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ABSTRACT

Calibration of ground sensor networks is a complex task in practice.
To tackle the problem, we propose an approach based on simultane-
ous tracking of targets of opportunity and sparse estimation of the
bias parameters. The evidence approximation method is used to get
a sparse estimate of the bias parameters, and the method is here ex-
tended with a novel marginalization step where a state smoother is
invoked. A simulation study shows that the non-zero bias parameters
are detected and well estimated using only one target of opportunity
passing by the network.

Index Terms— Evidence Approximation, Parameter Estima-
tion, Bayesian Inference, Sensor Networks, Sparsity

1. INTRODUCTION

Calibration of the Ground Sensor Network (GSN), also known as
sensor registration or bias estimation, is a crucial element for perfor-
mance of the entire system. Improper alignment of the sensors might
decrease the performance of the network and in fact result in degrad-
ing the quality of tracking, appearance of ghost tracks and problems
in measurement to track association.

There are many previous works dealing with bias estimation
[1][2][3][4]. Here we focus on methods applicable to GSN. The dif-
ferent biases, here denoted bias parameters, may include location er-
rors, orientation errors, range measurements etc., depending on sen-
sor type. There are two main groups of techniques for calibrating
the sensors: using reference targets, or using targets of opportunity.
Both can be performed on-line or off-line.

In this application, the reference targets could typically be one
or more vehicles carrying satellite navigation equipment, e.g. GPS.
One must make sure that enough measurements are generated for
each sensor with the target at different locations. Once the data
has been collected, one can apply e.g. a maximum likelihood (ML)
method [3], to estimate the bias parameters that make observations
of the target fit the reference data best.

In case no reference targets can be used, one needs to track tar-
gets of opportunity for the purpose of bias estimation. One approach
is to simultaneously estimate the track states and biases, which can
be accomplished by forming augmented state vectors that combine
target state estimates together with bias estimates [1]. With a large
number of targets and sensors this will hardly be tractable due to
computational requirements etc. There are however suboptimal but
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very efficient techniques to decouple target state and bias estimation
process, fully feasible for on-line operation [5][2][4].

As the number of measurements suitable for bias estimation can
be quite low, it is desirable to find a method that uses them as ef-
fectively as possible. One such off-line method is the Expectation
Maximization (EM) algorithm [6][7][8], where the entire set of mea-
surements is processed iteratively to provide both state estimates and
bias parameters.

This paper examines a slightly different approach to the off-line
bias estimation with targets of opportunity. Because the number of
measurements is usually low, it is useful to apply some regulariza-
tion to the maximum likelihood estimation, in order to avoid the
problems with observability. In practice, only a few sensors need
calibration usually, and most of the bias parameters are zero, so one
should use this extra information.

In this paper biases are considered to be stochastic variables and
a method called Type-II Bayes [9], evidence approximation [10] or
sparse Bayesian learning [11] is applied, where each bias parame-
ter has its own regularization parameter, corresponding to the priors
in a Bayesian framework. Those parameters are estimated together
with bias parameters. The approach utilizes Occam’s razor [10][12],
which lets us find a good balance between model complexity and fit
to data. It also implies sparsity through regularization and, in addi-
tion, provides us a very useful information about how well each of
the parameters is determined by the data.

Application of different regularizers for each parameter is a ba-
sic idea underlying the Relevance Vector Machines algorithm, pro-
vided by Tipping in [13], using the same sparse Bayesian learning
framework by Mackay [10].

Our approach to simultaneous tracking and calibration requires
a novel extension to the evidence approximation method, where the
target trajectories are marginalized using state smoothers for com-
puting the evidence function.

The method will be described in detail in Section 3 after the for-
mal definition in Section 2. Section 4 provides simulation results. In
Section 5 final conclusions are stated and future work is suggested.

2. PROBLEM FORMULATION

A ground target is detected by a number of sensors, resulting in
a set of observations YN = {yn}Nn=1 of the target states XN =
{xn}Nn=1, where yn is a single measurement, or set of measurements
stacked as a vector, and xn is target state at time n = 1 . . . N . The
measurements are affected by a number of bias parameters and by
a measurement noise. All the bias parameters, for all sensors, are
collected in a single vector θ.

The measurement model for each sensor is assumed to be a
known, nonlinear function h(xn,θ) of the state xn, with measure-



ment bias vector θ = [θ1 . . . θm . . . θM ]T , and is defined as

yn = h(xn,θ) + vn (1)

where vn is an additive noise with Normal distribution and known
covariance matrix R.

As was partially mentioned in the introduction, there are three
main problems with calibration of the sensor network. Low num-
ber of measurements causes problems with observability, and thus
the maximum likelihood methods do not usually provide reliable re-
sults. The problem can be solved by applying some constraints on
the estimates, which in the Bayesian framework are solved by as-
signing the priors. Choosing a correct prior is also a problem by
itself, since it should utilize the sparsity feature of the bias vector.
Finally, a correct calibration cannot be performed, when the state of
the ground target is unknown, which is usually the case.

