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Abstract

Identi�cation of nonlinear systems is a very extensive problem, with roots

and branches in several diverse �elds. It is not possible to survey the area

in a short text. The current presentation gives a subjective view on some

essential features in the area. These concern a classi�cation of methods,

the use of di�erent shades of grey in models, and some overall issues like

bias-variance trade-o�s, data sparseness and the peril of local minima.
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1. INTRODUCTION

Identification of nonlinear models is a topic with
a huge literature. It has several roots in differ-
ent communities – linear system identification in
the control community, non-parametric regression
in the statistics community, learning techniques
in the machine learning community, function ex-
pansions in the neural network community, clas-
sification in the pattern recognition community
and so on. Nonlinear models play important roles
in many different application fields, and many
specific problem areas have developed their own
techniques and nomenclatures. As a consequence,
there is a pronounced proliferation of methods,
concepts and results, and it is not so easy to orient
oneself in the area.

In particular it is impossible to provide a brief
survey of the field. So this is not a survey (cf.
(Magritte, 1929)). Many highly relevant papers
and results will not be discussed here. Rather,
the paper gives my own subjective views on a
few issues that I consider to be central for the
estimation of nonlinear models.

A good introduction to the basic statistical frame-
work for the area is given in (Hastie et al., 2001).

2. A TEMPLATE PROBLEM – CURVE
FITTING

2.1 The Curve and the Data

Most basic ideas from system identification, choice
of model structures and model sizes are brought
out by considering the basic curve fitting problem
from elementary statistics.
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There is an unknown function g0(x). For a se-
quence of x-values (regressors) {x1, x2, . . . , xN}
(that may or may not be chosen by the user)
observe the corresponding function values with
some noise:

y(k) = g0(xk) + e(k) (1)

The problem is to construct an estimate

ĝN (x) (2)

from



ZN = {y(1), x1, y(2), x2, . . . , y(N), xN} (3)

This is a well known basic problem, that many
people have encountered already in high-school. In
most applications, x is a vector of dimension, say,
d. This means that g defines a surface in Rd+1 if
y is scalar. If y(k) itself is a p-dimensional vector,
it is in this perspective convenient to view the
problem as p separate surface-fitting problems,
one for each component of y.

2.2 Choice of Regressors for Dynamic Systems

When models of dynamic systems are sought k
would be a time index and the raw observation
data are sequences of inputs u(t) and outputs y(t):

ZN
yu = {y(1), u(1), y(2), u(2), . . . , y(N), u(N)}

(4)

The task is then to provide a model that is
capable of prediction future outputs from past
observations:

ŷ(t|t − 1) = g(Zt−1
yu , t) (5)

To cast this formulation into the curve-fitting
framework (1)-(3) we need fist to define what are
the regressors x. This is a problem related to the
choice of states in a state space representation of
the system. In general, the regressors are chosen
as finite-dimensional projections of past data:

xt = ϕ(t) = ϕ(Zt−1
yu ) (6)

We shall return to a discussion of regressor choices
in Section 5.4, but for the time being, think of
regressors as being a finite collection of past inputs
and outputs:

xt = ϕ(t) = [y(t − 1), . . . , y(t − na),

u(t − 1), . . . , u(t − nb)]
T

(7)

See, among many references, e.g. (Billings, 1990),
(Nelles, 2001) for accounts that specifically deal
with dynamic systems. Generally speaking, many
issues that relate to methods and algorithms do
not really depend on the nature of x. This means
that the niche for dynamic systems applications is
less pronounced in the nonlinear case than in the
linear systems case.

3. SOME OVERALL ISSUES

3.1 Characterization of Methods and Models

The large family of methods for estimation of
nonlinear models can be classified along several
different dividers. In many cases the dividing
line is not sharp, but it is anyway a useful way
to get a grip on the various possibilities. Below
we list a number of contrasting terms that can

be used to characterize models and methods for
nonlinear identification. The different terms are
in no way orthogonal – indeed they are typically
quite correlated.

Parametric vs. Nonparametric Methods: A para-
metric method is one that forms a family of can-
didate function descriptions

G = {g(x, θ)|θ ∈ D ⊆ Rn} (8)

parameterized by an n-dimensional parameter
vector θ. The search for the function (2) is then
carried out in terms of θ, typically by optimizing
some criterion. The resulting parameter estimate
θ̂N then gives the estimated function by

ĝN (x) = g(x, θ̂N ) (9)

A nonparametric method does not explicitly work
with parameterized function families. It typically
forms ĝN (x) by averaging over relevant measure-
ments of yk. In some cases the distinction may be
difficult.

