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Abstract: In inertial human motion capture, a multitude of body segments are equipped
with inertial measurement units, consisting of 3D accelerometers, 3D gyroscopes and 3D
magnetometers. Relative position and orientation estimates can be obtained using the inertial
data together with a biomechanical model. In this work we present an optimization-based
solution to magnetometer-free inertial motion capture. It allows for natural inclusion of
biomechanical constraints, for handling of nonlinearities and for using all data in obtaining
an estimate. As a proof-of-concept we apply our algorithm to a lower body configuration,
illustrating that the estimates are drift-free and match the joint angles from an optical reference
system.
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1. INTRODUCTION

Human body motion capture is used for many applications
such as character animation, sports and biomechanical
analysis [Xsens Technologies B.V., 2013]. It focuses on
simultaneously estimating the relative position and orien-
tation of the different body segments (expressed in terms
of the joint angles) and estimating the absolute position
of the body. Motion capture is often performed using
either vision-based technologies [Moeslund et al., 2006] or
using inertial sensors. The main advantage of using inertial
sensors over vision-based technologies is that they are not
restricted in space and do not require line of sight visibility
[Welch and Foxlin, 2002]. In inertial human body motion
capture, the human body is equipped with inertial mea-
surement units (IMUs), consisting of 3D accelerometers,
3D gyroscopes and 3D magnetometers as shown in Fig. 1.
Each body segment’s position and orientation (pose) can
be estimated by integrating the gyroscope data and double
integrating the accelerometer data in time and combining
these integrated estimates with a biomechanical model.
Inertial sensors are successfully used for full body motion
capture in many applications [Xsens Technologies B.V.,
2013, Roetenberg et al., 2013, Kang et al., 2011, Yun and
Bachmann, 2006].

Inertial sensors inherently suffer from integration drift.
When using inertial sensors for orientation estimation
they are therefore generally combined with magnetome-
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Fig. 1. Examples of inertial motion capture. Upper left:
olympic and world champion speed skating Ireen
Wüst wearing an inertial motion capture suit with 17
inertial sensors. Upper right: graphical representation
of the estimated orientation and position of the body
segments. Lower left and right: experiment showing
that line of sight visibility is not necessary for inertial
motion capture.



ters. Magnetometer measurements, however, are known
to cause problems in motion capture applications since
the magnetic field measured at the different sensor lo-
cations is typically different [Luinge et al., 2007, Cooper
et al., 2009, Favre et al., 2008]. Including information from
biomechanical constraints, i.e. information about the body
segments being rigidly connected, can eliminate the need
of using magnetometer measurements. Incorporating these
constraints, the sensor’s relative position and orientation
become observable as long as the subject is not standing
completely still [Hol, 2011]. Estimating joint angles using
a pair of inertial sensors, where each sensor estimates its
own orientation using an extended Kalman filter (EKF)
[Yuan and Chen, 2013] is therefore computationally cheap,
but valuable information from biomechanical constraints
is lost. Existing approaches therefore include the biome-
chanical constraints like for instance in Luinge et al. [2007]
where an EKF is run using only the accelerometer and
gyroscope measurements and a least-squares filter is added
to incorporate the biomechanical constraints.

To allow for natural inclusion of biomechanical con-
straints, we introduce a new optimization-based approach
for inertial motion capture. Compared to filtering ap-
proaches, optimization-based approaches are computa-
tionally expensive. Recent developments in both compu-
tational power and in available algorithms have, however,
opened up possibilities for solving large-scale problems
efficiently and even in real-time [Mattingley and Boyd,
2010]. Using an optimization formulation of the problem,
a smoothing estimate can be obtained and nonlinearities
can be handled. It also opens up possibilities for simulta-
neously estimating calibration parameters and for incor-
porating non-Gaussian noise.

The paper is organized as follows. After introducing the
problem formulation in Section 2, in Section 3 we will
introduce the biomechanical model, discussing the rele-
vant coordinate frames, variables and biomechanical con-
straints. In Section 4 we will subsequently introduce the
dynamic and sensor models. In Section 6 we will discuss
experimental results, focusing on a subproblem, namely a
lower body configuration consisting of 7 sensors, assuming
a known calibration and not including any position aiding.
These experiments are intended to serve as a proof-of-
concept. A more in-depth analysis including a comparison
with other methods is planned for future work.

