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Abstract—This paper presents an extended target tracking
method for tracking cars in urban traffic using data from laser
range sensors. Results are presented for three real world datasets
that contain multiple cars, occlusions, and maneuver changes.
The car’s shape is approximated by a rectangle, and single track
steering models are used for the target kinematics. A multiple
model approach is taken for both the dynamics modeling and
the measurement modeling. A comparison to ground truth shows
that the estimation errors are generally very small: on average
the absolute error is less than half a degree for the heading.
Multiple cars are handled using a multiple model PHD filter,
where a variable probability of detection is integrated to enable
tracking of occluded cars.

I. INTRODUCTION

Multiple target tracking can be defined as the processing
of multiple measurements obtained from multiple targets in
order to maintain estimates of the targets’ current states, see
e.g. [1]. In this context, a point target is defined as a target
which is assumed to give rise to at most one measurement per
time step, and an extended target is defined as a target that
potentially gives rise to more than one measurement per time
step.

For single extended target tracking spatial distribution mod-
els appeared in [2], [3]. Under this model type the extended
target measurements are random samples of a distribution
that is dependent on the extended target state. A number of
different extended target measurement models that fall into
this category have been presented. A popular choice is to
assume a specific geometric shape for the target, e.g. a stick
[3]–[6], a circle [7], an ellipse [8]–[14], or a rectangle [10].
General shapes, i.e. ones that cannot be described by a specific
geometric shape, can also be estimated, see e.g. [15]–[17].

For multiple target tracking finite set statistics (FISST)
represent a rigorous approach, see [18]. It has led to the point
target probability hypothesis density (PHD) filter [19], with
its Gaussian mixture (GM) implementation [20]. An extension
of the PHD filter to handle extended targets with spatial
distributions of the type presented in [2] is given in [21], with
implementations in [22]–[24].

Target tracking approaches are typically cast as prediction
and measurement update recursions, and as such rely heavily
on motion modeling and measurement modeling. In many
practical scenarios it is difficult to capture all target dynamics

and measurement characteristics in a single model pair. For
such cases multiple models (MM), also called jump Markov
system models, can be used. The interactive multiple model
(IMM) algorithm [25] represents a good trade-off between
computational complexity and tracking performance, and has
been shown to perform well for maneuvering single point
target tracking.

The use of multiple models can be integrated into a multiple
target tracking frame work. An overview of MM-PHD filters for
point targets is given in [26], and [27] is pointed out as the
preferred MM-PHD approach. An MM-PHD filter for extended
targets is presented in [6].

In this paper we consider tracking multiple cars in urban and
rural scenarios using laser range sensors, both for stationary
and for moving sensors. Laser range sensors have been used
extensively for mapping and localization in field robotics for
the past decade, and are attracting increasing attention in
the automotive industry. The laser sensors emit light along
pre-defined bearings and measure the range to the nearest
reflecting point along the bearing. The geometric appearance
of the measurements can change rapidly, mainly because
of the cars’ movements but also due to the complicated
reflectance properties of the sensors. It is therefore necessary
to use multiple measurement models. Further, multiple motion
models are necessary to model, e.g., cars that may either drive
straight ahead or turn at an intersection. To handle tracking of
multiple cars an MM-PHD filter [6] is used.

II. MULTIPLE MODEL FRAMEWORK FOR
CAR TRACKING USING LASER DATA

The notation used in this paper is given in Table I. The
kinematic state vector xk is defined as

xk =
[
xk, yk, vk, ϕk, θk, `k, wk

]T
, (1)

where (xk, yk) is the position in Cartesian coordinates of the
center of the rear-axle, vk is the speed, ϕk is the heading, θk
is the steering angle, `k is the length and wk is the width of
the car. The length of the wheel base, i.e. from the rear axle
to the front axle, is assumed to be `wk = 0.7`k. An example
illustration of the kinematic state is given in Figure 1.

