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Abstract—This paper presents a framework for tracking ex-
tended targets which give rise to a structured set of measurements
per each scan. The concept of a measurement generating point
(MGP) which is defined on the boundary of each target is
introduced. The tracking framework contains an hybrid state
space where MGP:s and the measurements are modeled by
random finite sets and target states by random vectors. The target
states are assumed to be partitioned into linear and nonlinear
components and a Rao-Blackwellized particle filter is used for
their estimation. For each state particle, a probability hypothesis
density (PHD) filter is utilized for estimating the conditional
set of MGP:s given the target states. The PHD kept for each
particle serves as a useful means to represent information in
the set of measurements about the target states. The early
results obtained show promising performance with stable target
following capability and reasonable shape estimates.
Keywords: Tracking, data association, particle filter,
Kalman filter, estimation, PHD filter, extended target, Rao-
Blackwellized particle filter.

I. INTRODUCTION

In target tracking, the task is to detect, track and identify an
unknown number of targets using measurements that are af-
fected by noise and clutter. In recent years, so called extended
target tracking has received increasing research attention. In
extended target tracking, the classic point target assumption
is relaxed and the target tracking framework is modified to
handle multiple measurements per target and time step. The
multiple measurements per target raise interesting possibilities
to estimate the target’s size and shape in addition to the target’s
position, velocity and heading. Typical sensors where targets
cause multiple measurements are cameras, automotive radars
and laser range sensors – especially cameras and laser range
sensors give measurements with a high degree of structure.

Using finite set statistics (FISST) Mahler has derived rigor-
ous tools for multiple target tracking, see [1] and [2]. In the
Probability Hypothesis Density filter (PHD-filter) the targets
and measurements are treated as random finite sets (RFS);
an implementation where the PHD-intensity is approximated
using a mixture of Gaussians has been presented in [3]. An
extension of the PHD-filter to handle extended targets that give
Poisson distributed measurements, as in [4], was given in [5].
A Gaussian mixture implementation of this extended target
PHD-filter was recently presented in [6].

In the recent work by Mullane et al. [7], the Simultaneous
Localization and Mapping (SLAM) problem was addressed
using a Bayesian approach. The measurements and feature

map is modeled using RFS, giving a framework in which the
number and location of map features is jointly estimated with
the vehicle trajectory. A Rao-Blackwellized implementation
is suggested where the vehicle trajectory is estimated with a
particle filter and the map is handled using a Gaussian-mixture
(GM-PHD) filter.

In this paper, the ideas presented in [7] are utilized to solve
the problem of estimating the shape of an extended target. The
sensors mentioned earlier typically obtain point measurements
from reflection points on the surface of the target. The real-
izations of the reflection points in this framework are called
measurement generating points (MGP:s) and their positions on
the target are estimated as a means to estimate the shape,
size and position of the target. By considering the MGP as
an RFS it is possible to create a measurement model which
better adapts to the actual and visible reflection points of the
target. The target state vector is estimated using a particle
filter, and the RFS of MGP:s are estimated with a GM-PHD-
filter. The target’s state vector is too large to be efficiently
estimated with a particle filter, and the linear and nonlinear
parts are therefore partitioned and estimated in a marginalized
or Rao-Blackwellized particle filter, see e.g., [8]. The joint
estimation of the target density and the density of the MGP:s
on the boundary leads to a Rao-Blackwellized implementation
of the joint particle and PHD filter.

Modeling of extended targets in this work is very similar to
active contours [9] and snakes [10], which model the outline
of an object based on 2 dimensional image data, studied
extensively in computer vision. Detecting and identifying
shapes in cluttered point clouds has been studied in [11], where
the MGP:s on the surface of the target are denoted samples. The
underlying low-level processing involved assumes reasonably
the existence of image data from which features (like Harris
corners) or feature maps (like Harris measures etc.) can be
extracted. The so-called Condensation algorithm [12], for
example, searches for suitable sets of features in the image
data (or in the feature map) iteratively for each of its different
hypotheses (particles) in the calculation of the likelihoods.
The approach presented in this work carries the distinction of
working only with a single set of measurement points provided
most of the time by thresholding of the raw sensor data (like
conventional target tracking) and hence is mainly aimed at
applications where the users (of the sensors) either are unable
to reach or do not have the computation power to work with the
raw sensor data. The mapping of the boundaries of complex
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objects is also achieved in [13] using splinegon techniques and
a range sensor such as e.g., laser mounted on moving vehicles.

There are also several other approaches to extended target
tracking in the literature. Gilholm presents in [4], [14] an
approach where it is assumed that the number of received
target measurements is Poisson distributed, hence several
measurements may originate from the same target. In [15]
a similar approach is presented where raw data is considered
in a track-before-detect framework and no data association
is needed. Monte Carlo methods are applied to solve the
extended target tracking problem in [16], [17] and random
matrices are used by Koch in [18].

