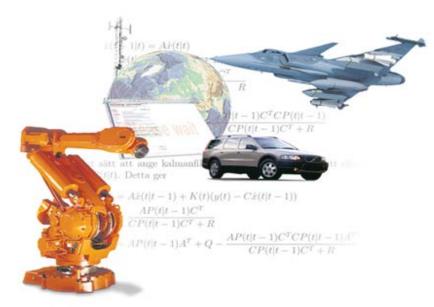
Identification of Non-linear Dynamical Systems



Lennart Ljung Linköping University Sweden

Lennart Ljung Identification of Non-linear Dynamical Systems

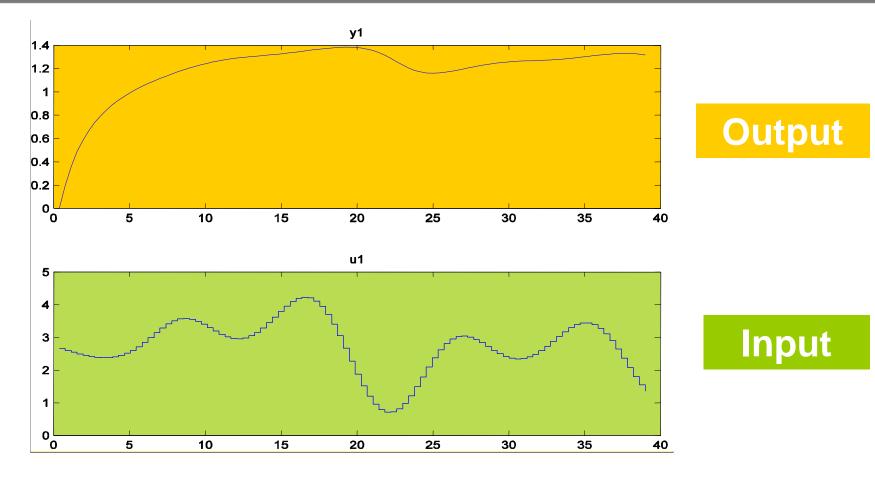
Prologue

Prologue

The PI, the Customer and the Data Set

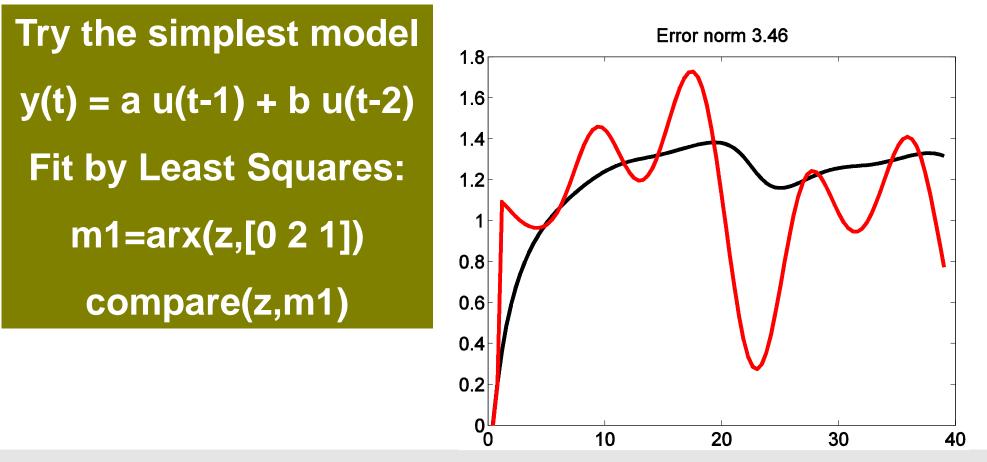
 C: I have this data set. I have collected it from a cell metabolism experiment. The input is Glucose concentration and the output is the concentration of G6P. Can you help me building a model of this system?