We consider two different motion modes and two different
measurement modes. The motion modes are for the two cases



TABLE I
NOTATION

• Rn is the set of real n-vectors, Sn+ is the set of symmetric positive semi-
definite n× n-matrices, and N+ is the set of natural numbers.
• At discrete time tk , xk ∈ Rnx is the extended target kinematic state,
ok ∈ M ⊂ N+ is the extended target mode, and ξk = (xk , ok) ∈ X0 =
Rnx ×M is the augmented extended target state.
• N (x ; m,P ) denotes the probability density function (pdf) of a Gaussian
distribution defined over the vector x, with mean vector m ∈ Rn and
covariance matrix P ∈ Sn+. The short hand notation N (x,Θ) is also used,
where Θ = (m,P ).

• Zk =
{
z
(j)
k

}Nz,k

j=1
is a measurement set at time tk , z(j)k ∈ Rnz , ∀j.

• p∠Z denotes all the partitions p of the set Z. A partition p is a set of
non-empty subsets W called cells. The union of all cells W is equal to the
set Z. The cardinality of a cell W is denoted |W |.
• δi,j is the Kronecker delta, and ⊗ is the Kronecker product.
• f [g(x)] denotes the integral

∫
f(x)g(x)dx.

• In is a n × n identity matrix and 0n is a n × n all zero matrix.

where the steering angle θk is constant or zero. These two
motion models are in a way analogous to constant turn-rate
and constant velocity models, and analogously we refer to
them as constant steering (CS) and constant velocity (CV). The
measurement modes are for the two alternatives that the sensor
detections are from either one side of the car, or from two
sides. This gives four modes in total (M = {1, 2, 3, 4}),

1) CS motion, one sided measurements (CS1),
2) CV motion, one sided measurements (CV1),
3) CS motion, two sided measurements (CS2),
4) CV motion, two sided measurements (CV2).

A. Mode transitions

The modes follow a discrete Markov chain, where the
transition probability matrix is decomposed as follows

Tk+1|k = TMeas
k+1|k ⊗ T

Motion
k+1|k , (2a)

TMeas
k+1|k =

[
Pmeas

same 1− Pmeas
same

1− Pmeas
same Pmeas

same

]
, (2b)

TMotion
k+1|k =

[
Pmot

same 1− Pmot
same

1− Pmot
same Pmot

same

]
. (2c)

The probabilities of staying in the same measurement mode
and motion mode are given by Pmeas

same and Pmot
same, respectively.

In previous work the measurement mode transition probabil-
ity has been modeled as a function of the kinematic state [6].
Making this choice for car tracking using laser data can seem
intutitive: the number of sides that can be seen from the sensor
depend on the position and heading of the car. However, in this
work we found that this type of modeling does not improve
results. The main reason is that the reflectance properties of
the cars make it much more difficult to predict how many sides
of the car the sensor should be seeing, i.e. the mode transitions
depend on factors other than the kinematic state. Because these
factors are not modeled, we found it is a better choice to
model the measurement mode transitions as independent of
the kinematic state.

Fig. 1. Example of kinematic state vector xk , where (xk, yk) is the position
in Cartesian coordinates of the center of the rear-axle, ϕk is the heading, and
θk is the steering angle. The speed vk , the length `k , and the width wk , are
not illustrated. The length of the wheel base, i.e. from the rear axle to the
front axle, is assumed to be `wk = 0.7`k .

B. Kinematic state motion models

The time evolution of the kinematic state is modeled as

p (xk |ok,xk−1 ) = N (xk ; f (xk−1, ok) , Qk(ok)) . (3)

where f(·) : X0 → Rnx is a state space motion model
corresponding to either CS motion or CV motion. For the four
modes listed above we have f (xk, ok+1 = {1, 3}) = fCS (xk)
and f (xk, ok+1 = {2, 4}) = fCV (xk).

1) Constant steering: For a non-zero steering angle θk,
the distance traveled is dk = Tvk, the turning angle is
βk = dk

`wk
tan(θk), and the turning radius is Rk = dk/βk.

The constant steering angle motion model, see e.g. [28], is

fCS (xk) =

xk −Rk sin(ϕk) +Rk sin(ϕk + βk)
yk +Rk cos(ϕk) +Rk cos(ϕk + βk)

[vk, ϕk + βk, θk, `k, wk]
T

 . (4)

This motion model approximates the car as having a single
front wheel and a single rear wheel (analogously to a bicycle),
where the rear wheel follows along a circle with radius Rk.