The paper is organized as follows. Section II introduces the
RFS of measurements and MGP:s as well as the model of the
target. The filter framework is described in Section III and an
implementation is given in Section IV. A simple example with
simulation results is shown in Section V. Section VI contains
conclusions and some thoughts on future work.

II. THE RFS EXTENDED TARGET MODEL

Consider an extended target whose characteristics, e.g.,
position, heading, velocity and shape are described by a
state vector xk. The target is observed by a sensor, which
provides point observations z

(m)
k of the target. The number

of measurements zk at any given time is not fixed due to
detection uncertainty, spurious measurements and unknown
number of reflection points on the surface of the target. Since
the target is extended, it potentially gives rise to more than one
measurement per time step. Hence, the measurements obtained
from one target may be represented by a random finite set
(RFS) of observations

Zk =
{
z

(1)
k , . . . , z

(zk)
k

}
(1)

where k refers to discrete time. One way to associate the
point measurements to the target is to consider a number of
reflection points, called measurement generating points (MGP)
in this work, on the surface of the target. A MGP is defined
on a one dimensional coordinate axis denoted as s ∈ R on
the boundary of the target, which can generally be restricted
to an interval [smin, smax] called the MGP-space. All MGP:s
belonging to a single target may be modeled as a finite set
shown as

Sk =
{
s

(1)
k , . . . , s

(sk)
k

}
. (2)

A simple example is shown in Figure 1, where visible MGP:s
and point measurements are illustrated.

In a Bayesian framework, the states and the measurements
are treated as realizations of random variables. Since in this
case both the measurements and the MGP:s are represented by
finite sets, the concept of RFS is required for the Bayesian
estimation of the target state. An RFS is a finite set valued
random variable, whose elements are random variables and
the number of elements are treated as a random non-negative
integer variable. In a filtering and estimation framework the
probability density is a very useful descriptor of an RFS.
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Figure 1. A shape with visible MGP:s Sk (n) and measurements Zk (l).

Standard tools and notation to compute densities and inte-
grations of random variables are not appropriate for RFS and
therefore finite set statistics FISST, developed by Mahler [1]
as a practical mathematical tool to deal with RFS, has to be
applied.

Consider again the target in Figure 1, and let S be the RFS of
all MGP:s on the surface of the target. Furthermore let Sk ⊂ S
be the detectable MGP:s. As the target moves new MGP:s might
become visible to the sensor, either by observing a new side of
the object or by observing new reflection points, e.g., a wheel
arch of a car, becoming visible when the angle between the
target and the sensor changes. The new MGP:s are modeled
by an independent RFS Bk(xk) ⊂ S depending on the target
state xk. The set of visible MGP:s evolves in time as

Sk = Fk(Sk−1) ∪Bk(xk). (3)

where Fk( · ) is a set function modeling the survival (or death)
of the previous visible MGP:s. The RFS transition density is
then given by

p(Sk|Sk−1,xk) =
∑
S̄⊆Sk

pS(S̄|Sk−1)pB(Sk − S̄|xk) (4)

where pS( · |Sk−1) is the transition density of the observable
set of MGP:s, i.e., those who are in the field of view of the
sensor, and pB( · |xk) is the density of the RFS Bk(xk) of
the new visible MGP:s. Furthermore, the target dynamics is
modeled by a standard Markov process with transition density
p(xk|xk−1) and the joint transition density of the target and
its MGP:s is

p(Sk,xk|Sk−1,xk−1) = p(Sk|Sk−1,xk)p(xk|xk−1). (5)

The RFS of measurements Zk received at time k by the
sensor from a target with state vector xk and RFS Sk of MGP
is modeled as

Zk =
⋃

s∈Sk

Hk(s,xk) ∪Ck (6)
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where Hk(s,xk) is the RFS of measurement produced by the
MGP:s modeling also the non-perfect detection process and C
is the clutter RFS. The RFS of measurements produced by a
MGP is modeled by a Bernoulli RFS, i.e., it is Hk(s,xk) = ∅
with probability 1−PD(s|xk) and Hk(s,xk) = {z} with prob-
ability density PD(s|xk)p(z|s,xk), cf. [2]. The probability of
detection is denoted by PD(s|xk) defined over the MGP-space,
and p(z|s,xk) is the likelihood that the MGP s produces the
measurement z. The likelihood function of the measurement
RFS Zk is

p(Zk|xk,Sk) =
∑

Z̄⊆Zk

pZ(Z̄|Sk,xk)pC(Zk − Z̄|xk) (7)

where pZ(Z̄|Sk,xk) is the density representing the RFS of
detected observations. The density of the clutter RFS C is
denoted pC( · |xk) which is Poisson in cardinality and uniform
in space.

