition of the lower bound
using κi,ω from (11.12) the result becomes

|(1 − λ2,ω)λk+1
1,ω − (1− λ1,ω)λk+1

2,ω | < |λ1,ω − λ2,ω| (11.A.39)

where the absolute value of the two terms on the lefthand side of the inequality
can be removed since the two terms are positive. Note that when k = 0 there will
obviously be equality in (11.A.39). Now let

f(λ1,ω, λ2,ω, k) = |(1− λ2,ω)λk+1
1,ω − (1− λ1,ω)λk+1

2,ω |
= |λk+1

1,ω − λk+1
2,ω − λ1,ωλ2,ω(λk1,ω − λk2,ω)|

(11.A.40)

This can be simplified using that λk+1
1,ω − λk+1

2,ω can be rewritten according to

λk+1
1,ω − λk+1

2,ω = (λ1,ω − λ2,ω)(λk1,ω + λk−1
1,ω λ2,ω + . . .+ λ1,ωλ

k−1
2,ω + λk2,ω) (11.A.41)

Obviously it is possible to introduce the following definition of a new function g(·),

|λ1,ω − λ2,ω|g(λ1,ω, λ2,ω , k) = f(λ1,ω, λ2,ω , k) (11.A.42)

which means that

g(λ1,ω,λ2,ω, k) = λk1,ω + λk−1
1,ω λ2,ω + . . .+ λ1,ωλ

k−1
2,ω + λk2,ω

− λ1,ωλ2,ω(λk−1
1,ω + λk−2

1,ω λ2,ω + . . .+ λ1,ωλ
k−2
2,ω + λk−1

2,ω )
(11.A.43)
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The inequality that has to be fulfilled can now be expressed in terms of the new
function g(·),

g(λ1,ω, λ2,ω, k) < 1, k ∈ Z+ (11.A.44)

Using induction it is possible to prove (11.A.44) when λi,ω ∈]0, 1[.

1. Check that (11.A.44) is fulfilled for k = 1.

g(λ1,ω, λ2,ω , 1) = λ1,ω + λ2,ω − λ1,ωλ2,ω

The gradient for g(·) becomes

∂

∂λ
g(λ1,ω , λ2,ω, 1) =

[
1− λ2,ω

1− λ1,ω

]
and clearly it has a stationary point in λ1,ω = λ2,ω = 1. For λi,ω ∈]0, 1[
the function g(λ1,ω, λ2,ω, 1) is increasing and when λ1,ω or λ2,ω equal 1
g(λ1,ω, λ2,ω, 1) = 1. For λ1,ω = λ2,ω = 0 the function has the value 0.
Since the function is strictly growing and equals 1 when λ1,ω = λ2,ω = 1 it
will be strictly less than 1 when 0 < λi,ω < 1.

2. Assume that for k

g(λ1,ω, λ2,ω , k) < 1

In the induction step it is necessary to show that this is also valid for k + 1.

Consider

g(λ1,ω, λ2,ω, k + 1)− g(λ1,ω, λ2,ω, k) = (λ1,ω − 1)(λk1,ω + λk−1
1,ω λ2,ω(1 − λ1,ω)

+ λk−2
1,ω λ

2
2,ω(1− λ1,ω) + . . .+ λ1,ωλ

k−1
2,ω (1− λ1,ω) + λk2,ω(1− λ1,ω)− λk+1

2,ω )

where (11.A.43) has been used twice and it is assumed that λ1,ω > λ2,ω. Now
since λ1,ω − 1 < 0 it is sufficient to show that the second factor is greater
than 0. Obviously λk+1

2,ω < λk1,ω and all the rest of the terms are positive so
the sum must be positive. If instead λ2,ω > λ1,ω just swap λ1,ω and λ2,ω

above to get the same result.

Now assume that −1 < λi,ω < 0 and consider again the inequality in (11.A.39). For
simplicity let λ̃i,ω = −λi,ω and assume λ̃1,ω > λ̃2,ω . Obviously (11.A.39) becomes

|(1 + λ̃2,ω)λ̃k+1
1,ω − (1 + λ̃1,ω)λ̃k+1

2,ω | < |λ̃1,ω − λ̃2,ω| (11.A.45)

Using a similar transformation as in (11.A.40) and the result in (11.A.41) it is pos-
sible to find the same kind of relation as (11.A.42) but with g(·) defined according
to

g(λ̃1,ω,λ̃2,ω, k) = λ̃k1,ω + λ̃k−1
1,ω λ̃2,ω + . . .+ λ̃1,ωλ̃

k−1
2,ω + λ̃k2,ω

+ λ̃1,ωλ̃2,ω(λ̃k−1
1,ω + λ̃k−2

1,ω λ̃2,ω + . . .+ λ̃1,ωλ̃
k−2
2,ω + λ̃k−1

2,ω )
(11.A.46)
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To show that

g(λ̃1,ω, λ̃2,ω, k) < 1, k ∈ Z+ (11.A.47)

is fulfilled the same kind of induction approach is used as in the first part of the
proof.

1. Check that (11.A.44) is fulfilled for k = 1.

g(λ̃1,ω, λ̃2,ω , 1) = λ̃1,ω + λ̃2,ω + λ̃1,ωλ̃2,ω

The gradient for g(·) becomes

∂

∂λ
g(λ̃1,ω , λ̃2,ω, 1) =

[
1 + λ̃2,ω

1 + λ̃1,ω

]
with the extreme point, λ̃1,ω = λ̃2,ω = −1, outside the set under considera-
tion. Inside the set 0 < λ̃i,ω < 1 the function g(·) is obviously an increasing
function. Obviously g(0, 0, 1) = 0, g(1, 0, 1) = g(0, 1, 1) = 1, and g(1, 1, 1) = 2
which immediately shows that the inequality in (11.A.47) cannot be fulfilled
for all possible choices of λ̃i,ω ∈]0, 1[. To find the limit for the set in which
to choose λ̃i,ω the following equation is solved,

λ̃1,ω + λ̃2,ω + λ̃1,ωλ̃2,ω = 1⇔ λ̃2,ω =
1− λ̃1,ω

λ̃1,ω + 1
(11.A.48)

which means that (11.A.47) is fulfilled for

λ̃1,ω ∈]0, 1[, λ̃2,ω <
1− λ̃1,ω

λ̃1,ω + 1
(11.A.49)

2. The second step is very similar to the second step in the previous case. First
assume that for k it is true that

g(λ̃1,ω, λ2,ω , k) < 1

In the induction step it is necessary to show that this is true also for k + 1.

Consider

g(λ̃1,ω, λ̃2,ω, k + 1)− g(λ̃1,ω, λ̃2,ω, k) = (λ̃1,ω − 1)(λ̃k1,ω + λ̃k−1
1,ω λ̃2,ω(1 + λ̃1,ω)

+ λ̃k−2
1,ω λ̃

2
2,ω(1 + λ̃1,ω) + . . .+ λ̃1,ωλ̃

k−1
2,ω (1 + λ̃1,ω)

+ λ̃k2,ω(1 + λ̃1,ω)−
λ̃k+1

2,ω

1−λ̃1,ω

λ̃1,ω+1

)
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where (11.A.43) has been used twice. Now since λ̃2,ω is chosen according to

(11.A.49) it is true that
λ̃k+1

2,ω
1−λ̃1,ω
λ̃1,ω+1

< λ̃k2,ω and since λ̃k1,ω > λ̃k2,ω it is clear that

the result above becomes negative which concludes the “if” part of the proof.
The “only if” part follows from the fact that the inequality is invalidated for

λ̃2,ω ≥
1− λ̃1,ω

λ̃1,ω + 1

since

|(1− λ2,ω)λk+1
1,ω − (1 − λ1,ω)λk+1

2,ω | ≥ |λ1,ω − λ2,ω|

when k = 1.

11.B Proof of Theorem 11.5

The proof can be established in a similar way as was done in the proof of Lemma
11.3. The idea is to use induction.

1. Show that |Ũk,ω| < |Ũ0,ω| when k = 1.

|Ũ1,ω|
|Ũ0,ω|

= |λω | |(1− λω) + 1| < 1⇒ |2− λω | <
1
|λω |

(11.B.50)

which is the set given in the theorem.

2. Assume that for k it is true that

|λω|k|k(1− λω) + 1| < 1

It is now necessary to show that this is also true for k+1. Let f(·) be defined
as

f(λω, k) = |λω|k|k(1 − λω) + 1|

and let

g(λω, k) = ln f(λω, k) = k ln |λω |+ ln |k(1− λω) + 1|

To show that f(λω , k + 1) < 1 it is enough to show that

g(λω , k + 1)− g(λω , k) < 0
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and the lefthand side is equal to

ln |λω |+ ln
∣∣∣ (k + 1)(1− λω) + 1

k(1− λω) + 1

∣∣∣ = ln |λω|+ ln
∣∣∣1 +

1− λω
k(1 − λω) + 1

∣∣∣
< ln |λω|+ ln |2− λω|
< ln |λω| − ln |λω| = 0

where in the first inequality k = 0 gives the maximum and in the second
inequality the result from Step 1 is applied.

This concludes the “if” part and the “only if” follows from the fact that all other
choices of λω will make |Ũ1,ω| ≥ |Ũ0,ω|.