If the steering angle approaches zero the following result,

lim
θk→0

βk = 0, lim
θk→0

Rk =∞, (5)

holds for the turning angle and the turning radius. Using Taylor
expansion it is simple to show that for a steering angle θk
close to zero the motion models reduce to a standard constant
velocity motion model,

fCS (xk) =

 xk + dk cos(ϕk)
yk + dk sin(ϕk)

[vk, ϕk, θk, `k, wk]
T

 . (6)

In the implemented tracking filters we use this model if
|θ̂k|k| < 10−9 degrees, where θ̂k|k is the estimated steering
angle.



Fig. 2. Rectangular target laser sensor measurement likelihood. Sensor located in origin, directed along positive x-axis. Left: measurement likelihood when
one and two sides are seen by sensor, respectively. Right: corresponding Gaussian mixture approximations with five and ten components, respectively.

2) Constant velocity: In the CV mode the steering angle is
exactly zero, and the corresponding state could be removed
from the kinematic state vector. However, to avoid having
kinematic vectors of different lengths in the different modes,
we instead estimate the steering angle and use an exponential
decay model for the time evolution,

p(θk+1|θk) = N
(
θk+1 ; e−0.5θk, qk+1

)
. (7)

In other words: in the CV mode we use the same motion
models as in (4) and (6), with the exception that θk is replaced
by e−0.5θk. This is not an exactly zero steering angle motion
model, however it is close and empirically we have found that
this model is sufficient.

C. Measurement model

In this section we drop time indexing (subindex k) to avoid
the notation becoming too cluttered. Let W =

{
z(j)
}|W|
i=1

be a set of measurements, where all measurements originate
from the same target. As is common in much extended target
tracking, we assume that the measurements are independent
of each other, which gives the measurement likelihood

p (W |ξ ) =

|W|∏
j=1

p
(
z(j)
∣∣∣ ξ) . (8)

A planar laser range sensor sweeps counter clockwise
through the surveillance area, measuring the range r(j)k to the
closest object for a set of bearings α(j)

k . A target generated
measurement z can be seen as a random measurement gener-
ating point y that is measured with some noise e. The mea-
surement likelihood p(z|ξ) is then given by the convolution

p(z|ξ) =

∫
p(z|y)p(y|ξ)dy (9)

As an example, let the target be a 2D stick located in
the origin and aligned with the x-axis. In this case the
measurement generating points y can be modeled as uniformly
distributed along the stick, and the noise e can be modeled as
additive zero mean Gaussian distributed. The pdf of a target

generated measurement z = [zx, zy]
T is (see e.g. [3, Eq. 19])

p(z|ξ) =
1

2`
√

2π|Σ|
exp

(
−1

2

(
zy

σacross

)2
)

(10)

×

(
erf

(
zx + 1

2`√
2σalong

)
− erf

(
zx − 1

2`√
2σalong

))
.

Here Σ = diag
(

[σ2
along, σ

2
across]

)
denotes the noise variance

along the length of the stick, and across the length. If the stick
target is not located in the origin, and/or is not aligned with
the x-axis, the measurement likelihood is obtained by rotation
and translation of (10).

In the case of a rectangular target, e.g. a car as shown in
Figure 1, the sensor can see either one or two of the target’s
four sides (left, rear, right, front). The measurement generating
points y are then uniformly distributed along either one or
two of the sides. Two example measurement likelihoods are
illustrated in the left part of Figure 2.

In this work the measurement likelihood (10) is approxi-
mated by a Gaussian mixture,

p(z|ξ) ≈
N∑
i=1

w(i)N
(
z ; y(i)(ξ), R(i)

)
,

N∑
i=1

w(i) = 1. (11)

Here the measurement generating points y(i)(ξ) are non-linear
functions y(i)(·) : X0 → Rnz . For a given rectangular target
estimate, computing predicted locations of measurement gen-
erating points is straightforward using some simple geometry
and trigonometry.

Under the Gaussian mixture approximation, we assume that
each measurement was generated by exactly one measurement
generating point. Two approximation examples, corresponding
to Figures 2a and 2b, are shown in Figures 2c and 2d. Note
that as the number of Gaussians in the mixture approaches
infinity, the approximation becomes exact.

