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Prologue 

 
 
 
 
 
 

 C: I have this data set. I have collected it from a cell 
metabolism experiment. The input is Glucose 
concentration and the output is the concentration of G6P. 
Can you help me building a model of this system? 

 

Prologue 

The PI, the Customer and 
the Data Set 
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The Data Set 

Input 

 

Output 

Input 
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A Simple Linear Model 

Try the simplest model 

y(t) = a u(t-1) + b u(t-2) 

Fit by Least Squares: 

m1=arx(z,[0 2 1]) 

compare(z,m1) 

Red: Model  
Black: Measured 
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A Picture of the Model 

Depict the model as 
y(t) as a function of 

u(t-1) and u(t-2) 

u(t-2) 
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A Nonlinear Model 
Try a nonlinear model 

y(t) = f(u(t-1),u(t-2)) 

m2 = arxnl(z,[0 2 1],’sigm’) 

compare(z,m2) 
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More Flexibility 
A more flexible, nonlinear model 
y(t) = f(u(t-1),u(t-2)) 
m3 = arxnl(z,[0 2 1],’sigm’,’numb’,100) 
compare(z,m3) 
compare(zv,m3) 
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The Fit Between Model and Data 
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More Regressors 
Try other arguments: 
y(t) = f(y(t-1),y(t-2),u(t-1),u(t-2)) 
m4 = arxnl(z,[2 2 1],’sigm’) 
compare([z;zv],m4) 
 



Lennart Ljung 
Identification of Non-linear Dynamical Systems 

ICARCV 2006, Singapore 
 December 7, 2006 

Biological Insight 

Pathway diagram 

For sampled data, approximately 

y(t) = f(y(t-1),y(t-2),u(t-1),u(t-2),θ) 
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Tailor-made Model Structure 

cell = nlgrey(eqns,nom_pars) 

m5 = pem(z,cell); 

compare([z;zv],m5) 
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End of Prologue 
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Outline 
 Problem formulation 
 How to parameterize black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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 State-Space 

The Basic Picture 

 Output predictor 
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The Predictor Function 
General structure 

Common/useful special case: 

Think of the simple case 

of fixed dimension m (”state”, ”regressors”) 
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The Predictor Function 
General structure 

Common/useful special case: 

of fixed dimension m (”state”, ”regressors”) 

Think of the simple case 
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The Data and the Identification Process 
The observed data 

ZN=[y(1),φ1,…y(N),φN] 

are N points in Rm+1 

Identification is to find  
the predictor surface  
from the data: 

The predictor model  

 

is a surface in this 
space 
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Mathematical Formulation 

 Collect observations:  ZN , y(t)=f0(φ(t))+noise,  
 Non-parametric: Smooth the y(t)’s locally over selected φ(t)-

regions 
 Parametric: 

 Parameterize the predictor function: f(θ,φ), f2F when θ 2 D 
 Fit the parameters to the data: 

 

 
 

 Use model  
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Outline 
 Problem formulation 
 Parameterizing black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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Predictor Function Parameterization 

How to parameterize the predictor                
function f(θ,φ)? 
  Grey-box (Physical insight of some sort) 

 Black-box (Flexible function expansions) 
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Choice of Functions: Methods 

 Neural Networks 
 Radial Basis Neural Networks 
 Wavelet-networks 
 Neuro-Fuzzy models 
 Spline networks 
 Support Vector Machines 
 Gaussian Processes 
 Kriging 

 
ALL THESE USE 
 
 Several layers…. 
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An Aspect for Dynamical Systems 

 Let  
 (One-step ahead) predicted output:  

 
 

 This is normally what is fitted to data. 
 A tougher test for the model is to simulate the output from 

past inputs only: 
 
 

 Stability issues! 
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The Basic Challenge 
 

 Non-linear surfaces in high dimensions can be very 
complicated and need support of many observed data  
points. 

 How to find parameterizations of such surfaces that both 
give a good chance of being close to the true system, and 
also use a moderate amount of parameters? 

 The data cloud of observations is by necessity sparse in 
the surface space. 
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How to Deal with Sparsity 

 Need ways to interpolate and extrapolate in the 
data space 

 Leap of Faith: Search for global patterns in 
observed data to allow for data-driven 
interpolation 

 Use Physical Insight: Allow for few parameters to 
parameterize the predictor surface, despite the 
high dimension. 
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Outline 
 Problem formulation 
 Parameterizing black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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Using Physical Insight: Light Version 

Semiphysical 
Modeling 

T 

u 
Input: heater voltage u 

Output: Fluid temperature T 

Square the voltage: 
u u2  

f 
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Example: Semiphysical Modeling 

