Situational awareness and road prediction for
trajectory control applications

Christian Lundquist, Thomas B. Schon, Fredrik Gustafsson

Abstract This chapter is concerned with the problem of estimating a map of the
immediate surroundings of a vehicle as it moves. In order to compute these map
estimates sensor measurements from radars, lasers and/or cameras are used together
with the standard proprioceptive sensors present in a car. Four different types of
maps are discussed. Feature based maps are represented by a set of salient features.
Road maps make use of the fact that roads are highly structured, since they are built
according to clearly specified road construction standards, which allows relatively
simple and powerful models of the road to be employed. Location based maps,
where occupancy grid maps belong and finally intensity based maps, which can be
viewed as a continuous version of the location based maps. The aim is to provide a
self-contained presentation of how these maps can be built from measurements. Real
data from Swedish roads are used throughout the chapter to illustrate the methods
introduced.

1 Introduction

Most automotive original equipment manufacturers today offer longitudinal control
systems, such as adaptive cruise control (ACC) or collision mitigation systems. Lat-
eral control systems, such as lane keeping assistance (LKA), emergency lane assist
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(ELA) (Eidehall et al. 2007) and curve speed warning, are currently developed and
released. These systems can roughly be split into safety applications, which aim to
mitigate vehicular collisions such as rear end or blind spot detection; and comfort
applications such as ACC and LKA, which aim at reducing the driver’s work load.
The overview article by Caveney (2010) describes the current development of trajec-
tory control systems. The requirements on the position accuracy of the ego vehicle
in relation to other vehicles, the road and the surrounding environment increases
with those control applications that are currently under development and expected
to be introduced to the market.

The systems available or in development today are based on two basic tracking
and decision principles: longitudinal systems use a radar, possibly supported by a
camera, to track leading vehicles and they decide on braking warnings or interven-
tions. On the other hand, lateral systems use a camera to track the lane markers
and they decide on steering warnings or interventions. Future safety and comfort
functions need more sophisticated situational awareness and decision functionality:

e A combination of lateral and longitudinal awareness will be needed, where all
lanes are monitored, all of their vehicles are tracked, and the road-side condi-
tions are modeled to allow for emergency maneuvers. The result is a situational
awareness map, which is the topic for this chapter.

e This will allow for more sophisticated decision functionality. First, the possible
evasive driver maneuvers are computed, and only if the driver has no or very little
time for evasive actions, the system will intervene. Second, more complex auto-
matic evasive maneuvers can be planned using the situational awareness map,
including consecutive lateral and braking actions.

It should be remarked that the accuracy of the navigation systems today and in
the near future, see Chapters “In-car Navigation Basics” and “The evolution of in-
car navigation systems”, are not of much assistance for situational awareness. The
reason is that satellite based navigation gives an accuracy of 10-20 meters, which
is not sufficient for lateral awareness. Even in future systems, including reference
base stations, enabling meter accuracy, the standard road maps will limit the perfor-
mance since they are not of sufficient accuracy. Thus, two leaps in development are
needed before positioning information and standard maps can be used to improve
situational awareness maps. Another technical enabler is car to car communication
(C2C), which may improve tracking of other vehicles and in the end change the
transportation system as has already been done with the transponder systems for
aircraft and commercial surface ships. Still, there will always be vehicles and obsta-
cles without functioning communication systems. The need for accurate situation
awareness and road prediction to be able to automatically position the car in a lane
and derive drivable trajectories will evolve and remain important.

The different types of situation awareness maps used to represent the environ-
ment are introduced in Section 2. Details of these maps are presented in Sections 3
to 6. The chapter is concluded in Section 7.
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2 Modeling the Environment with a Map

The transportation system may be described and represented by a number of vari-
ables. These variables include state variables describing the position, orientation,
velocity and size of the vehicles. Here one can distinguish between the own vehicle,
the so called ego vehicle, and the other vehicles, referred to as the targets.

The state variable of the ego vehicle at time k is denoted xg ;. The trajectory
of the ego vehicle is recorded in Xg 1.4 = {XE 1,...,Xgx}, and it is assumed to be a
priori known in this work. This is a feasible assumption, since the absolute trajectory
in world coordinates and the relative position in the road network are separable
problems.

The state variable of the targets at time k is denoted x1 . The road and the en-
vironment may be modeled by a map, which is represented by a set of variables
describing N,, landmarks in the environment according to

Mk={m](cl),m](cz),...,m]((N””}. (1)

According to Thrun et al. (2005), there exists primarily two types of indexing for
probabilistic maps. In a feature based map each m"™ specifies the properties and
location of one object, whereas in a location based map the index n corresponds to
a location and m™ is the property of that specific coordinate. The occupancy grid
map is a classical location based representation of a map, where each cell of the
grid is assigned a binary occupancy value that specifies if the location n is occupied
(m™ = 1) or not (m™ = 0), see e.g., Elfes (1987), Moravec (1988).

The ego vehicle perceives information about the other vehicles and the environ-
ment trough its sensors. The sensors provide a set of noisy measurements

Nk
7, = {z,({l),z,(f),...,z,({ ”"‘)} (2)
at each discrete time instant k = 1, ..., K. Common sensors used for automotive nav-

igation and mapping measure either range and bearing angle, as for example radar
and laser, or bearing and elevation angles, as for the case of a camera. A signal pre-
processing is always included in automotive radar sensors and the sensor provides a
list of detected features, defined by the range r, range rate 7 and bearing y. The pre-
processing, the waveform design and the detection algorithms of the radar is well
described by e.g., Rohling & Moller (2008), Rohling & Meinecke (2001). Laser
sensors typically obtain one range measurement per beam, and there exists both
sensors which emit several beams at different angles and those which have a rotat-
ing beam deflection system. They all have in common that the angles at which they
measure range are quantized, thus providing a list of range and bearings of which
only the ones which are less than the maximum range shall be considered. Another
commonly used automotive sensor is the camera. The camera measurements are
quantized and the data is represented in a pixel matrix as an image.
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Note that the indexing of sensor data is analogous to the representation of maps.
Each range and bearing measurement 2" from a radar or laser specifies the proper-
ties and location of one observation, i.e., it is a feature based measurement. However,
the indexing of camera measurement is location based, since the index n corresponds
to a pixel in the image and 2 is the property of that specific coordinate.