The relation between the shape of the target and some of
the state components is highly nonlinear and this makes an
application of the particle filter suitable. Suppose that the target
state xk can be partitioned into a nonlinear and a linear part
according to

xk =
[
xnk xlk

]T
, (8)

the state space model for xk is given by

xnk+1 = fnk (xnk ) + Fnk (xnk )xlk + vnk (9a)

xlk+1 = f lk(xnk ) + F lk(xnk )xlk + vlk. (9b)

For a single measurement, the measurement model is given by

zk ∼

{
N ( · ; ẑk(xnk , sk), Rk) if z target generated
ck( · ) if z clutter generated

(9c)

where
ẑk(xnk , sk) = hnk (xnk , sk) +Hk(xnk )xlk (9d)

The process noise vk is assumed to be

vk =

[
vnk
vlk

]
∼ N (0, Qk), Qk =

[
Qnk 0
0 Qlk

]
(10)

and the process covariance is here assumed to be diagonal.
The measurement noise is modeled as ek ∼ N (0;Rk). The
MGP:s s

(i)
k are assumed to be stationary on the boundary of

the target and the motion model for them is selected to be a
random walk model.

III. FILTERING FRAMEWORK

The aim of the filtering algorithm is to estimate the joint
posterior p(xn1:k,x

l
1:k,Sk|Z0:k) given the set of measurements

Z0:k. The posterior may be factorized according to

p(xn1:k,x
l
k,Sk|Z0:k)

= p(xlk|xn0:k,Sk,Z0:k)p(Sk|xn0:k,Z0:k)p(xn1:k|Z0:k) (11)

and the three posteriors for the states of a target xlk, xnk and
the MGP:s Sk = {s(1)

k , . . . , s
(sk)
k } can be computed separately.

However, since the filter recursion needed to estimate the
probability density of the MGP RFS p(Sk|xn0:k,Z0:k) includes

set integrals it is numerically intractable, and it is necessary
to find a tractable approximation. The first order moment of
an RFS is represented by a PHD, denoted D. For the RFS Sk,
the PHD is a nonnegative function, such that for each region
S in the space of MGP:s∫

S

Dk(x)dx = E(|Sk ∩ S|) = ŝk (12)

where ŝk is the expected number of elements in the region
S, and the peaks of the PHD indicates locations of MGP:s
with high probability. If the cardinality of elements in the
RFS Sk is Poisson distributed and the elements are i.i.d., then
the probability density of Sk can be computed from the PHD
according to

p(Sk) =

∏
s∈Sk

Dk(s)

exp(
∫
Dk(s)ds)

. (13)

The PHD-filter propagates the PHD of an RFS in time
and provides a reasonable approximation to the multitarget
Bayesian filter. The filter recursion for the joint RFS and
target state posterior density is described in the following.
First the target state and the MGP:s are predicted as described
in section III-A and thereafter a measurement update of the
MGP:s and the target states is performed as described in
Section III-B.

A. Prediction

Given the prior

p(xn1:k−1,x
l
1:k−1,Sk−1|Z0:k−1)

= p(xl1:k−1|xn0:k−1,Sk−1,Z0:k−1)

× p(Sk−1|xn0:k−1,Z0:k−1)p(xn1:k−1|Z0:k−1) (14)

1. Predict first the nonlinear state components xn, i.e.,

p(xn1:k−1|Z0:k−1)→ p(xn1:k|Z0:k−1) (15)

using (9a).

2. Predict the linear state components xl, i.e.,

p(xl1:k−1|xn0:k−1,Z0:k−1)→ p(xl1:k|xn0:k,Z0:k−1) (16)

using (9a) and (9b). Compare with the marginalized particle
filter [8], where the linear components are predicted and
updated with a Kalman filter, see Line 3-6 in Table I.

3. Finally predict the MGP:s according to

p(Sk−1|xn0:k,Z0:k−1)→ p(Sk|xn0:k,Z0:k−1). (17)

The predicted RFS is approximated by a Poisson RFS with PHD
D(sk|x0:k,Z0:k−1) as

p(Sk|x0:k,Z0:k−1) ≈
∏

s∈Sk
D(s|x0:k,Z0:k−1)

exp(
∫
D(s|x0:k,Z0:k−1)ds)

(18)

cf. (13). Using this approximation and the motion model (3),
the PHD prediction equation is given by

Dk|k−1(s|x0:k) = PS(s)Dk−1(s|x0:k) +Db,k(s) (19)
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where Db,k(s) is the PHD of the birth RFS Bk and PS( · )
models the probability of survival of a MGP. Note that the
abbreviation

Dk|k−1(s|x0:k) , D(sk|x0:k,Z0:k−1) (20)

is adopted for clarity.

