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Abstract

We provide a sensor fusion framework for solving the problem of joint ego-motion and road geometry estimation.
More specifically we employ a sensor fusion framework to make systematic use of the measurements from a forward
looking radar and camera, steering wheel angle sensor, wheel speed sensors and inertial sensors to compute good
estimates of the road geometry and the motion of the ego vehicle on this road. In order to solve this problem we derive
dynamical models for the ego vehicle, the road and the leading vehicles. The main difference to existing approaches
is that we make use of a new dynamic model for the road. An extended Kalman filter is used to fuse data and to
filter measurements from the camera in order to improve the road geometry estimate. The proposed solution has been
tested and compared to existing algorithms for this problem, using measurements from authentic traffic environments
on public roads in Sweden. The results clearly indicate that the proposed method provides better estimates.
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1. Introduction

We are in this paper concerned with the problem of in-
tegrated ego-motion and road geometry estimation us-
ing information from several sensors. The sensors used
to this end are a forward looking camera and radar, to-
gether with inertial sensors, a steering wheel sensor and
wheel speed sensors. The solution is obtained by cast-
ing the problem within an existing sensor fusion frame-
work. An important part of this solution is the nonlin-
ear state-space model. The state-space model contains
the dynamics of the ego vehicle, the road geometry, the
leading vehicles and the measurement relations. It can
then be written in the form

xk+1 = f (xk,uk) + wk, (1a)
yk = h(xk,uk) + ek, (1b)

where xk ∈ Rnx denotes the state vector, uk ∈ Rnu de-
notes the input signals, yk ∈ Rny denotes the measure-
ments, wk ∈ Rnw and ek ∈ Rne denote the process and
measurement noise, respectively. The process model
equations, describing the evolution of the state over time
are denoted by f : Rnx × Rnu → Rnx . Furthermore, the
measurement model describing how the measurements
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from the vision system, the radar and the inertial sen-
sors relate to the state is given by h : Rnx × Rnu → Rny .
When we have a model in the form (1) we have trans-
formed the problem into a standard nonlinear state esti-
mation problem, where the task is to compute estimates
of the state based on the information in the measure-
ments. There are many different ways of solving this
problem and we will in this work make use of the pop-
ular Extended Kalman Filter (EKF), described in e.g.,
[1, 2, 3].

The problem studied in this paper is by no means new,
it is the proposed solution that is new. For some early,
still very interesting and relevant work on this problem
we refer to [4, 5]. From the camera we can produce es-
timates of the road geometry based on measurements of
the lane markings. This problem is by now rather ma-
ture, see e.g., the survey [6] and the recent book [7] for
solid accounts. The next step in the development was
to make use of the radar information as well. Using
radar measurements we can track the leading vehicles,
that is, we can estimate the position and velocity of the
leading vehicles. Under the assumption that the lead-
ing vehicles drive on the same road as the ego vehicle,
their positions contain valuable information about the
road geometry. This idea was introduced by [8, 9, 10]
and has been further refined in [11, 12]. The combina-
tion of radar and vision as well as the advantages and
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disadvantages of these sensors are discussed in [13, 14].
Furthermore, the ego vehicle model in [13, 14] is com-
parable with the one used in the present work. The four
wheel speeds are used to estimate the path of the ego ve-
hicle, which unlike the present work is separated from
the leading vehicles dynamics and the lane estimate.

The leading vehicles are used to improve the road ge-
ometry in the present work; however the opposite is also
possible as the recent work [15, 16] shows, where the
vehicle detection algorithm benefits from the lane in-
formation. Vision and radar are used in [15], whereas
vision and lidar are used in [16]. In [17] lidar is used
to detect the leading vehicle, and the movement of the
leading vehicle is then used to estimate the lane and the
driven path, which in turn is used to autonomously fol-
low this vehicle. This works well even for curved and
narrow roads. Unmarked and winding rural roads may
be hard to detect, recent research in this area is pre-
sented in [18], where stereo vision and image radar are
used within a marginalized particle filter to obtain 3D
information and improve the task of lane recognition.
Information obtained from road-side structures may be
used to improve the estimate of the lane shape and
the position of the vehicle within the lane, as showed
in [19], where only a monocular camera is used. Fur-
thermore, at construction sites it is hard to identify the
temporary lanes, a method for this using color images
and beacon extraction is presented in [20]. In [21] the
authors present an algorithm for free space estimation,
capable of handling non-planar roads, using a stereo
camera system.

Lane tracking has also been tackled using radar sen-
sors, see e.g., [22, 23, 24, 25] and laser sensors, see
e.g. [26]. There have been several approaches mak-
ing use of reflections from the road boundary, such as
crash barriers and reflection posts, to compute informa-
tion about the free space, see e.g. [27, 28, 29] for some
examples using laser scanners and [30], where radar is
used.

To summarize, our approach is able to improve the
performance by making use of a dynamic model of the
ego vehicle and a new dynamic model of the road at the
same time as we make use of the motion of the leading
vehicles. The new road process model describes the cur-
vature of the ego vehicle’s currently driven path. This
should be compared with existing road models, used in
most of the publications mentioned above, where the
road’s curvature is modeled according to road construc-
tion standards. The advantage of our new road model
is that we are able to directly include information of the
ego vehicles motion into the estimate of the road geom-
etry.

In the subsequent section we provide a brief introduc-
tion to the sensor fusion framework we work with and
explain how the present problem fits into this frame-
work. An essential part of this framework is the dy-
namical model (1a), which is derived in Section 3. Fur-
thermore, the corresponding measurement model (1b)
is introduced in Section 4. In Section 5 the proposed
solution is evaluated using measurements from real and
relevant traffic environments from public roads in Swe-
den. Finally, the conclusions are given in Section 6. For
convenience we provide a list of the relevant notation in
the appendix.