The aim of all stochastic mapping algorithms, independent of indexing, is to
estimate the posterior density of the map

P(MYZ 1.1, XE1:4), (3)

given all the measurements Z.; from time 1 to k and the trajectory of the ego vehicle
Xg, 1:x- The conditioning on Xg 1. is implicit in this chapter, since it is assumed to be
a priori known. To be able to estimate the map, a relation between the map and the
measurements must first be found and modeled. This model # is referred to as the
measurement equation and for one combination of a measurement z,(;) and a map

variable m,({j Vit may be written according to

z,((i) = h(m,((j)) + e, )

where e, is the measurement noise. The primary aim in this chapter is to create a
momentary map of the environment currently surrounding the ego vehicle. Hence,
it is just the present map data that is recorded in the vehicle. As soon as a part of the
environment if sufficiently far from the ego vehicle the corresponding map entries
are deleted. Environmental models must be compact, so that they can be transmitted
to and used efficiently by other automotive systems, such as path planners. The
maps must be adapted to the type of environment they aim to model. For this reason
four different map representations, which are relevant for modeling the environment
surrounding a vehicle, are described in the following sections.

Feature based map  The map is represented by a number of salient fea-
tures in the scene. Feature representation and tracking
as part of a map is described in Section 3.

Road map This is a special case of the feature based map, where
the map variables model the geometry of the road.
Roads are highly structured; they are built according
to road construction standards and contain primarily,
straight lines, curves and clothoids. Maps of road lanes
and edges are described in Section 4.

Location based map One of the most well established location based map
is the occupancy grid map, which is described in Sec-
tion 5. The map is defined over a continuous space, but
discretized with a grid approximation.
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Intensity based map The intensity density may be interpreted as the proba-
bility that one object is located in an infinitesimal re-
gion of the state space. The intensity based map is a
continuous approximation of a location based map and
it is described in Section 6.

The estimated maps can be used to increase the localization accuracy of the ego
vehicle with respect to its local environment. Furthermore, the maps may be used to
derive a trajectory, which enables a collision free path of the vehicle.

3 Feature Based Map

Features corresponding to distinct objects in the physical world, such as tree trunks,
corners of buildings, lampposts and traffic signs are commonly denoted landmarks.
The procedure of extracting features reduces the computational complexity of the
system, as the features are on a more compact format than the original measurement.
The form of the measurement equations (4) depends on the type of sensor used, and
the signals measured by the sensor. In this section we will briefly describe the use
of features and the corresponding measurement equations in both radar and laser
sensors (Section 3.1) as well as cameras (Section 3.2).

The feature based approach may together with existing road maps be used to
supplement the GPS-based position of the vehicle. This approach is also commonly
referred to as visual odometry, see e.g., Nistér et al. (2006).

3.1 Radar and Laser

As mentioned in the introduction, radar and laser sensors measure at least range and
bearing of the landmark relative to the vehicles local coordinate, i.e., the measure-
ment vector is composed of

20 — [0 l,,(l‘)]T, 5)

Notice that, for the sake of simplicity, the subscripts k specifying the time stamps of
the quantities is dropped throughout this chapter. The assumption will be made that
the measurements of the features are independent, i.e., the noise in each individual
measurement z() is independent of the noise in the other measurements zU), for
i # j. This assumption makes it possible to process one feature at a time in the
algorithms. Assume that the ego vehicle pose is defined by

XE = [XE YE ‘VE]T7 (6)
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where xg, yg denote the horizontal position of the vehicle and yg denotes the head-
ing angle of the vehicle. Furthermore, let us assume that one feature j in the map is
defined by its Cartesian coordinate,

m() = [xS,P ygrpr_ @)

The measurement model (4) is then written as

{r(i)} \/(x%) +xg)2 + (yid) + )2 N [Er} 7 ®

() _
arctan ¥5—E — g ey
X' +XE

where e, and ey, are noise terms. The i measurement feature corresponds to the
7™ map feature. The data association problem arises when the correspondence be-
tween the measurement feature and the map feature cannot be uniquely identified.
A correspondence variable, which describes the relation between measurements and
map features is introduced. This variable is also estimated at each time step k and
there exists a number of different algorithms to do this, see e.g., Blackman & Popoli
(1999). There are quite a few different possibilities on how to define features when
radars and lasers are used.

3.2 Cameras and Computer Vision

Features form the bases in many computer vision algorithms, especially when it
comes to building maps. There exists a myriad of feature detectors, which extract
edges, corners or other distinct patterns. Some of the most well know are the Harris
corner detector (Harris & Stephens 1988), SIFT (Lowe 2004) and MSER (Matas
et al. 2004), see Fig. 1 for an example, where the Harris corner detector is used. For
a more complete account of various features used, see e.g., Szeliski (2010). Using
features to build maps from camera images has been studied for a long time and a
good account of this is provided by Davison et al. (2007).

A key component in building maps using features is a good mathematical de-
scription of how the features detected in the image plane are related to the corre-
sponding positions in world coordinates. The distance (commonly referred to as
the depth) to a landmark cannot be determined from a single image and this fact
should be encoded by the mathematical parameterization of the landmark. The so
called inverse depth parameterization by Civera et al. (2008) provides an elegant
uncertainty description of the fact that the depth (i.e., distance) to the landmark is
unknown. Here, the landmark (Im) state vector is given by
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Fig. 1 Features detected using the Harris corner detector are shown in Fig. (a). Fig. (b) and (c)
shows the estimated position of the landmarks in the x —y and x — z plane, respectively.

cl) camera position first time Im was seen
azimuth angle of Im seen from cl)
elevation angle of Im seen from cl)
J) inverse distance (depth) from ¢ to1Im

~

ml— vV _

¢(j)
p!

el) = [x0) y (@) 20)]"

(9a)

(9b)

where ¢) is the position of the camera expressed in world coordinates at the time
when landmark j was first seen, y'/) is the azimuth angle of the landmark as seen
from ¢(/), relative to the world coordinate frame. The elevation angle of the land-
mark as seen from ¢!/, relative to world coordinate frame directions is denoted ¢ /),
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Fig. 2 The inverse depth parameterization used for the landmarks. The position of the landmark p
is parameterized using the position ¢ of the camera the first time the feature was seen, the direction
q(¢, ) and the inverse depth p. The position of the camera at time step & is denoted ¢.

and the inverse depth, which is the inverse of the distance, from ¢ to the landmark
is denoted p ).