The Data Set



A Simple Linear Model

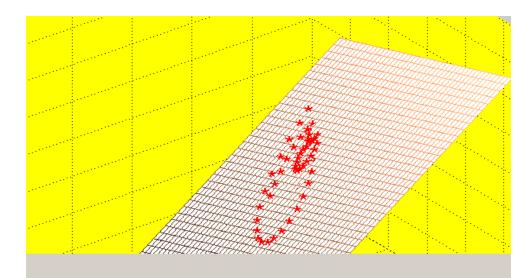
Red: Model Black: Measured

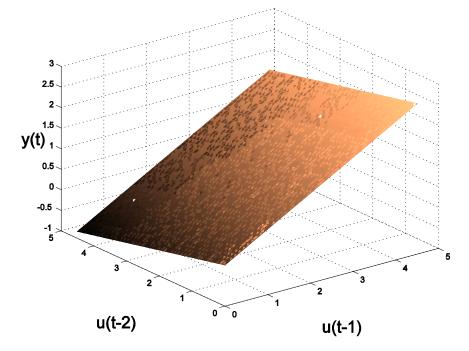


Lennart Ljung Identification of Non-linear Dynamical Systems

A Picture of the Model

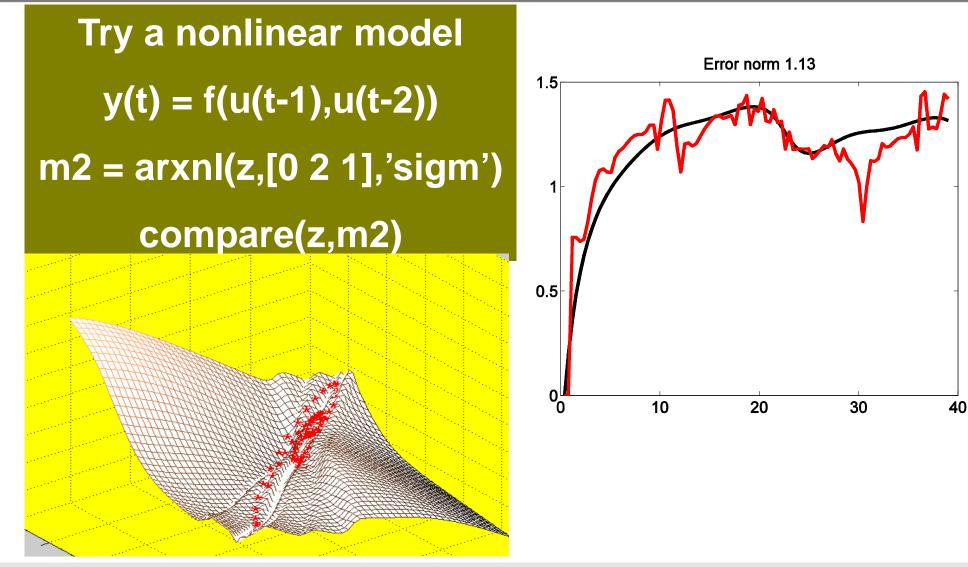
Depict the model as y(t) as a function of u(t-1) and u(t-2)





Lennart Ljung Identification of Non-linear Dynamical Systems

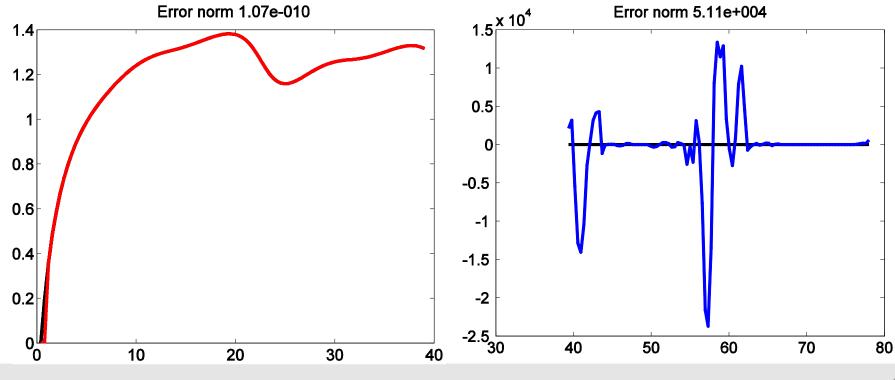
A Nonlinear Model



ICARCV 2006, Singapore December 7, 2006

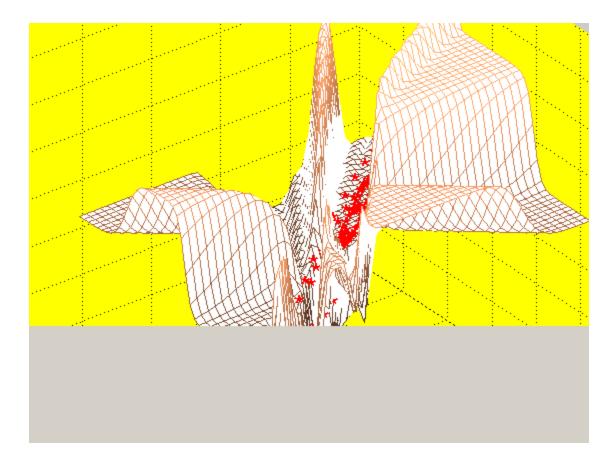
More Flexibility

A more flexible, nonlinear model y(t) = f(u(t-1),u(t-2)) m3 = arxnl(z,[0 2 1],'sigm','numb',100) compare(z,m3) compare(zv,m3)



Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

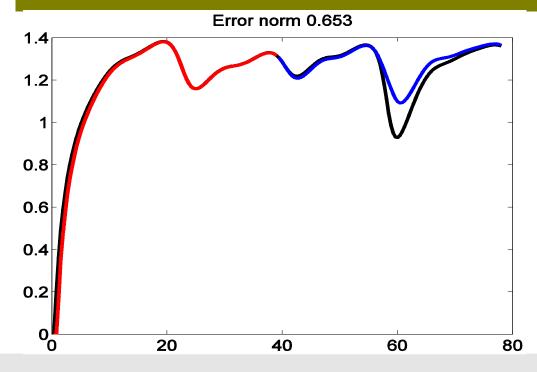
The Fit Between Model and Data



Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

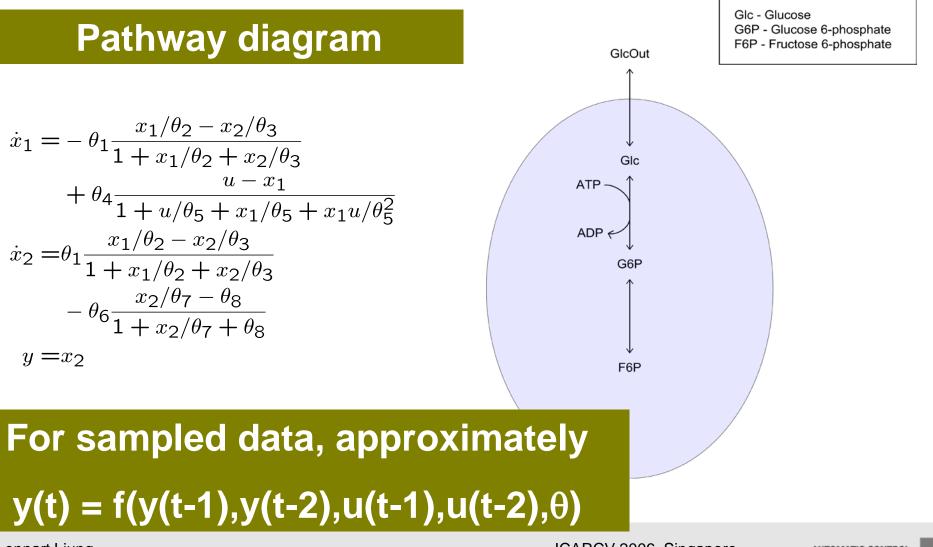
More Regressors

Try other arguments: y(t) = f(y(t-1),y(t-2),u(t-1),u(t-2)) m4 = arxnl(z,[2 2 1],'sigm')compare([z;zv],m4)



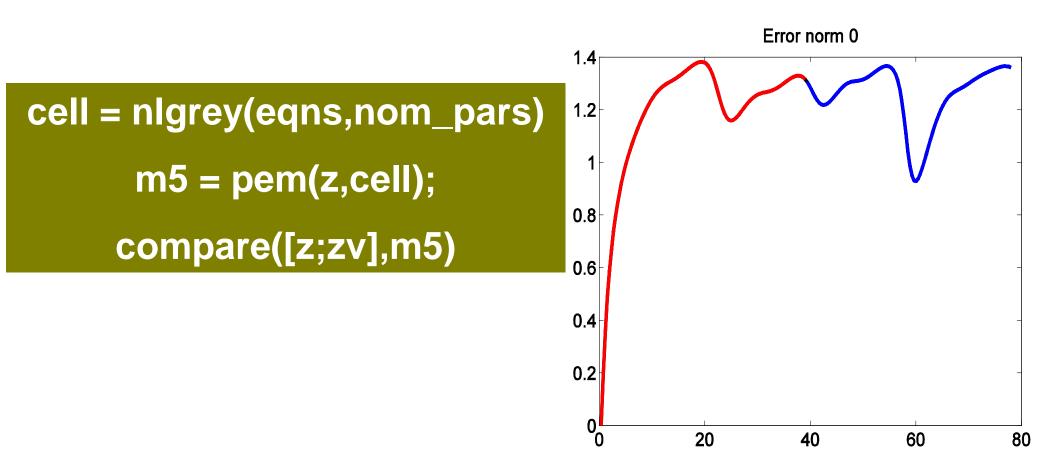
Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