2. Sensor Fusion

In order to successfully solve the problem under study in
this work it is imperative to have a good understanding
of sensor fusion. Sensor fusion is defined as the process
of using information from several different sensors to
compute an estimate of the state of a dynamical system.

We need a dynamic model and a measurement model
in the form (1) in order to be able to produce an esti-
mate of the state. These models are derived in detail
in Section 3 and Section 4. However, for the sake of
the present discussion we will briefly discuss the model
here. The state vector xk consists of three parts accord-
ing to

xk =

xE,kxR,k
xT,k

 , (2)

where xE,k denotes the state of the ego vehicle, xR,k de-
notes the state of the road and xT,k denotes the state of
one leading vehicle (also referred to as a target). In de-
riving the evolution of these states over time we will
end up with continuous-time differential equations in
the form

ẋ(t) = g(x(t),u(t)). (3)

However, according to (1) we required the model to be
in discrete time. The simplest way of obtaining a dif-
ference equation from (3) is to make use of the standard
forward Euler method, which approximates (3) at time t
according to

x(t + T ) = x(t) + Tg(x(t),u(t)) , f (xt,ut), (4)

where T denotes the sample time. The measurement
model is of course already in discrete time.

The estimate of the state is computed by a state esti-
mator of some kind. This state estimator makes use of
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the measurements from the different sensors to produce
an estimate of the so called filtering probability density
function (pdf) p(xk |y1:k), where y1:k , {yi}

k
i=1 denotes all

the measurements from time 1 to time k. This density
function contains all there is to know about the state xk,
given the information in the measurements y1:k. Once an
approximation of p(xk |y1:k) is available it can be used to
form many different estimates and the most commonly
used estimate is the conditional mean estimate

x̂k|k = E(xk |y1:k). (5)

This estimate will be used in the present work as well.
Since we are looking for an algorithm capable of

working in real-time it is important to understand how
the filtering pdf evolves over time. Now, it is well-
known (see e.g., [31]) that a sequential solution can be
obtained according to

p(xk |y1:k) =
p(yk |xk)p(xk |y1:k−1)∫

p(yk |xk)p(xk |y1:k−1)dxk
, (6a)

p(xk+1|y1:k) =

∫
p(xk+1|xk)p(xk |y1:k)dxk. (6b)

Here, it is also worth mentioning that since we have as-
sumed additive noise in the model (1), we have explicit
expressions for p(xk+1|xk) and p(yk |xk) according to

p(xk+1|xk) = pwk (xk+1 − f (xk,uk)), (7a)
p(yk |xk) = pek (yk − h(xk,uk)), (7b)

where pwk ( · ) and pek ( · ) denote the pdf’s for the process
and the measurement noise, respectively.

In the special case, where the equations in the
model (1) are linear and the noise is Gaussian, the mul-
tidimensional integrals in (6) allows for an analytical
solution, the Kalman filter [32]. For a derivation of this
kind, see e.g., [33]. However, the problem is that for
the general nonlinear, non-Gaussian case that we are
facing, there does not exist any closed form solution
to (6). Hence, we are forced to make approximations
of some kind. The most commonly used approxima-
tion is provided by the extended Kalman filter (EKF).
The idea underlying the EKF is very simple, approxi-
mate the nonlinear model with a linear model subject to
Gaussian noise and apply the Kalman filter to this ap-
proximation. For a solid account of the EKF we refer
to [3, 34]. Lately the so called particle filter, introduced
in [35], has become increasingly popular. This filter of-
ten provides a better solution, but it typically requires
much more computational effort. For the present appli-
cation the EKF provides an approximation that is good
enough. For a more thorough account of the framework

for nonlinear estimation briefly introduced above we re-
fer to [33].

Before we end our brief overview on the sensor fu-
sion problem it is important to stress that a successful
sensor fusion framework will, besides the modeling and
filtering parts mentioned above, rely on a certain sur-
rounding infrastructure. This surrounding infrastructure
deals with issues such as time synchronization between
the various sensors, calibration, sensor-near signal pro-
cessing, track handling, etc. This part of the framework
should not be overlooked and a solid treatment of the
provided infrastructure is accounted for in [36] for the
problem at hand. Despite this it is worth mentioning
that the leading vehicles are incorporated into the esti-
mation problem using rather standard techniques from
target tracking, such as nearest neighbor data associa-
tion and track counters in order to decide when to stop
tracking a certain vehicle, etc. These are all important
parts of the system we have implemented, but it falls
outside the scope of this paper and since the techniques
are rather standard we simply refer to the general treat-
ments given in e.g., [37, 38].

3. Dynamic Models

As mentioned in the introduction our sensor fusion
framework needs a state-space model describing the dy-
namics of the ego vehicle, the road and the leading ve-
hicles. In this section we will derive the differential
equations describing the motion of the ego vehicle (Sec-
tion 3.2), the road (Section 3.3) and the leading vehi-
cles (Section 3.4), also referred to as targets. Finally,
in Section 3.5 we summarize these equations and form
the process model of the state-space model. However,
before we embark on deriving these equations we intro-
duce the overall geometry and some necessary notation
in Section 3.1.