2.1. General estimation framework

In the estimation approach, the bias vector θ is assumed to be a
stochastic variable. The method consists of finding a posterior dis-
tribution of the bias parameters, by using the Bayesian maximum a
posteriori method

p(θ|YN ,α) =
p(YN |θ,α)p(θ|α)

p(YN |α)
(2)

The set of hyper-parameters α, determines the prior distribution for
θ, given by p(θ|α). Since those parameters are in general unknown,
a method using maximization of an evidence function (also called a
marginal likelihood) is applied. Evidence, which is a normalizing
term in (2), is obtained by integrating out the parameter vector, as

p(YN |α) =

∫
p(YN |θ,α)p(θ|α)dθ (3)

A general framework for the procedure of maximizing the evidence,
called evidence procedure, is provided for example in [10][13][14].

In this paper a general case is handled, when the likelihood
p(YN |θ,α) depends also on the state of the target XN , that is
generally unknown. The set of those target states is then integrated
out from p(YN |θ,α, XN ) by making use of an estimated state
distribution p̂(XN ), obtained from a filtering/smoothing algorithm
[15][16][17]. Thus the likelihood, independent of XN , is computed
using

p(YN |θ,α) =

∫
p(YN |XN ,θ,α)p̂(XN )dXN (4)

3. SPARSE BAYESIAN CALIBRATION ALGORITHM

Having previously defined the measurements in (1) and using the
assumption that measurements are independent, the likelihood for
full data set can be easily written as

p(YN |XN ,θ,α) = N (Y; h(X,θ),R) (5)

where Y = [yT1 . . . y
T
N ]T , X = [xT1 . . . x

T
N ]T , h(X,θ) =

[h(x1,θ)T . . . h(xn,θ)T ]T and R is a covariance matrix with
R matrices on diagonal.

In case of the sensor networks, the true value of the state xn is
usually unknown, so it is reasonable to use estimates obtained from
for instance the Kalman or particle filter/smoother, using some initial
value of θ0 and α0. For the Gaussian case, a set of state estimates
X̂N = {x̂n}Nn=1, together with its corresponding covariance matri-
ces P̂N = {P̂n}Nn=1, results in a distribution

P (XN |YN ,θ
0,α0) = N (X|X̂, P̂) (6)

where X̂ = [x̂T1 . . . x̂
T
N ]T and P̂ is block diagonal with P̂T

1 . . . P̂T
N

on the diagonal. By treating (6) as a distribution over the state,
p̂(XN ) = P (XN |YN ,θ

0,α0), one can remove the dependence on
XN from (5), by applying the marginalization defined in (4)

By linearizing the measurement function around some θ̂ and X̂,
Equation (1) can be rewritten, using a 1st order Taylor expansion, as

ȳn = Hθ(x̂n, θ̂)θ +Hx(x̂n, θ̂)(x− x̂n) + vn (7)

where ȳn = yn − h(x̂n, θ̂) +Hθ̂(x̂n, θ̂)θ̂ and

Hθ(x̂n, θ̂) =
∂h(xn,θ)

∂θ

∣∣∣∣
θ = θ̂, x = x̂n

(8)

Hx(x̂n, θ̂) =
∂h(xn,θ)

∂xn

∣∣∣∣
θ = θ̂, x = x̂n

(9)

Thus the result of integration, where some terms got cancelled in the
meantime, is given by

p(YN |θ,α) ≈ N (Ȳ|Hθθ, R̄) (10)

where the covariance matrix R̄ is defined as R̄ = (R + HxP̂HT
x ),

and Ȳ = [ȳ1 . . . ȳN ]T , Hθ = [Hθ(x̂1, θ̂)T . . . Hθ(x̂N , θ̂)T ]T and
HX is defined analogously.

In a Bayesian framework, to infer the values of θ, we need to ap-
ply some constraint on the data, which is accomplished by assigning
a prior. Here we use a zero mean Gaussian prior

p(θ|α) =

M∏
m=1

N (θm|0, αm) = N (θ|0,A−1) (11)

where α = [α1 . . . αM ]T is the hyper-parameter defining the preci-
sion, and A = diag(α1, . . . , αM ). The problem is how to assign
the hyper-parameters? In this framework, the hyper-parameters are
assumed unknown and inferred from the data together with the set
of parameters θ. Therefore, by having defined the likelihood and
prior above, one only needs to define the prior for hyper-parameters.
Here we will consider flat prior that is non informative [18], p(α) =
const, giving equal probability for all possible values of α. Having
defined the prior, we can now proceed to the Bayesian inference of
unknown variables.