The landmark state m/) is a parametrization of the Cartesian position p/) of
landmark j, see Fig. 2. The relationship between the position of the landmark and
the inverse depth state representation is given by

' ) COS(P(j) COS ll/(])
pV) = c](cj) +—5 cos ¢ sinyl) | . (10)
pY sin (/)
o)

The measurement model (4) for the landmarks is given by

) . 1 yC,(j)
h(m\)) = 22,(pSV)) = 2l (1

C.(J) )
Xp Zp

where 2,(p&(/)) is used to denote the normalized pinhole projection and p&(/) =

. R 17T
x[C,’O ) yg’(’ ) zlc,’(-’ >} denotes the position of feature j at time & in the camera coordi-

nate frame C. Note that before an image position can be used as a measurement to-
gether with the measurement equation (11), the image position is adjusted according
to the camera specific parameters, such as focal length, pixel sizes, etc. The transfor-
mation between pixel coordinates [u v]" and normalized camera coordinates [y z]",
which is the kind of coordinates landmark measurements z(?) (see (11)) are given in,
is

1-[]

V—V

v
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where [uiC viC]T denotes the image center, and f,, and f, are the focal lengths (given
in pixels) in the lateral u-direction and the vertical v-direction, respectively. The
transformation between world and camera coordinates is given by

pC,(j):RCE REW ([ ) _ |*E _~_Lq<j) _cE (13a)

RYE =R(y", 0, 1°), (13b)
R™Y = R(v&, 08, %), (13¢)

where ¢f denotes the position of the camera expressed in the ego vehicle body coor-
dinate frame. The rotation matrix R(«, 3,7) transforms coordinates from coordinate
frame B to coordinate frame A, where the orientation of B relative to A is ¥ (yaw),
¢ (pitch) and 7 (roll). Furthermore, w<, ¢€ and ¥ are the constant yaw, pitch and
roll angles of the camera, relative to the vehicle body coordinate frame.

The landmarks are estimated recursively using e.g., a Kalman filter. An example
of estimated landmarks is shown in Fig. 1. The estimated position p{) for seven
landmarks is shown in the image plane, as well as in the world x —y and x — z plane,
where the ego vehicle is in origin.

4 Road Map

A road map describe the shape of the road. The roads are mainly modeled using
polynomial functions which describe the lane and the road edges. The advantages
of road models are that they require sparse memory and are still very accurate, since
they do not suffer from discretization problems. General road models are presented
in Section 4.1. Lane estimation using camera measurements is described in Sec-
tion 4.2 and finally road edge estimation based on feature measurements is described
in Section 4.3.

4.1 Road Model

The road, as a construction created by humans, possesses no dynamics; it is a static
time invariant object in the world coordinate frame. The building of roads is subject
to road construction standards, hence, the modeling of roads is geared to these spec-
ifications. However, if the road is described in the ego vehicle’s coordinate frame
and the vehicle is moving along the road it is possible and indeed useful to describe
the characteristics of the road using time varying state variables.

A road consists of straight and curved segments with constant radius and of vary-
ing length. The sections are connected through transition curves, so that the driver
can use smooth and constant steering wheel movements instead of stepwise changes
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when passing through road segments. More specifically, this means that a transition
curve is formed as a clothoid, whose curvature ¢ changes linearly with its curve
length x, according to

c(xc) =co+crXe. (14)

Note that the curvature c is the inverse of the radius. Now, suppose X, is fixed to the
ego vehicle, i.e., x. = 0 at the position of the ego vehicle. When driving along the
road and passing through different road segments ¢ and c¢; will not be constant, but
rather time varying state variables

. {co} _ [curvature at the ego vehicle (15)

e curvature derivative

In section 3 the map features were expressed in a fixed world coordinate frame.
However, note that in this section the road map is expressed as seen from the moving
ego vehicle. Using (14), a change in curvature at the position of the vehicle is given
by
de(x.)
dt

. deco dx.
== —"
07 dx. dt

=c1v, 16)

xc=0

where v is the ego vehicle’s velocity. Furthermore, the process model is given by

o=l o] o)

This model is referred to as the simple clothoid model and it is driven by the process
noise w,,. Note that the road is modeled in a road aligned coordinate frame, with
the components (x.,Yy.), and the origin at the position of the ego vehicle. There
are several advantages of using road aligned coordinate frames, especially when it
comes to the process models of the other vehicles on the same road, these models
are greatly simplified in road aligned coordinates. However, the flexibility of the
process model is reduced and basic dynamic relations such as Newton’s and Euler’s
laws cannot be directly applied. The road model (14) is transformed into Cartesian
coordinates (x, y) using

x(xe) = [ eos (zw)dx . (182
0

yixe) = [ sin e~ P+ D, (18b)
0

where the heading angle y is defined as
x el 5
x(x) :/0 c(A)dA = cox+ PRl (18¢)

The origin of the two frames is fixed to the ego vehicle, hence, integration constants
(X0,Yo0) are omitted.
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Fig. 3 A straight and a curved road segment are modeled with the averaging road model. The two
upper plots show the parameters ¢; and ¢ of the real road, the bottom plot shows the real and the
modeled roads in a Cartesian coordinate frame.

A problem appears when two or more clothoid segments, with different pa-
rameters ¢ and ci, are observed in the same camera view. The parameter ¢y will
change continuously during driving, whereas ¢ will be constant in each segment
and change stepwise at the segment transition. This leads to a dirac impulse in ¢;
at the transition. The problem can be solved by assuming a high process noise w,,
in (17), but this leads to less precise estimates of the state variables when no segment
transitions occur in the camera view. To solve this problem an averaging curvature
model was proposed by Dickmanns (1988), which is perhaps best described with an
example. Assume that the ego vehicle is driving on a straight road (i.e., co = c¢; = 0)
and that the look ahead distance of the camera is X.. A new segment begins at the
position X, < %X., which means that there is a step in c¢j, and cg is ramped up, see
Fig. 3. The penetration into the next segment is /. = X — x... The idea of this model,
referred to as averaging or spread-out dynamic curvature model, with the new state
variables cq,, and cy,,, is that it generates the true lateral offset y(x.) at the look
ahead distance X, i.e.,

Yreal (Xc) = Ymodel (>_<C)a (19)

but it is continuously spread out in the range (0,%.). The lateral offset of the real
road as a function of the penetration /., for 0 <[, <X, is
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Cl 3
Yreal(lc) = glca (20)
since the first segment is straight. The lateral offset of the averaging model as a
function of the penetration /. is

com(l cim(l
Ymodel(lC) = Omz( C) >_(§+ lmé( C)>_<

2, Q1)

at the look ahead distance X.. The equation

2 i}
Cl )‘(% = 3cOm(lc) +C1m(lc)xw (22)
is obtained by inserting (20) and (21) into (19). By differentiating (22) with respect
to /. and using the relations fi—i‘. =0, ‘l‘%(h) = ¢im(l.) and dd(T() = % . j—;ﬂ the

following equation is obtained
v
cim=3—(c1(le/%)* = cim), (23)
C

for I, < %.. Since (I./%)? is unknown it is usually set to 1 (Dickmanns 2007), which
finally yields
v
Cim = 3?(61 _Clm)o 24)
Xe