3.1. Geometry and Notation
The coordinate frames describing the ego vehicle and
one leading vehicle are defined in Figure 1. The inertial
world reference frame is denoted by W and its origin is
OW . The ego vehicle’s coordinate frame E is located in
the center of gravity (CoG). Furthermore, Vn is associ-
ated to the observed leading vehicle n, with OV at the
vision and radar sensor of the ego vehicle. Finally, Tn

is also associated with the observed and tracked lead-
ing vehicle n, but its origin OTn is located at the leading
vehicle. In this work we will use the planar coordinate
transformation matrix

RWE =

[
cosψE − sinψE

sinψE cosψE

]
(8)

3



lVn

ls

lb
lr

lf

dW
EW

dW
TnW

dW
V W ψE

ψVn

ψTn

y

x

W

OW

y

x

E
OE

y

x

Vn

OV

y

x

Tn

OTn

Figure 1: Coordinate frames describing the ego vehicle,
with center of gravity in OE and the radar and camera
sensors mounted in OV . One leading vehicle is posi-
tioned in OTn .

to transform a vector, represented in E, into a vector,
represented in W, where the yaw angle of the ego vehi-
cle ψE is the angle of rotation from W to E. The geo-
metric displacement vector dW

EW is the direct straight line
from OW to OE represented with respect to the frame
W. Velocities are defined as the movement of a frame E
relative to the inertial reference frame W, but typically
resolved in the frame E, for example vE

x is the velocity
of the E frame in its x-direction. The same convention
holds for the acceleration aE

x . In order to simplify the
notation we leave out E when referring to the ego ve-
hicle’s velocity and acceleration. This notation will be
used when referring to the various coordinate frames.
However, certain frequently used quantities will be re-
named, in the interest of readability. The measurements
are denoted using superscript m. Furthermore, the nota-
tion used for the rigid body dynamics is in accordance
with [39].

3.2. Ego Vehicle

We will only be concerned with the ego vehicle motion
during normal driving situations and not at the adhe-
sion limit. This implies that the single track model is
sufficient for the present purposes. This model is also

referred to as the bicycle model, see e.g., [40, 41] for a
solid treatment. The geometry of the single track model
with slip angles is shown in Figure 2. It is here worth
to point out that the velocity vector of the ego vehicle
is typically not in the same direction as the longitudinal
axis of the ego vehicle. Instead the vehicle will move
along a path at an angle β with the longitudinal direc-
tion of the vehicle. Hence, the angle β is defined as,

tan β =
vy

vx
, (9)

where vx and vy are the ego vehicle’s longitudinal and
lateral velocity components, respectively. This angle β
is referred to as the float angle [42] or the vehicle body
side slip angle [43].

The slip angle αi is defined as the angle between the
central axis of the wheel and the path along which the
wheel moves. The phenomenon of side slip is mainly
due to the lateral elasticity of the tire. For reasonably
small slip angles, at maximum 3 deg, it is a good ap-
proximation to assume that the lateral friction force of
the tire Fi is proportional to the slip angle,

Fi = Cαiαi. (10)

The parameter Cαi is called cornering stiffness and de-
scribes the cornering behavior of the tire. The load
transfer to the front axle when braking or to the outer
wheels when driving trough a curve influences the pa-
rameter value. A model considering these influences is
given in [44].

Following this brief introduction to the ego vehicle
geometry, we are now ready to give an expression de-
scribing the evolution of yaw angle ψE and the float an-
gle β over time

ψ̈E = β
−Cα f l f cos δ f + Cαrlr

Izz

− ψ̇E

Cα f l2f cos δ f + Cαrl2r
Izzvx

+
Cα f l f tan δ f

Izz
, (11a)

β̇ = −β
Cα f cos δ f + Cαr + v̇xm

mvx

− ψ̇E

(
1 +

Cα f l f cos δ f −Cαrlr
v2

xm

)
+

Cα f sin δ f

mvx
, (11b)

where m denotes the mass of the vehicle and Izz denotes
the moment of inertia of the vehicle about its vertical
axis in the center of gravity. These single track model
equations are well-known in the literature, see e.g., [43].
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Figure 2: In the single track model the wheels on each
axle are modeled as single units. The velocity vector v,
with the float angle β to the longitudinal axis of the ve-
hicle, is attached at the center of gravity. Furthermore,
the wheel slip angles are referred to as α f and αr. The
front wheel angle is denoted by δ f and the current radius
is denoted by ρ.

3.3. Road Geometry

We start this section by defining the road variables and
expressing a typical way to parameterize a road. The
section is continued with a derivation of a new model
for the road that makes use of the dynamic motion of
the ego vehicle.

3.3.1. Background
The most essential component in describing the road ge-
ometry is the curvature c, which we will define as the
curvature of the white lane marking to the left of the
ego vehicle. An overall description of the road geome-
try is given in Figure 3. The heading angle ψR is defined
as the tangent of the road at the level of the ego vehicle
in the world reference frame W, see Figure 4. The angle
δr is the angle between the tangent of the road curvature
and the longitudinal axis of the ego vehicle. Note that
this angle can be measured by sensors mounted on the
ego vehicle. Furthermore, we define δR as

δR , δr − β, (12)

i.e., the angle between the ego vehicles direction of mo-
tion (velocity vector) and the road curvature tangent.

The road curvature c is typically parameterized ac-
cording to

c(xc) = c0 + c1xc, (13)

w

1
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y

x
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y
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E OE

y

x
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y

x
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Figure 3: Relations between one leading vehicle in OTn ,
the ego vehicle and the road. The distance between the
ego vehicle’s longitudinal x-axis and the white lane to
its left is lR(t). The leading vehicle’s distance to the lane
marking is lTn and its heading angle in the road frame R
is δTn . The lane width is w.

where xc is the position along the road in a road aligned
coordinate frame and xc = 0 at the vehicles center of
gravity. Furthermore, c0 describes the local curvature at
the ego vehicle position and c1 is the distance derivative
(hence, the rate of change) of c0. It is common to make
use of a road aligned coordinate frame when deriving an
estimator for the road geometry, a good overview of this
approach is given in [12]. There are several advantages
using road aligned coordinate frames, particularly the
motion models of the other vehicles on the same road
can be greatly simplified. However, the flexibility of the
motion models is reduced and basic dynamic relations
such as Newton’s and Euler’s laws cannot be directly
applied. Since we are using a single track model of the
ego vehicle, we will make use of a Cartesian coordinate
frame. A good polynomial approximation of the shape
of the road curvature is given by

yE = lR + xE tan δr +
c0

2
(xE)2 +

c1

6
(xE)3, (14)
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Figure 4: Infinitesimal segments of the road curvature duR and the driven path du are shown together with the angles
δR = ψR − (ψE + β).

where lR(t) is defined as the time dependent distance be-
tween the ego vehicle and the lane marking to the left,
see e.g., [5, 12].