Biological Insight



Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

Tailor-made Model Structure



Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

Lennart Ljung Identification of Non-linear Dynamical Systems

Outline

- Problem formulation
- How to parameterize black box predictors
- Using physical insight
- Initialization of parameter search
- LTI approximation of non-linear systems

The Basic Picture

Input *u*, Output *y*, $Z^t = \{u(1), y(1), \dots, u(t), y(t)\}$

- State-Space
 - $\dot{x} = g(x, u, w)$ y = h(x, u, e)

 \boldsymbol{w} and \boldsymbol{e} noises

$$\widehat{y}(t|t-1) = E(y(t)|Z^{t-1})$$

Output predictor

$$\hat{y}(t|t-1) = f_0(Z^{t-1})$$

Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

The Predictor Function

General structure $\hat{y}(t|t-1) = f_0(Z^{t-1})$

Common/useful special case:

 $\hat{y}(t|t-1) = f_0(Z^{t-1}) = f_0(\phi(t))$ $\phi(t) = \phi(Z^{t-1}) \text{ of fixed dimension m ("state", "regressors")}$

Think of the simple case

$$\phi(t) = [y(t-1) \dots y(t-n_a) u(t-1) \dots u(t-n_b)]$$

The Predictor Function

General structure $\hat{y}(t|t-1) = f_0(Z^{t-1})$

Common/useful special case:

 $\hat{y}(t|t-1) = f_0(Z^{t-1}) = f_0(\phi(t))$ $\phi(t) = \phi(Z^{t-1}) \text{ of fixed dimension m ("state", "regressors")}$

Think of the simple case

$$\phi(t) = [y(t-1) \dots y(t-n_a) u(t-1) \dots u(t-n_b)]$$

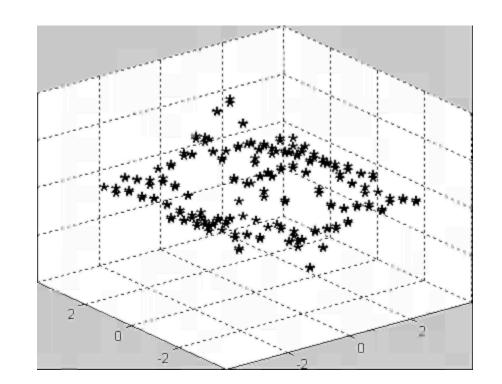
The Data and the Identification Process

The observed data $Z^{N}=[y(1),\phi_{1},...y(N),\phi_{N}]$

are N points in \mathbb{R}^{m+1}

The predictor model $\widehat{y} = f_0(\phi)$ is a surface in this space

Identification is to find the predictor surface from the data:



Mathematical Formulation

- Collect observations: Z^N , $y(t)=f_0(\phi(t))+noise$,
- Non-parametric: Smooth the y(t)'s locally over selected \u00f6(t)regions
- Parametric:
 - Parameterize the predictor function: f(θ, ϕ), f $\in \mathcal{F}$ when $\theta \in D$
 - Fit the parameters to the data:

$$\widehat{\theta}_N = \arg\min_{\theta \in D} V_N(\theta, Z^N)$$
$$V_N(\theta, Z^N) = \sum_{t=1}^N \ell(y(t) - f(\theta, \phi(t))) = \sum_{t=1}^N ||y(t) - f(\theta, \phi(t))||^2$$

• Use model $\hat{f}_N(\phi) = f(\hat{\theta}_N, \phi)$

Lennart Ljung Identification of Non-linear Dynamical Systems

Outline

- Problem formulation
- Parameterizing black box predictors
- Using physical insight
- Initialization of parameter search
- LTI approximation of non-linear systems

Predictor Function Parameterization

How to parameterize the predictor function f(θ,φ)?

- Grey-box (Physical insight of some sort)
- Black-box (Flexible function expansions)

$$f(\theta,\phi) = \sum_{k=1}^{n} \theta_k f_k(\phi)$$

General case:
$$f_k(\phi) = f_k(\phi(\theta), \theta)$$

Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

Choice of Functions: Methods

- Neural Networks
- Radial Basis Neural Networks
- Wavelet-networks
- Neuro-Fuzzy models
- Spline networks
- Support Vector Machines
- Gaussian Processes

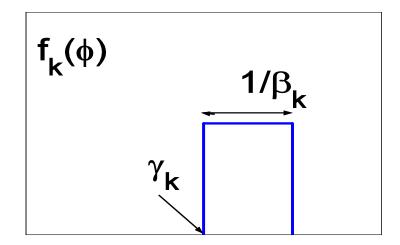
ALL THESE USE

Several layers....