B. Measurement Update

4. Update the MGP:s according to

p(Sk|xn0:k,Z0:k−1)→ p(Sk|xn0:k,Z0:k) (21)

where the update is described by

p(Sk|xn0:k,Z0:k) =
p(Zk|Sk,xnk )p(Sk|xn0:k,Z0:k−1)

p(Zk|Z0:k−1,xn0:k)
. (22)

Like the case in the prediction, the posterior is approximated
by a Poisson RFS with PHD D(sk|x0:k,Z0:k) as

p(Sk|x0:k,Z0:k) ≈
∏

s∈Sk
D(s|x0:k,Z0:k)

exp(
∫
D(s|x0:k,Z0:k)ds)

(23)

cf. (13). Using this approximation and the measurement
model (6), the PHD corrector equation is given by

Dk(s|x0:k) = Dk|k−1(s|x0:k)

[
1− PD(s|xk)

+
∑
z∈Zk

Λ(zk|sk,x)

λck(z) +
∫

Λ(zk|ζ,xk)Dk|k−1(ζ|x0:k)dζ

]
(24)

where

Λ(zk|sk,xk) = PD(sk|xk)p(zk|sk,xk). (25)

For clarity the abbreviation

Dk(s|x0:k) , D(sk|x0:k,Z0:k) (26)

is used.

5. Update the nonlinear state components xn

p(xn1:k|Z0:k−1)→ p(xn1:k|Z0:k) (27)

where the update is modeled as

p(xn1:k|Z0:k) =p(Zk|Z0:k−1,x
n
0:k)

×
p(xnk |xnk−1)p(xn1:k−1|Z0:k−1)

p(Zk|Z0:k−1)
. (28)

The term p(Zk|Z0:k−1,x
n
0:k) is given by a set integration over

Sk, according to

p(Zk|Z0:k−1,x
n
0:k) =

∫
p(Zk,Sk|Z0:k−1,x

n
0:k)δSk. (29)

To avoid the set integral, note that p(Zk|Z0:k−1,x
n
0:k) is the

normalization constant in (22), hence it may be rewritten
according to

p(Zk|Z0:k−1,x
n
0:k) =

p(Zk|Sk,xnk )p(Sk|xn0:k,Z0:k−1)

p(Sk|xn0:k,Z0:k)
.

(30)

Note that Sk is only contained in the RHS, thus the relation
holds for arbitrary choices of Sk. We substitute here the last
estimated Sk by making further approximations as follows.
Using the Poisson RFS approximations (18) and (23) and the
RFS measurement likelihood (7) it holds that

p(Zk|Z0:k−1,x
n
0:k) =

p(Zk|Sk,xnk )p(Sk|xn0:k,Z0:k−1)

p(Sk|xn0:k,Z0:k)

≈ p(Zk|Sk,xnk )︸ ︷︷ ︸
,A

∏
s∈Sk

Dk|k−1(s|x0:k)

exp(
∫
Dk|k−1(s|x0:k)ds)∏

s∈Sk
Dk(s|x0:k)

exp(
∫
Dk(s|x0:k)ds)

= A

∏
s∈Sk

Dk|k−1(s|x0:k)∏
s∈Sk

Dk(s|x0:k)︸ ︷︷ ︸
,B

exp(
∫
Dk(s|x0:k)ds)

exp(
∫
Dk|−1(s|x0:k)ds)︸ ︷︷ ︸

,C

(31a)

where

A ≈
∏
z∈Z

(λc(z) + PD(s
(i)
k )p(z(i)|s(i)

k ,xnk ))

×
∏
s∈S̄k

(1− PD(s
(i)
k )) (31b)

with the ith MGP being the one closest to measurement i
according to

s(i) = arg min
s∈Sk

||z(i)
k − s|| (31c)

S̄k = Sk\{s(i)}zki=1 (31d)

Furthermore,

B =

ŝk∏
i=1

1

(1− PD(s(i))) +
∑

z∈Z
Λ(z|s(i)k ,xk)

λc(z)+
∫

Λ(z|ζ,xk)Dk(ζ|x0:k)dζ

(31e)
C = exp(ŝk − ŝk|k−1) (31f)

and Λ( · ) is given in (25). The number of predicted and
updated MGP:s are

ŝk =

∫
Dk(sk|x0:k,Z0:k)dsk (32a)

ŝk|k−1 =

∫
Dk(sk|x0:k,Z0:k−1)dsk. (32b)