The following dynamic model is often used for the
road

ċ0 = vc1, (15a)
ċ1 = 0, (15b)

which can be interpreted as a velocity dependent inte-
gration. It is interesting to note that (15) reflects the
way in which roads are commonly built [5]. However,
we will now derive a new dynamic model for the road,
that makes use of the road geometry introduced above.

3.3.2. A New Dynamic Road Model
Assume that duR is an infinitesimal part of the road cur-
vature or an arc of the road circle with the angle dψR, see
Figure 4. A segment of the road circle can be described
as

duR =
1
c0

dψR, (16)

which after division with the infinitesimal change in
time dt is given by

duR

dt
=

1
c0

dψR

dt
. (17)

Assuming that the left hand side can be reformulated
according to

duR

dt
= vx cos (ψR − ψE) ≈ vx, (18)

this yields

vx =
1
c0
ψ̇R. (19)

The angle ψR can be expressed as

ψR = ψE + β + δR, (20)

by rewriting (12). Re-ordering equation (19) and using
the derivative of (20) to substitute ψ̇R yields

δ̇R = c0vx − (ψ̇E + β̇), (21)

which by substituting β̇ with (11b) according to

δ̇R = c0vx − β
−Cα f cos δ f −Cαr − v̇xm

mvx

+ ψ̇E
Cα f l f cos δ f −Cαrlr

v2
xm

−
Cα f sin δ f

mvx
(22)

results in a differential equation of the road angle δR. A
similar relation has been used in [5, 45].

We also need a differential equation for the road cur-
vature, which can be found by differentiating (21) w.r.t.
time,

δ̈R = ċ0vx + c0v̇x − ψ̈E − β̈. (23)

From the above equation we have

ċ0 =
δ̈R + ψ̈E + β̈ − c0v̇x

vx
. (24)

Let us assume that δ̈R = 0. Furthermore, differentiating
β̇, from (11b), w.r.t. time and inserting this together with
ψ̈E , given in (11a), into the above expression yields the
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differential equation

ċ0 =
1

(Izzm2vx)4

(
C2
αr(Izz + l2r m)(−ψ̇E lr + βvx)

+ C2
α f (Izz + l2f m)(ψ̇E l f + (β − δ f )vx)

+ CαrIzzm(−3ψ̇E v̇xlr + 3βv̇xvx + ψ̇Ev2
x)

+ v̇xIzzm2vx(2βv̇x + vx(ψ̇E − c0vx))
+ Cα f (Cαr(Izz + lr(−l f )m)(ψ̇E lb − 2ψ̇E lr + 2βvx − δ f vx)

+ Izzm(3ψ̇E v̇xl f + (3β − 2δ f )v̇xvx + (δ̇ f + ψ̇E)v2
x))

)
(25)

for the road curvature.
In this model c0 is defined at the ego vehicle and thus

describes the currently driven curvature, whereas for the
curvature described by the state-space model (15) and
by the polynomial (13) it is not entirely obvious where
c0 is defined.

Finally, we need a differential equation describing
how the distance lR(t) between the ego vehicle and the
lane markings changes over time. Assume again an in-
finitesimal arc du of the circumference describing the
ego vehicle’s curvature. By contemplating Figure 4 we
have

dlR = du sin δR, (26)

where δR is the angle between the ego vehicle’s velocity
vector and the road. Dividing this equation with an in-
finitesimal change in time dt and using du/dt = v yield
the differential equation

l̇R = vx sin (δR + β), (27)

which concludes the derivation of the road geometry
model.

3.4. Leading Vehicles
The leading vehicles are also referred to as targets Tn.
The coordinate frame Tn moving with target n has its
origin located in OTn , as we previously saw in Figure 3.
It is assumed that the leading vehicles are driving on the
road, quite possibly in a different lane. More specifi-
cally, it is assumed that they are following the road cur-
vature and thus that their heading is in the same direc-
tion as the tangent of the road.

For each target Tn, there exists a coordinate frame Vn,
with its origin OV at the position of the sensor. Hence,
the origin is the same for all targets, but the coordinate
frames have different heading angles ψVn . This angle, as
well as the distance lVn , depend on the targets position
in space. From Figure 3 it is obvious that,

dW
EW + dW

VnE + dW
TnV − dW

TnW = 0, (28)

or more explicitly,

xW
EW + ls cosψE + lVn cosψVn − xW

TnW = 0, (29a)

yW
EW + ls sinψE + lVn sinψVn − yW

TnW = 0. (29b)

Let us now define the relative angle to the leading vehi-
cle as

δVn , ψVn − ψE . (30)

It is worth noticing that this angle can be measured by a
sensor mounted on the vehicle.

The target Tn is assumed to have zero lateral velocity
in the Vn frame, i.e., ẏVn = 0, since it is always fixed to
the xVn -axis. If we transform this relation to the world
frame W, using the geometry of Figure 1 we have

RVW · ḋW
TnW =

[
·

0

]
, (31)

where the top equation of the vector equality is non-
descriptive and the bottom equation can be rewritten as

−ẋW
TnW sinψVn + ẏW

TnW cosψVn = 0. (32)

The velocity vector of the ego vehicles is applied in the
center of gravity OE . The derivative of (29) is used to-
gether with the velocity components of the ego vehicle
and (32) to get an expression for the derivative of the
relative angle to the leading vehicle w.r.t. time accord-
ing to

(δ̇Vn + ψ̇E)lVn + ψ̇E ls cos δVn + vx sin(β − δVn ) = 0. (33)

This equation is rewritten, forming the differential equa-
tion

δ̇Vn = −
ψ̇E ls cos δVn + vx sin(β − δVn )

lVn

− ψ̇E (34)

of the relative angle δ̇Vn to the leading vehicles.