The state variable vector of the averaging model is defined as

Com curvature at the ego vehicle
m= |ci,| = averaged curvature derivative , (25)
cl ¢ derivative of the foremost segment

and the process model is given by augmenting the simple clothoid model (17)
with (24) according to

Com 0 v 0 Com 0
cim| = 03232 |ew|+| 0| (26)
al oo o lal |w

The model is driven by the process noise w,,, which also influences the other states.
The averaging model is well described in the recent textbook Dickmanns (2007) and
some early results using the model are presented by e.g., Dickmanns & Mysliwetz
(1992).
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4.2 Mapping of the Road Lanes

The problem of mapping road lanes or lane estimation as it is often called, is a curve
estimation problem. The task is to obtain the best possible estimate of the curve de-
scribing the lane by exploiting the measurements provided by the onboard sensors.
The most important sensor type here is exteroceptive sensors, such as for example
cameras and lasers. Currently the camera is the most commonly used sensor for the
lane estimation problem and in this section we will show how camera images can
be used to obtain lane estimates.

The lane estimation problem is by no means a new problem, it has been studied
for more than 25 years, see e.g., Waxman et al. (1987), Dickmanns & Mysliwetz
(1992) for some early work and Wang et al. (2008) for more recent contributions. A
complete overview of what has been done on this problem is available in the survey
paper McCall & Trivedi (2006). In this section the problem is broken down into its
constituents and one way of solving the lane estimation problem when a camera is
used as a sensor is shown.

The lane estimation problem can be separated into two subproblems, commonly
referred to as the lane detection problem and the lane tracking problem. As the name
reveals, the lane detection problem deals with detecting lanes in an image. The lane
tracking problem then makes use of the detected lanes together with information
about the temporal and the spatial dependencies over time in order to compute lane
estimates. These dependencies are mathematically described using a road model.
Traditionally, lane tracking is done using an extended Kalman filter, see e.g., Dick-
manns & Mysliwetz (1992), Guiducci (1999). There are also interesting approaches
based on the particle filter by Gordon et al. (1993) available, see e.g., Zhou et al.
(2006), Wang et al. (2008), Kim (2008).

The lane is here modeled in the image plane (cf. Section 3.2) as a linear function
close to the ego vehicle and as a quadratic function far away, i.e.,

a-+b(v—vg vV > Vg
lg(v) = ( ) ) (27a)
a+b(v—vg)+c(v—vs)* v<vg,

where vy denotes the (known) vertical separation in pixels between the linear and
the quadratic model (illustrated by the horizontal line in Fig. 4) and subindex 6 is
used to denote the dependence on the parameters

0=1[abc]", (27b)

which are to be estimates. These parameters all have geometrical interpretations in
terms of offset (a), local orientation (b) and curvature (c) of the lane in the image
plane. The lane estimates (here, the estimates of the parameters 6 in (27)) carry
important information about the states in the road model introduced in Section 4.1,
which are expressed in world coordinates (in contrast to pixel coordinates u, v).
These road model states are typically what we are interested in and we will return
to this important connection at the end of this section.
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Given the fact that the problem of lane detection has been studied for more than
25 year there are many ideas on how to solve this problem available. Rather than
trying to give a complete account of all the different methods available, we will here
be very specific and explain one way in which lanes can be detected and show some
results on real sequences. The solution presented here is very much along the lines
of Jung & Kelber (2005), Lee (2002).

The initial lane detection is performed using a linear lane model, which is found
from the image using a combination of the edge distribution function (EDF) (Lee
2002) and the Hough transform (Hough 1962, Duda & Hart 1972). The EDF is
defined as the gradient orientation

D
¢(u,v) = arctan (“) , (28)
D,
where D, and D, are approximations of the gradient function
T T
VI(u,v) = [4L 9"~ [D, D,] (29)

for the gray scale image /(u,v). The two largest peaks (&', &) of ¢(u,v) provide
the most probable orientations of the lanes in the image. This is used to form an
edge image g(u,v) as

oy = [TV 1D 1D, o) =0 < T or [plu) ~ar| < T
’ 0, otherwise

(30)

where Ty, is a threshold, here Ty, = 2°. Applying the Hough transform to the edge
image g(u,v) provides two initial linear models 1(v) = a + bv, one for the left lane
markings and one for the right lane markings. These models are used to form a
region which will serve as the search region in the subsequent image. This region,
which we refer to as the lane boundary region of interest (LBROI) is simply defined
by extending the linear model w pixels to the right and w pixels to the left (here
w=10).

Given that an initial LBROI is found, the task is now to make use of this infor-
mation in order to compute estimates of the parameters in the lane model (27),

o=[0)" (077", where @' =[dp " o'=[ap el G

where superscript 1 and r have been used to indicate the left lane marking and the
right lane marking, respectively. Estimates of these parameters 6 are obtained by
solving a constrained weighted least squares problem for each image. The cost func-
tion is given by

N
V(0) = Y (M)} =11 (VD) + (M (0 —lor(v]))?) (32)
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where N denotes the number of relevant pixels in the lateral u direction, 1 denotes
the lane model given in (27) and M; denotes the magnitude in the thresholded edge-
image g2(u,v), M; = g2(u;,v;), defined as

> 1y
gg(u,v) _ g(u,v), g(u,v) = 7 Mmean (33)
0, otherwise

where Miean denotes the mean magnitude of the g(u,v).

Constraints are introduced in order to account for the fact that the right lane and
the left lane are related to each other. This is modelled according to the following
linear (in 0) inequality constraint

a —a' + (b" — b)) (vi —vim) + (" — ") (v —vm)? < 8, (34)

which states that the left and the right lanes cannot be more than § pixels apart
furthest away (at vi) from the host vehicle. In other words, (34) encodes the fact
that the left and the right lanes must have similar geometry in the sense that the
quadratic parts in (27) are strongly related.