6. Update the linear state components xl

p(xl1:k|xn0:k,Sk,Z0:k−1)→ p(xl1:k|xn0:k,Sk,Z0:k) (33)

The update of xl1:k is conditioned on the RFS of the MGP:s
Sk. As an approximation, the posterior of xl is written as

p(xl1:k|xn0:k,SkZ0:k) ≈ p(xl1:k|xn0:k, Ŝk,Z0:k) (34)

where the estimate Ŝk is calculated from the posterior PHD
Dk(s|x0:k). The linear components are updated as described
in Line 31 to 36 in Table II.
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7. The joint posterior is now given by multiplying the separate
posteriors from (21), (27) and (33) as

p(xn1:k,x
l
1:k,Sk|Z0:k)

≈ p(xl1:k|xn0:k, Ŝk,Z0:k)p(Sk|xn0:k,Z0:k)p(xn1:k|Z0:k) (35)

An implementation of the proposed filter recursion is pre-
sented in the next section.

IV. RBPF-PHD IMPLEMENTATION

A Rao-Blackwellized implementation is utilized to estimate
the target state. The nonlinear target state xn is propagated
with a particle filter and the linear state vector is propagated
with a Kalman filter. The MGP:s are described by a set Sk,
which are estimated with a PHD-filter. There exists one PHD
D

(i)
k ( · ) for each particle i of the target state. The overall

summary statistics is represented by{
w

(i)
k ,x

n,(i)
0:k , x̂

l,(i)
k , P

l,(i)
k , D

(i)
k (s|x(i)

0:k)
}N
i=1

(36)

where
• x

n,(i)
0:k is the ith particle for the nonlinear part of the target

state.
• x̂

l,(i)
k , P

l,(i)
k are the ith mean and covariance for the linear

part of the target state.
• w

(i)
k is the weights for the ith particle of the target state.

• D
(i)
k (s|x(i)

0:k) is the PHD representing the MGP:s for the
ith particle of the target state.

In this work the PHD D
(i)
k (s|x(i)

k ) is represented with by
a Gaussian mixture and a realization of the GM-PHD filter
recursion is described in Section IV-A, see also [3]. The
update of the nonlinear state components based on the PHD is
described in Section IV-B, and a pseudo code for the proposed
filter is given in Section IV-C.

A. PHD Prediction and Update

The MGP:s on the surface of the ith particle are approx-
imated with a PHD D

(i)
k (s|xk) represented by a Gaussian

mixture. The prior PHD is given by

D
(i)
k−1(s|x(i)

k−1) =

J
(i)
k−1∑
j=1

η
(i,j)
k−1N

(
s, µ

(i,j)
k−1 , P

(i,j)
k−1

)
. (37)

This is a mixture of J (i)
k−1 Gaussian components, with η

(i,j)
k ,

µ
(i,j)
k and P

(i,j)
k being the weights, means and covariances,

respectively, for the jth Gaussian component of the ith parti-
cle.

The prediction of MGP:s in the motion model (3) is given by
the union of prior MGP:s and new MGP, which is approximated
by the PHD prediction equation (19). The resulting predicted
PHD represented by a Gaussian mixture is then given as

D
(i)
k|k−1(s|x(i)

k ) =

J
(i)

k|k−1∑
j=1

η
(i,j)
k|k−1N

(
s, µ

(i,j)
k|k−1, P

(i,j)
k|k−1

)
. (38)

where J (i)
k|k−1 = J

(i)
k−1 + J

(i)
b,k and J

(i)
b,k is the number of new

Gaussian components. The posterior PHD is computed in the
GM form as

D
(i)
k (s|xn,(i)k ) =D

n,(i)
k|k−1(s|xn,(i)k )

(
1− pD(s|xn,(i)k )

)

+
∑
z∈Zk

J
(i)

k|k−1∑
j=1

D
(i,j)
G,k (z, s|xn,(i)k ) (39)

where the components are given by

D
(i,j)
G,k (z, s|xn,(i)k ) = η

(i,j)
k|k N

(
s;µ

(i,j)
k|k , P

(i,j)
k|k

)
(40a)

η
(i,j)
k|k =

PD(s)η
(i,j)
k|k−1q

(i,j)(z,x
n,(i)
k )

λc(z) +
∑J

(i)

k|k−1

`=1 PD(s)η
(i,`)
k|k−1q

(i,`)(z,x
n,(i)
k )

(40b)

where q(i,j)(z,x
n,(i)
k ) = N

(
z; ẑ(x

n(i)
k , η

(i,j)
k|k−1), S

(i,j)
k

)
and

where ẑ( · ) is given in (9d). The terms η(i,j)
k|k−1, P (i,j)

k|k and

S
(i,j)
k can be obtained using standard filtering techniques, such

as EKF or UKF. The clutter density is c(z) = U(z), where λc
is the average number of clutter measurements and U(z) is a
uniform distribution on the measurement space.