3.5. Summarizing the Dynamic Model
The state-space models derived in the previous sections
are nonlinear and they are given in continuous time.
Hence, in order to make use of these equations in the
EKF we will first linearize them and then make use
of (4) in order to obtain a state-space model in discrete
time according to (1). This is a rather standard proce-
dure, see e.g., [46, 47]. At each time step k, the non-
linear state-space model is linearized by evaluating the
Jacobian (i.e., the partial derivatives) of the f (xk,uk)-
matrix introduced in (4) at the current estimate x̂k|k. It
is worth noting that this Jacobian is straightforwardly
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computed off-line using symbolic or numerical soft-
ware, such as Mathematica. Hence, we will not go
through the details here. However, for future reference
we will briefly summarize the continuous-time dynamic
model here.

In the final state-space model the three parts (ego ve-
hicle, road and leading vehicles) of the dynamic model
are augmented, resulting in a state vector of dimension
6 + 4 · (Number of leading vehicles). Hence, the size
of the state vector varies with time, depending on the
number of leading vehicles that are tracked at a specific
instance of time.

The ego vehicle model is described by the following
states,

xE =
[
ψ̇E β lR

]T
, (35)

i.e., the yaw rate, the float angle and the distance to the
left lane marking. The front wheel angle δ f , which is
calculated from the measured steering wheel angle, and
the ego vehicle longitudinal velocity vx and acceleration
v̇x are modeled as input signals,

uk =
[
δ f vx v̇x

]T
. (36)

The nonlinear state-space model ẋE = gE(x,u) is given
by

gE(x,u) =
β
−Cα f l f cos δ f +Cαr lr

Izz
− ψ̇E

Cα f l2f cos δ f +Cαr l2r
Izzvx

+
Cα f l f tan δ f

Izz

−β
Cα f cos δ f +Cαr+v̇xm

mvx
− ψ̇E

(
1 +

Cα f l f cos δ f−Cαr lr
v2

xm

)
+

Cα f sin δ f

mvx

vx sin (δR + β)

 .
(37)

The corresponding differential equations were previ-
ously given in (11a), (11b) and (27), respectively.

The states describing the road xR are the road curva-
ture c0 at the ego vehicle position, the angle δR between
the ego vehicles direction of motion and the road curva-
ture tangent and the width of the lane w, i.e.,

xR =
[
c0 δR w

]T
. (38)

The differential equations for c0 and δR were given
in (25) and (22), respectively. When it comes to the
width of the current lane w, we have

ẇ = 0, (39)

motivated by the fact that w does not change as fast as
the other variables, i.e., the nonlinear state-space model

ẋR = gR(x,u) is given by

gR(x,u) =
ċ0

c0vx + β
Cα f cos δ f +Cαr+v̇xm

mvx
+ ψ̇

Cα f l f cos δ f−Cαr lr
v2

xm −
Cα f sin δ f

mvx

0

 .
(40)

A target is described by the following states, azimuth
angle δVn , lateral position lTn of the target, distance be-
tween the target and the ego vehicle lVn and relative ve-
locity between the target and the ego vehicle l̇Vn . Hence,
the state vector is given by

xT =
[
δVn lTn l̇Vn lVn

]T
. (41)

The derivative of the azimuth angle was given in (34). It
is assumed that the leading vehicle’s lateral velocity is
small, implying that l̇Tn = 0 is a good assumption (com-
pare with Figure 3). Furthermore, it can be assumed that
the leading vehicle accelerates similar to the ego vehi-
cle, thus l̈Vn = 0 (compare with e.g., [12]). The state-
space model ẋT = gT(x,u) of a leading vehicle (target)
is

gT(x,u) =


−
ψ̇E ls cos δVn +vx sin(β−δVn )

lVn
− ψ̇E

0
0

l̇Vn

 . (42)

Note that the dynamic models given in this section are
nonlinear in u.

4. Measurement Model

The measurement model (1b) describes how the mea-
surements yk relates to the state variables xk. In other
words, it describes how the measurements enter the es-
timator. We will make use of superscript m to denote
measurements. Let us start by introducing the measure-
ments relating directly to the ego vehicle motion, by
defining

y1 =
[
ψ̇m

E am
y

]T
, (43)

where ψ̇m
E and am

y are the measured yaw rate and the
measured lateral acceleration, respectively. They are
both measured with the ego vehicle’s inertial sensor in
the center of gravity (CoG). The ego vehicle lateral ac-
celeration in the CoG is

ay = vx(ψ̇E + β̇) + v̇xβ. (44)
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By replacing β̇ with the expression given in (11b) and at
the same time assuming that v̇xβ ≈ 0 we obtain

ay = vx(ψ̇E + β̇)

= −β
Cα f cos δ f + Cαr + mv̇x

m

+ ψ̇E
−Cα f l f cos δ f + Cαrlr

mvx
+

Cα f

m
sin δ f . (45)

From this it is clear that the measurement of the lateral
acceleration contains information about the ego vehicle
states. Hence, the measurement equation corresponding
to (43) is given by

h1 =[
ψ̇E

−β
Cα f cos δ f +Cαr+mv̇x

m + ψ̇E
−Cα f l f cos δ f +Cαr lr

mvx
+

Cα f

m sin δ f

]
.