 Outflow 
 Flow 
  κ-number 

Inflow 

 κ-number 
Level 

Buffer Vessel for 
Pulp 

Find the 
dynamics of this 

process! 
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Measured Data from the Vessel 

 

κ number in output flow κ number in input flow 

Level Flow 
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Fit a Linear Model to Data 
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Using All 3 Inputs to Predict the Output 
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Think … 

 Plug Flow: The system is a pure time delay of 
Volume/Flow 

 Perfectly stirred tank: First order system with time 
constant = Volume/Flow 

 Natural Time variable: Volume/Flow 
 Rescale Time: 
 Pf  = Fl ow/ Level  
 Newt i me = 

i nt er p1( cumsum( Pf ) , t i me, [ Pf ( 1) : sum( Pf ) ] ) ;  
 Newdat a = i nt er p1( Ti me, Dat a, Newt i me) ;  
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The Data with a New Time-scale 
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Simple Linear Model for Rescaled Data 
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Using Physical Insight: Serious Version 

 Careful modeling leading to systems of 
Differential Algebraic Equations (DAE)  
parameterized by physical parameters. 

 Support by modern modeling tools. 
 The ”statistically correct” approach is to estimate 

the parameters by the Maximum Likelihood 
method. 
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 Local  Minima of the Criterion 

 This sounds like a general and reasonable 
approach 
 Are there any catches? 
 Well, to minimize the criterion of fit 

(maximizing the likelihood function) could 
be a challenge. 
 Can be trapped in local minima…. 
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Maximum Likelihood: The Solution? 

 Example: A Michaelis-
Menten equation: 

 The output: 
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The ML Criterion (Gaussian Noise) 

V(θ) as a function of θ 
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Outline 
 Problem formulation 
 How to parameterize black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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Can We Handle Local Minima ? 

 Can the observed data be linked to the parameters in a 
different (and simpler) way? 

 Manipulate the equations … 
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Ex: The Michaelis-Menten Equation 

 In our case (noisefree) 
 

For observed y and u this is  a linear regression in the 
parameters. With noisy observations, the noise structure 
will be violated, though, which could lead to biased estimates. 
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Identifiability and Linear Regression 

 
 Result of conceptual interest: 

A parameterized set of DAEs is globally 
identifiable 

if and only if 

the set can be rearranged as a linear 
regression 

Ritt’s algorithm from differential algebra provides a finite 
procedure for constructing the linear regression 

Crucial Challenge for physically parameterized 
models: Find a good initial estimate 

(Ljung, Glad, 1994) 
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Example of Ritt’s Algorithm 

 
 

Original 
equations 

Differentiate y 
twice 

Square the last 
expression which is a linear 

regression 
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Challenge for Parameter Initialization 

 Only small examples treated so far. Make the initialization 
work in bigger problems. 

 Potential for important contributions: 
 Handle the complexity by modularization 
 Handle the noise corruption so that good quality initial estimates 

are secured 

 Room for innovative ideas using algebra and semidefinite 
programming! 

s 
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A Control Aspect 

 Despite all the work and results on non-linear models, the 
most common situation will still be 
 

How to live with an estimated LTI model  
approximation of a Non-linear system. 
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Outline 
 Problem formulation 
 Generalization properties 
 How to parameterize black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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Non-linear System Approximation 
 Given an LTI Output-error model structure y=G(q,θ)u+e, 

what will the resulting model be for a non-linear system? 
 Assume that the inputs and outputs u and y are such that 

the spectra Φu and  Φyu are well defined.  
 Then the LTI second order equivalent is  

 
 

    The limit model will be 

Note: G0 depends on u 
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An Example 

 Two data sets  
 Input u and output y 
 y = u   
 y = u + 0.01u3 

The corresponding LTI 
equivalents (amplitude 

Bode plot) 

(Enqvist, 2003) 

Note that the LTI 
equivalent is dynamic! 

Input Output (Lin/NL) 
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An Example 

 Two data sets  
 Input u and output y 
 y = u   
 y = u + 0.01u3 

The corresponding LTI 
equivalents (amplitude 

Bode plot) 

(Enqvist, 2003) 

Is the red Bode plot a good 
basis for control design? 

Input Output (Lin/NL) 

So, oe(z,[2 2 1]) give very different 
results for the two data sets! s 
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Epilogue: Tasks for the Control Community 

 Black-box models 
 Working stability theory: Prediction/Simulation 

 Semiphysical Models 
 Tools to generate and test non-linear transformations of data 

 Fully integrated software for modeling and identification 
 Object oriented modeling 
 Differential Algebraic Equations – including disturbance modeling 
 Robust parameter initialization techniques 

 Understand LTI approximation of nonlinear dynamic 
systems 
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