3.1. Parameter estimation

In this step the values of θ will be inferred from the data. In a fully
Bayesian framework, the posterior over the parameter set θ should
be obtained by integrating out the hyper-parameters, so then

p(θ|YN ) =

∫
p(θ|YN ,α)p(α|YN )dα (12)

By assuming the posterior for α is sharply peaked around its esti-
mate α̂, so p(α) ≈ δ(α− α̂), we can [10] use the approximation

p(θ|YN ) ' p(θ|YN ,α)|α=α̂ (13)

Hereby the posterior above can be rewritten, using Bayes rule, as

p(θ|YN ) ' p(YN |θ,α)p(θ|α)

p(YN |α)

∣∣∣∣
α = α̂

(14)

The posterior for θ is obtained using (10) and (11), together with a
simple rule for the posterior distribution in a Gaussian case, as

p(θ|YN ) = N (θ|m,Σ) (15)



which is also Gaussian, with mean and covariance defined by

m = Σ(HT
θ R̄−1Ȳ) (16)

Σ = (HT
θ R̄−1Hθ + A)−1 (17)

It is sometimes useful to obtain a point estimate of the bias vector,
which maximizes the posterior

θ̂map = arg max
θ

p(θ|YN ) (18)

which is equal to the mean defined in (16).

3.2. Hyper-parameter estimation

To infer the hyper-parameters, Bayes rule is applied again, so

p(α|YN ) =
p(YN |α)p(α)

p(YN )
(19)

As was declared before, the prior p(α) is assumed to be flat, so to
obtain optimal values of hyper-parameters, we only need to consider
the first term in a nominator, p(YN |α). As one can easily notice, it
is the normalizing constant of Equation (14), defined previously in
(3) as an evidence. To obtain the evidence, the parameter θ needs to
be integrated out as in (3), so using (10) and (11), one can write

p(YN |α) =

∫
N (Ȳ|Hθθ, R̄)N (θ|0,A−1)dθ (20)

and the optimal value is then the one that maximizes the likelihood

α̂ = arg max
α

p(YN |α) (21)

Because (20) is a simple convolution of Gaussians, the evidence can
be easily computed as

p(YN |α) =
|R̄|−

1
2

(2π)
Ndy

2

|A|
1
2 |Σ|

1
2 e−Q(Ȳ) (22)

where dy is a dimension of Ȳ, and the quadratic termQ(Ȳ) is given
by

Q(Ȳ) =
1

2
(ȲTR̄−1Ȳ −mTΣ−1m) (23)

Now, to obtain the estimate of α, the approach presented in [10] will
be used. By taking the derivative of a logarithm of the evidence (22)
with respect to αm, and equalling it to zero, we get

−1

2
m2

m −
1

2
Σmm +

1

2αm
= 0 (24)

where mm is the m-th element of the m vector, defined in (16), and
Σmm is the m-th diagonal element of the covariance matrix defined
in (17). The equation yields a following solution

αm =
γm
m2

m

(25)

where γm = 1− αmΣmm. According to [10][12], the new param-
eter can take values in a range of γm ∈ [0 . . . 1], and it determines
how well the corresponding parameter θm is determined by the data.
For small standard deviation of the prior, when αm is large, the es-
timates are strongly constrained by the prior. In that case Σmm in
(17) is dominated by hyper-parameter, so Σmm ≈ α−1

m , and thus
γmm ≈ 0. On the other hand, when αm takes a small value, which
means the corresponding estimate mm is well fit to the data, then
γm ≈ 1.

As we can see the algorithm requires an iterative approach. We
need to start with some initial estimates of θ and α and iteratively
refine the estimates. The procedure is shown in Algorithm 1

Algorithm 1 Sparse calibration algorithm

1. Initiate at i = 0 with θ0 and α0.

2. Use a filtering/smoothing algorithm to obtain state estimates
X̂N and corresponding covariances P̂N , using θ0 as a bias
estimate.

3. For i = 1:

(a) Linearize the measurement function as in (7) using X̂N

and θ̂
i−1

.

(b) Set α = α̂i−1 and using Equation (16), (17) and (18)
obtain new estimate of bias vector θ̂

i
= θ̂map = m.

(c) Set γm = 1 − α̂i−1
m Σmm and obtain new estimate of

α using (25), given by α̂i
m = γm/m

2
m

(d) If converged: (4); Otherwise: i = i+ 1 and repeat (3).

4. End iterations.
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Fig. 1. Scenario overview with target ground truth trajectory to-
gether with true and biased sensor positions.