Global vs. Local Methods: A global method ba-
sically uses all data in (3) to form the estimate
ĝN (x) for any x. A local method only uses obser-
vation pairs {yk, xk} with xk in a local neighbor-
hood of x. Nonparametric methods are typically
local.

Regression vs. Classification Problems: In a re-
gression problem the task is to estimate a function
g as described above. In a classification problem
the task is to classify observations x into two or
more distinct classes. The latter problem can be
described as a function estimation problem, by let-
ting the range space of g be discrete, assuming as
many values as there are classes. Therefore there
are many similarities between classification and
regression problems, but the area of classification
or pattern recognition has several unique features,
see, e.g. (Fukunaga, 1990).

Black-box vs. Grey-box Models: A black-box model
is estimated from data without using any specific
insights into how the data were generated. A grey-
box model is estimated using some ideas about
the character of the process that generated the
data. Now, there are many different shades of
grey, depending on the level of insights used. See
Sections 6–7.

Off-the-Shelf Models vs. Models-on-Demand: An
off-the-shelf model is estimated from all data
and put on the shelf to deliver its value for any
x, whenever asked for. A model-on-demand is
computed from the data (3) at a particular value



x only when this function value has come in
demand.

Batch Methods vs. Recursive Methods: A batch
method uses all data ZN to compute the estimate
ĝN (x). A recursive method condenses the informa-
tion in the data ZN into a fixed-dimensional vec-
tor RN and computes the estimate ĝN+1(x) from
ĝN (x), RN and {y(N + 1), xN+1}. For recursive
methods, k typically is a time index.

3.2 The Basic Choices

Bias-variance Trade-off. The objective if of course
to find a model ĝN (x) that is as close as possible to
g0(x). If the disturbances e(k) in (1) are thought of
as random variables, ĝN (x) is a random variable,
and a natural measure of size or the error is the
mean square error (MSE)

MN (x) = E(g0(x) − ĝN (x))2

= BN (x)2 + WN (x) (10a)

BN (x) = g0(x) − g∗N (x), (10b)

g∗N (x) = EĝN (x) (10c)

WN (x) = E(g∗N (x) − ĝN (x))2 (10d)

where the MSE is split into the bias error BN (x)
and the variance error VN (x). The symbol E
denotes mathematical expectation w.r.t. e(·). A
typical case is that g∗N does not depend on N and
that we have

ĝN (x) → g∗(x) as N → ∞ (11)

In order to make the MSE small, we like both
the bias error and the variance error to be small.
All methods for estimating ĝN have in one way
or another some knob to tune the estimate. This
knob turned one way will decrease bias as variance
is increased, and vice versa, when turned the other
way. A crucial problem is to find the best trade-
off in this tuning. Note that the trade-off as such
may depend on the function argument x. One may
pick a particular x for the tuning or look at some
average over x.

One such average is over the regressors that were
used in the collected data:

M̄N =
1

N

N
∑

k=1

MN (xk) (12a)

W̄N =
1

N

N
∑

k=1

WN (xk) (12b)

Choice of Norms. A typical parametric method
uses a least squares criterion of fit to select the
parameter estimate:

θ̂N = arg min
θ

VN (θ) (13a)

VN (θ) =
1

N

N
∑

k=1

ℓ(y(k) − g(xk, θ)) (13b)

ℓ(ε) = ε2 (13c)

The choice of norm ℓ(ε) can be any measure of
size, not necessarily a quadratic norm. Aspects on
the choice of ℓ are discussed in Section 10, but
they are as such general for parametric methods,
not particular to nonlinear identification.

Regularization. When the dimension of θ is
large, it turns out to be useful to add a term to
the criterion (13a):

θ̂N = arg min
θ

VN (θ) + r(θ) (14a)

where r(θ) is a regularization term that somehow
penalizes large/bad values of θ. A typical form is

r(θ) = δ‖θ − θ#‖2 (14b)

Here θ# is a value towards which the parameters
are adjusted, typically 0. The regularization pa-
rameter δ is then a knob that will control the
bias-variance trade-off. See Section 10.

Sparseness of Data. The nonlinear estimation
problem with a d-dimensional x can be seen as
a surface-fitting problem in Rd+1. Now, even for
moderately large d, this is a huge space. There
are several ways to illustrate this. Consider for
example the unit cube in Rd+1, i.e.
{x; |xk| ≤ 1∀k}. Even with a moderate resolution
of 0.2 along each coordinate, it takes 10d+1 small
cubes with side length 0.2 to fill the unit cube. To
describe a surface in the unit cube the required
amount of data to have at least one observation
in each small cube is overwhelming even for d = 5.
The observed data set (3) will by necessity be very
sparse in the space where the surface is going to
be estimated. Ways to deal with this problem are
discussed in Section 8.