Kriging

$$f(\theta, \phi) = \sum_{k=1}^{n} \alpha_k \kappa(\beta_k(\phi - \gamma_k))$$
$$\theta = \{\alpha_k, \beta_k, \gamma_k\}$$

Lennart Ljung Identification of Non-linear Dynamical Systems



$$\gamma_k = \phi(k)$$

 $\kappa = \text{GaussianBell}$

An Aspect for Dynamical Systems

• Let
$$\phi(t) = [y(t-1), u(t-1)]^T$$

(One-step ahead) predicted output:

 $\widehat{y}_p(t|\theta) = f(\theta, [y(t-1), u(t-1)]^T)$

- This is normally what is fitted to data.
- A tougher test for the model is to simulate the output from past inputs only:

$$\widehat{y}_s(t,\theta) = f(\theta, [\widehat{y}_s(t-1,\theta), u(t-1)]^T)$$

Stability issues!

The Basic Challenge

- Non-linear surfaces in high dimensions can be very complicated and need support of many observed data points.
- How to find parameterizations of such surfaces that both give a good chance of being close to the true system, and also use a moderate amount of parameters?
- The data cloud of observations is by necessity sparse in the surface space.

How to Deal with Sparsity

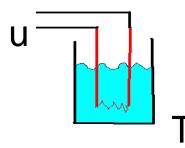
- Need ways to interpolate and extrapolate in the data space
- Leap of Faith: Search for global patterns in observed data to allow for data-driven interpolation
- Use Physical Insight: Allow for few parameters to parameterize the predictor surface, despite the high dimension.

Outline

- Problem formulation
- Parameterizing black box predictors
- Using physical insight
- Initialization of parameter search
- LTI approximation of non-linear systems