B. Particle Update

The transition density is chosen as the proposal distribution
and hence the particles are sampled as

x
n,(i)
k ∼ p(xn,(i)k |xn,(i)0:k−1) (41a)

w
(i)
k = p(Zk|Z0:k−1,x

(i)
0:k)w

(i)
k−1 (41b)

where the prediction can be done using (9a) with the sub-
stitution of the last estimated values of the linear com-
ponents. Note that the linear components are treated as
noise here and that therefore the process noise is Qnk +

Fnk (x
n,(i)
k−1 )P

l,(i)
k−1 (Fnk (x

n,(i)
k−1 ))T when sampling the particles.

The update of the weights can be computed according to (31),
where

ŝ
(i)
k|k−1 =

J
(i)

k|k−1∑
j=1

η
(i,j)
k|k−1 and ŝ

(i)
k =

J
(i)

k|k∑
j=1

η
(i,j)
k (42)

are the sums of the predicted and updated PHD weights for
the ith particle.

C. Algorithm

The algorithm is given in Table I and II. The state estimates
are extracted by taking the weighted mean

x̂k =
1∑
w

(i)
k

N∑
i=1

w
(i)
k x

(i)
k . (43)

The MGP:s must not be extracted since they are only consid-
ered as a mean to estimate the target state.
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Table I
PREDICTION

Require: {w(i)
k−1,x

n,(i)
k−1 , x̂

l,(i)
k−1, P

(i)
k−1, D

(i)
k−1}

N
i=1, where the PHD is com-

posed of D(i)
k−1 = {ηi,jk−1, µ

(i,j)
k−1 ,Σ

(i,j)
k−1}

J
(i)
k−1
j=1

1: for i = 1 to N do
Predict xn

2: x
n,(i)
k|k−1

∼ p(xn,(i)1:k |x
n,(i)
0:k−1, x̂

l,(i)
k−1) {cf. (9a)}

Predict xl
3: Sk−1 = Fnk−1P

(i)
k−1(Fnk−1)T +Qnk−1

4: Kk−1 = F lkP
(i)
k−1(Fnk−1)TS−1

k−1

5: x̂
l,(i)
k|k−1

= F lkx̂
l,(i)
k−1 +f lk−1 +Kk−1(x

n,(i)
k|k−1

−fnk−1−F
n
k−1x̂

l,(i)
k−1)

6: P
(i)
k|k−1

= F lk−1P
(i)
k−1(F lk−1)T +Qlk−1 −Kk−1Sk−1K

−1
k−1

Predict PHD D
7: ` = 0
8: for j = 1 to J(i)

b,k do
9: ` = `+ 1

10: η
(i,`)
k|k−1

= η
(i,j)
b,k , µ(i,`)

k|k−1
= µ

(i,j)
b,k , Σ

(i,`)
k|k−1

= Σ
(i,j)
b,k

11: end for
12: for j = 1 to J(i)

k do
13: ` = `+ 1
14: η

(i,`)
k|k−1

= PSη
(i,j)
k−1 , µ(i,`)

k|k−1
= µ

(i,j)
k−1 , Σ

(i,`)
k|k−1

= Σ
(i,j)
k−1 +Qsk−1

15: end for

16: J
(i)
k|k−1

= l, ŝ(i)
k|k−1

=
∑J

(i)
k|k−1

j=1 η
(i,j)
k|k−1

17: end for
18: return {w(i)

k−1,x
n,(i)
k|k−1

, x̂
l,(i)
k|k−1

, P
(i)
k|k−1

, D
(i)
k|k−1

}Ni=1 and ŝ
(i)
k|k−1

,

with D(i)
k|k−1

= {ηi,j
k|k−1

, µ
(i,j)
k|k−1

,Σ
(i,j)
k|k−1

}
J
(i)
k|k−1

j=1

V. SIMULATION EXAMPLE

In this section, we are going to use a simple example to
illustrate the filtering solution we propose. In this example,
we use the following specific target and measurement models.
• Target State Model: The state vector of the target is

given by
x =

[
x y v ψ t

]T
, (44)

where (x, y) is the planar Cartesian position of the target.
It may be any point related to the target, however in
this example it is assumed to be the center position.
Furthermore, v is the velocity and ψ is the heading angle.
The shape and size of the target is described by the shape
component t. Considering a simple but common shape
e.g., a rectangle, its size may be represented by a length
l and a width w. In this example a simple coordinated
turn motion model is used

xk+1 = xk + T vk cos(ψ) (45a)
yk+1 = yk + T vk sin(ψ) (45b)
vk+1 = vk + vv (45c)
ψk+1 = ψk + vψ (45d)
tk+1 = tk + vt (45e)

where T is the sample time. The heading angle ψ is
clearly modeled as a nonlinear component.