12

Design Methods with an Example

12.1 Design Issues

The discussion in the previous chapter has been kept very abstract without any
assumptions on the matrix Fω other than it is of the structure discussed in Sec-
tion 10.2. Before going into the actual design examples and the experiments it is
worth doing some general comments on the choices of eigenvalues that are actually
reasonable.

First recall the actual definition of the matrix F from (10.6), i.e.,

Fω =
[
Q1,ω(1 − L1,ωTu,ω) Q2,ω(1 − L2,ωTu,ω)

1 0

]
The eigenvalues can be calculated using (10.8) resulting in

λ(1,2),ω =
f1,ω

2
±

√
f2

1,ω

4
+ f2,ω (12.1)

where

f1,ω = Q1,ω(1− L1,ωTu,ω), f2,ω = Q2,ω(1− L2,ωTu,ω)
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From now on it is assumed that the system where ILC is applied can be described
as in (10.1), i.e.,

yk(t) = Tr(q)r(t) + Tu(q)uk(t)

The proposed second order ILC updating formula is given by (10.3), i.e.,

uk+1(t) = Q1(q)
(
uk(t) + L1(q)ek(t)

)
+Q2(q)

(
uk−1(t) + L2(q)ek−1(t)

)
A design methodology for this ILC algorithm must be able to, more or less system-
atically, find the filters Q1, Q2, L1, and L2. How to choose the Q and the L filters
in a first order ILC algorithm is quite well known and there exist some algorithms
that from a model can calculate these filters, see for example Bien and Xu (1998),
Moore (1993), and Chapter 8.

In fact, the choice of f1 is similar to the first order ILC design. Moreover, from
(12.1) it follows that λ(1,2),ω is symmetric with respect to f1

2 . The minimum abso-
lute value of the two eigenvalues is achieved when Fω has one distinct eigenvalue,
and the value becomes λω = f1

2 . This might not be desirable from an application
point of view as will be seen in the next sections.

12.1.1 Design algorithm proposals

A natural choice from which to start a design effort for a second order ILC algorithm
is (12.1). From the discussion in Section 10.2.2 we know that it is possible to find
a description of a set in which to choose f2,ω in order to be sure that the resulting
iterative system is stable. This is not a very constructive approach since stability
(although the most important property) is not enough for a design algorithm.

In the next section the proposed design algorithms will be compared with a first
order ILC algorithm. The idea is to understand the advantages and disadvantages
of having a second order compared to a first order ILC algorithm.

A heuristic design algorithm

The first design algorithm proposal takes advantage of the already existing algo-
rithms for finding good choices of the filters in a first order ILC algorithm. From
the description of the second order ILC updating formula given in (10.3) it is ob-
vious that the updating can be divided into two parts. The first one is the normal
first order ILC updating formula, updating the next control input using the current
control input and the current error. The second part does the same thing but is
delayed one iteration, i.e., it updates the next control input, not from the current,
but from the previous control input and the previous error.

The idea of the first design algorithm proposal is to simply take a first order ILC
design and then divide it into a part that works on the data from the current
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iteration and one part that works on the data from the previous iteration. This is
formalized as follows.

Algorithm 12.1 (Heuristic second order ILC design)

1. First do a design of a first order ILC according to some design methodology
for first order ILC algorithms. This results in the filters Q and L.

2. Let the filters in the second order ILC be chosen according to

Q1,ω = αQω, L1,ω = Lω

Q2,ω = (1− α)Qω, L2,ω = Lω
(12.2)

where α ∈ R is a design variable.

3. Try, on the true system or in a simulation, different values of the design
parameter α ∈ [0, 1]. Choose the value of α that gives a satisfactory result.

If α is chosen between 0 and 1 it is obvious that it decides how much of the
control input should be updated from the current iteration and how much should
be updated from the previous one. If α = 1 the algorithm will give a pure first
order ILC algorithm and with α = 0 it will give raise to a kind of delayed (in
iteration) first order ILC method. Note that the property of Theorem 11.8 will
hold as long as the original design has Qω = 1.

An eigenvalue based algorithm

By considering (12.1) it is clear that given a value of f1,ω the best eigenvalue, with
respect to the amplitude, is f1,ω

2 . This is the case when f2,ω is chosen such that

f2
1,ω

4
+ f2,ω = 0

which is equivalent to

Q2,ω = −
Q2

1,ω

4
, L2,ω = L1,ω(2− L1,ωTu,ω)

This choice will, however, only fulfill the condition in Theorem 11.8 if Q1,ω = 2.
The approach here will instead be to choose an approximate solution based on a
first order ILC design.
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Algorithm 12.2 (Eigenvalue based second order ILC design)

1. Design a first order ILC, i.e., choose the filters Q and L according to a design
methodology for first order ILC algorithms.

2. Choose Q1 and L1 according to,

Q1,ω =
5
4
Qω, L1,ω = Lω

3. Choose Q2 and L2 such that

Q2,ω = −Q
2
ω

4
, L2,ω = L1,ω(2− L1,ωTu,ω)

Note that the approach suggested in Algorithm 12.2 is in fact model based since
Tu is used in the construction of the L2 filter. One important difference compared
to many suggested first order ILC updating schemes is however that it uses is the
model and not its inverse. If the first order ILC is chosen as the optimal solution
L1 = T−1

u , without considering robustness, then from the choice of L2 in the
algorithm it is clear that also L2 = T−1

u . The choice of Q1 and Q2 stems from the
condition in Theorem 11.8. In the frequency band where the first order ILC has
zero error convergence, i.e., Qω = 1, the second order design using Algorithm 12.2
will also converge to zero since

Q1,ω +Q2,ω =
5
4
Qω +

Q2
ω

4
≈ 1

Now an analysis of the proposed design algorithms are analyzed.

12.1.2 Analysis of the proposed design algorithms

A natural way of evaluating the second order ILC algorithm is to compare it with
the corresponding first order design. Actually both design algorithms presented
here are based upon a first order ILC design. Obviously it is natural to compare
the result from this initial design with the result of the second order ILC design,
both from a performance as well as a robustness point of view. First consider the
first order ILC design.

Performance and robustness for a first order ILC design

Consider the first order ILC with the filters Q and L. With the updating equation
according to (3.13) and Ũ1

k,ω defined as in (11.7) it follows that

Ũ1
k+1,ω = Qω(1− LωTu,ω)Ũ1

k,ω
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where also the frequency domain version of (4.23) is used. The superscript 1 in
Ũ1
k,ω indicates that it is Ũk,ω for the first order ILC algorithm. The control signal

for the second order algorithm is referred to as Ũ2
k,ω.

Now let

fω = Qω(1− LωTu,ω)

It is clearly true that

|Ũ1
k+1,ω |
|Ũ1

0,ω|
= |fω|k+1 (12.3)

which will be used to compare the performance for the first and the second order
ILC designs.

It is necessary to find a bound such that the robustness for the first order ILC
design can be compared with what is achieved with the second order ILC design.
Assume that

fω = f̄ω(1 + δrω), |δrω| < γω

where f̄ω is the nominal value. A sufficient condition for stability is that

γω <
1
|f̄ω|
− 1

If it is an absolute uncertainty,

fω = f̄ω + δaω, |δaω| < γω

the corresponding sufficient criterion for robust stability becomes

γω < 1− |fω|

Now the result of the proposed design algorithms can be compared with the corre-
sponding first order ILC scheme.

Heuristic based design

The eigenvalues for the second order ILC scheme designed using Algorithm 12.1
are given by

λ(1,2),ω = α
fω
2
±
√
α2f2

ω

4
+ (1 − α)fω =

fω
2

(
α±

√
α2 + 4

1− α
fω

)
First note that if α is chosen as α = 1 the eigenvalues will be

λ1,ω = fω, λ2,ω = 0
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which is equivalent to a normal first order ILC algorithm. If, instead, α = 0 the
eigenvalues become

λ(1,2),ω = ±
√
fω

Clearly, |λ(1,2),ω| =
√
|fω| > |fω| since |fω| < 1.

To compare the robustness of the heuristic based design with the corresponding
first order ILC design, one possible approach is to compare the stability margin.
The stability margin is here defined as

1− |fω|

for the first order ILC design and

1−max(|λ1,ω , λ2,ω|)

for the second order ILC design. In both cases this measures the distance to the
border of the stability region.

In Figure 12.1 the difference between the stability margin for the first and the
second order ILC, i.e.,

1− |fω| − (1−max(|λ1,ω|, |λ2,ω |))

is shown as a function of fω for some values of α between 0 and 1. This means that
a positive value implies that the stability margin for the first order ILC algorithm
is higher than the second order and vice versa. The difference is obviously zero
for α = 1 since the second order ILC in that case coincides with the first order
design. Note that when the second order part is introduced the robustness for
small values of |fω| is always worse compared to the first order ILC. Especially this
is true for α = 0 when the stability margin is worse for all fω. For intermediate
values of α there are some fω that give a better robustness using the second order
ILC compared to the first order. One conclusion that could be drawn is that it
might be an idea to introduce an α that is not constant but instead fω dependent.
In this way it might be possible to use more of the advantages of the second order
method, without the drawback of having worse robustness properties for some fω.