(46)

The vision system provides measurements of the road
geometry and the ego vehicle position on the road ac-
cording to

y2 =
[
cm

0 δm
r wm lmR

]T
(47)

and the corresponding measurement equations are given
by

h2 =
[
c0 (δR + β) w lR

]T
. (48)

An obvious choice would have been to use the state δr,
instead of the sum δR + β, however, we have chosen to
split these since we are interested in estimating both of
these quantities.

In order to include measurements of a leading vehi-
cle we require that it is detected both by the radar and
the vision system. The range lVn and the range rate
l̇Vn are measured by the radar. The azimuth angle is
also measured by the radar, but not used directly in this
framework. Instead, the accuracy of the angle estimate
is improved by using the camera information. We will
not describe these details here, since it falls outside the
scope of this work. The corresponding measurement
vector is

y3 =
[
δm

Vn
l̇mVn

lmVn

]T
. (49)

Since these are state variables, the measurement equa-
tion is obviously

h3 =
[
δVn l̇Vn lVn

]T
. (50)

The fact that the motion of the leading vehicles reveals
information about the road geometry allows us to make

use of their motion in order to improve the road geome-
try estimate. This will be accomplished by introducing
a nontrivial artificial measurement equation according
to

h4 = lR + (δR + β)lVn cos δVn +
c0

2
(lVn cos δVn )2 +

lTn

cos δTn

,

(51)
which is derived from Figure 3 and describes the pre-
dicted lateral distance of a leading vehicle in the ego
vehicles coordinate frame E. In order to model the
road curvature we introduce the road coordinate frame
R, with its origin OR on the white lane marking to the
left of the ego vehicle. This implies that the frame R is
moving with the frame E of the ego vehicle. The an-
gle δTn , ψTn − ψR is derived by considering the road’s
slope at the position of the leading vehicle, i.e.,

δTn = arctan
dyR

dxR = arctan c0xR, (52)

where xR = xR
TnR, see Figure 3. The Cartesian x-

coordinate of the leading vehicle Tn in the R-frame is

xR
TnR = xE

TnE − ls ≈ lVn

cos δVn

cos δr
. (53)

The sensors only provide range lmVn
and azimuth angle

δm
Vn

. Hence, the corresponding quasi-measurement is

y4 = lmVn
sin(δm

Vn
), (54)

describing the measured lateral distance to a leading ve-
hicle in the ego vehicle’s coordinate frame. This might
seem a bit ad hoc at first. However, the validity of the
approach has recently been justified in the literature, see
e.g., [48].

5. Experiments and Results

The experiments presented in this section are based on
measurements acquired on public roads in Sweden dur-
ing normal traffic conditions. The test vehicle is a Volvo
S80 equipped with a forward looking 77 GHz mechan-
ically scanning FMCW radar and a forward looking vi-
sion sensor (camera), measuring the distances and an-
gles to the targets. The image sensor includes object and
lane detection and provides for example the lane curva-
ture. Information about the ego vehicle motion, such as
the steering wheel angle, yaw rate, etc. were acquired
directly from the CAN bus.

Before stating the main results in this section we out-
line how to estimate the parameters of the ego vehicle
and how the filter is tuned. Subsequently we state the
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Figure 5: Comparing the simulated result of the nonlin-
ear state-space model (black) with measured data (gray)
of a validation data set. The upper plot shows the yaw
rate and the lower shows the lateral acceleration.

results of the ego vehicle validation. We compare our
road curvature estimates with two other sensor fusion
approaches as well as one road model.

5.1. Parameter Estimation and Filter Tuning

Most of the ego vehicle’s parameters, such as the di-
mensions, the mass and the moment of inertia were pro-
vided by the vehicle manufacturer. Since the corner-
ing stiffness is a parameter which describes the prop-
erties between road and tire it has to be estimated for
the given set of measurements. An on-line method to
estimate the cornering stiffness parameter using recur-
sive least square is presented in [44]. However, in the
present work an exhaustive search was accomplished
off-line using a batch of measurements to estimate Cα f

and Cαr. A state-space model with the differential equa-
tions given in (11a) and (11b) and with the yaw rate ψ̇E

and the float angle β in the state vector was used for this
purpose. Furthermore, the front wheel angle δ f and the
ego vehicle longitudinal velocity vx were modeled as
input signals. The measurements were provided by the
yaw rate ψ̇m

E and the lateral acceleration am
y . The corre-

sponding measurement equation was given in (46). The
data used to identifying the cornering stiffness parame-
ters was split into two parts, one estimation part and one
validation part. This facilitates cross-validation, where
the parameters are estimated using the estimation data
and the quality of the estimates can then be assessed us-
ing the validation data [49].

The approach is further described in [50]. The re-
sulting state-space model with the estimated parameters
was validated using the validation data and the result is
given in Figure 5.

The process and measurement noise covariances are
the design parameters in the extended Kalman filter
(EKF). It is assumed that the covariances are diago-
nal and that there are no cross correlations between the
measurement noise and the process noise. The present
filter has ten states and ten measurement signals, which
implies that 20 parameters have to be tuned. The tun-
ing was started using physical intuition of the error in
the process equations and the measurement signals. In a
second step, the covariance parameters were tuned sim-
ply by trying to minimize the root mean square error
(RMSE) of the estimated ĉ0 and the reference curvature
c0. The estimated curvature was obtained by running
the filter using the estimation data set. The calculation
of the reference value is described in [51]. The chosen
design parameters were validated on a different data set
and the results are discussed in the subsequent sections.

5.2. Validation Using Ego Vehicle Signals

The state variables of the ego vehicle are according to
(35), the yaw rate, the float angle and the distance to the
left lane marking. The estimated and the measured yaw
rate signals are, as expected, very similar. As described
in Section 5.1, the parameters of the vehicle model were
optimized with respect to the yaw rate, hence it is no
surprise that the fusion method decreases the residual
further. A measurement sequence acquired on a rural
road is shown in Figure 6a. Note that the same mea-
surement sequence is used in Figures 5 to 7, which will
make it easier to compare the estimated states.