Local Optima. Typical optimization techniques
to find the estimate employ algorithms like (13).
The minimization can seldom be done by closed
form expressions (essentially only when ℓ(ε) = ε2

and g(x, θ) is linear in θ.) The search for the mini-
mum is then typically carried out by iterative local
search, like Gauss-Newton algorithms. They can
only guarantee convergence to a local optimum,
while it is the global one that is the target. This
is a pressing problem in several methods.

Validation and Generalization. There is a saying
that you can draw an elephant if only given four
parameters (and make it wag its tail with one



more.) The meaning is that it is not so impressive
that you can reproduce observed behavior by
adjusting a model to the observations. The real
test comes when you have to use your model to
reproduce new, fresh data. This is the essence
of model validation (nowadays often called model
generalization). The traditional statistical term is
cross validation. See among many references, e.g.
(Golub et al., 1979).

To be able the describe the outcome of an exper-
iment before it has been carried out is clearly a
very good and convincing quality aspect of the
model used. Such cross validation techniques are
often at the heart of methods that determine the
bias-variance trade-off.

4. NONPARAMETRIC METHODS

According to (1), the function values are observed
in additive noise. If many observations were made
for the same value of xk it would thus be pos-
sible to estimate g0(xk) by averaging over the
corresponding y(k). This is the basic idea behind
nonparametric methods: To average over relevant
observations y(k) to form an estimate of the func-
tion at a particular value x. A general reference
to nonparametric regression is (Härdle, 1990).

4.1 Kernel Methods

The averaging or smoothing of observations takes
the basic form

ĝN (x) =

N
∑

k=1

wky(k) (15a)

N
∑

k=1

wk = 1 (15b)

The weights wk will depend both on the target
point x and the observation point xk:

wk = C(x, xk) (16a)

Typically, they depend only on the distance be-
tween the two points:

C(x, xk) =
Kh(x − xk)

∑N
j=1 Kh(x − xj)

(16b)

Kh(x̃) = K(x̃/h) (16c)

where h is a parameter that scales the func-
tion K. This is an example of a kernel method,
more precisely the Nadaraya-Watson estimator,
(Nadaraya, 1964). Typical choices of the kernel
function K are

K(x̃) =
1√
2π

e−x̃2/2 (Gaussian) (17a)

K(x̃) =
3

4
max{1 − x̃2, 0} (Epanechnikov)

(17b)

If the kernel is (essentially) zero for |x̃| > 1,
observations that are further away than h (the
bandwidth) from the target point x in (15) will
not be used in the function estimate.

It is obvious that the bandwidth parameter in this
case is what controls the bias-variance trade-off:
A small bandwidth gives few data to average over
and hence a large variance. A large bandwidth
means that the averaging takes place over a large
area, where the true function may change quite a
bit, thus leading to large bias.

4.2 Local Polynomial Methods

In a kernel estimator, the function value is esti-
mated as a mean over a local neighborhood. A
more sophisticated approach would be to compute
a more advanced estimate within the neighbor-
hood. For example, the function could be ap-
proximated as a polynomial within the chosen
neighborhood. The coefficients of the polynomial
are computed using a weighted least squares fit,
the weights typically chosen as a kernel Kh(u),
(16c)-(17), giving more weight to the observations
close to the target value x. The estimate ĝN (x)
would then be this polynomial’s value at x. This
is the local polynomial method, see, e.g. (Fan and
Gijbels, 1996). Clearly, the Nadaraya-Watson esti-
mator corresponds to a local polynomial approach
with polynomials of zero order. It also follows that
the local polynomial method is closely related to
local composite models, (Section 7.3), often used
in control applications.