The performance of the resulting second order ILC algorithm is of great impor-
tance and the actual convergence speed will depend on the absolute value of the
eigenvalues. Actually it is possible to see this in Figure 12.1 as well. Consider

1− |fω| − (1−max(|λ1,ω|, |λ2,ω |)) = max(|λ1,ω, λ2,ω|)− |fω|

which means that also the difference between the maximum eigenvalue for the
second order ILC and the first order ILC can be seen in the diagrams. Also with
this interpretation positive values are in favor of the first order ILC and negative
values are in favor of the second order algorithm.
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Figure 12.1 Robustness bounds for the first order ILC compared to the heuris-
tically designed second order ILC.
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Eigenvalue based design

When using Algorithm 12.2 the eigenvalues are given by

λ(1,2),ω =
Qω(1 − LωTu,ω)

8
(
5± 3

)
Obviously this means that if fω = Qω(1 − LωTu,ω) is the result of the original
design, the nominal eigenvalues are λ̄1,ω = fω and λ̄2,ω = 1

4fω. From a robustness
perspective this gives exactly the same result as the first order design since the
absolute amplitude margin for the second order ILC is exactly the same as the one
of the first order ILC.

Important is also to consider the performance that can be achieved compared to
the first order ILC design. For the second order design it follows from Theorem
11.1 that

|Ũ2
k,ω|
|Ũ2

0,ω|
= |fω|k

1
3 · 4k |4

k+1 − 1− fω(4k − 1)|

To compare the first and the second order ILC it is possible to study, for example,

|Ũ2
k,ω |
|Ũ2

0,ω|
−
|Ũ1
k,ω|
|Ũ1

0,ω|
= |fω|k

( 1
3 · 4k |4

k+1 − 1− fω(4k − 1)| − 1
)

Using the following bound

1 <
1

3 · 4k |4
k+1 − 1− fω(4k − 1)| < 5

3

which is found using the triangular inequality and the fact that |fω| < 1. It is clear
that the second order ILC algorithm designed using the eigenvalue based design
will never work better compared to the first order ILC on which it is based.

12.2 A Design Example with Experiments on an

Industrial Robot

In the previous sections a theory has been developed for analyzing and understand-
ing the behavior of second order ILC systems. Now this theory will be applied on
a design example for a real industrial system. The system is the ABB industrial
robot, IRB1400, described in Part II.

In this example ILC is applied to three joints. The robot has a total of 6-DOF but
for the three wrist joints ILC is not applied. Each joint is modeled as a transfer
operator description from the ILC control input to the measured motor position on
the robot, i.e., what is called Tu in (10.1). It should be stressed that this Tu is in



12.2 A Design Example with Experiments on an Industrial Robot 187

fact a model of a closed loop system. The conventional feedback controller in the
S4C control system is working in parallel with the ILC scheme. Since the controller
is doing a very good job the closed loop from reference angular position to measured
angular position can be described using a low order linear discrete time model. The
models are calculated using System Identification Toolbox (Ljung, 1995) and are
given by,

T̂u1(q) = T̂u2(q) =
0.1q−1

1− 0.9q−1

T̂u3(q) =
0.13q−1

1− 0.87q−1

(12.4)

and the sampling time is ts = 0.004. The modeling process follows the description
in Section 7.3.

12.2.1 Description of the experiment

The experiment is performed on the ABB IRB1400 robot described in Chapter
7. In Figure 12.2 the program used in the experiment is shown together with the
resulting path on the arm-side. The instruction movec p2,p3,v60 refers to an
instruction that produces an arc on the arm-side of the robot. The arc starts from
the current position, not explicitly stated, and goes through the points p2 and p3.
The speed along the path is in this case programmed to be 60 mm/s. The movec
instruction is a simplified version of the corresponding RAPIDTM instruction MoveC
(ABB, 1997). The actual position of p1 in the base coordinate system is x = 1300
mm, y = 100 mm, and z = 707 mm. The configuration of the robot is also shown
in Figure 8.10.

12.2.2 The first order ILC algorithm

The design of the first order ILC method is based on Algorithm 8.1. The procedure
is briefly described here and the results from the experiment with the first order
ILC are presented in Section 12.2.4.

Following Algorithm 8.1 the filter L is chosen as

L(q) = 0.9q2 (12.5)

and the corresponding Q filter is chosen as Q(q) = Q1/2(q)Q1/2(1
q ), i.e., a zero-

phase filter. The filter Q1/2(q) is chosen as a second order Butterworth filter with
cut-off frequency 0.2 of the Nyquist frequency. The resulting nominal Qω(1 −
LωTui,ω) are depicted in Figure 12.3 and it is obvious that the stability criterion
formulated in the frequency domain, cf. (10.4), is fulfilled for all the three joints.
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%% starting at p1
%% starting at p1
movec p2,p3,v60;
movec p4,p5,v60;
movec p6,p3,v60;
movec p4,p5,v60;
movec p7,p1,v60;
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Figure 12.2 The resulting trajectory from the program used in the experi-
ment. The resulting path is translated such that the origin coin-
cide with p1.

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

A
m

pl
itu

de
 [d

b]

10
0

10
1

10
2

10
3

−20

0

20

40

60

Frequency [rad/s]

P
ha

se
 [d

eg
]

Figure 12.3 The result from the design of the first order ILC. Qω(1−LωTui,ω),
for i = 1, 2 (solid line) and i = 3 (dotted).
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12.2.3 The second order ILC algorithm

The design of the second order ILC algorithm is made using the design approaches
suggested in Algorithm 12.1 and Algorithm 12.2. First the design using the heuris-
tic algorithm is discussed.

Heuristic design

With the first order ILC design from Section 12.2.2 it is straightforward to apply
Algorithm 12.1. The result is:

1. From the first order ILC design,

Q(q) = Q1/2(q)Q1/2(
1
q

)

where Q1/2 is a second order Butterworth filter with cut-off frequency 0.2 of
the Nyquist frequency. The L-filter is given by

L(q) = q2

2. The filters Q1, L1, Q2, and L2 are chosen according to (12.2).

3. The value of α is picked as 0.8 from the simulations shown in Figure 12.4.

From Figure 12.4 it is clear that the best performance is achieved having α = 1
(which corresponds to the first order ILC design) but with a slightly smaller value
of α the performance is nearly the same.

Eigenvalue placement design

Using, again, the first order ILC design from Section 12.2.2 it is easy to apply
Algorithm 12.2 ending up with the following design.

1. Step one of the algorithm is exactly the same as in the previous section and
uses the Q and L filters from the first order ILC design.

2. Do the choices of Q1 and L1 suggested by step 2 in Algorithm 12.2, i.e.,

Q1(q) =
5
4
Q2(q)

L1,i(q) = L(q)

3. Choose Q2 and L2 according to step 3 in Algorithm 12.2, i.e.,

Q2(q) = −Q
2(q)
4

L2,i(q) = L1(q)(2 − L1(q)Tu,i(q))
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Figure 12.4 The results from simulations with α = 0, 0.2, . . . , 0.8, 1 in the
heuristic design approach. The left diagram shows ‖ek‖2 for Tu,1
and Tu,2 while the right diagram shows the corresponding value
of ‖ek‖2 for Tu,3.

where Q2 is the same for all the joints while L2 is chosen individually for each of
the joints. The last fact follows from that L2 is model dependent.

In Figure 12.5 the nominal value of the eigenvalues are depicted for the two different
designs. According to the analysis of the design algorithm in the previous section,
this is simply fω and fω

4 .

12.2.4 Results from the experiments

In Figure 8.10 the experimental setup is shown and it is possible to see how the
robot is positioned while doing the programmed motion.

The result from the experiments can be evaluated from two different points of view.
First the result achieved on the motor side is studied. This is the measure used by
the ILC algorithms and it is the error in this measure that is being minimized. The
other point of view is to consider what is the actual result on the arm-side. This
measure is obviously more interesting from an application point of view since it is
the path of the tool that should be controlled. Both point of views will be studied
here but it is important to stress that the ILC explicitly minimizes only the error
on the motor-side of the robot. Compare the discussion in Chapter 9.

Motor-side

The experiments with the three different ILC algorithms have all been running
for 10 iterations. Since in the first iteration ILC is not applied, u0 ≡ 0 , the
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Figure 12.5 The result from the design of the second order ILC. Nominal
eigenvalues for the second order ILC system, λ1,ω (dashed), λ2,ω

(solid) are shown together with the stability region (dotted).

same circle has been done 11 times in each of the three cases. In Figure 12.6 the
resulting normalized∞-norm and 2-norm of the error on the motor-side are shown.
The measures in Figure 12.6 are calculated as

V pk =
‖ek‖p

max
∀ joints,designs

‖ek‖p
(12.6)

for p = 2,∞. Using this measure the relative size of the norms for the different
joints is kept constant. It is, for example, possible to see that maximum error of
motor 3 is 50 % of the maximum error of motor 2.

It is clearly not so easy to decide which design method gives the best result. In
the first iteration all the algorithms use the same updating equations and should
therefore also reach the same level of error, in theory. As can be seen in Figure 12.6
this is not the case. The ILC algorithm designed according to Algorithm 12.2 gives
a lower value of the error in the first iteration compared to the others. In the
second iteration the size of the error is again about the same and after the fifth
iteration the error stabilizes on a level where V∞k is about 15 % of the initial level.