From (32)—(34) it is now clear that lane estimation boils down to a curve estima-
tion problem, which here is quadratic in the unknown parameters 6. More specifi-
cally, inserting the lane model (27) into the cost function (32) and writing the prob-
lem on matrix form results in a constrained weighted least squares problem on the
form

1T T
min 50'HO 0
eln2 +f

(35

s.t. LO < 6.
This is a quadratic program (QP) implying that a global minimum will be found and
there are very efficient solvers available for this type of problems. Here, we have
made use of a dual active set method' according to Gill et al. (1991). An illustration
of the lane estimation results is provided in Fig. 4. The estimate of 0 is then used to
form the LBROI for the new image, simply as region defined by lg(v) = w for each
lane.

The lane estimates that are now obtained as the solution to (35) can be expressed
in world coordinates, seen from the ego vehicle, using geometrical transformation
along the lines of what has already been described in Section 3. These transforma-
tion are discussed in detail in Guiducci (2000). Once the lane estimates are available
in the world coordinates they can be used as camera measurements in a sensor fusion
framework to make a very important contribution to the estimate of map variables
m (i.e., (15) or (24)) in the road model (perhaps most importantly the curvature cg
and the curvature derivative cp) as it is derived in Section 4.1.

! The QP code was provided by Dr. Adrian Wills at the University of Newcastle, Australia, see
http://sigpromu.org/quadprog. This code implements the method described by Goldfarb & Idnani
(1983), Powell (1985).
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(b

Fig. 4 Lane estimation results (in red) overlayed onto the camera image. From this figure the
lane model (27) is clearly illustrated, the model is linear for v > v, and quadratic for v < v;. The
method assumes that the road surface is flat and when this assumption is true the results are good,
see Fig. (a). However, when this assumption does not hold the estimates are not that good on a
longer horizon, see Fig. (b).

4.3 Mapping of the Road Edges

Feature based measurements of landmarks along the road may be used to map the
road edges. This section describes a method to track line shaped objects, such as
guardrails using point measurements from radar, laser or extracted camera features.
Tracking point objects, was covered in Section 3 and is not repeated here. The line
shaped and curved guardrails are described using the polynomial road model (18)
and tracked as extended targets in a Cartesian frame. However, to allow a more
general treatment of the problem in this section the extended targets are modeled
using n'M order polynomials given as

y =dag+aix+ax’> + ...+ ax", (36)

in the range [Xgar, Xena) Where m, £ [ag a1 ~~~a,,]T are the polynomial coefficients
and [x y]T are planar Cartesian coordinates. Note that the coordinate y is a func-
tion of x and that the direction of the coordinate frame is chosen dependent on the
application in mind. The state vector of a map object j is defined as
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Dalmi s x|
J) A T
m = [(ma) Xstart Xend} : (37

The map M is modeled by a set of such polynomial shapes according to (1).
Suppose the 2-dimensional noisy feature based sensor measurements are given
in batches of Cartesian x and y coordinates as follows

[ . . Nz,k
{Z,@ 2 [xl0) y(l)]l}i-l’ 38)
for discrete time instants k = 1,..., K. In many cases in reality (e.g., radar, laser and
stereo vision cf. (5)) and in the practical application considered in this section, the
sensor provides range r and azimuth angle y given as,

() 8 1(0) 4077
{Zk 2 [0 "’(’)]k}i:r (39)
In such a case some suitable standard polar to Cartesian conversion algorithm is
used to convert these measurements into the form (38).
The state model considered in this section is described, in general, by the state
space equations

my = f(myg,ug) + w, (40a)
Yk = h(my,u;) + e, (40b)

where m, u and y denote the state, the input signal, and the output signal, while
w ~ A4(0,0) and e ~ .4(0,R) are the process and measurement noise, respec-
tively. The use of an input signal u is important in this framework. For the sake
of simplicity, the tracked objects are assumed stationary, resulting in very simple
motion models (40a).

A polynomial is generally difficult to handle in a filter, since the noisy measure-
ments are distributed arbitrarily along the polynomial. In this respect, the measure-
ment models considered contain parts of the actual measurement vector as param-
eters. The methodology takes into account the errors caused by using the actual
noisy measurements as model parameters. This scheme is an example of the so
called “errors-in-variables” (EIV) framework, see e.g., Soderstrdom (2007), Diversi
et al. (2005), Bjorck (1996).

The general convention in modeling is to make the definitions

(1>

y2z, u=0, (41)
where ( denotes the empty set meaning that there is no input. Notice that the sub-
scripts k, specifying the time stamps of the quantities, is omitted for the sake of
simplicity, In this setting, it is extremely difficult, if not impossible, to find a mea-
surement model connecting the outputs y to the states m, in the form of (40b).
Therefore, other selections for y and u, need to be used. Here, the selection
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Y2y, uZx (42)

is made. Although being quite a simple selection, this choice results in a rather
convenient linear measurement model in the state partition m,,

y = Hy(u)m, +e, (43)

where H,(u) = [1 X X2 oo x"]T. It is the selection in (42) rather than (41) that al-
lows to use the standard methods in target tracking with clever modifications. Such
a selection as (42) is also in accordance with the EIV representations where mea-
surement noise are present in both the outputs and inputs, i.e.,, the observation z can
be partitioned according to

- N . (44)

y

The measurement vector given in (38) is expressed in terms of a noise free variable
zy which is corrupted by additive measurement noise Z according to

z=1z0+%, 7~ N(0,X), (45)

where the covariance X can be decomposed as

5 %
S

Note that, in the case the sensor provides measurements only in polar coordinates
(39), one has to convert both the measurement Z and the measurement noise covari-
ance

L, = diag(c7,03) (47)

into Cartesian coordinates. This is a rather standard procedure. Note that, in such a
case, the resulting Cartesian measurement covariance X is, in general, not neces-
sarily diagonal and hence X,y of (46) might be non-zero.

Since the model (43) is linear, the Kalman filter measurement update formulas
can be used to incorporate the information in z into the extended source state m,.
An important question in this regard is what would be the measurement covariance
of the measurement noise term e in (43).

Neglecting the errors in the model parameters H,(u) can cause overconfidence
in the estimates of recursive filters and can actually make data association difficult
in tracking applications (by causing too small gates). A simple methodology is used
to take the uncertainties in H,(u) into account in line with the EIV framework.
Assuming that the elements of the noise free quantity z satisfy the polynomial
equation exactly according to

y—§ = Hu(u—@)m,, (482)
Y=g = [1 X=X (=% -+ (x—)"] ma, (480
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which can be approximated using a first order Taylor expansion resulting in

y ~ H,(u)m, — H,(u)xm, +§ (49a)
=H, (u)ma + ila (mavu) |:§:| ) (49b)
with
H,(u) = [1 xx% - x"] , (49¢)
Hy(w)=[012x - nx""1], (49d)
ho(mg,u) = [—al —2apX — - -+ — nayx"1 1} ) (49e)

Hence, the noise term e of (43) is given by

Xt

] (50)

e= y—ﬁaima = ~(ma,u) [

<t

and its covariance is given by

L, =E(ee") = L, + m,H,I,H'm} — 2H,%,,

a

= h(mg,u)ZA" (mg,u). (51)

Note that the EIV covariance X, depends on the state variable m,, which is substi-
tuted by its last estimate in recursive estimation.