Note that using inertial sensors and biomechanical con-
straints only, the absolute position is not observable, i.e.
any translation of the body’s position estimates will lead
to an equally valid solution of the estimation problem.
For example in the case of the speed skater in Fig. 1, the
estimated pose of the speed skater will resemble the “true”
motion, but the exact location on the ice rink is not observ-
able. This unobservability typically results in a drift of the
body’s absolute position over time. Because of this, it is
not possible to compare our position estimates with those
of the optical reference system and for now we focus on
analysis of the joint angles. To estimate absolute position
it is necessary to include e.g. GPS, ultra-wideband [Hol,
2011] or zero velocity updates when the foot is at stand
still [Callmer, 2013, Woodman, 2010] and this is planned
for future work.

2. PROBLEM FORMULATION

The use of inertial sensors for human body motion capture
requires inertial sensors to be placed on different body
segments. The knowledge about the placement of the
sensors on the body segments and the body segments’
connections to each other by joints can be incorporated
using a biomechanical model.

The problem of estimating the relative position and
orientation of each body segment is formulated as a
constrained estimation problem. Given N measurements
y1:N = {y1, . . . , yN}, a point estimate of the variables z can
be obtained as a constrained maximum a posteriori (MAP)
estimate, maximizing the posterior density function

max
z

p(z | y1:N )

s.t. ce(z) = 0,
(1)

where ce(z) represents the equality constraints. In our
problem, z consists of both static parameters θ and
time-varying variables x1:N . Using this together with the
Markov property of the time-varying variables and the fact
that the logarithm is a monotonic function, we can rewrite
(1) as

min
z={x1:N ,θ}

− log p(x1 | y1)− log p(θ)︸ ︷︷ ︸
initialization

−
N∑
t=2

log p(xt | xt−1, θ)︸ ︷︷ ︸
dynamic model

−
N∑
t=1

log p(yt | xt, θ)︸ ︷︷ ︸
biomechanical/sensor model

s.t. cbio(z) = 0. (2)

Obtaining the MAP estimate thus amounts to solving a
constrained optimization problem where the constraints
cbio(z) originate from a biomechanical model. The cost
function consists of different parts related to the initializa-
tion of the variables, a dynamic model for the time-varying
states and a biomechanical and sensor model. More details
about the variables, the different parts of the cost function
and the constraints are provided in Sections 3 and 4.

The optimization problem (2) is solved using an infeasible
start Gauss-Newton method [Boyd and Vandenberghe,
2004]. The number of variables in the problem will become
large already for short experiments and a small number of
segments. The problem (2) can, however, still be solved
efficiently due to its inherent sparseness.

3. BIOMECHANICAL MODEL

A biomechanical model represents the human body as
consisting of body segments connected by joints. In the
example application in Fig. 1 the body is modeled as
consisting of 23 segments, whereas Fig. 2 illustrates two
of these body segments. These can be thought of as the
upper and lower leg, each with a sensor attached to it.
The main purpose of Fig. 2 is to introduce the different
coordinate frames, variables and calibration parameters.
These definitions can straightforwardly be extended to any
sensor and any body segment. The relevant coordinate
frames are:

The local coordinate frame L aligned with the local
gravity vector, with the z-axis pointing up. The
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Fig. 2. Connection of two segments and definition of the
variables and coordinate frames.

horizontal directions are defined according to any
convenient choice of local coordinates.

The body segment coordinate frame Bj fixed to the
bone in body segment Bj . Its origin can be anywhere
along the bone, but it is usually in the center of
rotation of a joint.

The sensor coordinate frame Si of the moving IMU
Si. Its origin is located in the center of the accelerom-
eter triad and its axes are aligned to the casing. All
measurements of the IMU are resolved in this frame.

In setting up the optimization problem (2), the first step
is to define the set of sensors S, the set of body segments
B and the set of joints J in the problem. Each inertial
sensor needs to be mounted on the body, and sensor Si is
assumed to be placed on body segment BSi

. The distance

r
BSi

Si
and orientation qBSi

Si of sensor Si with respect to
body segment BSi

are without loss of generality assumed
to be known from calibration.

Our knowledge of the human body can be used to identify
which body segments are connected by which joints, i.e.
the set BJk

needs to be determined for each joint Jk. To
express the location of the joint in the body frames of

the connected body segments, the distances r
Bj

k from the
body frame Bj to joint k, need to be defined for all joints
Jk ∈ J and all Bj ∈ BJ,k. We assume without loss of
generality that they are known from calibration. Generally,
all joints are assumed to be ball-and-socket joints, but we
incorporate additional knowledge about a subset of the
joints, denoted by H, which we assume to be hinge joints.

