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Abstract

This report contains properties and approximations of some matrix valued

probability density functions. Expected values of functions of generalised

Beta type II distributed random variables are derived. In two Theorems,

approximations of matrix variate distributions are derived. A third theorem

contain a marginalisation result.
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Abstract

This report contains properties and approximations of some matrix

valued probability density functions. Expected values of functions of gen-

eralised Beta type II distributed random variables are derived. In two

Theorems, approximations of matrix variate distributions are derived. A

third theorem contain a marginalisation result.

1 Some matrix variate distributions

1.1 Wishart distribution

Let Sd++ be the set of symmetric positive de�nite d× d matrices. The random
matrix X ∈ Sd++ is Wishart distributed with degrees of freedom n > d − 1
and d× d scale matrix N ∈ Sd++ if it has probability density function (pdf) [1,
De�nition 3.2.1]

p(X) =Wd (X ; n,N) (1)

=
|X|n−d−1

2

2
nd
2 Γd

(
n
2

)
|N |n2

etr

(
−1

2
N−1X

)
, (2)

where, for a > d−1
2 , the multivariate gamma function, and its logarithm, can be

expressed in terms of the ordinary gamma function as [1, Theorem 1.4.1]

Γd(a) =πd(d−1)
d∏
i=1

Γ (a− (i− 1)/2) , (3a)

log Γd(a) =d(d− 1) log π +

d∑
i=1

log Γ (a− (i− 1)/2) . (3b)

Let Aij denote the i, j:th element of a matrix A. The expected value and
covariance of X are [1, Theorem 3.3.15]

E[Xij ] =nNij , (4)

Cov(Xij , Xkl) =n(NikNjl +NilNjk). (5)
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1.2 Inverse Wishart distribution

The random matrix X ∈ Sd++ is inverse Wishart distributed with degrees of
freedom v > 2d and inverse scale matrix V ∈ Sd++ if it has pdf [1, De�nition
3.4.1]

p(X) =IWd (X ; v, V ) (6)

=
2−

v−d−1
2 |V | v−d−1

2

Γd
(
v−d−1

2

)
|X| v2

etr

(
−1

2
X−1V

)
. (7)

The expected value and covariance of X are [1, Theorem 3.4.3]

E[Xij ] =
Vij

v − 2d− 2
, v − 2d− 2 > 0, (8)

Cov(Xij , Xkl) =
2(v − 2d− 2)−1VijVkl + VikVjl + VilVjk

(v − 2d− 1)(v − 2d− 2)(v − 2d− 4)
, v − 2d− 4 > 0.

(9)

1.3 Generalized matrix variate Beta type II distribution

Let Sd+ be the set of symmetric positive semi-de�nite d × d matrices. The
random matrix X ∈ Sd++ is generalized matrix variate Beta type II distributed
with matrix parameters Ψ ∈ Sd+ and Ω > Ψ, and scalar parameters a and b, if
it has pdf [1, De�nition 5.2.4]

p(X) =GBIId (X; a, b,Ω,Ψ) (10)

=
|X −Ψ|a− d+1

2 |Ω +X|−(a+b)

βd(a, b)|Ω + Ψ|−b
, X > Ψ (11)

where, for a > d−1
2 and b > d−1

2 , the multivariate beta function is expressed in
terms of the multivariate gamma function as [1, Theorem 1.4.2]

βd(a, b) =
Γd(a)Γd(b)

Γd(a+ b)
. (12)

Let 0d be a d×d all zero matrix. If Ψ = 0d, the �rst and second order moments
of X are [1, Theorem 5.3.20]

E[Xij ] =
2a

2b− d− 1
Ωij (13)

E[XijXkl] =
2a

(2b− d)(2b− d− 1)(2b− d− 3)
[{2a(2b− d− 2) + 2}ΩijΩkl

+(2a+ 2b− d− 1)(ΩjlΩik + ΩilΩkj)] , 2b− d− 3 > 0 (14)
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2 Expected values of the GBIId -distribution
This appendix derives some expected values for the matrix variate generalized
beta type-II distribution.