In Figure 12.7 the ILC control signal, |Uk(eiω)|, is shown for all the different design
algorithms. These are also very similar in all the cases. Note that the energy of
Uk is almost zero for all frequencies above a certain threshold. This depends on
the choice of filter Qi. This filter serves as a band limiter of the updating of the
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Figure 12.6 The normalized∞-norm and 2-norm of the error for the different
designs. First order ILC (×), Algorithm 12.1 (◦), and Algorithm
12.2 (�).

control signal in the ILC iterations, cf. (3.13) and (10.3). This also explains why
there is a remaining error at some frequencies.

Arm-side

When evaluating the result of the ILC iterations on the arm-side of the robot a pen
is used, as shown in Figure 8.10. Obviously the resulting drawing is not so easy
to evaluate since the pen in itself produces a quite thick line but in Figure 12.8
the resulting circles are shown for the three different ILC algorithms in the first
5 iterations (iteration 0 to 5, from left to right). A conclusion that can be drawn
from the result in Figure 12.8 is that the three ILC algorithms give a similar result
also on the arm-side.

It is also possible to evaluate the result from the ILC experiments on the arm-
side by a transformation of the motor signals to the arm side using the forward
kinematic model of the IRB1400, see e.g., Norrlöf (1999). The result from this
transformation is shown in Figure 12.9, Figure 12.10, and Figure 12.11. In the
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(b) Second order ILC, designed according to Algorithm 12.1.

10
−2

10
0 0

5

10

0

0.5

1

1.5

2

|U
k(t

)|
2

10
−2

10
0 0

5

10

0

0.5

1

1.5

2

|U
k(t

)|
2

10
−2

10
0 0

5

10

0

0.5

1

1.5

2

Iteration

Freq.

|U
k(t

)|
2

(c) Second order ILC, designed according to Algorithm 12.2.

Figure 12.7 The ILC signal, |Uk(eiω)| from the three experiments. The dia-
grams show from left to right, the resulting |Uk(eiω)| for axis 1,
2 and 3.
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transformation process the outer circle segment is extracted from the path that
the robot is actually doing, cf. Figure 8.11. In Figure 12.9 to Figure 12.11 the root
mean square (RMS) and the maximum deviation is shown.

The RMS is here calculated by taking the sum of the squared distance between
the actual path and the programmed circle path, divide by the number of samples
and finally take the square root of the result. This result is then normalized such
that the RMS at iteration 0 of the first order ILC is considered to be one. The
maximum deviation is simply the largest distance from the actual path to the
programmed path, measured along a normal to the programmed circle path. This
is also normalized such that the distance at iteration zero of the first order ILC is
considered to be one. The best result, when evaluated using the transformation to
the arm-side, is obtained with the first order ILC algorithm. When considering the
best fit on all the 10 iterations, the result becomes as shown in Figure 12.12. It is
still the first order ILC that is the best although the maximum deviation is a bit
bigger compared to the second best, the eigenvalue placement design (Algorithm
12.2).

(a) First order ILC. (b) Second order ILC, Algo-
rithm 12.1.

(c) Second order ILC, Algo-
rithm 12.2.

Figure 12.8 Results on arm-side in iterations 0 to 5 (from left to right). The
inner circle is the circle drawn by the robot and the outer circle
has as inner diameter of 6 mm, i.e., the programmed path.
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Figure 12.9 Results of kinematic transformation from motor to arm, first or-
der ILC.
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Figure 12.10 Results of kinematic transformation from motor to arm, second
order ILC Algorithm 12.1.



12.2 A Design Example with Experiments on an Industrial Robot 197

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rms = 1.106

maxdev = 1.1091

x [mm]

y 
[m

m
]

k = 0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rms = 2.4226

maxdev = 1.794

x [mm]

y 
[m

m
]

k = 1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rms = 2.0854

maxdev = 1.5629

x [mm]

y 
[m

m
]

k = 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rms = 1.2879

maxdev = 0.96795

x [mm]

y 
[m

m
]

k = 3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rms = 0.31778

maxdev = 0.32423

x [mm]

y 
[m

m
]

k = 4

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

rms = 0.39863

maxdev = 0.43486

x [mm]

y 
[m

m
]

k = 5

Figure 12.11 Results of kinematic transformation from motor to arm, second
order ILC Algorithm 12.2.
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(a) First order ILC.
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(b) Second order ILC, Algo-
rithm 12.1.
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(c) Second order ILC, Algo-
rithm 12.2.

Figure 12.12 Best fit in the analysis of the motor-data transformed to the
arm-side.
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Conclusions of Part IV

This part of the thesis gives an overall analysis of second order ILC. It also suggests
some design algorithms for second order ILC schemes. It is not shown that a second
order ILC algorithm does better than a first order ILC but from the analysis and,
in fact, also the experiments it is evident that it works as well as the first order
design. Some facts are however important to stress when considering going from a
first order ILC design to a second order ILC design.

• The second order design should not use more information about the system
than the first order design. If more information (models etc.) is available it
should be used to produce a first order design that works as well as possible.

• The amount of memory required for the second order ILC scheme, as imple-
mented here, is double the amount used by the corresponding first order ILC
scheme. If a cost function measuring performance and memory allocation is
used for the first and the second order ILC it is clear that the first order ILC
scheme will win.

• One aspect that has not been considered here but that can make the second
order ILC scheme very competitive is when an uncertainty is present in the
plant and it makes the plant change between the iterations. The second order
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algorithm can smooth also the behavior of the system by using the control
and the error signal from more than one iteration.

Further work in the area could be to consider the effects of nonlinearities on the
resulting control signals and the resulting error. For example, Coloumb friction is
a nonlinear effect that is always present in real servo systems and a comparison
between a first and second order ILC algorithms for dealing with this could be
worth to consider.
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An Adaptive Approach to
ILC
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14

An Adaptive ILC Algorithm

In this part of the thesis the disturbance rejection description of ILC, formulated
in Section 3.2, will be used. An adaptive approach to the disturbance estimation
and disturbance rejection problems is taken and the resulting ILC method is tested
on an industrial process, the ABB IRB1400 robot described in Part II.

14.1 A State Space Based Approach to ILC

The structure of the system in the disturbance rejection formulation of ILC is
shown in Figure 3.3 and mathematically it can be described according to (3.10).
Next the mathematical system description will be discussed in more detail before
the adaptive ILC method can be presented.

14.1.1 State space description of the system

An ILC system is characterized by the fact that it is only defined over a finite
interval of time. If the sampling time is equal to one, this means that 0 ≤ t ≤ n−1.
This is also the reason why it is possible to write the system description in the
matrix form as in (3.10). The system description from (3.10) is here repeated for

203
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convenience,

zk = G0uk + dk
yk = zk + nk

(14.1)

with

dk+1 = dk + ∆dk (14.2)

From Section 3.2 it also follows that zk,uk,dk,yk,nk,∆dk ∈ Rn and G0 ∈ Rn×n.

In this part of the thesis it will be assumed that dk and nk are random with
covariance matrices for ∆dk and nk given by R∆d,k and Rn,k respectively. Often
it will be assumed that dk(t) = νd(t̄) and ∆dk(t) = ν∆(t̄) with t̄ = k · t and ν(·) a
white stationary stochastic process. This is similar to the assumptions in Section
4.3.1.

Another representation of the system in (14.1) that will be useful later is

zk(t) = G0(q)uk(t) + dk(t)
yk(t) = zk(t) + nk(t)

(14.3)

with

dk+1(t) = dk(t) + ∆dk(t) (14.4)

This description is also used in Section 3.5 although dk(t) is there assumed to be
iteration independent, i.e., dk(t) = d(t). Note that the description in (14.1) is
more general than (14.3) since it also covers linear time variant systems. When
considering linear time invariant systems, however, the two representations are
equivalent.

Using the updating formula for the disturbance, dk, it is possible to write (14.1)
in the following form

zk+1 = zk −G0(uk+1 − uk) + ∆dk

yk = zk + nk
(14.5)

Of course, in a real case the true system description is never available. Instead a
model G is used and the relation with the true system can, for example, be

G0 = G(I + ∆G) (14.6)

where ∆G is a relative model error. This means that, from the user’s point of view,
the system in (14.5) is given by

zk+1 = zk −G(uk+1 − uk)−G∆G(uk+1 − uk) + ∆dk

yk = zk + nk
(14.7)

where the last two terms in the first equation can be considered as disturbances
since they are both unknown. It is however known that the first one depends on
the difference between two consecutive control signals. If the model uncertainty is
small and/or the updating speed of the control signal is slow, this disturbance will
have a small effect on the resulting system.
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14.1.2 Estimation procedure

A linear estimator for the system described in (14.5) can be written as

ẑk+1 = ẑk −G(uk+1 − uk) +Kk(yk − ẑk) (14.8)

whereKk is the gain of the estimator. This gain can be found by using, for example,
a Kalman filter which will be discussed next. A general reference on estimation
and Kalman filters is Anderson and Moore (1979) and the reader is referred there
for a more thorough treatment of the theory.