For reasons that will be discussed in Section 4, we define
the set of time steps in the optimization as T rather than
explicitly summing over all time steps t = 1 . . . N as in (2).
The variables in the optimization problem are then given
by

• the position pL
Si,t

and velocity vL
Si,t

of sensor Si in the
local frame L, ∀ Si ∈ S and ∀ t ∈ T ,

• the orientation qLSi
t of sensor Si with respect to the

local frame L, ∀ Si ∈ S and ∀ t ∈ T ,
• the position pL

Bj ,t
of body segment Bj in the local

frame L, ∀ Bj ∈ B and ∀ t ∈ T ,

• the orientation q
LBj

t of body segment Bj with respect
to the local frame L, ∀ Bj ∈ B and ∀ t ∈ T ,

• the gyroscope bias bω,Si
of sensor Si, ∀ Si ∈ S,

• the mean acceleration state of one of the sensors
Si ∈ S, ∀ t ∈ T .

Defining the number of sensors as NS and the number
of body segments as NB , the number of variables in the
optimization problem is z ∈ R(9NS+6NB+3)N+3NS . When
we solve the optimization problem, we encode the rotation
states using a three-dimensional state vector [Crassidis
et al., 2007, Grisetti et al., 2010, Hol, 2011]. Throughout
the paper, we typically interchangeably make use of the
unit quaternion qLS and the rotation matrix RLS as rep-
resentations of the orientation. The quaternion conjugate,
representing the inverse rotation will be represented by
(qLS)c = qSL. Similarly for the rotation matrix, (RLS)T =
RSL.

More details about the gyroscope bias variables and the
reason for the inclusion of the mean acceleration state will
be given in Section 4.2.

Based on the biomechanical model it is possible to derive
relations between the different variables. We will catego-
rize them in three classes.

Joints between the body segments. The constraints
cbio(z) in the optimization problem (2) enforce the
body segments to be connected at the joint locations
at all times,

cbio(z) = pL
Bm,t +RLBm

t rBm

k − pL
Bn,t −R

LBn
t rBn

k ,

Bn, Bm ∈ BJk
, (3)

which is included for all Jk ∈ J and t ∈ T . This
leads to NJ constraints at each time step t in the
optimization problem (2), where NJ is the number of
joints.

Placement of the sensors on the body segments.
The position and orientation of sensor Si can be
expressed in terms of its position and orientation on
body segment BSi . Ideally, this can be incorporated
using equality constraints in (2). However, it is phys-
ically impossible to place the sensor directly on the
bone. Hence, it has to be placed on the soft tissue and
the sensor will inevitably move slightly with respect
to the bone. We therefore model the position and
orientation of sensor Si on body segment BSi as

pL
Si,t = pL

BSi
,t +R

LBSi
t

(
r

BSi

Si
+ e

BSi
p,t

)
, (4a)

qLSi
t = q

LBSi
t qBSi

Si exp
(

1
2e

Si
q,t

)
, (4b)

where we assume e
BSi
p,t ∼ N (0,Σp) and eSi

q,t ∼
N (0,Σq).

Rotational freedom of the joints. For some joints, it
is known that their rotation is (mainly) limited to one
or two axes. An example of this is the knee which is
a hinge joint, although it can in practice flex a little
around the other axes too. Minimizing



eJk,t =

[
nT1
nT3

](
RLBm
t

)T
RLBn
t n2, Bn, Bm ∈ BJk

, (5)

where n1, n2 and n3 denote the different axis direc-
tions and eJk,t ∼ N (0,Σk), will minimize the rotation
around any but the n2-axis. This cost function can be
included at any time t for any joint k that is a hinge
joint, i.e. ∀ Jk ∈ H,∀ t ∈ T . Note that inclusion of
this knowledge is optional in the algorithm.

4. DYNAMIC AND SENSOR MODELS

The sensor’s position, velocity and orientation at each time
instance can be related by a dynamic model in which
the accelerometer and gyroscope measurements are used
as inputs [Gustafsson, 2012, Hol, 2011]. In this work we
choose a slightly different approach to reduce the number
of variables in the optimization problem (2). To achieve
high update rates using a relatively small number of vari-
ables, we use an approach similar to the one discussed
by Savage [1998a,b]. Hence, strapdown inertial integra-
tion, in which the accelerometer and gyroscope signals
are integrated, is run at high update rates. This leads to
accelerometer measurements ∆p and ∆v representing a
difference in position and velocity and gyroscope measure-
ments ∆q representing a difference in orientation. These
are integrated for Ts

T times, where Ts is the sampling time
of the inertial sensors and T is the sampling time used in
the optimization problem (2).