4.3 Direct Weight Optimization

A very direct approach to determine the weights
in a nonparametric estimator (15) would be to
choose them so that the MSE MN (x),(10a), at
the target point x, is minimized w.r.t. wk. To
carry out the minimization, the true function
g0(x) needs to be known. To handle that, first a
maximization of the MSE is carried out w.r.t. a
function family G that g0 is assumed to belong to:

ĝN =

N
∑

k=1

wky(k) (18a)

N
∑

k=1

wk = 1 (18b)

wk = arg min
wk

max
g0∈G

MN (x)g (18c)

This method is described in (Roll et al., 2005).
The result depends, of course, on the function
family G. For example, if G is chosen to be a
parametric family of functions, like (8), linearly



parameterized in θ, the resulting estimate is (nat-
urally enough) the least squares estimate (9). If,
on the other hand, the family consists of Lipschitz
continuous functions

G2(L) = {g(x); |g(x1) − g(x2)| ≤ L|x1 − x2|}
(19)

the resulting estimate (18) is a kernel type esti-
mator, typically with the Epanechnikov kernel,
and a bandwidth that is automatically selected
from L, the assumed noise level, and the available
observations. See also (Sacks and Ylvisaker, 1978).

5. BLACK-BOX PARAMETRIC MODELS

5.1 Basis Function Expansion

In a black-box setting the idea is to parameterize
the function g(x, θ) in a flexible way, so that it
can well approximate any feasible true functions
g0(x). A typical choice is to use function expansion

g(x, θ) =
m

∑

k=1

αkgk(x) (20a)

with some basis functions gk.

Scalar Regressor Case. It turns out that a pow-
erful choice of basis functions is to let them be
generated from one and the same “mother func-
tion” κ(x) and scale and translate it according to

gk(x) = κ(βk(x − γk)) (20b)

For example, with κ(x) = cos(x) this gives a
Fourier transform expansion with β and γ corre-
sponding to frequency and phase. A more typical
example is given by the unit pulse κ(x) = U(x)

U(x) =

{

1 if 0 ≤ x ≤ 1

0 else
(21)

The parameter γ will place this unit pulse any-
where along the real axis, and β will give an
arbitrary width to it. The expansion (20) will then
describe any piecewise constant function. This, in
turn, can approximate any reasonable functions
arbitrarily well for large enough m. Clearly a sim-
ilar result is obtained if κ is chosen as the kernels
in (17). This illustrates the approximation power
of the choice (20). If κ is chosen as a step, or a
soft step

κ(x) = σ(x) =
1

1 + e−x
(22)

the conclusions are similar.

Several Regressors. It is convenient to let κ be
a function of a scalar argument, even in case x
is a vector, and interpret the argument β(x − γ)
accordingly. Three interpretations are commonly
used:

Radial: Interpret β(x − γ) as‖x − γ‖β with
‖x − γ‖2

β = (x − γ)T β(x − γ), (β being a psd
matrix) so that the argument is constant over
ellipsoids.

Ridge: Interpret β(x − γ) as βT x − γ with β
a column vector and γ a scalar. Then the
argument is constant over hyperplanes.

Tensor: Interpret κ is a product of factors cor-
responding to the components of the vector:
κ(β(x − γ)) =

∏d
k=1 κ(βk(xk − γk)). γ and β

are d-dimensional vectors and subscript denotes
component.

5.2 Examples of Named Structures

There is a very extensive literature on black-box
linear models of the kind just described. Many
terms and names and derivations from different
starting points have been used. Among the most
commonly used terms we have (cf (Sjöberg et
al., 1995), (Ljung, 1999), ch 5):

• ANN: Artificial Neural Networks
· The common one hidden layer Sigmoidal

Neural Networks use the sigmoid basic
function (22) and the ridge extension to
higher regressor dimensions.

· The Radial Basis Networks use radial
regressor extension, typically with the
Gaussian basic function (17a).

• Least Squares Support Vector Machines,
(Suykens et al., 2002), are derived using an
argument in an abstract feature space, but in
action they have many features in common
with radial basis neural networks with fixed
scale and location parameters.

• The wavelet expansion of a function is ob-
tained with κ as the “mother wavelet” and
double indexing (over j and k) in the sum
(20) with βj = 2j and γk = 2−jk as
fixed choices. The wavenet structure, (Zhang
and Benveniste, 1992) is based on an initial
wavelet expansion, suppressing of small αk,j ,
followed by a possible refinement of scale and
location parameters.

• So called (Neuro)-Fuzzy modeling, (Jang and
Sun, 1995),(Harris et al., 2002), is based on
fuzzy modeling: Signal levels are character-
ized by fuzzy logic, and numerical values are
adjusted to data. This corresponds to (20)
with κ being the membership functions and
with tensor expansion to higher regressor di-
mensions.



Linear Regressions. With fixed scale and loca-
tion parameters β and γ, the expansion (20) will
be a linear regression. This makes the estimation
of α a linear least squares problem, and is an often
used special case, e.g., (Suykens et al., 2002), and
(Harris et al., 2002).