• Measurements and Shape Model: Let the point mea-
surement be a Cartesian position, i.e.,

z =
[
x̄ ȳ

]T
. (46)

Table II
UPDATE

Require: {w(i)
k−1,x

n,(i)
k|k−1

, x̂
l,(i)
k|k−1

, P
(i)
k|k−1

, D
(i)
k|k−1

}Ni=1 and ŝ
(i)
k|k−1

, with

D
(i)
k|k−1

= {ηi,j
k|k−1

, µ
(i,j)
k|k−1

,Σ
(i,j)
k|k−1

}
J
(i)
k|k−1

j=1

1: for i = 1 to N do
Update PHD D

2: for j = 1 to J(i)
k|k−1

do

3: ẑ
(i,j)
k|k−1

= hk(x
n,(i)
k|k−1

, µ
(i,j)
k|k−1

)+Hk(x
n,(i)
k|k−1

)x̂
l,(i)
k|k−1

{cf. (9d)}
4: ∇Hk = ∂

∂s
hk(x, s)

∣∣
x=x

n,(i)
k|k−1

,s=µ
(i,j)
k|k−1

{cf. (48)}

5: S
n,(i)
k = Hk(x

n,(i)
k|k−1

)P
(i)
k|k−1

HT
k (x

n,(i)
k|k−1

)

6: S
(i,j)
k = ∇HkΣ

(i,j)
k|k−1

(∇Hk)T + S
n,(i)
k +R

7: K
(i,j)
k = Σ

(i,j)
k|k−1

(∇Hk)T(S
(i,j)
k )−1

8: end for
9: for missed detections j = 1 to J(i)

k|k−1
do

10: η
(i,j)
k = (1− PD)η

(i,j)
k|k−1

, µ(i,j)k = µ
(i,j)
k|k−1

, Σ
(i,j)
k = Σ

(i,j)
k|k−1

11: end for
12: ` = 0
13: for each detection zk ∈ Zk do
14: ` = `+ 1
15: for j = 1 to J(i)

k|k−1
do

16: τ (j) = PDη
(i,j)
k|k−1

N (zk; ẑ
(i,j)
k|k−1

, S
(i,j)
k )

17: µ
(i,`J

(i)
k|k−1

+j)

k = µ
(i,j)
k|k−1

+K
(i,j)
k (zk − z

(i,j)
k|k−1

)

18: Σ
(i,`J

(i)
k|k−1

+j)

k = Σ
(i,j)
k|k−1

+K
(i,j)
k S

(i,j)
k (K

(i,j)
k )T

19: end for
20: for j = 1 to J(i)

k|k−1
do

21: η
(i,`J

(i)
k|k−1

+j)

k = τ (i)/(λc(zk) +
∑J

(i)
k|k−1

m=1 τ (m))
22: end for
23: end for
24: J

(i)
k = (`+ 1)J

(i)
k|k−1

, ŝ(i)k =
∑J

(i)
k
j=1 η

(i,j)
k

25: merge and prune Gaussians
Update xn

26: w̃
(i)
k = p(Zk|Z0:k−1,x

n
0:k)w

(i)
k−1 {cf. (31)}

27: end for
28: w(i)

k = w̃
(i)
k /

∑N
j=1 w̃

(j)
k {Normalize}

29: resample if necessary
Update xl

30: for i = 1 to N do
31: extract MGP:s Ŝ

(i)
k = {ŝ(i,j)k }ŝ

(i)
k
j=1 from D

(i)
k

32: compute association matrix A using e.g., NN
33: Sk = Hl

kP
(i)
k|k−1

(Hl
k)T +Rk

34: Kk = P
(i)
k|k−1

(Hl
k)T(Sk)−1

35: x̂
l,(i)
k = x̂

l,(i)
k|k−1

+Kk(AZ−hk(x
n,(i)
k|k , Ŝ

(i)
k )−Hk(x

n,(i)
k|k )x̂

l,(i)
k|k−1

36: P
(i)
k|k = P

(i)
k|k−1

−KkSk(Kk)T

37: end for
38: return {w(i)

k ,x
n,(i)
k , x̂

l,(i)
k , P

(i)
k , D

(i)
k }

N
i=1 and ŝ

(i)
k , with D

(i)
k =

{ηi,jk , µ
(i,j)
k ,Σ

(i,j)
k }J

(i)
k
j=1

on the border of the target. Common point measurement
sensors, such as radar and laser typically measure range
and bearing. The polar representation of the sensor data
has here been converted to a Cartesian representation.
This also means that the measurement noise covariance
must be converted and that it not necessarily is diagonal.
A MGP is defined on a coordinate s along the border of
the target which has a spline representation of order d.
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In this case, the measurement model (9d) may be written
according to