The main motivation for the Gaussian mixture approxima-
tion is that it enables use of standard estimation techniques
for non-linear Gaussian models, e.g. the Extended Kalman
filter or the Unscented Kalman filter. However, this approxi-
mation introduces an association problem: given a set of Nz,k
measurements and a target estimate, predicted measurement
generating points y(i)(ξ) must be computed and associated to



the measurements. The association problem can be alleviated
using some insight into how laser range sensors work. The
sensors used in this work sweep the surveillance area counter
clockwise, and the measurement can thus be sorted according
to their bearing. By sorting the predicted measurement gener-
ating points similarly, an association is implicitly given.

The likelihood is then

p (W |ξ ) =

|W|∏
j=1

N
(
z
(j)
k ; y(j)(ξ), σ2

rI2

)
(12a)

=N
(
zW ; yW(ξ), σ2

rI2|W |
)
, (12b)

where zW and yW(x) are vertical vectorial concatenations
of the measurements and measurement generating points.
In the implementation an Extended Kalman filter is used,
and the Jacobian of the measurement equation is computed
numerically.

The measurement models used in this work are extensions
of the measurement models for rectangular targets that were
presented in [10], where simulated data was used for perfor-
mance evaluation. In this work the models from [10] have
been adapted and improved to better handle real-world data.
One very important laser sensor property that is not simulated
in [10] are the reflectances properties of the cars. In real data
it can often be observed that, despite that the sensor should
be able to see, e.g., the entire left side of a car, only a smaller
part of the left side yields measurements. The main reason for
this is that the car did not reflect enough of the emitted laser
light. Handling this in the measurement models is important,
especially for the estimation of the heading, but also the length
and width of the car.

As noted above two measurement models are used, corre-
sponding to the two cases in Figure 2 with either one sided
measurements or two sided measurements. In what follows, it
is assumed that the set of measurements W has been sorted
according to bearing.

1) One sided measurements: Let ψ1, . . . , ψ4 be the surface
normals of the estimated target shape, and define β as the
angle of the vector from the first measurement to the last
measurement in the set. The measurements are associated to
the iminth side,

imin = arg min
i

|ψi − β + π/2| . (13)

Let `imin
be the length of the side, let `z =

∥∥z(1) − z(|W|)
∥∥
2

be the length of the measurement segment, and let ρ =
`z/`imin be the ratio of the two lengths. If ρ ≥ 0.5 then the
entire side is seen and |W| measurement generating points
y(i)(x) are spread uniformly along the entire iminth side. If
ρ < 0.5 then only parts of the side is seen, and in this case |W|
measurement generating points are spread uniformly along a
part of the side such that 100ρ% of the side is covered.

At an early stage it was considered to include more measure-
ment models to handle the whole-side/part-of-side ambiguity.
However, this approach increases the computational complex-
ity and the above threshold was considered the better choice

because it achieved the same result at lower computational
complexity. The measurement z(i) to measurement generating
point y(i) association is simply i↔ i, for i = 1, . . . , Nz .

2) Two sided measurements: In the two sided model the
measurement set W is split in two parts W1 =

{
z(j)
}n
i=1

and W2 =
{
z(j)
}|W|
i=n+1

. This is performed by least squares
fitting lines to the two segments for each n ∈ [2, . . . , |W|−1].
The n for which the least squares error is smallest defines the
split. For each of the two segments the one sided measurement
model is applied, where the two segments are associated to the
i1minth and i2minth sides. Note that care is taken to ensure that
i1min 6= i2min, and to ensure that the two sides are adjacent.

D. MM-PHD filter for extended targets

The multiple motion and measurement models were in-
tegrated into a version of the Gaussian Mixture (GM) MM-
PHD filter presented in [6]. The PHD has the following GM
representation

Dk|k (ξ) =

Jk|k(o)∑
j=1

w
(j)
k|k (o)N

(
x ; Θ

(j)
k|k (o)

)
. (14)

The birth PHD is also assumed to be a GM,

Db
k (ξ) = πk (o)

Jk(o)∑
j=1

w
(j)
b,k (o)N

(
x ; Θ

(j)
b,k (o)

)
. (15)

The Gaussian parameters Θ
(j)
b,k (o) are set such that they

represent the locations where targets are likely to appear, as
well as likely heading and size. The prediction and correction
updates are given in [6, Section 3] and are not repeated here.