Up to this point, only the relation of the observation z to the state component m,
has been considered. It remains to discuss the relation between the observation and
the start xgar¢ and the end points xenq of the polynomial. The measurement informa-
tion must only be used to update these components of the state if the new observa-
tions of the extended source lie outside the range of the polynomial. The following
(measurement dependent) measurement matrix can be defined for this purpose:

10| if X < Xgarepf—1
Hye = 01 if x > Xend, k|k—1 (52)

00| otherwise.

The complete measurement model of an extended object can now be summarized
by

z=Hm+e, e~ .4 (0,R(m)), (53a)
with
01><n Hve
H= {Ha o'*z]’ (53b)

R(m) = blkdiag(Z,, Z,(m)). (53¢)
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Put in words, if the x-component of a new measurement is closer to the sensor than
the start point of the line Xguqy it is considered in the measurement equation (52)
and can used to update this state variable. Analogously, if a new measurement is
more distant than the end point of the line x.pq it is considered in (52). Further, if
a measurements is in between the start and end point of the line, the measurement
model is zero in (52) and there is no relation between this measurement and the state
variables Xggart OF Xepg.

Any model as e.g., the standard constant velocity or the coordinated turn model
may be used for the targets. For simplicity it is assumed that the targets are stationary
in this contribution, thus the process model on the form (40a) is linear and may be
written

my | = Fmy + wy. 54)

To increase the flexibility of the extended object an assumption about the dynamic
behavior of its size is made. The size of the extended object is modeled to shrink
with a factor 0.9 < A < 1 according to

Xstart,k+1 = Xstart,k T A (Xend,k - Xstart,k)a (55a)
Xend,k+1 = Xend,k — A (Xend,k - Xstart,k)a (55b)
leading to the following process model for the polynomial

Irz><n 0n><2

1-12 4 |. (56)
A 1-2

F= 02><n

This shrinking behavior for the polynomials allows for automatic adjustment of the
start and end points of the polynomials according to the incoming measurements.

The association of measurements to state estimates is treated in Lundquist,
Orguner & Gustafsson (2011), where a generalized nearest neighbor method is ap-
plied.

The section is concluded with some results based on the information given by an
ordinary automotive ACC radar, for the traffic situation shown in Fig. 5a. The ego
vehicle, indicated by a green circle, is situated at the (0,0)-position in Fig. 5b, and
the red dots are the radar reflections, or stationary observations, at one time sample.
The smaller magenta colored dots are former radar reflections, obtained at earlier
time samples. Fig. 5S¢ shows the estimated points and lines for the same scenario us-
ing the KF EIV method presented in this contribution. The mean values of the states
are indicated by solid black lines or blue points. Furthermore, the state variance, by
means of the 90% confidence interval, is illustrated by gray lines or cyan colored
ellipses, respectively. The estimate of the lane markings (18), illustrated by the gray
dashed lines and derived according to the method presented in Lundquist & Schon
(2010), is shown here as a comparison. Tracked vehicle in front of the ego vehicle
are illustrated by blue squares.
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Fig. 5 A traffic situation is shown in Fig. (a). Fig. (b) shows the radar measurements, and Fig. (c)
the resulting tracked points and lines. The circle in the origin is the ego vehicle, the square is the
tracked vehicle in front and the dashed gray lines illustrate the tracked road curvature.

5 Occupancy Grid Map

An occupancy grid map is defined over a continuous space and it can be discretized
with, e.g., a grid approximation. The size of the map can be reduced to a certain area
surrounding the ego vehicle. In order to keep a constant map size while the vehicle
is moving, some parts of the map are thrown away and new parts are initiated. Oc-
cupancy grid mapping (OGM) is one method for tackling the problem of generating
consistent maps from noisy and uncertain data under the assumption that the ego
vehicle pose, i.e., position and heading, is known. These maps are very popular in
the robotics community, especially for all sorts of autonomous vehicles equipped
with laser scanners. Indeed several of the DARPA urban challenge vehicles used
OGM’s, see Buehler et al. (2008). This is because they are easy to acquire, and they
capture important information for navigation. The OGM was introduced by Elfes
(1987) and an early introduction is given by Moravec (1988). To the best of the
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author’s knowledge Borenstein & Koren (1991) were the first to utilize OGM for
collision avoidance. Examples of OGM in automotive applications are given in Vu
et al. (2007). A solid treatment can be found in the recent textbook by Thrun et al.
(2005).

This section begins with a brief introduction to occupancy grid maps, according
to Thrun et al. (2005). Using this theory and a sensor with high resolution usually
gives a nice looking bird eye’s view map. However, since a standard automotive
radar is used, producing only a few range and bearing measurements at every time
sample, some modifications are introduced as described in the following sections.

5.1 Background

The planar map M is defined in the world coordinate frame W and is represented by
a matrix. An occupancy grid map is partitioned into finitely many grid cells

M = {m") }7g1. (57)
The probability of a cell being occupied p(m(f)) is specified by a number ranging
from 1 for occupied to 0 for free. The notation p(m(/)) will be used to refer to the
probability that a grid cell is occupied. A disadvantage with this design is that it
does not allow for dependencies between neighboring cells.

The occupancy grid map was originally developed to primarily be used with mea-
surements from a laser scanner. A laser is often mounted on a rotating shaft and it
generates a range measurement for every angular step of the mechanical shaft, i.e. a
bearing angle. This means that the continuously rotating shaft produces many range
and bearing measurements during every cycle. The OGM algorithms transform the
polar coordinates of the measurements into Cartesian coordinates in a fixed world
or map frame. After completing one mechanical measurement cycle the sensor pro-
vides the measurements for use.

The algorithm loops through all cells and increases the occupancy probability

p(mU)) if the cell was occupied according to the measurement z,(:). Otherwise the
occupancy value either remains unchanged or is decreased, depending on if the
range to the cell is greater or less than the measured range. The latter implies that
the laser beam did pass this cell without observing any obstacles. If the measured
range is too large or the cell size is too small, it might be necessary to consider the
angular spread of the laser beam and increase or decrease the occupancy probability
of several cells with respect to the beam width.