5.3 Simulation and Prediction

A model of a dynamical system can be used both
for simulation and prediction. It is important to
realize the distinction between these uses, and we
shall here define it for the simplest case.

Suppose the regressor is xt = ϕ(t) = [y(t −
1), u(t− 1)]T The (one-step ahead) predicted out-
put at time for a given model θ is then

ŷp(t|θ) = g([y(t − 1), u(t − 1)]T , θ) (23)

It uses the previous measurement y(t − 1).

A tougher test is to check how the model would
behave in simulation, i.e., when only the input
sequence u is used. The simulated output is ob-
tained as above, by replacing the measured output
by the simulated output from the previous step:

ŷs(t, θ) = g([ŷs(t − 1, θ), u(t − 1)]T , θ) (24)

Notice that this simulation algorithm is a dynam-
ical system. It could very well show instability,
even if the the predictor (23) is stable. It is in
general difficult to analyze the stability properties
of (24).

5.4 Choice of Regressors

We can now return to a more detailed discus-
sion on how to choose regressors for a dynamical
model. There are essentially four players:

• Outputs y(t − k), Inputs u(t − k)
• Simulated model outputs ŷs(t − k, θ)
• Predicted model outputs ŷp(t − k|θ)

as defined above.

Regressors for dynamical systems are often chosen
among those. In analogy with linear models (e.g.,
(Ljung, 1999), Section 4.2) they can be named as
follows (see also (Billings, 1990)):

• NFIR-models use past inputs
• NARX-models use past inputs and outputs
• NOE-models use past inputs and past simu-

lated outputs
• NARMAX-models use inputs, outputs and

predicted outputs
• NBJ-models use all four regressor types

5.5 Recurrent Networks

For NOE, NARMAX and NBJ, previous outputs
from the model have to be fed back into the model
computations on-line:

ϕ κΣ

11

Σ
κΣ

q
-1

q
-1

g

These are called recurrent networks and require
considerable more computational work to fit to
data.

6. LIGHT-GREY-BOX PARAMETRIC
MODELS

Grey-box models incorporate in some way physi-
cal insights. Models with lightest shade of grey are
obtained by diligent and extensive physical mod-
eling, resulting in a model of fixed structure, but
with physical parameters of unknown or uncertain
numerical values.

6.1 Physical Modeling: DAEs

Modern object oriented modeling tools, like Mod-

elica do not necessarily deliver the resulting
model in state space form, but as a collection of
differential algebraic equations (DAE):

Fk(ξ(t), ξ̇(t), z(t), w(t), θ), k = 1, . . . ,K (25)

Here z are measured signals, being inputs and
outputs, but not necessarily distinguished as such.
w are unmeasured disturbance signals, possibly
modeled as stochastic processes. θ are the un-
known physical parameters. ξ are internal vari-
ables that are used to describe the dynamic rela-
tionships.

The nonlinear identification problem is to esti-
mate θ from the measured z(t). In general, this is
a difficult problem, that has not yet been treated
in full generality. A good reference for a determin-
istic setting is (Schittkowski, 2002).

6.2 State-space Models

If the model equations can be transformed into a
state space form

ẋ(t) = f(x(t), u(t), θ) (26a)

y(t) = h(x(t), u(t), θ) + w(t) (26b)

where w is white noise, a formal treatment is
possible: For each parameter θ this defines a



simulated (predicted) output ŷ(t|θ) which is the
parameterized function

ŷ(t|θ) = g(Zt−1
yu , θ)

in somewhat implicit form. Minimizing a criterion
like (13) will then actually be the Maximum
Likelihood method. This really requires w to be
white measurement noise. Some more sophistical
noise modeling is possible, usually involving ad
hoc noblinear observers.

The approach is conceptually simple, but could be
very demanding in practice, since the minimiza-
tion problem will take substantial effort and the
criterion may have several local minima.

A recent approach using the EM-method, for the
case where f and h in (26) are affine in θ is de-
scribed in (Schön et al., 2006). Particle filter tech-
niques to deal with Maximum Likelihood meth-
ods to identify nonlinear systems are described in
(Andrieu et al., 2004).

7. DARK-GREY-BOX PARAMETRIC
MODELS

Models with darker shades of grey typically result
after a more leisurely modeling work.

7.1 Semi-physical Modeling

By semi-physical modeling we mean to find non-
linear transformations of the measured data, so
that the transformed data stand a better chance
to describe the system in a linear relationship. The
basic rule for this process (to ensure its leisurely
aspect) is that only high-school physics should be
required and the work must take no more than 10
minutes.