For simplicity the probability of detection is assumed con-
stant in [6]. Laser range sensors are susceptible to occlusion
and therefore the probability of detection cannot be assumed
to be constant, it is instead modeled as a function of the
kinematical state. For the probability of detection for a target
we assume the following to hold for all components j,

PD (xk |ok )N
(
xk ; Θ

(j)
k|k−1(ok)

)
(16)

≈PD
(

Θ
(j)
k|k(ok)

∣∣∣ ok)N (xk ; Θ
(j)
k|k(ok)

)
The probability of detection for the jth component is abbrevi-
ated as P (j)

D = PD

(
Θ

(j)
k|k(ok)

∣∣∣ ok). Trivially this assumption
holds if the probability of detection is independent of the
kinematic state. In general the assumption holds when the
probability of detection does not vary much in the uncertainty
zone of the kinematic state space, determined by P

(j)
k|k(ok).

This is true either when PD (xk |ok ) is a sufficiently smooth
function w.r.t xk, or when the uncertainty zone is sufficiently
small. In the next section we give an occlusion model that
is used to estimate the probability of detection for the target
estimates.



TABLE II
OCCLUSION MODEL

1: Input: Point of interest x, y, set of kinematic state estimates
{
x̂(i)

}Nt

i=1
with weights w(i).

2: Intialize probability of detection PD ← P 0
D .

3: Compute range and bearing to point of interest: r, α.
4: for i = 1, . . . , Nt do
5: Range/bearing to corners of estimate:

r̂
(i)
j , α̂

(i)
j , j = 1, 2, 3, 4

6: Minimum/maximum bearings:
j− = arg min

j
α̂
(i)
j , j+ = arg max

j
α̂
(i)
j

7: Mean range:
r+− = 0.5(r̂

(i)
j+

+ r̂
(i)
j−

)

8: if r ≥ r+− ∧ α̂
(i)
j−
≤ α ≤ α̂(i)

j+
then

9: Decrease PD when point of interest is located behind estimate:
PD ← PD − (1− g− − g+)w(i)

g− = exp(−((α− α̂(i)
j−

)/σα)2)

g+ = exp(−((α− α̂(i)
j+

)/σα)2)

10: end if
11: end for
12: Enforce minimum probability of detection: PD ← max

{
PD, P

min
D

}
13: Output: Probability of detection PD at point of interest.

III. OCCLUSION MODEL

An inherent property of many sensor types, e.g. laser, radar
and video, is that the sensors are subject to occlusions. Simply
put, if two targets are located along approximately the same
sensor to target bearing, the target that is more distant from
the sensor will be either fully or partially occluded. In an
urban scenario with multiple targets, it is likely that one or
more targets will be occluded to some degree. It is therefore
important that a multiple extended target filter is capable of
handling occlusions.

In previous work occlusion has successfully been handled
by modeling the probability of detection as non-homogeneous,
see e.g. [11], [23], [24]. The occlusion model that was used
in this work is based on similar ideas. In Table II pseudo code
is given for the probability of detection at a point of interest
inside the surveillance area. The basic intuition in the model
is to lower the probability of detection if the point is located
behind a target estimate. The decrease is proportional to the
weight of the estimate, i.e. proportional to how certain the filter
is that there is actually a target there. Furthermore Gaussian
kernels g− and g+ are used to give a smooth transition from
visible area to occluded area. In the implementation we use
σα = 2.5 degrees. Note that the edges are smoothed only on
the “inside” of the occluded area, this gives a conservative
estimate of occlusion.