The map is assumed to be static, i.e., it does not change during sensing. In this
section the map estimation problems is solved with a binary Bayes filter, of which
OGM is one example. In this case the estimation problem is solved with the binary
Bayes filter, of which OGM is one example. the state can either be free m(/) =
0 or occupied m) = 1. A standard technique to avoid numerical instabilities for
probabilities close to 0 and to avoid truncation problems close to 0 and 1 is to use
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the log odds representation of occupancy

p(m|Zy 4 Xg 14)
1—p(mW)|Zy4,Xg 1)

L =log (58)

or put in words, the odds of a state is defined as the ratio of the probability
of this event p(m<1)|Z1;k,xE71;k) divided by the probability of its complement
1— p(m(j) |Z1.k,Xg,1:1). The probabilities are easily recovered using

1

- 59
1+explx %)

p(mY|Zyy xg 1) = 1

Note that the filter uses the inverse measurement model p(m|z,x). Using Bayes’
rule it can be shown that the binary Bayes filter in log odds form is

() ()
p(m |Zk, XEk) log p(m )A ’ (60)
1 — p(m)|Z,xg 1) 1 — p(m0))

Ui ={jp—1+1og

where p(m“ )) represents the prior probability. The log odds ratio of the prior before
processing any measurements is defined as

- p(m(/’))
fjvo—logm. (61)

Typically p(mU)) = 0.5 is assumed, since before having measurements nothing is
known about the surrounding environment. This value yields £y = 0.

5.2 OGM with Radar Measurements

The radar system provides range and bearing measurements for observed targets
at every measurement cycle. The main difference to a laser is that there is not one
range measurement for every angular position of the moving sensor. The number of
observations depends on the environment. In general there are much fever observa-
tions compared to a laser sensor. There is also a limit (usually around 32 — 64) on the
number of objects transmitted by the radar equipment on the CAN-bus, and a pro-
prietary selection is perform in the radar. Moving objects, which are distinguished
by measurements of the Doppler shift, are prioritized and more likely to be transmit-
ted than stationary objects. Furthermore, it is assumed that the opening angle of the
radar beam is small compared to the grid cell size. With these the OGM algorithm
is changed to loop through the measurements instead of the cells, in order to de-
crease the computational load. A radar’s angular uncertainty is usually larger than
its range uncertainty. When transforming the polar coordinates of the radar mea-
surements into the Cartesian coordinates of the map, the uncertainties can either be
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transformed in the same manner or it can simply be assumed that the uncertainty
increases with the range.

5.3 Experiments and Results

Fig. 6a shows an OGM example of a highway situation. The ego vehicle’s camera
view is shown in Fig. 6¢. The size of the OGM is 401 x 401 m, with the ego vehi-
cle in the middle cell. Each cell represents a 1x1 m square. The gray-level in the
occupancy map indicates the probability of occupancy p(M|Z.,Xg 1), the darker
the grid cell, the more likely it is to be occupied. The map shows all major struc-
tural elements as they are visible at the height of the radar. This is a problem if the
road is undulated and especially if the radar observes obstacles over and behind the
guardrail. In this case the occupancy probability of a cell might be decreased even
though it was previously believed to be occupied, since the cell is between the ego
vehicle and the new observation. The impact of this problem can be reduced by
tuning the filter well.

It is clearly visible in Fig. 6a that the left border is sharper than the right. The
only obstacle on the left side is the guardrail, which gives rise to the sharp edge,
whereas on the right side there are several obstacles behind the guardrail, which also
cause reflections, e.g., noise barrier and vegetation. A closer look in Fig. 6b reveals
that there is no black line of occupied cells representing the guardrail as expected.
Instead there is a region with mixed probability of occupancy and after about 5 m
the gray region with initial valued cells tell us that nothing is known about these
cells.

6 Intensity Based Map

The bin-occupancy filter, which is described in Erdinc et al. (2009), aims at esti-
mating the probability of a target being in a given point. The approach is derived
via a discretized state-space model of the surveillance region, where each grid cell
(denoted bin in this approach) can or may not contain a target. One of the important
assumptions is that the bins are sufficiently small so that each bin is occupied by
maximum one target. In the limiting case, when the volume of the bins |v| tends to
zero, it is possible to define the bin-occupancy density

) (62)

where Pr(m,ij ) = 1|Z1.) is the probability that bin j is occupied by one target. The

continuous form of the bin-occupancy filter prediction and update equations are
the same as the probability hypothesis density (PHD) filter equations (Erdinc et al.
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Fig. 6 The filled circle at position (201,201) in the occupancy grid map in Fig. (a) is the ego
vehicle, the + are the radar observations obtained at this time sample, the black squares are the
two leading vehicles that are currently tracked. Fig. (b) shows a zoom of the OGM in front of the
ego vehicle. The gray-level in the figure indicates the probability of occupancy, the darker the grid
cell, the more likely it is to be occupied. The shape of the road is given as solid and dashed lines,
calculated as described in Section 4. The camera view from the ego vehicle is shown in Fig. (c), the
concrete walls, the guardrail and the pillar of the bridge are interesting landmarks. Furthermore,
the two tracked leading vehicles are clearly visible in the right lane.
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2009). Furthermore, the PHD is the first moment density or intensity density in
point process theory, see e.g., Mahler (2007), and a physical interpretation is given
in Daley & Vere-Jones (2003) as the probability that one target is located in the
infinitesimal region (x,X + dx) of the state space, divided by dx. The continuous
form of the physical bin model leads us to a continuous location based map which
we denote intensity-based map, and intend to estimate with the PHD filter.

The bin occupancy filter or the PHD filter was developed for target tracking of
point sources, however the aim in this section is to create a probabilistic location
based map of the surroundings of a moving vehicle. One of the main differences
between standard target tracking problems and the building of a location based map,
is that many objects such as, guardrails or walls, are typically not point targets, but
extended targets (Mahler 2007, Gilholm & Salmond 2005). Furthermore, there is no
interest in estimating the number of objects in the map, and there is also no interest
in keeping track of specific objects. Nevertheless, the bin-occupancy filter attempts
to answer the important question: “’Is there an object (target) at a given point?”.
Erdinc et al. (2009) poses the following assumptions for the bin occupancy filter:

. The bins are sufficiently small so that each bin is occupied by at most one target.
. One target gives rise to only one measurement.