The float angle β is estimated, but there is no ref-
erence or measurement signal to compare it to. An
example is shown in Figure 6b. For velocities above
30 − 40 km/h, the float angle appears more or less like
the mirror image of the yaw rate, and by comparing with
Figure 6a, we can conclude that the sequence is consis-
tent.

The measurement signal of the distance to the left
white lane marking lmR is produced by the vision system
OLR (Optical Lane Recognition). Bad lane markings or
certain weather conditions can cause errors in the mea-
surement signal. The estimated state lR of the fusion
approach is very similar to the pure OLR signal.

5.3. Road Curvature Estimation

An essential idea with the sensor fusion approach intro-
duced in this paper is to make use of the single track
ego vehicle model in order to produce better estimates
of the road curvature. In this section we will compare
this approach to approaches based on other models of
the ego vehicle and the road geometry.
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Figure 6: A comparison between the ego vehicle’s mea-
sured (gray) and estimated yaw rate (black dashed) us-
ing the sensor fusion approach in this paper is shown
in (a). The estimated float angle β for the same data
sequence is shown in (b).

Fusion 1 is the sensor fusion approach shown in this
paper.

Fusion 2 is a similar approach, thoroughly described
in [12]. An important difference to fusion 1 is that
the ego vehicle is modeled with a constant veloc-
ity model, which is less complex. The float angle
β is not estimated. Furthermore, the road is mod-
eled according to (15) and a road aligned coordi-
nate frame is used. This method is similar to the
approaches used in e.g., [8, 9, 10].

Fusion 3 comprehends the ego vehicle model of fusion
1 and the road model of fusion 2, i.e., substituting
(25) by (15) and introducing the seventh state c1.
Furthermore, a Cartesian coordinate frame is used.
This method, but without considering the leading
vehicles is similar to the ones described in e.g., [5]
and [52].

Model is the ego vehicle and road state-space model
given in this paper, described by the motion mod-
els (37) and (40) and the measurement models (46)
and (48), without the extended Kalman filter.

The curvature estimate ĉ0 from the sensor fusion ap-
proaches, the model and the raw measurement from the
optical lane recognition are compared to a reference

(a)

(b)

Figure 8: Two different camera views are shown. In (a)
the lane markings are excellent and the leading vehicles
are close and clearly visible. This is the traffic situation
at 32 s in the Figures 5 to 7. Although the circumstances
seem perfect, the OLR, Fusion 2 and 3 have problems
estimating the curvature, as seen in Figure 7. The traffic
situation shown in (b) is more demanding, mainly due to
the weather conditions and large distance to the leading
vehicle.

value. The reference value is computed off-line using
a geometric method described in [51], which applies a
least square curve fitting to a sliding window. The en-
tire data set i.e., also future values of the ego vehicle
movement, is used to derive the reference value. The
accuracy of the method was validated on a test track,
where the ground truth is well defined, and the results
are good as reported in [51].

A typical result of a comparison is shown in Figure 7.
The data stems from a rural road, which explains the
curvature values. It can be seen that the estimates from
the sensor fusion approaches give better results than us-
ing the OLR alone, as was expected. The OLR estimate
is rather noisy compared to the fused estimates. This is
not surprising, since the raw OLR has less information.
A camera view from the curve at time 32 s is shown in
Figure 8a.
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line). The model (dash-dotted) is estimating the derivative of the curvature and the absolute position is not measured,
which leads to the illustrated bias. The dashed line is the reference curvature.

The curvature estimate from the state-space model
described in this paper is denoted by model and is
shown as a dash-dotted black line. The absolute posi-
tion is not measured, which leads to a clearly visible
bias in the estimate of c0. The bias is transparent in Fig-
ure 7, but it also leads to a large RMSE value in Table 1.
Fusion 3 also delivers a decent result, but it is interesting
to notice that the estimate seems to follow the incorrect
OLR at time 35 s. The same behavior holds for fusion 2
in Figure 7.

To get a more aggregate view of the performance, we
provide the root mean square error (RMSE) for longer
measurement sequences in Table 1. The fusion ap-
proaches improve the road curvature estimate by mak-
ing use of the information about the leading vehicles,
that is available from the radar and the vision systems.
However, since we are interested in the curvature esti-
mate also when there are no leading vehicles in front
of the ego vehicle, this case will be studied as well. It
is straightforward to study this case, it is just a matter
of not providing the measurements of the leading vehi-
cles to the algorithms. The RMSE values found without
information about the leading vehicles are given in the
columns marked no in Table 1.

These results should ideally be compared to data
where information about the leading vehicles is con-
sidered, but during the 78 min drive there were not al-
ways another car in front of us. Only for about 50 %
of the time there existed other vehicles, which we could
track. Hence, for the sake of comparability we give the
RMSE values for those sequences where at least one
leading vehicle was tracked, bearing in mind that these
are based on only about 50 % of the data. The corre-
sponding columns in Table 1 are marked only. Finally,
we also give the RMSE values for the complete data,
where other vehicles were considered whenever possi-
ble.