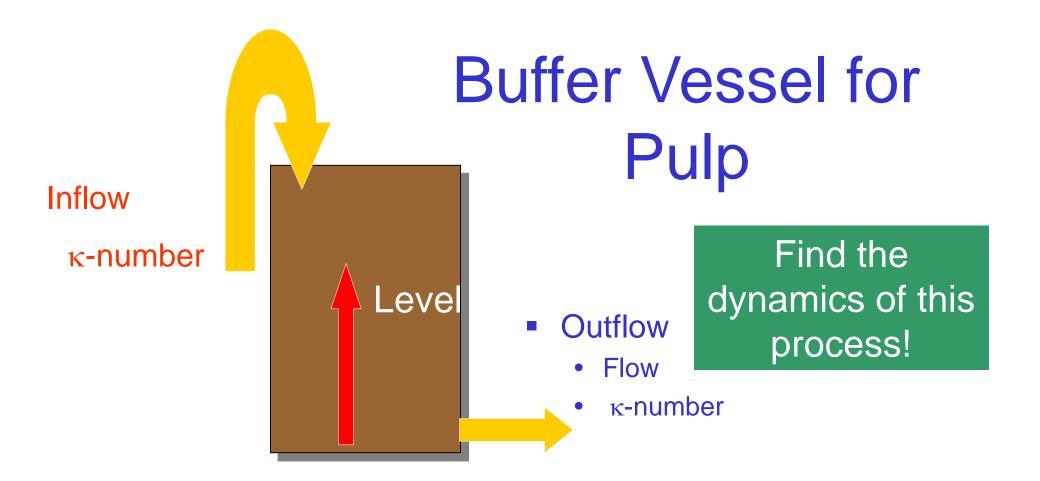
Using Physical Insight: Light Version

Semiphysical Modeling

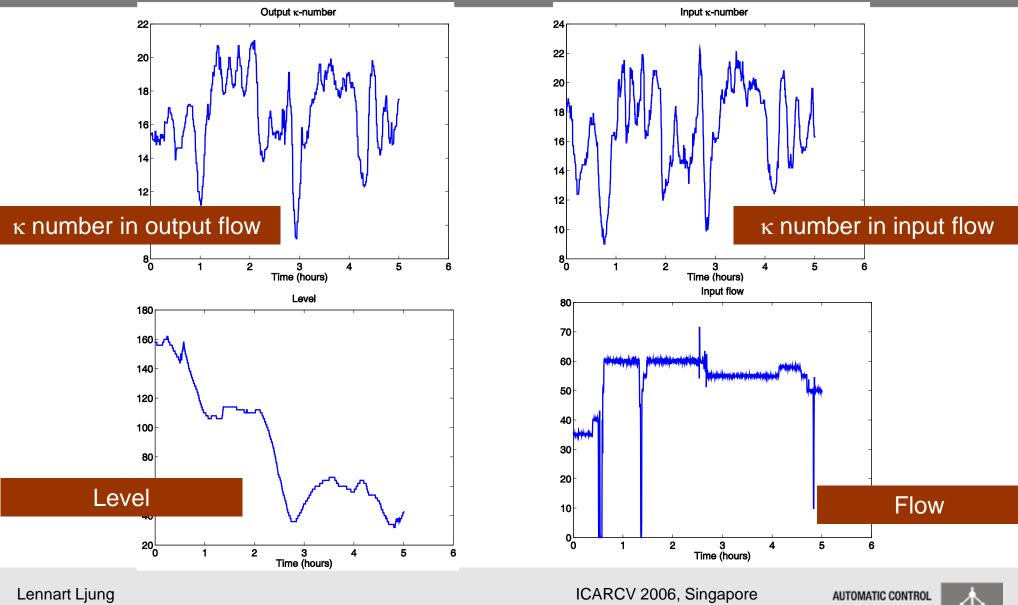


Input: heater voltage u Output: Fluid temperature T Square the voltage: $u \rightarrow u^2$

Example: Semiphysical Modeling



Measured Data from the Vessel



Identification of Non-linear Dynamical Systems

ICARCV 2006, Singapore December 7, 2006

Fit a Linear Model to Data

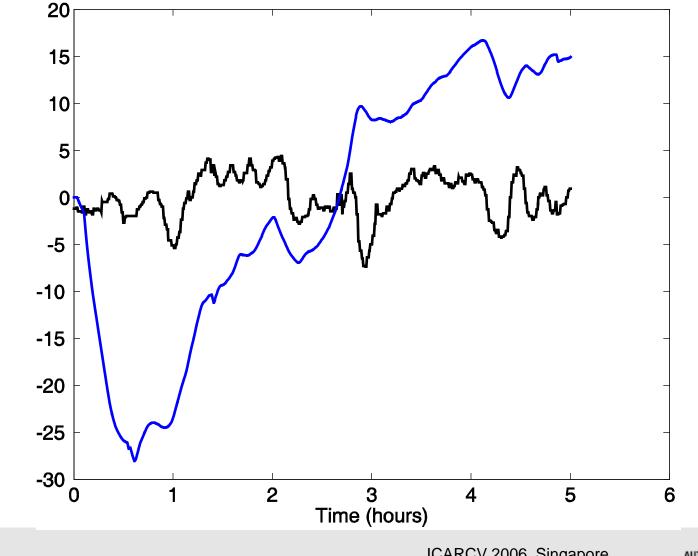
6 4 2 С -2 -4 -6 -8 2 3 5 1 6 4 0 Time (hours)

Measured and Model Output

Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

Using All 3 Inputs to Predict the Output

Measured and Model Output

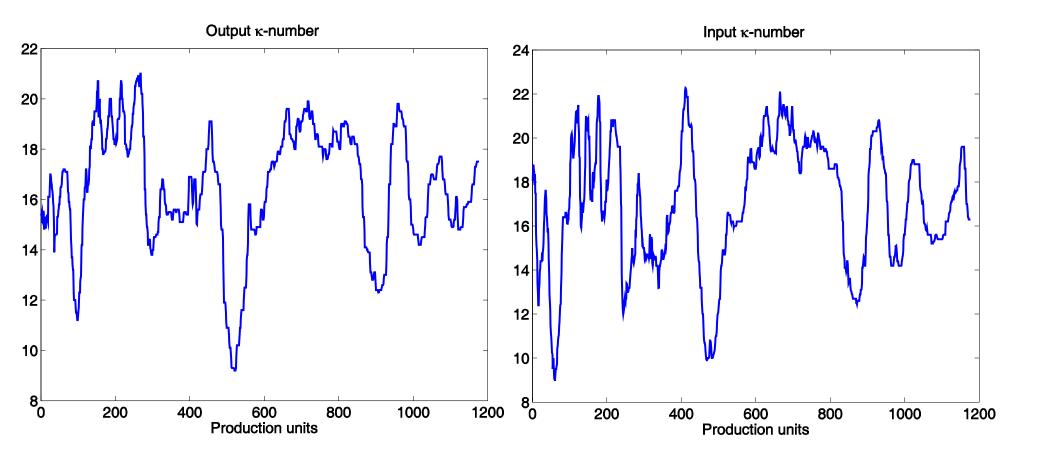


Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

Think ...