For a general system given by,

xk+1 = Axk +Buk +Nv1,k

yk = Cxk +Duk + v2,k

(14.9)

where the covariance matrices for v1,k and v2,k are given byR1,k and R2,k, a linear
estimator for the states is given by

x̂k+1 = Ax̂k +Buk +Kk(yk −Cx̂k) (14.10)

The gain Kk in the estimator is in the time varying Kalman filter calculated as

Kk = AP kC
T (CP kC

T + R̂2,k)−1

where it is assumed that there is no cross correlation between v1,k and v2,k. P k+1

is calculated as

P k+1 = AP kA
T +NR̂1,kN

T −AP kC
T (CP kC

T + R̂2,k)−1(AP kC
T )T

Note that the matrices, R̂1,k and R̂2,k can depend on k and that they can be used
as design variables to get a desired behavior of the Kalman filter.

When the time varying Kalman filter described above is applied to the system in
(14.7) the estimation procedure can be formulated according to,

ẑk+1 = ẑk −G(uk+1 − uk) +Kk(yk − ẑk) (14.11a)

Kk = P k(P k + R̂n,k)−1 (14.11b)

P k+1 = P k + R̂∆d,k − P k(P k + R̂n,k)−1P k (14.11c)

where it is assumed that ∆dk and nk are uncorrelated.

14.1.3 An optimization based approach to ILC

Consider the following criterion for (14.1),

Jk = zTkW zzk + uTkW uuk + (uk − uk−1)TW∆u(uk − uk−1) (14.12)
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By minimizing (14.12) it is possible to find an optimal input to the system, with
respect to the criterion. This has been studied in for example Bien and Xu (1998),
Amann et al. (1995a,b), Phan (1998), and Gunnarsson and Norrlöf (1999b). Com-
pare also with the criterion chosen in Section 8.2.5. Note that the main difference
is that here the last term is explicitly included in the criterion while in Section 8.2.5
it was added because of the constraint on the updating of the control signal. The
choice in (14.12) gives additional freedom in the design since, instead of picking a
scalar λ as in (8.4), a positive definite matrix W∆u is chosen.

By using the definition of zk from (14.3) in (14.12) and taking the derivative with
respect to uk it follows that

∂Jk
∂uk

= ((G0)TW zG
0 +W u)uk +W∆u(uk − uk−1) + (G0)TW zdk

Now solve for uk when ∂Jk
∂uk

= 0. This leads to

u∗k+1 = ((G0)TW zG
0 +W u +W∆u)−1(W∆uu

∗
k − (G0)TW zdk+1) (14.13)

where the ∗ indicates that this is the optimal input.

IfW u = 0 and dk+1 is known, then the updating scheme for the control uk becomes

u∗k+1 = ((G0)TW zG
0 +W∆u)−1(W∆uu

∗
k − (G0)TW zdk+1) (14.14)

Note that this expression actually contains a feedforward from the disturbance
dk+1.

It is also clear why it is important for this algorithm to have the term ‖uk −
uk−1‖W∆u in the criterion. Without this term the algorithm is not iterative. From
a practical point of view (14.14) is not very useful since when uk+1 is calculated,
dk+1 is in general not available. If d does not change as a function of iteration it
will however work since old measurements of d can be used.

If the weights W u and W∆u are set to zero and equal weights are chosen for all z,
i.e., W z = c · I, then the result of (14.13) becomes the well known inverse system
solution,

u∗k = (G0)−1dk

which was discussed in Section 3.2.

In practice the control solution can, of course, not use the true system description.
If instead a model of the system is used the control signal uk can be calculated as

uk+1 = (GTW zG+W u +W∆u)−1(W∆uuk −GTW zd̂k+1) (14.15)

In (14.15) it is also taken into account that the true dk is not available directly as
a measured signal. An estimate of dk is found as

d̂k = ẑk −Guk (14.16)
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which means that the expression for uk can be simplified to

uk+1 = (W u +W∆u)−1(W∆uuk −GTW zẑk+1) (14.17)

Together with the observer in (14.11) this gives the ILC updating scheme

uk+1 = (W u +W∆u −GTW zG)−1
(
(W∆u −GTW zG)uk −

GTW z((I −Kk)ẑk +Kkyk)
)

ẑk+1 = ẑk −G(uk+1 − uk) +Kk(yk − ẑk)

(14.18)

which involves two iterative updating formulas. One for the control input uk and
one for the estimated output ẑk. Note that in the implementation of the ILC
algorithm there will be one more iterative updating formula since also P k has to
be calculated.

IfW∆u is chosen asW∆u = 0, the updating formula for uk in (14.17) becomes only
a linear function of ẑk. This can be plugged into the observer in (14.8) resulting in

ẑk+1 = ẑk + (I +GW−1
u G

TW z)−1Kk(yk − ẑk) (14.19)

Together with (14.17) and the calculation of Kk from the previous section, this
gives an ILC scheme with only two iterative updating formulas, including the one
for P k. The case where W∆u = 0 in (14.12) is what will be considered in the rest
of the discussion in this part of the thesis. Compared to Section 8.2.5 this means
that the iterative behavior of the ILC algorithm has moved from the updating of
the control signal to the estimator. As noted above in (14.17) and (14.18) it is also
possible to let W∆u 6= 0 and use three iterative updating formulas for the ILC but
this is not covered here.

14.1.4 Relations to other ILC updating schemes

Consider the case where R̂n,k = r̂n,k · I and R̂∆d,k = r̂∆d,k · I. Assume also that
the estimator is calculated according to a time varying Kalman filter as described
in Section 14.1.2. Note that in the calculation of P k the measured values of yk are
not utilized. Instead the value of P k is completely dependent on the initial value,
P 0. This initial choice indicates how well the initial estimate of z describes the
real value.

Assume that P 0 = p0 · I, this means that Kk and P k will be equal to κk · I and
pk · I respectively. Since Kk is a scalar times an identity matrix it is clear that the
matrix Kk commutes with all other matrices. In particular, this means that we
can rewrite (14.19) according to

uk+1 = (I − (I +W−1
u G

TW zG)−1Kk)uk

+W−1
u G

TW z(I +GW−1
u G

TW z)−1Kkyk
(14.20)
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where (14.15) is used together with the fact that the following equality holds

W−1
u GTW z(I +GW−1

u GTW z)−1Kk = (I +W−1
u GTW zG)−1KkW

−1
u GTW z

when KK is a scalar times an identity matrix. If the weights W u and W z are
chosen such that W u = I and W z = ζI, it means that the updating equation for
the control signal in (14.20) becomes

uk+1 = (I − (I + ζGTG)−1κk)uk + ζκkG
T (I + ζGGT )−1yk

Now, if ζ is chosen very large it follows that

uk+1 ≈ uk + κkG
−1yk (14.21)

which is recognized as a standard approach (although the gain κk is non standard),
see e.g., Moore (1993) or Algorithm 8.2 in Chapter 8. Compare also the algorithm
derived in Section 3.5.

As a result of the fact that R̂n,k, R̂∆d,k, and P 0 are all equal to a scalar times an
identity matrix, (14.11b) and (14.11c) can be written as scalar equations according
to,

κk =
pk

pk + r̂n,k

and

pk+1 =
pkr̂n,k
pk + r̂n,k

+ r̂∆d,k

Assume that r̂n and r̂∆d
are k-independent, then it is possible to find the limit

value, p∞, by solving

p∞ =
p∞r̂n
p∞ + r̂n

+ r̂∆d

which gives

p∞ =
r̂∆d

2
(1 +

√
1 + 2

r̂n
r̂∆d

) (14.22)

Note that the value of p∞ depends on the actual value of r̂∆d
while for κ∞ it is

only the value of r̂∆d
r̂n

that matters. This means that multiplying both r̂∆d
and r̂n

with the same factor, the value of κ∞ will not change.

If it is assumed that dk is k-independent, i.e., r̂∆d
= 0, it is obvious that p∞ = 0

which also implies that κ∞ = 0. It is perhaps more interesting to study the
transient behavior of pk and κk. If the initial guess of ẑ0 is not so reliable, it is
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reasonable to assume that p0 is chosen as a large number. If p0 � r̂n this means
that κ0 ≈ 1 and since

pk+1 =
pk r̂n
pk + r̂n

(14.23)

it follows that p1 ≈ r̂n which in turn implies that k1 ≈ 1
2 . By considering (14.23)

for general k it becomes obvious that, in fact, pk ≈ r̂n
k for all k > 0 and hence

κk ≈ 1
k+1 .

Note that combining the result in (14.21) with the one obtained when r̂∆d
is as-

sumed to be zero and p0 � r̂n the resulting ILC becomes

uk+1 = uk +
G−1

k + 1
yk

which is similar to the result in (3.30). The difference is that in (3.30) the system
is described using a transfer operator model while here the system mapping is
described using a matrix G.

14.1.5 An adaptive algorithm for ILC

The calculations of P k and Kk in the time varying Kalman filter in Section 14.1.2
do not include the measurements from the system. In this section a possible ex-
tension to the algorithm presented in the previous sections is given. The new
algorithm takes advantage of the measurements from the system and use them to
adapt a measure of the variability of the system disturbance, R̂∆,k. The algorithm
is adaptive since the value of Kk will depend on the variability measure through
P k.

To explain the idea behind the measure of variability used in the algorithm first
note that the system model G does not capture the true system dynamics perfectly.
Instead the relation given by (14.7) describes the true system in terms of the model
and the uncertainty.