The probability of detection for the jth component P (j)
D

is computed by first discretizing the rectangular shape into
points separated by 10 cm. Using the method in Table II the
probability of detection is then computed for each point along
the shape, and P

(j)
D is computed as the average of the ten

points with highest probability of detection.
A simple example with six targets is given in Figure 3,

where three of the cars are at least partially occluded (green

Fig. 3. Target occlusion. (a) Ground truth probability of detection for six
rectangular targets. (b) Modeled probability of detection for six rectangular
target estimates. For the occluded cars (green), the probability of detection is
estimated to 99% (top), 1% (middle), and 50% (bottom).

rectangles). The top example is mostly occluded, but a con-
siderable part of the car can be seen and P (j)

D = P 0
D = 99%.

The middle example is fully occluded and P (j)
D = Pmin

D = 1%.
The bottom example has one of its corners on the edge of the
visible/occluded are, and P (j)

D = 50%. Remaining three cars in
Figure 3 (blue rectangles) are not occluded, and P (j)

D = 99%.

IV. EXPERIMENTS

A. Datasets

Three different datasets are used: one single target dataset,
and two multiple target datasets. In the multiple target datasets
measurements of the stationary background were removed
beforehand using background subtraction, however the clutter
measurements were not removed. The laser range sensor that
was used to collect the first two datasets is an Ibeo Lux sensor,
the third dataset was collected using a Sick LMS sensor. The
Ibeo sensor has sample time 0.08 seconds, the Sick sensor has
0.20 seconds.

1) D1: In the single target dataset (D1) the sensor was
mounted on a car that drove behind another car on a rural road.
Both the ego-vehicle and the leading vehicle were equipped
with a differential GPS sensor and an additional IMU sensor
(GPS+IMU), and the ground truth data was used to extract the
target generated measurements (i.e. there are no measurements
of background or clutter). In this data only the rear side of the
leading vehicle is visible to the sensor, neither the left nor the
right side is ever fully visible.

2) D2: In the first multi target dataset (D2) the sensor was
stationary next to a roundabout. Multiple cars drove through
the roundabout, for one of these cars GPS+IMU data is avail-
able. The GPS+IMU equipped target circled the roundabout
three times. Because of stationary structures in the center of
the roundabout the targets were occluded from sensor view in
parts of the roundabout. In this dataset all the targets move
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Fig. 4. Results for dataset D1. Top row: Histograms with estimation errors for longitudinal position, lateral position, and heading ϕ. Also shown are
distributions fitted to the error data, with means µ and standard deviations σ. Bottom row: example tracking results, plotted every ninth time step for increased
clarity. Estimates in orange, ground truth in blue.

such that at least three of the four sides are visible at some
point, and there are also instances of full and partial target
occlusion.

3) D3: In the second multi target dataset (D3) the sensor
was stationary next to a T-intersection. Four cars passed
through the surveillance area, however there were no occlu-
sions. For this dataset there is unfortunately no ground truth
data available.

B. Performance evaluation

For D1 and D2 we compare the tracking results to the
GPS+IMU ground truth. Instead of showing the x− and
y−position errors, we show the longitudinal and lateral po-
sition errors. This corresponds to the error in position along
the heading of the vehicle and the error in position orthogonal
to the heading of the vehicle. Gaussian distributions were fitted
to the error histograms, and the means and standard deviations
are given. For D3 there is unfortunately no ground truth data.
To validate the estimation results we plot them on top of an
aerial image of the location.

C. Results

1) D1: For this data set the estimate was initialized using
ground truth data, which means that there is little convergence
error. The estimation errors and example tracking results are
shown in Figure 4. For this dataset the errors are quite small:
longitudinal position 10 ± 8cm; lateral position −4 ± 9cm;
heading 0.27± 1.11 degrees.

The length and width errors are both very small (below one
cm), and the error histograms are therefore not visualized.
Mainly the very low errors are due to the initialization using
ground truth. The full length is never observed in the sensor
data, and thus the initial length estimate is not updated. The
full width is observed in each time step, however since the

initial estimate fits the data very well, only very small updates
are made to the width. Subsequently, both length and width
errors are very small.

In reality it naturally not possible to initialize target esti-
mates using ground truth, because the ground truth is inher-
ently unknown in target tracking. Cars do come in a limited
range of sizes though. Assuming that the initialized target
estimate is for a car, in most practical cases it is possible to
initialize the length and width reasonably close to the ground
truth. In case several target types are present in the scene, e.g.
bicycles and pedestrians in addition to the cars, some kind of
object classification capability is necessary.