4. EXPERIMENTAL RESULTS

In the experimental scenario, NS = 10 sensors are distributed ran-
domly on an area of 500× 500 meters. Sensors are gathering range
measurements (in meters) and bearing measurements (in radians).
Both positions and measurements are biased, with additive biases.
Positioning biases related to the x- and y-axis are defined as θx and
θy respectively; measurement biases related to range- and bearing-
bias are defined as θr and θa respectively. Simulations are performed
in a Monte Carlo (MC) manner, with biases randomly generated in
each MC run, according to zero-mean normal distribution with stan-
dard deviations σx, σy , σr and σa respectively. Bias vector is also
assumed to be sparse, with sparsity sf , representing a fraction of
non-zero elements, ranging from 0 to 1. Measurements, as in (1), are
collected using a following vector measurement function, defined for
each sensor as

h(xn) =

[
h1(xn)
h2(xn)

]
=

[√
d2x,n + d2y,n + θr

arctan
dy,n
dx,n

+ θa

]
(26)

dx,n = pxx,n − (psx − θx), dy,n = pxy,n − (psy − θy) (27)

and where state vector xn = [pxx,n, p
x
y,n, v

x
x,n, v

x
y,n]T , with ele-

ments corresponding to x- and y-position and x- and y-velocities of
the target at time step n respectively and psxand psy are positions of
the sensor in x- and y-axis.

An overview of the simulated Scenario, with N = 50 of mea-
surements, is presented on Figure 1. Parameters of the Scenario are



summarized in Table 4. For parameter estimation, smoothed state
estimates X̂N are obtained from Kalman smoother using a standard
Constant Velocity model.

Table 1. Parameters of the Scenario.

Parameter Symbol Value
Number of measurements per sensor N 50

Number of sensors NS 10
Range measurement noise std σr

y 10 m
Angle measurement noise std σr

y 10◦

Number of MC runs MCn 250
Sparsity range sp 0 : 0.05 : 1

Number of iterations I 25
EKF initial position std σp 10 m
EKF initial velocity std σv 5 m/s
Bias: x/y position std σx / σy 10 m / 10 m
Bias: range/angle std σr / σa 10 m / 10◦

Figure 2 presents the summary RMS Error (mean + 1 standard
deviation) of bias estimation results, where maximum likelihood
(ML), maximum a posteriori (MAP) and evidence approximation
(EA) methods are compared for different bias vector sparsities. In
the case of MAP, the true prior, from which biases were generated,
was used. Figure 3 presents detailed results for one Monte Carlo
simulation.

4.1. Summary

As we can see in Figure 2, the proposed method provides much bet-
ter results compared to traditional maximum likelihood, and slightly,
but consistently, performs worse than the MAP method. In the simu-
lation, MAP is assumed to use the true prior distribution from which
the biases were generated, including the knowledge about the spar-
sity shape of the bias vector. It is important to notice, that the more
the bias vector contains zero element (sp → 0), the better the EA and
MAP methods perform compared to ML. It is due to the fact, that
both methods utilize the feature of sparsity of the bias vector, which
is implied by using the correct prior (MAP) or through Occam’s ra-
zor (EA). On the other hand, ML does not utilize this feature, and
since there are no priors applied, the method tends to provide un-
reliable results in case, when the estimated parameters are not well
determined by the measurement data.

Figure 3 presents one Monte Carlo run estimation results for
sensors 5, 6 and 7, with corresponding bias parameters θ17 to θ28
and related γm values obtained from the EA algorithm. In that case
only parameters number 18, 21, 26 and 27 had non-zero values. As
we can see, for most θm all 3 algorithms managed to provide quite
similar results. We shall now look at the difference that appeared
between them.

One can observe that EA algorithm correctly detected most of
the zero and non-zero elements. The parameters, that were well de-
termined by the measurements, are indicated by the value of a cor-
responding gamma parameter close to unity. One can observe this
situation for θ21, where all methods give very good results, and the
parameter is well determined by the data, so γ21 ' 1. On the other
hand, for elements θ25 and θ27, the ML has significantly diverged,
most probably due to the problem with observability. In that case
EA algorithm performed more robust, and has shrunk the values to-
wards zero, what is indicated by value of γ25,27 ' 0. The parameters
that were estimated with values close to zero, unless they were well
determined by the data, were shrunk towards the prior mean value
(zero), and therefore the sparsity feature was implied. Situation like
this can be observed for example for parameters θ22,23,24.
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Fig. 2. Mean and standard deviation of the bias estimation RMS
Error for different sparsities.
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Fig. 3. Comparison of estimation methods and γ parameter .

5. CONCLUSIONS

The proposed evidence approximation (EA) method estimates the
bias parameters in a sensor calibration problem, jointly with the state
trajectories of targets of opportunity. As a bonus, EA estimates the
prior of the bias parameters, which can in itself serve as an indica-
tor of how well the bias parameters are estimated. This is a useful
and practical advantage compared to the more direct maximum like-
lihood (ML) approach. Further, the EA method provides a sparse
bias vector in contrast to the ML method, which is useful in practi-
cal ground sensor network deployments, where many sensors can be
assumed bias-free.
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