The idea is to use

zk+1 = zk −G(uk+1 − uk)−G∆G(uk+1 − uk) + ∆dk︸ ︷︷ ︸
∆

(14.24)

and find a measure of the size of the variation of ∆. The following equation gives
a measure of the variability of ∆ in (14.24)

r̂∆,k =
1

n− 1
(uk+1 − uk)T ∆̂

T

GG
TG∆̂G(uk+1 − uk) + r̂∆d

(14.25)

where ∆̂G is an estimate of the true model uncertainty and r̂∆d
is an estimate of

the variance of ∆dk . The algorithm can now be formulated.
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Algorithm 14.1 (Adaptive optimization based ILC algorithm)

1. Design an ILC updating equation using the LQ design in Section 14.1.3.

2. Assume R̂∆d
and R̂n diagonal with the diagonal elements equal to r̂∆d

and
r̂n respectively. Choose r̂∆d

and r̂n from physical insight or such that p∞ in
(14.22) and the corresponding κ∞ get the desired values.

3. Let ẑ0 = 0.

4. Choose an initial value for p0. This can be a large number since it will converge
to p1 ≈ r̂n + r̂∆d

already after one iteration.

5. Implementation of the ILC algorithm:

(a) Let k = 0, and u0 = W−1
u GTW zẑ0.

(b) Apply uk and measure yk.
(c) Calculate,

κk =
pk

pk + r̂n

ẑk+1 = ẑk + (I +GW−1
u G

TW z)−1κk(yk − ẑk)

uk+1 = W−1
u G

TW zẑk+1

r̂∆,k =
1

n− 1
(uk+1 − uk)T ∆̂

T

GG
TG∆̂G(uk+1 − uk) + r̂∆d

pk+1 =
pk r̂n
pk + r̂n

+ r̂∆,k

(d) Let k = k + 1. Start again from (b).

It is important to understand the properties of the proposed algorithm and this,
especially, includes stability and performance. It is well known that the analysis of
adaptive algorithms is not easy nor straightforward but there exist some methods
as pointed out by, e.g., Åström and Wittenmark (1995). In the next section the
adaptive algorithm presented in this section is analyzed with respect to stability
and performance but first some notes on the design and implementation of the
algorithm will be given.

14.1.6 Design and implementation issues for the optimiza-
tion based approach to ILC

When designing an ILC scheme using the linear quadratic optimal control ap-
proach discussed in the previous section it is of great importance to understand
the possibilities that are involved and how these effect the result.

The design process involves a lot of steps and there are many degrees of freedom
in the design process. The design parameters involved are:
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• In the LQ design,

– G ∈ Rn×n

– W z ∈ Rn×n

– W u ∈ Rn×n

• In the Kalman filter,

– G ∈ Rn×n

– p0 ∈ R
– r̂∆d

∈ R
– r̂n ∈ R
– ∆̂G ∈ Rn×n

The model G is used in both the LQ design and the Kalman filter. By just
considering the number of possibilities that are offered by these parameters it might
seem that the usefulness of the proposed scheme can be questioned. From a user’s
point of view it is important that the number of parameters is small and that
the effect of the parameters are easy to understand. Note that the suggested
parameters, given above, also imply a simplification compared to the originally
proposed algorithm. Only scalar pk and κk are considered here. The implication
of the different design parameters is discussed next.

Design scheme

Assume that the model of the system,G ∈ Rn×n, is available from an identification
experiment. This experiment can also give an idea on which kind of uncertainties
are present in the model, i.e., the size of ∆̂G. In many traditional design schemes
for ILC the following updating equation is used,

uk+1 = Q(uk +Lek) (14.26)

where uk, ek ∈ Rn and Q,L ∈ Rn×n. Often it is suggested that, for robustness
of the ILC algorithm, Q should be chosen as a realization of a low pass filter.
This makes the ILC method robust against model errors at high frequencies, where
usually the model of the system does not capture the true dynamics very well. The
LQ solution of the ILC problem can take this into consideration by introducing a
kind of frequency domain weighting in the optimization criterion (14.12). This is
done by using the fact that the matrices W z and W u do not have to be diagonal.
With a frequency domain perspective to the optimization problem it is possible
to say that in the criterion, high frequencies in the control signal uk should have
a higher weight than low frequencies. This can be done by choosing the matrix
W−1

u as a realization of a zero phase low pass filter with cut-off frequency at the
desired bandwidth of the ILC algorithm. To create such a matrix let H be a
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lower triangular Toeplitz matrix with the first column being the n first Markov
parameters for a low pass filter, e.g., a Butterworth filter. Next define

W u = (HHT )−1 (14.27)

i.e., the inverse of the zero phase low pass filter HHT . The matrix W z is here
simply chosen as a scalar times an identity matrix i.e.,

W z = ζ · I (14.28)

and the value of ζ will decide how much the ILC scheme should try to resemble
the inverse system approach, as was also discussed in Section 14.1.4.

For the Kalman filter, the system modelG and an estimated model uncertainty ∆̂G

are supposed to be available from the identification experiments. The algorithm is
not sensitive to the initial value of p0 as was noted in Section 14.1.4. If the value is
initially set to be a large number the value of κ0 will be close to one and the next
value of p1 will be

p1 ≈ r̂n + r̂∆,0

This shows that the initial value is not so important for the behavior of the algo-
rithm as long as it is large enough.

The values of r̂∆d
and r̂n are still to be chosen. As was shown in Section 14.1.4 it is

true that asymptotically, if ‖uk+1 −uk‖ becomes small, it is only the value of r̂∆d
r̂n

that has an impact on the value of κk. To decide the value of the two parameters
the following strategy will be used here: Let the value of r̂n be based on physical
knowledge of the process and adjust r̂∆d

such that the limit value of p∞ in (14.22)
and the corresponding κ∞ have the right value. Note that it is important that the
value of r̂∆d

is chosen not too large. A too large value would imply that r̂∆,k is
only determined by the value of r̂∆d

. The algorithm would in this case loose the
adaptivity and the gain would decrease as 1

k+1 .

Implementation

The matrix approach to ILC, described so far in this chapter, might be difficult
to implement in practice and there are, at least, two reasons why. First, the
matrices have to be stored in a memory and when the matrices become large this
will be a critical problem since the space necessary will be significant. Second, the
calculation of the matrices is not trivial and takes time. The calculation of the
inverse of an n× n matrix is a computationally intense task when n is large.

One way of making the calculations much less demanding is to use a technique
presented in Gunnarsson and Norrlöf (1999b) and also discussed in Section 8.2.5.
The idea is to do a frequency domain interpretation of the matrix multiplications
and try to come back to a transfer operator formulation instead of the matrix
formulation. This means that the goal is to come back to the description in (14.3).
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The discussion on how this should be done starts from the LQ design. The model
G(q) and the model uncertainty ∆̂G(q) are assumed to be known from the modeling
experiments. The matrix H is easily chosen as H(q) being a Butterworth filter.
With this choice, W−1

u (q) becomes,

W−1
u (q) = H(q)H(q−1)

where H(q−1) correspond to the matrix HT . Wz(q) becomes

Wz(q) = ζ

i.e., just a scalar.

For the choice of the parameters in the Kalman filter, it is assumed that the system
model and the system uncertainty are given. The other parameters are not different
from the case where the system description is in matrix form and therefore the same
arguments apply as in the previous section.

The implementation is now presented as an algorithm.

Algorithm 14.2 (Filter implementation of Algorithm 14.1, version 1)

1. Let k = 0, and u0(t) = ζW−1
u (q)G(q−1)ẑ0(t).

2. Apply uk(t) and measure yk(t), for 0 ≤ t ≤ n− 1.

3. Calculate,

κk =
pk

pk + r̂n

ẑk+1(t) = ẑk(t) + (1 + ζW−1
u (q)G(q)G(q−1))−1κk(yk(t)− ẑk(t))

uk+1(t) = ζW−1
u (q)G(q−1)ẑk+1(t)

r̂∆,k =
1

n− 1

n∑
τ=1

(
G(q)∆G(q)(uk+1(τ) − uk(τ))

)2

+ r̂∆d

pk+1 =
pk r̂n
pk + r̂n

+ r̂∆,k

4. Let k = k + 1. Start again from (2).

The sampling time is assumed to be equal to 1.

From an implementation point of view it might be convenient to rewrite the actual
implementation, compared to Algorithm 14.2. First note that in the calculation of
ẑk+1 it is actually possible to formulate the inverse filter (1+ζW−1

u (q)G(q)G(q−1))−1

according to

(1 + ζW−1
u (q)G(q)G(q−1))−1 = (1 + ζG(q)H(q)G(q−1)H(q−1))−1
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which is clearly a zero phase filtering operation. It is actually possible to go one
step further and find a filter F (q) such that

(1 + ζG(q)H(q)G(q−1)H(q−1))−1 = F (q)F (q−1) (14.29)

and this filtering operation is easy to implement in MATLABTM.