2.1 Expected value of the inverse

Let U be matrix variate beta type-II distributed with pdf [1, De�nition 5.2.2]

p(U) =BIId (U ; a, b) (15)

=
|U |a− d+1

2 |Id + U |−(a+b)

βd(a, b)
(16)

where a > d−1
2 , b > d−1

2 , and Id is a d × d identity matrix. Then U−1 has pdf
[1, Theorem 5.3.6]

p(U−1) = BIId
(
U−1; b, a

)
. (17)

Let X = Ω1/2UΩ1/2 where Ω ∈ Sd++. The pdf of (X) is [1, Theorem 5.2.2]

p(X) = GBIId (X; a, b, Ω, 0d) (18)

and subsequently the pdf of X−1 = Ω−1/2U−1Ω−1/2 is

p(X−1) = GBIId
(
X−1; b, a, Ω−1, 0d

)
(19)

The expected value of X−1 is [1, Theorem 5.3.20]

E
[
X−1

]
=

2b

2a− d− 1
Ω−1. (20)

2.2 Expected value of the log-determinant

Let y be a univariate random variable. The moment generating function of y is
de�ned as

µy(s) , Ey [esy] , (21)

and the expected value of y is given in terms of µy(s) as

E[y] =
dµy(s)

ds

∣∣∣∣
s=0

. (22)
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Let y = log |X|, where p(X) = BIId (X; a, b). The moment generating function
of y is

µy(s) = E [|X|s] =

∫
|X|sp (X) dX (23a)

=

∫
|X|sβ−1

d (a, b)|X|a− 1
2 (d+1)|Id +X|−(a+b)dX (23b)

=β−1
d (a, b)βd(a+ s, b− s)

×
∫
β−1
d (a+ s, b− s)|X|a+s− 1

2 (d+1)|Id +X|−(a+s+b−s)dX (23c)

=
βd(a+ s, b− s)

βd(a, b)

∫
BIId (X; a+ S, b− s) dX (23d)

=
βd(a+ s, b− s)

βd(a, b)
=

Γd(a+ s)Γd(b− s)
Γd(a+ s+ b− s)

Γd(a+ b)

Γd(a)Γd(b)
(23e)

=
Γd(a+ s)Γd(b− s)

Γd(a)Γd(b)
, (23f)

The expected value of y is

E [y] = E [log |X|] (24a)

=
d
(
Γd(a+ s)Γd(b− s)

)
ds

∣∣∣∣∣
s=0

1

Γd(a)Γd(b)
(24b)

=

(
dΓd(a+s)

ds

Γd(a+ s)
+

dΓd(b−s)
ds

Γd(b− s)

)∣∣∣∣∣
s=0

(24c)

=

(
d log Γd(a+ s)

ds
+
d log Γd(b− s)

ds

)∣∣∣∣
s=0

(24d)

=

( d∑
i=1

d log Γ(a+ s− (i− 1)/2)

ds
+
d log Γ(b− s− (i− 1)/2)

ds

)∣∣∣∣
s=0

(24e)

=

d∑
i=1

ψ0 (a− (i− 1)/2)− ψ0 (b− (i− 1)/2) , (24f)

where ψ0( · ) is the digamma function, also called the polygamma function of
order zero. If p(Y ) = GBIId (Y ; a, b, Ω, 0d), then Z = Ω−1/2Y Ω−1/2 has pdf
BIId (Z; a, b) [1, Theorem 5.2.2]. It then follows that

E [log |Y |] = E
[
log |Ω1/2Ω−1/2Y Ω−1/2Ω1/2|

]
(25a)

= E
[
log |Ω1/2|+ log |Ω−1/2Y Ω−1/2|+ log |Ω1/2|

]
(25b)

= E
[
log |Ω|+ log |Ω−1/2Y Ω−1/2|

]
(25c)

= log |Ω|+ E [log |Z|] (25d)

= log |Ω|+
d∑
i=1

[
ψ0 (a− (i− 1)/2)− ψ0 (b− (i− 1)/2)

]
. (25e)
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3 Approximating a GBIId -distribution with an IWd-

distribution

This section presents a theorem that approximates a GBIId -distribution with an
IWd-distribution.

3.1 Theorem 1

Theorem 1. Let p(X) = GBIId (X; a, b, Ω, 0d), and let q(X) = IWd (X ; v, V )
be the minimizer of the Kullback-Leibler (kl) divergence between p (X) and
q (X) among all IWd-distributions, i.e.

q (X) , arg min
q( · )=IWd( · )

KL (p (X) ||q (X)) . (26)

Then V is given as

V =
(v − d− 1)(2a− d− 1)

2b
Ω, (27)

and v is the solution to the equation

d∑
i=1

[
ψ0

(
2a+ 1− i

2

)
− ψ0

(
2b+ 1− i

2

)
+ψ0

(
v − d− i

2

)]
− d log

(
(v − d− 1)(2a− d− 1)

4b

)
= 0, (28)

where ψ0( · ) is the digamma function (a.k.a. the polygamma function of order
0). �

3.2 Proof of Theorem 1

The density q (X) is given as

q (X) ,arg min
q(X)

KL (p (X) ||q (X)) (29a)

=arg max
q(X)

∫
p (X) log (q (X)) dX (29b)

=arg max
q(X)

∫
p (X)

[
− (v − d− 1)d

2
log 2 +

v − d− 1

2
log |V |

− log Γd

(
v − d− 1

2

)
− v

2
log |X|+ Tr

(
−1

2
X−1V

)]
dX (29c)

=arg max
q(X)

− (v − d− 1)d

2
log 2 +

v − d− 1

2
log |V |

− log Γd

(
v − d− 1

2

)
− v

2
Ep [log |X|] + Tr

(
−1

2
Ep
[
X−1

]
V

)
(29d)

=arg max
q(X)

f(v, V ) (29e)
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Di�erentiating the objective function f(v, V ) with respect to V gives

df(v, V )

dV
=
v − d− 1

2
V −1 − 1

2
Ep
[
X−1

]
. (30)

Setting to zero and solving for V gives

V = (v − d− 1) Ep
[
X−1

]−1
=

(v − d− 1)(2a− d− 1)

2b
Ω (31)

where the expected value is calculated based on a result derived in Section 2.
Di�erentiating the objective function with respect to v gives

df(v, V )

dv
=− d

2
log 2 +

1

2
log |V | −

d log Γd
(
v−d−1

2

)
dv

− 1

2
Ep [log |X|] (32a)

=− d

2
log 2 +

1

2
log |V | − 1

2

d∑
i=1

ψ0

(
v − d− i

2

)
− 1

2
Ep [log |X|] .

(32b)

Setting the result equal to zero gives

0 = log |V | − d log 2−
d∑
i=1

ψ0

(
v − d− i

2

)
− Ep [log |X|] (33a)

= log |V | − d log 2−
d∑
i=1

ψ0

(
v − d− i

2

)
− log |Ω|

−
d∑
i=1

[
ψ0

(
a− 1

2
(i− 1)

)
− ψ0

(
b− 1

2
(i− 1)

)]
(33b)

where the expected value of log |X| is derived in Section 2. Inserting V from
(31) gives

0 = log |Ω|+ d log

(
(v − d− 1)(2a− d− 1)

2b

)
− d log 2−

d∑
i=1

ψ0

(
v − d− i

2

)

− log |Ω| −
d∑
i=1

[
ψ0

(
2a+ 1− i

2

)
− ψ0

(
2b+ 1− i

2

)]
(34)

=d log

(
(v − d− 1)(2a− d− 1)

4b

)
−

d∑
i=1

[
ψ0

(
2a+ 1− i

2

)
− ψ0

(
2b+ 1− i

2

)
+ ψ0

(
v − d− i

2

)]
(35)

which is the equation for v in the theorem.

3.3 Corollary to Theorem 1

Corollary 1. A closed form solution for v can be obtained using only (27)
together with matching the �rst order moments. The expected values of the
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densities p( · ) and q( · ) are [1, Theorems 5.3.20, 3.4.3]

Ep [X] =
2a

2b− d− 1
Ω, (36a)

Eq [X] =
V

v − 2d− 2
=

v − d− 1

v − 2d− 2

2a− d− 1

2b
Ω. (36b)

Equating the expected values and solving for v gives

v = (d+ 1)
2a−d−1

2b − 2 2a
2b−d−1

2a−d−1
2b − 2a

2b−d−1

. (37)

�

3.4 Remarks to Theorem 1

The equations for V (27) and v (28) in Theorem 1 correspond to matching the
expected value of X−1 and log |X|,

Eq
[
X−1

]
= Ep

[
X−1

]
, (38a)

Eq [log |X|] = Ep [log |X|] . (38b)

Notice that in Theorem 1, substituting a value for v into (27) gives the analytical
solution for V . The parameter v can be found by applying a numerical root-
�nding algorithm to (28), see e.g. [2, Section 5.1]. Examples include Newton-
Raphson or modi�ed Newton algorithms, see e.g. [2, Section 5.4], for more
alternatives see e.g. [2, Chapter 5]. In the following corollary, we supply an
alternative to root-�nding to obtain a value for v.

Matching the expected values, as in Corollary 1, can be seen as an approx-
imation of matching the expected values of the log determinant (38b). Indeed,
with numerical simulations one can show that the v given by (37) is approxi-
mately equal to the solution of (28), the di�erence is typically on the order of
one tenth of a degree of freedom.