To give a trivial example, consider a process where
water is heated by an immersion heater. The input
is the voltage applied to the heater, and the out-
put is the temperature of the water. Any attempt
to build a linear model from voltage to tempera-
ture will fail. A moment’s reflection (obeying the
rules of semi-physical modeling) tells us that it is
the power of the heater that is the driving stimulus
for the temperature: thus let the squared voltage
be the input to a linear model generating water
temperature at the output. Despite the trivial
nature of this example, it is good to keep as a
template for data preprocessing. Many identifica-
tion attempts have failed, due to lack of adequate
semi-physical modeling. See, e.g., (Ljung, 1999),
Examples 5.1 and pages 533 - 536 for more exam-
ples of this kind.

7.2 Block-oriented Models

A much used idea is to build up structures from
simple building blocks. This could correspond
both to physical insights and as a means for
generating flexible structures.

Building Blocks:

Basic building blocks for block-oriented models.
Square: A linear dynamic system. Oval: A nonlin-
ear static transformation

Common Models:

Typical block oriented models. Above: A Wiener
model. Middle: A Hammerstein model, Below: A
Hammerstein-Wiener model.

These connections may correspond to physical
phenomena. The Wiener model is a linear system
followed by nonlinear sensors and the Hammer-
stein model has nonlinear actuators. Both these
cases are common in practice. One may also note
that the Wiener model, if allowed to have multiple
linear outputs becomes a universal approximator
to a wide class of nonlinear systems, cf (Boyd and
Shua, 1985).

Other Combinations. A Wiener-Hammerstein
model is the counterpart with two linear dynamic
systems connected via a static nonlinearity. It is
also possible to define more complex combinations
of the blocks, with feedback etc.



Recently, such structured have been found to be
useful in several contexts, see (Hsu et al., 2006)
and (Schoukens et al., 2003). With the linear
blocks parameterized as a linear dynamic system
and the static blocks parameterized as a function
(“curve”), this gives a parameterization of the
output as

ŷ(t|θ) = g(Zt−1, θ)

and the general approach of parametric model
fitting can be applied.

However, in this contexts many algorithmic vari-
ants have been suggested, especially to initialize
the search, e.g., (Bai, 2002)

7.3 Composite Local Models

Nonlinear systems are often handled by lineariza-
tion around a working point.

The idea behind composite local models is to deal
with the nonlinearities by developing local mod-
els, which are good approximations in different
neighborhoods, and then compose a global model
from these. Often, the local models are linear, so a
common name for composite models is also local
linear models. See, e.g. (Johansen and Foss, 1995),
and (Murray-Smith and Johansen, 1997).

The concept is best illustrated by a simple exam-
ple: Consider a tank with inflow u and outflow
y and level h: The dynamics is described by the
following equations:

ḣ = −
√

h + u

y =
√

h

Linearize around level h∗ with corresponding flows
u∗ = y∗ =

√
h∗:

ḣ = − 1

2
√

h∗
(h − h∗) + (u − u∗)

y = y∗ +
1

2
√

h∗
(h − h∗)

Sample this linearized model with sampling time
Ts to obtain a one-step ahead prediction of the
output:

ŷh∗(t) = θT
h∗ϕ(t)

ϕ(t) =
[

1 −y(t − Ts) u(t − Ts)
]T

θh∗ =
[

γh∗ αh∗ βh∗

]T

where α, β, γ are numerical values that depend on
the level h∗. To form a total, composite model,
select or average over these local predictions,
computed at a grid of values of h∗

ŷ(t) =
d

∑

k=1

wk(h, hk)ŷhk
(t)

The choice of weights wk is similar to (15). One
choice could be that only one wk is non-zero, thus
selecting the local model that is closest to the
actual value of h.

General Comments. Let the measured working
point variable (tank level h in the example) be de-
noted by ρ(t) (sometimes called regime variable).
If the regime variable is partitioned into d values
ρk, the predicted output will be

ŷ(t) =

d
∑

k=1

wk(ρ(t), ρk)ŷ(k)(t)

The prediction ŷ(k)(t) is the local model corre-
sponding to ρk. This prediction depends on some
parameters that are associated with the k :th
local model, which we denote by θ(k). (The vector
θ will contain the parameters of all local mod-
els.) If this model is linear in the parameters,
ŷ(k)(t) = ϕT (t)θ(k) the whole model will be a
linear regression in the parameters θ.

Building a Composite Local Model. To build the
model, we need to

• Select the regime variable ρ
• Decide the partition of the regime variable

wk(ρ(t), η). Here η is a parameter that de-
scribes the partition

• Find the local models in each partition.