To find the factorization in (14.29) use the fact thatG(q) and H(q) can be described
according to

G(q) =
bG(q)
aG(q)

, H(q) =
bH(q)
aH(q)

where aG(q), bG(q), aH(q) and bH(q) are all polynomials in q. This means that it
is possible to write

F (q)F (q−1) = (1 + ζG(q)H(q)G(q−1)H(q−1))−1

=
aG(q)aH(q)aG(q−1)aH(q−1)

aG(q)aH(q)aG(q−1)aH(q−1) + bG(q)bH(q)bG(q−1)bH(q−1)

and the numerator polynomial of F (q) = bF (q)
aF (q) is easily found as

bF (q) = aG(q)aH(q) (14.30)

To find the denominator, aF (q), first find the roots of

aG(q)aH(q)aG(q−1)aH(q−1) + bG(q)bH(q)bG(q−1) (14.31)

Create a polynomial, b̃F (q), having the stable part of the roots of (14.31) as its
roots. The polynomial bF (q) is found by calculating the constant γ such that

bF (q) = γb̃F (q) (14.32)

and

γ2(b̃F (1))2 = (aG(1)aH(1))2 + (bG(1)bH(1))2 (14.33)

The sign of the solution does not matter but for convenience it can be chosen as
γ > 0.

By using the equation describing how to calculate uk(t) from ẑk(t) it is also possible
to formulate r̂∆,k as

r̂∆,k = r∆d

ζ

n− 1
n∑
τ=1

(
∆G(q)W−1

u (q)G(q)G(q−1)F (q)F (q−1)κk(yk(τ) − ẑk(τ))
)2 (14.34)

which obviously can be calculated together with ẑk+1(t). A new algorithm taking
these updates into account is now formulated.
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Algorithm 14.3 (Filter implementation of Algorithm 14.1, version 2)

1. Find F (q) such that

F (q)F (q−1) = (1 + ζW−1
u (q)G(q)G(q−1))−1

2. Let k = 0, and u0(t) = ζW−1
u (q)G(q−1)ẑ0(t).

3. Apply uk(t) and measure yk(t), for 1 ≤ t ≤ n.

4. Calculate,

κk =
pk

pk + r̂n

xtemp(t) = F (q)F (q−1)κk(yk(t)− ẑk(t))
ẑk+1(t) = ẑk(t) + xtemp(t)

uk+1(t) = ζW−1
u (q)G(q−1)ẑk+1(t)

r̂∆,k =
ζ2

n− 1

n∑
τ=1

(
∆G(q)W−1

u (q)G(q)G(q−1)xtemp(t)
)2

+ r̂∆d

pk+1 =
pk r̂n
pk + r̂n

+ r̂∆,k

5. Let k = k + 1. Start again from (3).

The adaptive ILC algorithm in Algorithm 14.3 can easily be implemented in for
example MATLABTM.

14.2 Analysis of the Adaptive ILC Algorithm

The analysis of adaptive systems is, generally, very difficult. The discussion here
will be restricted to the adaptive algorithm for ILC presented in the previous section
under some particular assumptions on the model uncertainty.

One property that will be used in the analysis is that κk is bounded which can be
seen easily from

κk =
1

1 + rn
pk

Since pk > 0 it is obvious that the value of κk is restricted to 0 < κk < 1 where
the lower bound is reached when pk → 0 and the upper bound is reached when
pk → ∞. This leads to a sufficient condition for stability of the adaptive ILC
algorithm. First, however, some assumptions are made on the disturbances,

‖nk‖∞ ≤ γn, ‖dk‖∞ ≤ γd (14.35)
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If it is assumed that nk is uniformly distributed the first assumption is easily
satisfied. The second is more technically difficult but very straightforward from an
application point of view since ‖dk‖∞ will always be bounded in practice.

Theorem 14.1 (Sufficient condition for boundedness of ẑk)
A sufficient condition for the adaptive ILC algorithm (Algorithm 14.1) to give a
bounded ẑk is that

sup
0<κk<1

ρ
(
(1− κk) · I − κk(I +GW−1

u GTW z)−1G∆GW
−1
u G

TW z

)
< 1

Proof Use that

ẑk+1 = ẑk + (I +GW −1
u GTW z)

−1κk(yk − ẑk)

and

yk = −G(I + ∆G)W−1
u GTW z ẑk + dk + nk

This means that it is possible to write the estimate, ẑk+1, as

ẑk+1 =
(
(1− κk) · I − κk(I +GW−1

u GTW z)
−1G∆GW

−1
u GTW z

)
ẑk

+ (I +GW−1
u GTW z)

−1κk(dk + nk)

This can be rewritten on the following form,

ẑk+1 = (I − κk(I + F̃ ))ẑk + (I +GW−1
u GTW z)

−1κk(dk + nk)

with

F̃ = (I +GW−1
u GTW z)

−1G∆GW
−1
u GTW z

To establish boundedness it is first necessary to show that the updating equation for ẑk
is uniformly exponentially stable. Using Lemma 4.3 this condition is easily shown to be
satisfied. Next uniform bounded-input bounded-state stability can be established. Using
Lemma 4.2 and the fact that

κk‖(I +GW−1
u GTW z)

−1‖

is always bounded since 0 < κk < 1 and the above stated matrix is always chosen such
that its norm is bounded. This concludes the proof of boundedness of ẑk. �

The condition in Theorem 14.1 is obviously not possible to test for in practice since
the model uncertainty is not known. Normally some kind of knowledge is however
present about the model uncertainty and using this knowledge it is possible to test
for boundedness at least for the estimated model uncertainty.
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Remark 14.1
Note that in the result given in Theorem 14.1 it is assumed that the model uncer-
tainty is k-independent. If the true system is nonlinear or iteration/time variant
and the model, G, is iteration/time invariant it is clear that the model error will
change between iterations. In fact, if ∆G changes as a function of iteration the
theorem will no longer guarantee the boundedness.

It is possible to move on and find conditions for boundedness of ẑk also when the
model uncertainty changes as a function of iteration.

Corollary 14.1 (Bounded ẑk with slowly varying system matrix)
If there exists a constant α such that, for all k

sup
0<κk<1

‖I − κk(I + F (Gk,∆Gk))‖ ≤ α

and the spectral radius

sup
0<κk<1

ρ
(
I − κk(I + F (Gk,∆Gk))

)
≤ µ

where 0 ≤ µ < 1. The function F (·) is assumed to be defined according to

F (Gk,∆Gk) = (I +GkW
−1
u GTkW z)−1Gk∆GkW

−1
u G

T
kW z

It exists a positive constant β such that ẑk is bounded if

‖κk(I + F (Gk,∆Gk))− κk−1(I + F (Gk,∆Gk−1))‖ ≤ β

for all k.

Proof Follows readily from Theorem 4.3. �

The result in Corollary 14.1 is not constructive since it only says that there exists
a β. It says that if this is chosen sufficiently small the boundedness of ẑk can be
guaranteed. This kind of results are typical for the analysis of adaptive algorithms
and their robustness against model errors.
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Example

In this chapter a design example using one of the algorithms from the previous
chapter is presented. The resulting ILC algorithm is also implemented on the ABB
IRB1400 industrial robot described in Part II of the thesis.

15.1 The Process

The experimental setup is similar to the one described in Section 12.2. Also here
ILC is applied to 3 of the total 6 joints of the IRB1400. Each joint is modeled as
a transfer operator description from the ILC control input to the measured motor
position of the robot, i.e., G0 in (14.3). The procedure used to find these models
is presented in Chapter 7. The models are calculated using System Identification
Toolbox (Ljung, 1995) and are given by,

Ĝ1(q) = Ĝ2(q) =
0.1q−1

1− 0.9q−1

Ĝ3(q) =
0.13q−1

1− 0.87q−1

(15.1)

The simplicity of the models comes from the fact that they all describe closed loop
systems, as was also noted in Section 7.3.
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15.2 Description of the Experiment

To evaluate the proposed adaptive ILC algorithm the experiment described in
Section 8.3.2 is used. In Figure 8.11 the program is shown together with the
resulting desired trajectory on the arm-side of the robot. The configuration of
the robot is also shown in Figure 8.10. For a more thorough description of the
experiment see Section 8.3.2.

To make it possible to rank the adaptive ILC algorithm, two different algorithms
have been chosen for comparison. The first is a traditional ILC algorithm formu-
lation with the updating scheme given by

uk+1(t) = Q(q)(uk(t) + L(q)yk(t)) (15.2)

The second algorithm is the same as the adaptive ILC algorithm, except that the
Kalman gain κk is fixed to a value slightly less than one. The second case is made
to show the advantage of having an adaptive gain in the updating formula.

15.3 Design

The design procedure presented in Section 14.1 shows that it is necessary to have
a model of the system in order to find the ILC algorithm. In Section 15.1 the
models for each of the three joints of the robot are presented and the models are
represented by linear discrete time transfer functions. The design that will be used
here is based on the ideas presented in Section 14.1.6 and we will use the filter
based approach in the implementation.

The filter H(q) is simply chosen as a second order Butterworth filter with cut-off
frequency 0.2 of the Nyquist frequency. In MATLABTM this means that

>> [bH,aH] = butter(2,0.2);

To achieve the filter W−1
u (q), the filter H(q) is simply applied using the function

filtfilt in MATLABTM. The filter F (q) is found by using the method described
in Section 14.1.6. In MATLABTM it can be implemented as,

>> bF = conv(aG,aH);
>> denFF = conv(conv(aG,aH),conv(fliplr(aG),fliplr(aH))) ...

+ conv(conv(Gb,Hb),conv(fliplr(Gb),fliplr(Hb)));
>> rootsFF = roots(denFF);
>> tildeFb = poly(rootsFF(find(abs(rootsFF)<1)));
>> Fa = tildeFb/sqrt(sum(conv(tildeFb,fliplr(tildeFb)))) ...