4.1 Dynamic model

The position, velocity and orientation of each sensor Si
are related from time t to time t+T using the accelerome-
ter measurements ∆pSi

t ,∆v
Si
t and the gyroscope measure-

ments ∆qSi
t . The position and velocity states at each time

step are modeled according to

pL
Si,t+T =pL

Si,t + TvL
Si,t+

RLSi
t

(
∆pSi

t + wSi
p,t

)
+ T 2

2 g
L, (6a)

vL
Si,t+T =vL

Si,t +RLSi
t

(
∆vSi

t + wSi
v,t

)
+ TgL, (6b)

where ∆pSi
t and ∆vSi

t denote the inputs based on the
accelerometer measurements. The noise terms are modeled
as wp,t ∼ N (0, Qp) and wv,t ∼ N (0, Qv). The earth grav-
ity is denoted by gL. The orientation states are modeled
as

qLSi

t+T =qLSi
t ∆qSi

t exp
(

1
2w

Si
q,t

)
, (6c)

where ∆qSi
t denotes the gyroscope measurements, cor-

rected for the estimated gyroscope bias, and wSi
q,t ∼

N (0, Qq).

Since (6) models the states in terms of their value at the
previous time step, the state at the first time instance
needs to be treated separately. The orientation qLSi

1 of
each sensor Si is estimated using the first accelerometer
and magnetometer sample of that sensor. Note that this
is the only place in the algorithm where magnetometer
measurements are used. The variables qLSi

1 are then initial-
ized around this estimated orientation with additive noise
eSi

q1
∼ N (0,Σq1

). The position pL
Si,1

of one of the sensors

is without loss of generality initialized around zero with
additive noise ep1

∼ N (0,Σp1
). This defines the origin of

the local coordinate frame L.

4.2 Sensor model

The gyroscope measurements are affected by a slowly time-
varying sensor bias. For relatively short experiments, the
sensor biases of all sensors Si ∈ S can be assumed to be
constant. Hence, we include only one three-dimensional
variable for each sensor to represent the gyroscope bias.
This variable bω,Si is modeled as bω,Si ∼ N (0,Σbω ).

As described in Section 1, we do not include position aiding
in our problem, resulting in only relative position and ori-
entation observability. A problem that can be encountered
for this case is that of so-called gravity leakage. Because
the subject’s absolute inclination is unobservable, the grav-
ity vector risks being misinterpreted as an acceleration. In
the case of stationary measurements, when the accelerom-
eter only measures the gravity vector, the accelerometer
measurements can be used as a source of absolute incli-
nation information. In case of motion, the accelerometer
measurements will measure an additional acceleration. It
can, however, still be assumed that the mean acceleration
over a certain time period is zero [Luinge, 2002]. We
therefore assume that one sensor follows this acceleration
model for all t ∈ T , up to some noise ea ∼ N (0,Σa).

5. RESULTING ALGORITHM

The biomechical model from Section 3 and the dynamic
and sensor models from Section 4 can be combined and
used to describe the probability density functions in (2).
Eliminating all constant terms from the optimization, this
results in a constrained weighted least-squares problem.
This problem is given by

min
z

∑
t∈T

∑
Si∈S

(
‖eSi

p,t‖2Σ−1
p

+ ‖eBSi
q,t ‖2Σ−1

q︸ ︷︷ ︸
placement of sensors on body (4)

+ ‖wSi
p,t‖2Q−1

p
+ ‖wSi

v,t‖2Q−1
v

+ ‖wSi
q,t‖2Q−1

q

)
︸ ︷︷ ︸

dynamic model (6)

+
∑
Si∈S

‖bω,Si‖2Σ−1
bω︸ ︷︷ ︸

gyroscope bias

+
∑
t∈T

∑
Jk∈H

‖eJk,t‖2Σ−1
k︸ ︷︷ ︸

hinge (5)

+ ‖ep1
‖2

Σ−1
p1

+
∑
Si∈S

‖eSi
q1
‖2

Σ−1
q1︸ ︷︷ ︸

initialization

+
∑
t∈T

‖ea,t‖2Σ−1
a
,︸ ︷︷ ︸

acceleration model

s.t. cbio(z) = pL
Bm,t +RLBm

t rBm

k − pL
Bn,t −R

LBn
t rBn

k ,

Bn, Bm ∈ BJk
∀ Jk ∈ J ,∀ t ∈ T , (7)

where the constraints are based on (3).