If the local models are linear regressions, the total
model will be

ŷ(t, θ, η) =

d
∑

k=1

wk(ρ(t), η)ϕT (t)θ(k) (27)

which for fixed η is a linear regression.

7.4 Hybrid Models and LPV Models

The model (27) is also an example of a hy-
brid model. It is piecewise linear (or affine), and
switches between different modes as the “state”
ϕ(t) varies over the partition. The regime variable
ρ is then a known function of ϕ. If the partition is
given, so that η is known, the estimation problem
is simple: It is a linear regression. However, if
the partition has to be estimated too, the prob-
lem is considerably more difficult, due to the dis-
crete/logical nature of the influence of η. Methods



based on mixed integer and linear (or quadratic)
programming are described in (Roll et al., 2004)
and (Bemporad et al., 2003).

So called Linear Parameter Varying (LPV) models
are also closely related to composite local models.
In state space form they are described by:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) + D(ρ(t))u(t)

where the exogenous or regime parameter ρ(t)
is measured during the operation of the sys-
tem. Identification of such models have been the
subject of recent interest. See, e.g., (Lee and
Poolla, 1999) and (Bamieh and Giarré, 2002).

8. DATA SPARSENESS

As noted in Section 3.2, a basic problem with esti-
mation of nonlinear models is that nonlinear sur-
faces in high dimensions can be very complicated
and need support of many observed data points.
In other words, the data cloud of observations is
by necessity sparse in the surface space. The key
problem is thus to find parameterizations of such
surfaces that both give a good chance of being
close to the true system, and also use a moderate
amount of parameters.

Some Ideas

• Using physical insight in grey-box models is
one way to allow extrapolation and interpo-
lation in the data space on physical grounds.

• Hoping that most of the nonlinear action
takes place across hyperplanes or hyper-
spaces is another idea that will radically re-
duce the flexibility of the model.

• In econometrics, the problem to find such
subspaces is known as the index problem. The
task is to find a projection S of dimension
r|d, r << d, such that g(x) = g̃(Sx) captures
most of nonlinearity. This is also known as
Projection Pursuit, see e.g. Section 11.2 in
(Hastie et al., 2001).

• The Ridge-based neural networks (Section
5.1) can be interpreted as a way to find
several hyperplanes that capture the struc-
ture of the nonlinear effects. The success of
ridge networks indicate that in practice, non-
linearities are often confined to such lower-
dimensional spaces.

9. LOCAL MINIMA

Adjusting a parameterized model structure to
data is typically a non-convex problem and several
local minima of the criterion function may exist.

This is one of the most pressing problem in
nonlinear identification, and calls for sophisticated
initialization procedures.

An Algebraic Method: There are not many for-
mal results around this problem. For models
that are collections of DAEs as in (25) a prop-
erty of conceptual interest is known, (Ljung and
Glad, 1994): Let w ≡ 0, and assume that Fk

are polynomials. (This can be relaxed to analytic
functions). We say that (25) is globally identifi-
able, if no two different values of θ can describe
the same trajectory z(t). Then it turns out that
(25) is globally identifiable if and only if, it can be
transformed to a linear regression:

Q(z(t), p) = θP (z(t), p) (28)

with the same θ-vector. Here Q and P are new
functions of the measured variables and p, the
differentiation operator, indicating that they nor-
mally have to be differentiated. Clearly, in the
noise free case, (28) can be used to determine θ by
least-squares. In the noisy case, this least-squares
estimate would be a clear candidate for initial
parameter estimate in the optimization routine.
How to check if we can go from (25) to (28)?
There is an algorithm by Ritt, that gives a unique
answer to this. We illustrate it by the following
simple example:

Consider the equations

ẋ1 = θx2
2, ẋ2 = u, y = x1

It does not seem unlikely that θ is globally identi-
fiable, but how can the equations be transformed
into a linear regression? Differentiate y twice:

ẏ = ẋ1 = θx2
2, ÿ = 2θx2ẋ2 = 2θx2u

Square the last expression:

ÿ2 = 4θθx2
2u

2 = 4θẏu2

which is a linear regression in the measured vari-
ables.

The result is, as mentioned, of conceptual in-
terest. Unfortunately, Ritt’s algorithm has high
complexity, and for the approach to be of prac-
tical use, it seems necessary to combine it with
more ideas around modularization and numerical
algorithms invoking semidefinite programming.
To look for and enforce convex loss functions,
(Bartlett, 2003), is a related way to get around
the problem of local minima.