It is interesting to see that the advantage of fusion 1,
which uses a more accurate ego vehicle and road model,
in comparison to fusion 2 is particularly noticeable
when driving alone on a rural road, the RMSE for fu-
sion 1 is then 1.18, whereas the RMSE for fusion 2 is
2.91. The reason for this is first of all that we are driv-
ing on a rather curvy road which implies that any ad-
ditional information will help improving the curvature
estimate. Here, the additional information is the im-
proved ego vehicle and road models used in fusion 1.
Furthermore, the fact that there are no leading vehicles
that could aid the fusion algorithm when driving alone
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Table 1: Comparison of the root mean square error (RMSE) of the road curvature c0 in [1/m] for the three fusion
approaches and the pure measurement signal OLR for two longer measurement sequences acquired on public roads
in Sweden. Three cases were considered, using only those measurements where a leading vehicle could be tracked,
using the knowledge of the leading vehicles position whenever possible or not at all and thereby simulating the lonely
driver. Note that all RMSE values should be multiplied by 10−3.

Highway Rural road
Time 44 min 34 min
OLR [10−3/m] 0.385 3.60
Model [10−3/m] 0.356 2.10
Leading vehicles used? only possible no only possible no
Fusion 1 [10−3/m] 0.176 0.184 0.189 1.48 1.13 1.18
Fusion 2 [10−3/m] 0.231 0.228 0.230 1.53 2.84 2.91
Fusion 3 [10−3/m] 0.203 0.210 0.205 1.32 2.01 1.94

creates a greater disadvantage for fusion 2, since it is
its main additional information. Fusion 3, which uses
the single track vehicle model of fusion 1, but the road
model of fusion 2, seems to position itself between those
two.

Comparing the rural road results based only on those
measurements where other vehicles were tracked, we
see an interesting pattern. The curvature estimate of fu-
sion 2 and fusion 3 is improved by the additional infor-
mation, but the estimate of fusion 1 is declined. The
error values of the three fusion approaches are also in
the same range. The explanation of this behavior can
be found by analyzing the measurement sequences. If
the leading vehicle is close-by, as for example in Fig-
ure 8a, it helps improving the results. However, if the
leading vehicle is more distant, the curvature at this po-
sition might not be the same as it is at the ego vehi-
cle’s position, which leads to a degraded result. In [53]
the authors presented preliminary results based on much
shorter measurement sequences, where the leading ve-
hicles were more close-by and the estimate of fusion 1
was improved by the existence of leading vehicles. The
problem could be solved by letting the measurement
noise e of the measurement equation (51) depend on the
distance to the leading vehicle.

The highway is rather straight and as expected not
much accuracy could be gained in using an improved
dynamic vehicle model. It is worth noticing that the
OLR’s rural road RMSE value is about 10 times higher
than the highway value, but the model’s RMSE in-
creases only about six times when comparing the rural
road values with the highway. Comparing the RMSE
values in the columns marked possible; the RMSE for
fusion 1 also increases about six times, but that of fu-
sion 2 increases as much as twelve times when compar-

ing the highway measurements with the rural road.
A common problem with these road estimation meth-

ods is that it is hard to distinguish between the case
when the leading vehicle is entering a curve and the case
when the leading vehicle is performing a lane change.
With the approach in this paper the information about
the ego vehicle motion, the OLR and the leading vehi-
cles is weighted together in order to form an estimate
of the road curvature. The fusion approach in this pa-
per produces an estimate of the lateral position lTn of the
leading vehicle which seems reasonable. The results are
thoroughly described in [53].

6. Conclusions

In this contribution we have derived a method for joint
ego-motion and road geometry estimation. The pre-
sented sensor fusion approach combines the information
from sensors present in modern premium cars, such as
radar, camera and IMU, with a dynamic model. This
model, which consists of a new dynamic motion model
of the road, is the core of this contribution. The road
geometry is estimated by considering the information
from the optical lane recognition of the camera, the po-
sition of the leading vehicles, obtained by the radar and
the camera, and by making use of a dynamic ego vehicle
motion model, which takes IMU-data and the steering
wheel angle as input. If one of these three parts fails,
for example there might not be any leading vehicles or
the lane markings are bad, as in Figure 8b, then the sen-
sor fusion framework will still deliver an estimate.

The presented sensor fusion framework has been
evaluated together with two other fusion approaches on
real and relevant data from both highway and rural roads
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in Sweden. The data consists of 78 min driving on vari-
ous road conditions, also including snow-covered pave-
ment. The approach presented in this paper obtained the
best results in all situations, when compared to the other
approaches, but it is most prominent when driving alone
on a rural road. If there are no leading vehicles that
can be used, the improved road and ego vehicle models
still supports the road geometry estimation and delivers
a more accurate result.
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Appendix

Lower case letters are used to denote scalar variables,
bold lower case letters are used for vector valued vari-
ables and upper case letters are used for matrix valued
variables. A superscript letter is used to denote the co-
ordinate frame, in which a variable or constant is repre-
sented.

Abbr. Explenation
c0 road curvature
d a distance
dW

EW line from OW to OE , in the W-frame
δr angle between the vehicle’s long. axis and

the lane
δR angle between the vehicle’s velocity vec-

tor and the lane
δ f mean front wheel angle
δVn azimuth angle between ego vehicle and

leading vehicle
E ego vehicle coordinate frame
E ego model
e measurement noise
lR offset between the ego vehicle and the left

lane marking
l f distance between ego vehicle CoG and

front axle
lr distance between ego vehicle CoG and

rear axle

Abbr. Explenation
ls distance between ego vehicle CoG and

sensors
lV range between ego vehicle radar and lead-

ing vehicle
lT lateral distance between leading vehicle

and lane marking
OE origin of E, at the vehicle’s center of grav-

ity
OW origin of W
P state covariance
ψE the ego vehicle’s yaw angle
Q process noise covariance
R rotation matrix
R measurement noise covariance
R road coordinate frame
R road model
T target coordinate frame
T target model
V coordinate frame in sensor pointing at

leading vehicle
W world coordinate frame
w road width
w process noise
x state vector
xW

EW x-coordinate of a line from OW to OE , in
W-frame

y measurement vector
yW

EW y-coordinate of a line from OW to OE , in
W-frame
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