ẑ = h(xn,S) +
[
x y

]T
(47a)

with

h(xn,S) = Rot(ψ)

[
ΠBσGσ 0

0 ΠBσGσ

]
Γ (47b)

Π =
[
1 s s2 · · · sd−1

]
(47c)

where Rot is a rotation matrix, Bσ and Gσ is a basis
matrix and a placement matrix, respectively. The vector
Γ includes the shape parameters t. Spline curves are well
described in e.g., [9].
A nice property using spline curves is that they are
continuously differentiable, which is important if the EKF
is utilized to update the Gaussian components of the PHD,
compare with Line 4 in table II. The derivative of the
measurement model (47a) with respect to MGP:s is

∇Hk =
∂

∂s
hk(xn, s) (48a)

= Rot(ψ)

[
∇ΠBσGσ 0

0 ∇ΠBσGσ

]
Γ (48b)

∇Π =
[
0 1 s · · · (d− 1)sd−2

]
(48c)

In the models above, it is obvious that the center position x, y
and velocity v of the target are linear in the motion and in the
measurement model. The heading ψ and target shape state t
are nonlinear, hence the state vector may be partitioned as

xl =
[
x y v

]T
(49a)

xn =
[
ψ t

]T
. (49b)

Comparing (9d) and (47a) the linear measurement matrix is

H =

[
1 0 0
0 1 0

]
(50)

Note that the MGP:s s are given by a one dimensional position
along the border, and that they are highly nonlinear in the
measurement model (47a) which justifies the use of particle
filter.

A rectangle target is considered in this simulation. The
shape state is the length l and width w. The vector Γ is

Γ = [l 0 −l −l −l 0 l l l · · ·
−w −w −w 0 w w w 0 −w]T (51)

A d = 3 order spline is considered. In the simulation
the extended target moves from right to left throughout the
surveillance area. The orientation of the target is 0rad and
the length and width are l = 5m and w = 2.5m respectively.
The target trajectory and the surveillance region of the sensor
located at the origin are illustrated in Figure 2. As seen from
the figure, the target starts far from the sensor and hence
has few measurements initially. Neither width nor the length
of the target is observable. As the target travels towards the
sensor, the length and the width observability increases first
but when the target starts to get close to the sensor, the width

−50 −40 −30 −20 −10 0 10 20 30 40 50
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Figure 2. The trajectory used in the simulation. The target trajectory is
showed in black. The sensor is located in the origin, the surveillance area
boundary is showed with a dashed gray line.

Figure 3. The position estimates (x and y) of the algorithm. The true
quantities are shown with grey lines. The mean x and y estimates are in black
lines and their 4 standard deviation uncertainty calculated from the particles
are illustrated with grey clouds around the estimates.

observability is lost again in which case only the length of
the target is visible. When the target passes by the sensor
the width becomes once more observable. With the distance
between the target and the sensor increasing towards the end
of the scenario, observability of both quantities decrease.

The position estimation results are shown in Figure 3.
Clearly the algorithm can follow the target along the x-axis.
The shape estimates are illustrated in Figure 4. As predicted
the shape estimates degrade as the target gets further from the
sensor. Though the variance of the estimates are large at times,
the algorithm seems to be capable of keeping them at a smaller
level than the initial values. As the target approaches the
sensor, the general trend in the variances is to decrease though
there exist also occasional increases. Further investigations
must be done with various initializations and stability and the
robustness must be evaluated more thoroughly in the future
work.
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Figure 4. The length and the width estimates of the algorithm. The true
quantities are shown with grey lines. The mean length and width estimates
are in black lines and their 4 standard deviation uncertainty calculated from
the particles are illustrated with grey clouds around the estimates.

VI. CONCLUSIONS

In this work a new approach to track extended targets
has been presented. Point measurements are produced by an
unknown number of measurement generating points (MGP:s)
on the surface of the target. These MGP:s are modeled as
a random finite set RFS and used as a means to estimate
the shape, the size and the position of a target. The state
of the target is propagated with Rao-Blackwellized particle
filter (nonlinear part) and Kalman filters (linear part); the
measurements are processed with a GM-PHD-filter.

First simulation results show that this approach is promising.
A simple rectangular target is followed with a rather stable
performance and it remains for future fork to estimate the
shape of more complex targets. The next step will be to
validate the proposed method on more challenging real data
collected on e.g., a road, where different type of shapes,
such as pedestrians and vehicles are visible. The stability and
robustness must also be evaluated thoroughly with different
initializations and settings.
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