Other Methods to Initialize Optimization Algo-
rithms:

• In neural networks, some normalization is
first applied to the data, and then a random-
ized initialization is made, typically in the



region where the activation function σ(u) is
close to linear. In practice, one will have to
try several initializations, and pick the esti-
mate that corresponds to the deepest mini-
mum found.

• Wavenets use an initialization based on fixed
location and dilation parameters, which gives
a linear regression

• Block oriented models often employ several
steps, fixing linear and/or nonlinear block to
create smaller problems.

10. REGULARIZATION AND NORMS

Norms. The basic choice of norm in (13) is of
course the quadratic one, ℓ(ε) = ε2, inherited from
Gauss. To make the estimate (13) equal to the
Maximum Likelihood estimate, the norm shall be
chosen as

ℓ(ε) = − log p(ε)

where p(x) is the probability density function
(pdf) of the additive disturbance e(t) in (1). For
Gaussian disturbances, we thus re-obtain the least
squares criterion. Another aspect of the norm is
to make it robust against large errors, so that it
increases slower than quadratically for large ε.

If one is not prepared to accept a probabilistic
description of e(t), one may seek models that
comply with an assumption that the disturbance
is bounded, |e(t)| ≤ r. This approach is known
as set membership identification,(Milanese and
Novara, 2005), or unknown-but-bounded distur-
bance models. In effect, it corresponds to a norm
that is a dead-zone:

ℓ(ε) =

{

0 if |ε| > r

∞ if |ε| ≤ r

Another norm that has turned out to be quite
powerful, is Vapnik’s ǫ-insensitive ℓ1 norm

ℓ(u) = |u|ǫ =

{

0 if |x| ≤ ǫ

|u| − ǫ else
(29)

that is used in Support Vector Machines, (Vapnik,
1998).

Regularization. Regularization as in (14) is a
way to concentrate the fit in the optimization
criterion to those parameters that are most im-
portant. This is particularly useful for estimation
of nonlinear models, since it is difficult to know
beforehand which parameters will turn out to be
crucial for a good fit.

The effect of the quadratic regularization (14b)
is that the variance contribution W̄N , (12b), av-

eraged over the regressors in the observation set
is

W̄N =
2λ

N

n
∑

k=1

si

(si + 2δ)
(30)

where λ is the variance of e(t) in (1), and si are
the singular values of the Hessian of the criterion
VN in (13). See, e.g. (Ljung, 1999) (page 505, with
correction at http://www.control.isy.liu.se
/∼ljung/sysid/errata). For δ = 0 (no regu-
larization) the sum simply counts the number of
parameters, n. In general, the sum is approxima-
tively equal to the number of singular values of the
Hessian that are larger than δ, the effective num-
ber of parameters. The regularization parameter
δ is thus a way to select the effective number of
parameters by concentrating on those that affect
the fit most. It is a very useful way of striking the
best trade-off between bias and variance.

Regularization in other ways, such as using ℓ1
norm regularization terms or constraining the
parameter estimates will have similar effects, and
can also force the less useful parameters to be
exactly zero. Methods like LARS, LASSO, etc
(see, e.g., (Hastie et al., 2001), Section 3.4) are
ways of selecting regressors with regularization-
like techniques.

11. CONCLUSIONS

Identification of nonlinear models is indeed a
problem with many facets. What makes the area
so overwhelmingly rich is that so many differ-
ent research communities have contributed and
continue to contribute. Many issues are purely
statistical and do not depend on whether the
underlying process is a dynamical system or not.
For the control community it is worth while to find
its niche with the best chances to give valuable
contributions. A few suggestions are

• Find a working relationship between modern
physical modeling tools and the estimation of
dynamical models. Deal directly with Differ-
ential Algebraic Equations, and sort out how
to work with disturbance descriptions in such
models.

• Study identifiability questions when sub-
models are connected in such object oriented
modeling environments.

• Consider both algebraic tools (like Ritt’s al-
gorithm) and algorithmic tricks to convexify
estimation problems in order to provide pow-
erful initialization steps for parameter esti-
mation. Can particle filters and the EM algo-
rithm offer help in dealing with (i.e. avoiding)
local optima of the likelihood function?

• Can tools of considerable generality be de-
veloped from block-oriented models (Sec-
tion 7.2)?



• Can black-box models be developed that al-
low a better handle on stability for simulation
(cf. Section 5.3)?

• Since linear dynamic models will remain the
basic arena for control applications, it is im-
portant to fully understand how linear mod-
els approximate real-life nonlinear systems.
Cf. (Enqvist, 2005).
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