The complete algorithm is summarized in Algorithm 1.
Note that in our current implementation the optimization
is performed over the entire data set and the computations
are therefore done offline. We plan to extend the approach
to a moving horizon approach [Rao et al., 2001] to enable
processing of longer data sets and to allow for online
estimation.



The covariance matrices in (7) representing the sensor co-
variances are determined using Allan variance analysis [El-
Sheimy et al., 2008]. The covariance matrices related to the
placement of the sensors on the body, the hinge constraint
and the acceleration model, do not represent any physical
quantities and are chosen more or less ad hoc. Experiments
have shown that the solution of the optimization problem
is not very sensitive to the tuning of these values.

The optimization (7) is started using an initial estimate
of the variables z0. All variables are initialized at zero
except for the orientations at the first time step, which are
initialized around their estimated orientation, as described
in Section 4.2. This is an infeasible solution, justifying the
need for an infeasible start optimization algorithm.

Algorithm 1 Inertial human motion capture

(1) Define the set of sensors S, the set of body segments
B and the set of joints J . Mount the inertial sensors
on the body and
(a) define for each sensor Si ∈ S on which body seg-

ment BSi
∈ B it is placed. Calibrate the system

to obtain the position r
BSi

Si
and orientation qBSi

Si

of each sensor Si ∈ S on body segment BSi
∈ B,

(b) define the set of body segments BJk
connected to

each joint k for all Jk ∈ J . Calibrate the system

to obtain the distances r
Bj

k of each body segment
coordinate frames Bj ∈ BJk

to the different joints
k,

(c) define the subset H of joints that are restricted
in their rotations and can be regarded as a hinge
joint.

(2) Perform an experiment collecting inertial measure-

ments ∆pSi
t ,∆v

Si
t and ∆qSi

t and a magnetometer

measurement at t = 1, ySi
m,1.

(3) Postprocess the data
(a) Initialize z0 and set l = 0.
(b) Determine the values of the cost functions and

the constraints in (2), their Jacobians and the
approximate Hessian of the cost function. De-
termine a step direction using an infeasible start
Gauss-Newton algorithm and update zl → zl+1.

(c) Set l := l + 1 and iterate from 3(b) until the
algorithm is converged and the solution zl+1 is
feasible.

6. EXPERIMENTS

We validated our approach with experiments using an
MVN Awinda system [Xsens Technologies B.V., 2013]
which is a wireless inertial motion capture system with
17 sensors attached to different body segments as shown
in Fig. 3. An optical motion capture system has been used
as a source of reference data. Since our focus is on the legs,
one leg has been equipped with optical markers, providing
reference position and orientation of the foot sensor, lower
leg sensor, upper leg sensor and – not visible in the figure
– the pelvis sensor.

Inertial data has been collected at 30 Hz. The sensors, how-
ever, run the strapdown integration algorithm discussed
in Section 4 internally at 600 Hz to capture the high
bandwidth of the measurement signals during impact, for

Fig. 3. Experimental setup where the human body is
equipped with inertial sensors on different body seg-
ments. Optical markers for the reference system have
been placed on the right foot sensor, right lower and
upper leg sensors and – not visible in the figure – the
pelvis.

instance during foot impact on the ground. To speed up
the computations, the optimization algorithm itself has
been run at a frequency of 10 Hz.

The optimization problem typically converges in a few
iterations. To solve the problem for an experiment of
10 seconds takes about 5 minutes on an AMD X4 2.8
GHz processor for a first inefficient Matlab implementation
of the algorithm. Initial tests with a C-implementation,
however, show that speed improvements of up to 500
times are easily obtained. Taking into account that at the
moment we postprocess the whole data set while for a real-
time application a moving horizon can be used, we think
that a real-time implementation of the algorithm is indeed
quite possible.

The collected inertial data has been postprocessed used in
the optimization problem (2) for a lower body configura-
tion consisting of a set S of 7 sensors placed on 7 body
segments B: both feet, both lower legs, both upper legs
and the pelvis. The position of each sensor Si ∈ S on

the body segment r
BSi

Si
has been manually measured. The

orientations of the sensors on the body segments qBSi
Si

for all Si ∈ S have been determined by standing still in
a pre-determined pose as described by Roetenberg et al.
[2013]. The 7 body segments are connected by 6 joints J of
which the two knee joints are assumed to be hinge joints.