*sqrt(sum(denFF));

With the filter F given as above it is straightforward to implement the ILC al-
gorithm according to Algorithm 14.3 in MATLABTM. It is of course necessary to
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decide the values for the other design parameters. The following values are used in
the experiment,

p0 = 104

ζ = 103

r̂∆d
= 10−6

r̂n = 5 · 10−5

∆G(q) = 0.5

This means that p∞ defined according to (14.22) becomes equal to 5.5 · 10−6 and
the corresponding κ∞ becomes equal to 0.10 which is a reasonable lower limit for
the gain κk.

The filters in the traditional ILC algorithm, given by (15.2), are chosen such that
Q(q) = Q̄(q)Q̄(1

q ), with Q̄(q) as a second order Butterworth filter with cut-off
frequency 0.2 of the Nyquist frequency and L(q) = 0.9q4, cf. Section 8.3.2.

15.4 Results

Using the experiment described in Section 15.2, the three designs are tested on
the robot. First using the proposed adaptive ILC scheme, then with the design
according to the proposed adaptive ILC design but with fixed gain (κk), and finally
using a “traditional” ILC updating scheme. The result fom the experiments are
evaluated on the motor side of the robot. This is also where the measurements
and the control are performed. The evaluation is also done on the arm side of
the robot, considering the trajectory that the robot is actually following on the
arm-side. This is done by using a pen mounted as a tool of the robot and making
it draw the actual trajectory on a piece of paper.

The results on the motor-side from the experiments with the three ILC algorithms
are shown in Figure 15.1. The measures in Figure 15.1 are calculated as in (12.6)
but with the error ek replaced with yk.

Clearly, the transient response of the learning is better with the adaptive ILC
scheme. For all the three controlled motors it is, in fact, true that the best perfor-
mance is achieved with the ILC algorithm designed according to the adaptive ILC
scheme but with the Kalman gain kept constant. This scheme is, however, not so
robust which is shown by the fact that ‖yk‖2 for motor 1 actually starts growing
after 6-7 iterations. In Figure 15.2 the value of the gain, κk, in the adaptive ILC
algorithms are shown as a function of iteration. They are large in the first iterations
where dk(t) has not been compensated completely but as dk(t) vanishes and the
error decreases, the gains also decreases. Note that it is important to choose the
correct size of r̂∆d

in order to get this effect, cf. Algorithm 14.3. If r̂∆d
is chosen

too large this value will dominate r̂∆,k and the κk will not decrease as shown in
Figure 15.2, instead it will decrease like 1

k+1 .



222 Example

It is also important to consider the actual result on the arm-side, i.e., the actual
trajectory that the robot does with the tool. The desired trajectory is shown in
Figure 8.11 and in Figure 15.3 the actual result is shown for the adaptive ILC
scheme and the ILC scheme with constant Kalman gain. From the result in Figure
15.3 it is obvious that introducing ILC does not imply any improvement in the
performance, evaluated on the arm-side. It is important to note that the ILC
algorithm does not use the error on the arm-side when updating the control signal.
The result in Figure 15.3 indicates that measurements from the arm-side have to
be introduced in the learning algorithm in order to get a good behavior also on the
motion of the tool. Note that the error in the path on the arm-side is also very
different although the actual norm of yk is similar. The introduction of additional
sensors for improved ILC on the arm-side of the robot is discussed in Chapter 9.
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Figure 15.1 The normalized ∞-norm and 2-norm of the error for the differ-
ent ILC algorithms. The adaptive ILC scheme (×), the adaptive
scheme with κk constant (◦), and the traditional ILC scheme
given by (15.2) (�).
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Figure 15.2 The value of κk for the ILC associated with the three different
motors.

(a) Trajectory
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ILC.

(b) Adaptive ILC scheme,

iteration 5 (left) and
iteration 10 (right).

(c) Design according to
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stant Kalman gain,
iteration 5 (left) and
iteration 10 (right).

Figure 15.3 Results on arm-side.
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Conclusions of Part V

Using the disturbance rejection formulation of ILC some new ILC algorithms have
been developed. The basic idea in all the presented algorithms is to introduce an
iteration varying gain in the ILC procedure.

Especially when taking the measurement disturbance into account it becomes ob-
vious that it is possible to get a better result by introducing an iteration varying
gain in the L-filter. This was also shown in Section 4.3.

In Chapter 14, results from state space modeling and design are used to create
an ILC algorithm. This ILC algorithm has many properties in common with the
estimation based approach from Section 3.5 and Section 4.3, but works also when
the system is not perfectly known. The algorithm is based on an LQ-solution and
a time variable Kalman filter where one of the design variables in the Kalman filter
is calculated from data. This means that the algorithm is, in fact, adaptive. Under
some assumptions on the model and the true system, conditions for stability for
resulting ILC system are found. Also some results on robustness are presented.

Chapter 15 describes the experiments with the proposed adaptive algorithm applied
to an industrial robot. The results show an improvement in the tracking on the
motor-side of the robot and the proposed adaptive and model based ILC algorithm
is shown to give better result than a traditional ILC algorithm with constant gain.
When considering the result on the arm-side of the robot it is however shown that
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the best result is achieved when no ILC algorithm is applied. This might seem
to be a very negative result but, since measurements from the arm-side are not
used in the algorithm it is not so surprising. Instead it shows the importance of
introducing also measurements on the arm-side of the robot in order to get a good
performance in the path following (considered on the arm-side). This has also been
discussed previously in Chapter 9.



Part VI

Final Remarks
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Conclusions and Future Work

This chapter gives a summary of the conclusions in the thesis and it also points
out some open questions for future work.

17.1 Summary and Conclusions

The basis for the stability analysis, presented in the thesis, is the theory for linear
iterative systems. Clearly, when a system using ILC is transformed into the linear
iterative systems framework the analysis can be made by just applying standard
tools from discrete time linear systems theory. This is an important observation
since the stability analysis for linear systems is very well developed. In the design
of well behaved ILC systems it is also clear from the results in the thesis that a
frequency domain interpretation can be useful. The frequency domain interpreta-
tion is also applied to the analysis of systems using second order ILC algorithms.
The conclusion of this work is that, in the case that we have considered, applying
a second order ILC algorithm does not give a better result than a first order algo-
rithm. As pointed out in Chapter 13 there might be cases where the second order
algorithm is more compatible, e.g., when the system where it is applied is iteration
variant.
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In the introduction we stated that one of the aims of the thesis was to combine
theory and practice. A result of this is that five different design schemes for ILC
algorithms have been tested on a commercial industrial robot. The proposed ILC
schemes stretches from a very simple structure, as in Algorithm 8.1, to the LQ and
Kalman filter based adaptive approach in Part V.

A natural question is obviously: Which is the best ILC algorithm in the thesis? In
the conclusions of Chapter 8 we have tried to make it clear that this depends on
the demands that the user has on the resulting performance. If the performance
that can be achieved using the heuristic design in Algorithm 8.1 is satisfactory,
then this is clearly the approach that should be used. Second choice could be the
optimization based approach in Algorithm 8.4 or Algorithm 8.5. If the designer is
familiar with LQ design then this approach is straightforward to apply. If this is
not the case it could be worth considering the model based approach in Algorithm
8.2 before trying the optimization based approach. If the measurements from
the system are perturbated by a measurement disturbance, then it is possible to
significantly improve the performance by introducing the adaptive ILC algorithms
presented in Part V. The method presented in Section 3.5 and Section 4.3 can
also be applied, although the performance can be very poor when the true system
description is not known.

17.2 Future Work

One important question that has not been answered completely in the thesis is:
What happens when ILC is applied to a non-minimum phase system? In Chapter
4 and in Chapter 8 some small notes have been made on the topic. The key point
is that the gain of the inverse system becomes very large when the system is non-
minimum phase. This is clear since the inverse is unstable. Although, in theory, an
ILC algorithm that fulfills the stability conditions will find the optimal input that
gives zero error it is not clear what happens if there are disturbances acting on the
system. A large gain will also result in a large optimal control input, ud in (4.21).
This can lead to saturation of the control signal and, in turn, bad performance.

ILC applied to non-linear systems has not been discussed in the thesis and this is
probably an area where many applications can be found. In the industrial robot
case the system contains non-linearities in the form of, for example, friction, back-
lash, and saturations. The theory for ILC systems should be extended also to this
class of systems.

In the industrial robot applications there are still many unsolved problems. One of
the most important is clearly that the result on the arm-side of the robot might get
worse by applying ILC compared to not applying the method at all, cf. Chapter 9.
To be able to successfully apply ILC in a robotics application it will be necessary to
use additional sensors, e.g., accelerometers, or build extremely accurate models of
the mechanical structure of the robot. It is clearly possible to use other systems for
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measuring the position of the tool, e.g., laser-based positioning systems. This has
already been implemented in a commercial system by ABB Robotics and it is used
with great success in laser-cutting applications. Future work could therefore focus
on applying ILC using cheap sensors, such as accelerometers, and sensor-fusion.
This means to implement on the robot the ideas presented in Chapter 9.

The testbed used in the experiments needs some updates in order to work com-
pletely satisfactory. The main improvements are pointed out in Chapter 7.
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