. Each target generates measurements independently.

. False alarms are independent of target originated measurements.

. False alarms are Poisson distributed.

S R S

Here, only point 2 needs some extra treatment if the aim of the algorithm is mapping
and not target tracking. It can be argued that the measurements of point sources
belongs to extended objects and that the aim is to create a map of those point sources.
Also for mapping purposes, the assumption that there will not be two measurements
from the same point at the same time is justified. The relation described is modeled
by a likelihood function p(Zi|My), which maps the Cartesian map to polar point
measurements.

So far in this section the discussion has been quite general and the PHD or the
intensity has only been considered as a surface over the surveillance region. The first
practical algorithms to realize the PHD filter prediction and measurement update
equations were based on the particle filter, see e.g., Vo et al. (2003), Sidenbladh
(2003), where the PHD is approximated by a large set of random samples (particles).
A Gaussian mixture approximation of the PHD (GM-PHD) was proposed by Vo &
Ma (2006). The mixture is represented by a sum of weighted Gaussian components
and in particular the mean and covariance of those components are propagated by
the Kalman filter. In this work we represent the intensity by a Gaussian mixture,
since the parametrization and derivation is simpler than for a particle filter based
solution. The modeling of the intensity through a number of Gaussian components
also makes it simpler to account for structures in the map. We will return to these
structures in the next two sections.

The GM-PHD filter estimates the posterior intensity, denoted Dy, as a mixture
of Gaussian densities as,
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l l ]
Dy = Zwk|k'/V (mk\k’Pk\k)’ (63)
i=1

where Ji; is the number of Gaussian components and Wl(<l|3<

point sources covered by the density .4 (m,({"i,Pk(ll )>. In Lundquist, Hammarstrand
& Gustafsson (2011) it is shown how the intensity is estimated with the GM-PHD
filter. The Gaussian components are parametrized by a mean m]((l&( and a covariance

Pk(ll 2, which are expressed in a planar Cartesian coordinate frame, according to

is the expected number of

m) = {X/(f) ylg)r, (64)

The aim of the mapping algorithm is to estimate the posterior density (3). The
considered intensity based map is continuous over the surveillance region, thus, for
the number of elements in (1) it holds that N,, — oo. Furthermore, the intensity is a
summary statistic of the map according to

P(M|Z 1) ~ p(My; Dygp), (65)

see e.g., Mahler (2003), and the estimated intensity Dy is parametrized by
w2 L P (66)

of the Gaussian sum (63). The intensity based map is a multimodal surface with
peaks around areas with many sensor reflections or point sources. It is worth ob-
serving that the map M is described by a location based function (63), with feature
based parametrization (66).

Experiments were conducted with a prototype passenger car. One example of the
estimated intensity at a freeway traffic scenario is shown as a bird’s eye view in
Fig. 7b. Darker regions illustrate higher concentrations of point sources, which in
this figure stem from the guardrails to the left and the right of the road. As expected,
the path of the ego vehicle, indicated by the black dots, is in between the two regions
of higher object concentration. The driver’s view is shown in Fig. 7a.

A second example is shown in Fig. 7c and 7d. Here, the freeway exit is clearly
visible in the intensity map, which shows that the proposed method to create maps
is very conformable.

The Gaussian components are generally removed from the filter when the vehi-
cle passed those parts of the map. However, to give a more comprehensive overview,
these components are stored and the resulting intensity based map is shown together
with an occupancy grid map (OGM) and a flight photo in Fig. 8. The top figure is
the map produced as described in this section. The OGM, described in the precious
Section 5, is based on the same data set and used as a comparison. The gray-level of
the OGM indicates the probability of occupancy, the darker the grid cell the more
likely it is to be occupied. As seen in the figure the road edges are not modeled as
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Fig. 7 The image in (a) shows the driver’s view of the intensity map in (b), and the image in (d) is
the driver’s view of the intensity map in (c). The darker the areas in the intensity map, the higher
the concentration of objects. The drivers path is illustrated with black dots and may be used as a
reference. Note that snap shot in (c) and (d) is obtained only some meters after the situation shown
in Fig. 1.
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Fig. 8 The top figure shows the intensity based map obtained from radar measurements collected
on a freeway. The OGM in the middle figure serves as a comparison of an existing algorithm. The
bottom figure is a flight photo used as ground truth, where the driven trajectory is illustrated with
a dashed line ((©Lantmiteriet Givle 2010. Medgivande 1 2011/0100. Reprinted with permission).
Note that the drivers view at 295 meter is shown in Fig. 7d, and about the same position is also
shown in Fig. 1 and Fig. 5.

distinct with the OGM. The OGM representation of the map is not very efficient,
since huge parts of the map are gray indicating that nothing is known about these
areas. An OGM matrix with often more than 10000 elements must be updated and
communicated to other safety functions of a car at each time step. The compact
representation is an advantage of the intensity based map. Each Gaussian compo-
nents is parametrized with 7 scalar values according to (66). Since most maps are
modeled with 10 — 30 components it summarizes to around 70 — 210 scalar values,
which easily can be sent on the vehicles CAN bus to other safety functions. Finally,
the bottom photo is a very accurate flight photo (obtained from the Swedish map-
ping, cadastral and land registration authority), which can be used as ground truth
to visualize the quality of the intensity based map.

7 Conclusion

The use of radar, laser and camera for situation awareness is gaining popularity in
automotive safety applications. In this chapter it has been shown how sensor data
perceived from the ego vehicle is used to estimate a map describing the local sur-
roundings of a vehicle. The map may be modeled in various different ways, of which
four major approaches have been described. In a feature based map each element of
the map specifies the properties and location of one object. This can either be a point
source in the space; or it can be an extended object such as the position and shape of
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the lane or the road edges. Furthermore, in a location based map the index of each
element corresponds to a location and the value of the map element describes the
property in that position. One example is the occupancy grid map, which is defined
over a continuous space but discretized with a grid approximation. Another exam-
ple is the intensity based map, which is a continuous approximation, describing the
density of objects in the map. The four approaches presented in this chapter have all
been evaluated on real data from both freeways and rural roads in Sweden.

The current accuracy of GPS receivers is acceptable only for route guidance,
where the provided global position is sufficient. For automotive active safety sys-
tems, the local position of the ego vehicle with respect to its surroundings is more
important. The estimated maps, described in this chapter, can be used to increase
the localization accuracy of the ego vehicle. Furthermore, the maps may be used to
derive a collision free trajectory for the vehicle.
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