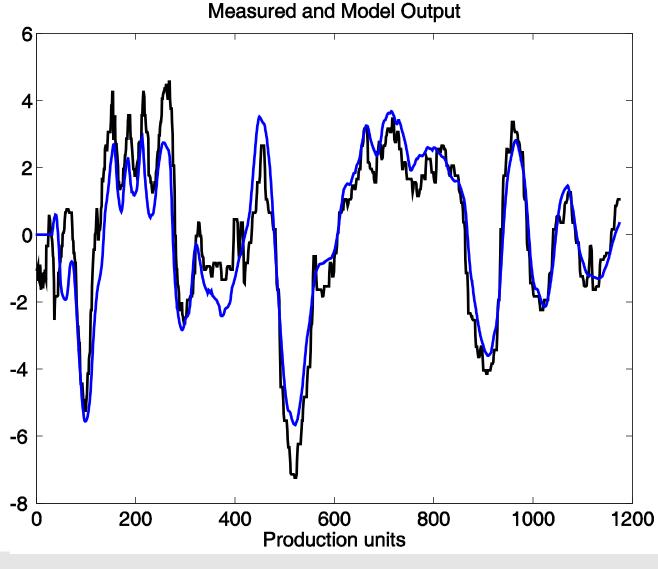
- Plug Flow: The system is a pure time delay of Volume/Flow
- Perfectly stirred tank: First order system with time constant = Volume/Flow
- Natural Time variable: Volume/Flow
- Rescale Time:
- Pf = Flow/Level
- Newtime = interp1(cumsum(Pf), time, [Pf(1):sum(Pf)]);
- Newdata = interp1(Time, Data, Newtime);

The Data with a New Time-scale



ICARCV 2006, Singapore December 7, 2006

Simple Linear Model for Rescaled Data



Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

Using Physical Insight: Serious Version

- Careful modeling leading to systems of Differential Algebraic Equations (DAE) parameterized by physical parameters.
- Support by modern modeling tools.
- The "statistically correct" approach is to estimate the parameters by the Maximum Likelihood method.

Local Minima of the Criterion

- This sounds like a general and reasonable approach
- Are there any catches?
- Well, to minimize the criterion of fit (maximizing the likelihood function) could be a challenge.
- Can be trapped in local minima....

Maximum Likelihood: The Solution?

 Example: A Michaelis-Menten equation:

$$\dot{x} = \theta_1 \frac{x}{\theta_2 + x} - x + u$$
$$y = x + e$$
$$u = \text{impulse}$$

The ML Criterion (Gaussian Noise)

$$V(\theta) = \sum_{k=1}^{100} ||y(t_k) - x(t_k, \theta)||^2$$

$$\dot{x}(t, \theta) = \theta_1 \frac{x(t, \theta)}{\theta_2 + x(t, \theta)} - x(t, \theta) + u(t) \qquad \mathsf{V}(\theta) \text{ as a function of } \theta$$

100

Outline

- Problem formulation
- How to parameterize black box predictors
- Using physical insight
- Initialization of parameter search
- LTI approximation of non-linear systems

Can We Handle Local Minima ?

- Can the observed data be linked to the parameters in a different (and simpler) way?
- Manipulate the equations ...

Ex: The Michaelis-Menten Equation

In our case (noisefree)

$$\dot{y} = \frac{\theta_1 y}{y + \theta_2} - y + u$$

$$\dot{y}y + \theta_2 \dot{y} = \theta_1 y - y^2 - \theta_2 y + uy + \theta_2 u$$
$$\dot{y}y + y^2 - uy = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix} \begin{bmatrix} y \\ u - \dot{y} - y \end{bmatrix}$$

For observed y and u this is a linear regression in the parameters. With noisy observations, the noise structure will be violated, though, which could lead to biased estimates.

Identifiability and Linear Regression

Crucial Challenge for physically parameterized models: Find a good initial estimate

Result of conceptual interest:

(Ljung, Glad, 1994)

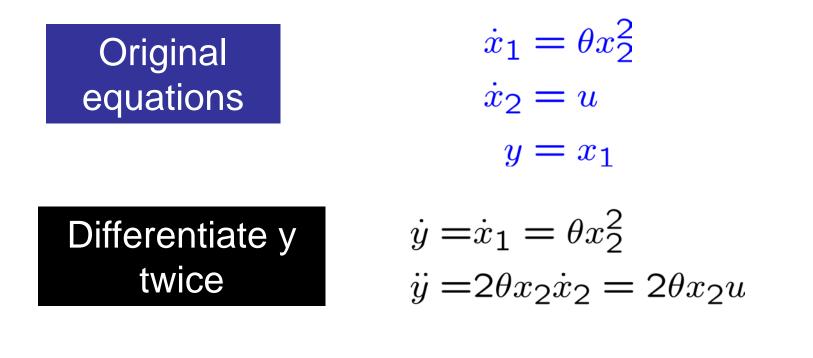
A parameterized set of DAEs is globally identifiable

if and only if

the set can be rearranged as a linear regression

Ritt's algorithm from differential algebra provides a finite procedure for constructing the linear regression