2) D2: This dataset contained measurements from multi-
ple cars, however since one of the cars was equipped with
GPS+IMU we will emphasize the results for this car. For D2
the estimates were not initialized using GPS+IMU, and the
initialization errors are thus larger than for D1. The largest
errors can be observed just after the targets have entered the
view of the sensor, i.e. before the estimates have converged.
Typically the estimate converges in about five time steps (0.4
seconds), at most it takes up to ten time steps (0.8 seconds).

Estimation errors and example tracking results are shown in
Figure 5. For D1 the errors are generally larger than for D2:
longitudinal position 28± 9cm; lateral position 4cm ±13cm;
heading 0.16 ± 1.18 degrees; length −18 ± 18cm; width
−4 ± 6cm. For longitudinal position and length the errors
are significantly non-zero. The longitudinal position appears
to have a positive bias, which in part is due to the length error
being transferred to the longitudinal position.

However, when the sensor data and the GPS+IMU ground
truth was carefully investigated, another reason for the longi-
tudinal position bias was also found. The bias is partly caused
by the fact that the rear of the car’s ground truth rectangle is
not quite aligned with the measurements that originated from
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Fig. 5. Results for dataset D2. Top and middle row: Histograms with estimation errors for longitudinal position, lateral position, heading ϕ, length and
witdth. Also shown are distributions fitted to the error data, with means µ and standard deviations σ. Bottom row, left: two example tracking results, plotted
every ninth time step for increased clarity. Estimate in orange, ground truth in blue. Bottom row, right: tracking snapshot where the GPS+IMU equipped car
is occluded by another vehicle. The occlusion model correctly estimates a low probability of detection (9%) for the car. As can be seen in the zoomed detail
(far right), the difference between the estimate (orange) and the ground truth (blue) is very small.

the rear of the car. Because the measurement model assumes
the measurements to originate from points on the surface of
the car, the estimate is aligned with the measurements. This
introduces a small bias for the longitudinal position.

Noteworthy is that, despite the fact that the GPS+IMU
equipped car was fully occluded for several time steps, the
estimation errors did not increase during these time steps. This
can be attributed to the use of an occlusion model and the use
of motion models that can simulate the motion of a car with
high accuracy.

3) D3: The sensor data is shown Figure 6 (left), where the
detections are color coded to show the different time steps.
The estimates of the center of mass positions are shown in
Figure 6 (middle), and the estimated headings are shown in
Figure 6 (right). The first target (color coded as blue) entered
the surveillance area to the left, the other three targets (color
coded orange, red and green) entered the surveillance area at
the top. Note that the cars had driven a couple of meters into
the surveillance area before any measurements were received
by the sensor, hence the tracks do not start at the edge of the
surveillance area.

For the three targets entering at the top there were quite
few (about 2 to 4) measurements per time step, causing the
initial target estimates to be quite uncertain. This can be seen

in Figure 6 (right), where the heading estimate for the green
target changes rapidly in the beginning. However, as soon as
the targets generate more measurements the estimates become
much more certain.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a multiple model approach
for tracking cars in urban environments. The car shape was
approximated by a rectangle, and two measurement models
were used corresponding to measurements from one or two
sides. For motion modeling a single track steering model was
used. The models were integrated into an extended target MM-
PHD filter and were evaluated using real world laser range data
acquired using both stationary and moving sensors.

In a comparison to ground truth data it was shown that
quite small estimation errors could be achieved. Noteworthy
is that the lateral position error is on average only 5 cm,
and the heading error is on average less than one degree.
The longitudinal position error is about 30 cm for one of
the dataset, but significantly lower for another dataset. An
occlusion model was integrated into the MM-PHD filter and it
was shown that cars can be tracked with high accuracy as they
move through parts of the surveillance area that are occluded
by other cars.
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Fig. 6. Results for dataset D3. Left: Measurements overlaid on aerial image, color coded according to time (blue–early, green–intermediate, red–late). Middle:
Positions of center of mass. Right: Heading estimates.

Future work includes integrating the presented work such
that multiple target types can be tracked simultaneously, e.g.
cars, bicycles and pedestrians in an urban environment.
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