References [3, 1, 4] contain discussions about using moment matching to
approximate a GBIId -distribution with a IWd-distribution. Theorem 1 de�nes
an approximation by minimising the kl divergence, which results in matching
the expected values (38). The kl criterion is well-known in the literature for its
moment-matching characteristics, see e.g. [5, 6].

4 Approximating the density of Vx with a Wd-

distribution

This section shows how the distribution of a matrix valued function of the
kinematical target state x can be approximated with a Wishart distribution.

4.1 Theorem 2

Theorem 2. Let x be Gaussian distributed with mean m and covariance P ,
and let Vx , V(x) ∈ Snx

++ be a matrix valued function of x. Let p(Vx) be the
density of Vx induced by the random variable x, and let q(Vx) =Wd (Vx ; s, S)

7



be the minimizer of the kl-divergence between p(Vx) and q(Vx) among all W-
distributions, i.e.

q(Vx) , arg min
q( · )=W( · )

KL (p (Vx) ||q (Vx)) . (39)

Then S is given as

S =
1

s
CII (40)

and s is the solution to the equation

d log
(s

2

)
−

d∑
i=1

ψ0

(
s− i+ 1

2

)
+ CI − log |CII | = 0 (41)

where CI , E [log |Vx|] and CII , E [Vx]. �

4.2 Proof of Theorem 2

The density q (Vx) is

q (Vx) =arg min
q(Vx)

KL (p (Vx) ||q (Vx)) (42a)

=arg max
q(Vx)

∫
p (Vx) log (q (Vx)) dVx (42b)

=arg max
q(Vx)

∫
p (Vx)

[
− sd

2
log 2− log Γd

(s
2

)
− s

2
log |S|+ s− d− 1

2
log |Vx|+ Tr

(
−1

2
S−1Vx

)]
dVx (42c)

=arg max
q(Vx)

∫
p (x)

[
− sd

2
log 2− log Γd

(s
2

)
− s

2
log |S|+ s− d− 1

2
log |Vx|+ Tr

(
−1

2
S−1Vx

)]
dx (42d)

=arg max
q(Vx)

Ex

[
− sd

2
log 2− log Γd

(s
2

)
− s

2
log |S|

+
s− d− 1

2
log |Vx|+ Tr

(
−1

2
S−1Vx

)]
(42e)

=− sd

2
log 2− log Γd

(s
2

)
− s

2
log |S|

+
s− d− 1

2
Ex [log |Vx|] + Tr

(
−1

2
S−1 Ex [Vx]

)
. (42f)

Let CI = Ex [log |Vx|] and CII = Ex [Vx]. This results in

q (Vx) =arg max
q(Vx)

− sd

2
log 2− log Γd

(s
2

)
− s

2
log |S|+ s− d− 1

2
CI + Tr

(
−1

2
S−1CII

)
=arg max

q(Vx)

f (s, S) . (43)
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Di�erentiating the objective function f (s, S) with respect to S, setting the
result equal to zero and multiplying both sides by 2 gives

−sS−1 + S−1CIIS−1 = 0 ⇔ S =
1

s
CII . (44)

Note that the expected value for Vx under the Wishart distribution q( · ) is
sS = CII . Thus the expected value under q( · ) is correct regardless of the
parameter s. Di�erentiating the objective function f (s, S) in (43) with respect
to s gives

df (s, S)

ds
=− d

2
log 2− 1

2

d∑
i=1

ψ0

(
s− i+ 1

2

)
− 1

2
log |S|+ 1

2
CI (45)

=
d

2
log

s

2
− 1

2

d∑
i=1

ψ0

(
s− i+ 1

2

)
− 1

2
log |CII |+

1

2
CI (46)

where we substituted S with (44) to obtain (46). Equating the result to zero
and multiplying both sides by 2 gives (41) in Theorem 2.

4.3 Corollary to Theorem 2

Corollary 2. CI and CII can be calculated using a Taylor series expansion of
Vx around x = m. A third order expansion yields

CI ≈ log |Vm|+
nx∑
i=1

nx∑
j=1

d2 log |Vx|
dxjdxi

∣∣∣∣
x=m

Pij , (47a)

CII ≈Vm +

nx∑
i=1

nx∑
j=1

d2Vx

dxjdxi

∣∣∣∣
x=m

Pij . (47b)

In (47) the i:th element of the vector x and the i, j:th element of the matrix
P are xi and Pij, respectively. Moreover, the matrix Vm is the function Vx

evaluated at the mean m of the random variable x. �

The expected values taken via second order Taylor expansions of log |Vx|
and Vx around x = m are