Example of Ritt's Algorithm



Square the last expression

$$\ddot{y}^2 = 4\theta\theta x_2^2 u^2 = 4\theta \dot{y} u^2$$

which is a linear regression

Lennart Ljung Identification of Non-linear Dynamical Systems ICARCV 2006, Singapore December 7, 2006

AUTOMATIC CONTROL

Challenge for Parameter Initialization

- Only small examples treated so far. Make the initialization work in bigger problems.
- Potential for important contributions:
 - Handle the complexity by modularization
 - Handle the noise corruption so that good quality initial estimates are secured
- Room for innovative ideas using algebra and semidefinite programming!

A Control Aspect

 Despite all the work and results on non-linear models, the most common situation will still be

How to live with an estimated LTI model approximation of a Non-linear system.

Outline

- Problem formulation
- Generalization properties
- How to parameterize black box predictors
- Using physical insight
- Initialization of parameter search
- LTI approximation of non-linear systems

Non-linear System Approximation

- Given an LTI Output-error model structure y=G(q,θ)u+e, what will the resulting model be for a non-linear system?
- Assume that the inputs and outputs u and y are such that the spectra Φ_u and Φ_{yu} are well defined.
- Then the LTI second order equivalent is

$$G_0 = \frac{1}{\lambda L(z)} \begin{bmatrix} \Phi_{yu}(z) \\ L(z^{-1}) \end{bmatrix}_{\text{causal}} \quad \Phi_u(z) = \lambda L(z) L(z^{-1})$$

Note: G₀ depends on u

The limit model will be

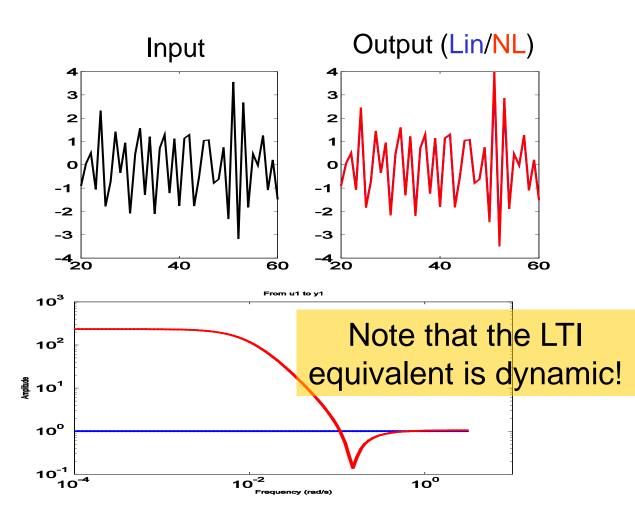
 $\min_{\theta} \int |G(z,\theta) - G_0(z)|^2 \Phi_u(z) dz$

An Example

- Two data sets
- Input u and output y
- y = u
- y = u + 0.01u³

(Enqvist, 2003)

The corresponding LTI equivalents (amplitude Bode plot)



ICARCV 2006, Singapore December 7, 2006

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

An Example

4

З

2

-2

-3

 10^{3}

 10^2

⁹ 10¹

-4 _ 20 Input

40

- Two data sets
- Input u and output y
- y = u
- y = u + 0.01u³

(Enqvist, 2003)

The corresponding LTI equivalents (amplitude Bode plot)

Bode plot) ^{10°} **Sothee(z,[2,2e]) give ver**y different ^{10⁻²} **breistifts forrthetwo** data sets!

Output (Lin/NL)

40

10⁰

60

З

2

-2

-3

60

From u1 to y1

-4 ∟ 20

Epilogue: Tasks for the Control Community

Black-box models

- Working stability theory: Prediction/Simulation
- Semiphysical Models
 - Tools to generate and test non-linear transformations of data
- Fully integrated software for modeling and identification
 - Object oriented modeling
 - Differential Algebraic Equations including disturbance modeling
 - Robust parameter initialization techniques
- Understand LTI approximation of nonlinear dynamic systems