Calibrating for the distances r
Bj

k amounts to defining the
distances between the different joint centers which is again
done by manual measuring. We acknowledge that this is
an inaccurate calibration method and as future work we
therefore plan to extend the algorithm to automatically
estimate these calibration parameters.

Fig. 4 visualizes the pose of the lower body of a walking
subject estimated using Algorithm 1 for parts of an ex-
periment. Note that our experimental setup does allow for
accurate absolute position estimates. The location of the
different steps has therefore been corrected for one joint
location using the position estimates from the optical refer-
ence system. The steps are taken from a short experiment
and the optimization is run at 30 Hz for plotting purposes.



Fig. 4. Estimated pose of the lower body at different times
during a step of the left leg (left) and the right leg
(right). The view is chosen such that we view the
subject from the right, and the right leg is depicted in
blue, the left leg in green and the connection between
the hips in red.

To compare our relative orientation results to those of
the optical reference system, we focus on the estimated
joint angle of the right knee during an experiment of
around 37 seconds. Joint angles are defined as the an-
gle between two connected body segments at the joint
center. For the knee joint, the bending of the knee dur-
ing walking is referred to as flexion/extension. The ro-
tation around the other two axes (abduction/adduction
and internal/external rotation) are generally quite small
for this joint. Because it is not possible to observe the
joint center and sensors/markers are generally placed on
the soft tissue instead of on the bone, computation of
joint angles depends on a model of the joint locations
in the body. Theoretically, it is possible to estimate the
joint angle from the orientation results of the sensor if
the exact location of the sensors with respect to the joints
is known, i.e. in case of a perfect calibration, and if the
sensors would be rigidly attached to the bone. In practice
this is clearly not possible. However, since both the inertial
sensors and the optical reference markers are placed on the
same location on the body segments as shown in Fig. 3, it
is still possible to compare the angles to assess the quality
of our estimates.

To be able to compare our joint angle estimates to those
of the reference system, a coordinate frame alignment
between the sensor coordinate frame and the coordinate
frame of the optical markers needs to be performed. This
has been done as described by Hol [2011]. Note that due
to limited excitation of the upper leg sensor, it was not
possibly to do this alignment based on the sensor signals.
Instead, the alignment has been performed based on the
joint angle estimates. The joint angle estimates from our
algorithm can be seen to match the joint angles from
the optical reference system. A more quantitative analysis
can be performed when the calibration parameters are
properly estimated and position aiding is included. Note
that due to the limited size of the measurement volume
of the optical reference system, the movements are quite
restricted and at some time instances in the experiment
the optical reference data is not present.

From our optimization algorithm it is also possible to
estimate the joint angles from the angles of the body
segments. These are included in red in Fig. 5. There is

5 10 15 20 25 30 35

−40

−20

0

20

40

A
b
d
u
ct
io
n
/
ad

d
u
ct
io
n
[d
eg
]

5 10 15 20 25 30 35

−40

−20

0

20

40

In
te
rn
a
l/
ex
te
rn
a
l
ro
ta
ti
o
n
[d
eg
]

5 10 15 20 25 30 35

0

20

40

60

80

F
le
x
io
n
/e
x
te
n
si
o
n
[d
eg
]

Fig. 5. Knee joint angles for the right knee for an experi-
ment consisting of 23 steps. The optical reference data
is plotted in blue, the joint angle estimated from the
sensor’s orientations, using our algorithm is plotted in
green, the joint angle from the body segment orienta-
tions is plotted in red. Best viewed in color.

no validation for the angles obtained in this way, but
the estimated abduction/adduction and internal/external
rotation are considerably closer to zero, as we would expect
from our knowledge that these rotations are quite small.

7. CONCLUSIONS AND FUTURE WORK

An optimization approach to inertial human body motion
capture has been developed, capable of estimating the
relative position and orientation of the body segments.
Experimental results show that the algorithm works well,
quickly converging to a feasible solution and resulting
in drift-free joint angle estimates which match the joint
angles from an optical reference system.

We plan to extend the approach to also estimate the
calibration parameters and to include position aiding in
the form of zero velocity updates at stand still and ultra-
wideband position aiding [Hol et al., 2009]. This will
also allow a more quantitative analysis of the results.



Future work also includes adding more body segments,
modeling of non-Gaussian noise where appropriate and
implementing a moving horizon estimation version of the
algorithm.
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