Ex [log |Vx|] ≈Ex

[
log |Vm|+

nx∑
i=1

d log |Vx|
dxi

∣∣∣∣
x=m

(xi −mi)

+

nx∑
i=1

nx∑
j=1

d2 log |Vx|
dxjdxi

∣∣∣∣
x=m

(xi −mi) (xj −mj)

]

= log |Vm|+
nx∑
i=1

nx∑
j=1

d2 log |Vx|
dxjdxi

∣∣∣∣
x=m

Pij (48a)

,CI , (48b)

9



and

Ex [Vx] ≈Ex

[
Vm +

nx∑
i=1

dVx

dxi

∣∣∣∣
x=m

(xi −mi)

+

nx∑
i=1

nx∑
j=1

d2Vx

dxjdxi

∣∣∣∣
x=m

(xi −mi) (xj −mj)

]

=Vm +

nx∑
i=1

nx∑
j=1

d2Vx

dxjdxi

∣∣∣∣
x=m

Pij (49a)

,CII . (49b)

Note that this is equal to a third order Taylor series expansion, because the
addition of the third order Taylor series terms would not change the results
above because all odd central moments of the Gaussian density are zero. Hence,
the error of the above approximation is of the order O

(
Ep‖x−m‖4

)
, i.e. the

error of a third order Taylor series expansion.

4.4 Remarks to Theorem 2

The equations for S (40) and s (41) in Theorem 2 correspond to matching the
expected values of Vx and log |Vx|,

Eq [Vx] = Ep [Vx] , (50a)

Eq [log |Vx|] = Ep [log |Vx|] . (50b)

Similarly to (28), numerical root-�nding can be used to calculate a solution to
(41). Note that using a moment matching approach similar to Corollary 1 to �nd
a value for s is not advisable, since this would lead to further approximations
(because the true distribution p(Vx) is unknown), and would possibly require a
more complicated numerical solution. For s > d − 1 and any S ∈ Sd++ there is
a unique root to (41).

4.5 Proof of unique root to (41)

To prove that (41) has a unique solution, we will �rst show that the optimization
function (43), which is what leads to (41), is strictly concave. From the de�nition
of the Wishart distribution we have s > d−1 so the problem at hand is to show
that (43) is strictly concave with respect to s for s > d−1 and for any S ∈ Sd++.
Let S ∈ Sd++ be arbitrary and de�ne the function q(s) as

q(s) = −
(
A
s

2
+ log Γd

(s
2

))
+ B (51)

where A and B, de�ned as

A = log(2) + log |S| − CI , (52)

B =− d+ 1

2
CI + Tr

(
−1

2
S−1CII

)
, (53)
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are constants with respect to s. Note that the equation under investigation, i.e.
(41), is nothing but the equation

d

ds
q(s) = 0. (54)

A second order condition for strict concavity of a function is that the second
order derivative is < 0 on the function's domain, see e.g. [7, Section 3.1.4]. We
thus need d2q(s)/ds2 < 0 for s > d− 1. The second order derivative of q(s) is

d2q(s)

ds2
= −1

4

d∑
i=1

∞∑
k=0

1((
s
2 −

i−1
2

)
+ k
)2 (55)

where we have used the series expansion of the second order derivative of the
function log(Γ(s)), see e.g., [8, Equation (1)]. For all s > d − 1 we have
d2q(s)/ds2 < 0, and thus the function q(s) is strictly concave.

It now easy to see that

lim
s→d−1

q(s) = −∞. (56)

Similarly we have

lim
s→∞

q(s) = −∞ (57)

since log Γ(s) (and hence log Γd(s)) grows much faster than s as s goes to in�nity.
Moreover, the function q(s) is both di�erentiable and bounded from above in
the interval (d − 1,∞). Therefore, we can conclude that there exists a local
maximum of the function q(s) in the interval (d − 1,∞) where (41) must be
satis�ed. This local maximum is unique due to strict concavity.

5 Marginalising IW(X|V )W(V ) over V

This section presents a result that is similar to the following property [1, Problem
5.33]: if p (S|Σ) = Wd (S ; n,Σ) and p(Σ) = IWd (Σ ; m,Ψ) then the marginal
density of S is

p(S) = GBIId
(
X;

n

2
,
m− d− 1

2
,Ψ, 0d

)
. (58)

Theorem 3. Let p(X|V ) = IWd (X ; v, V/γ) and let p(V ) = Wd (V ; s, S).
The marginal for X is

p(X) = GBIId
(
X;

s

2
,
v − d− 1

2
,
S

γ
, 0d

)
. (59)

�
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5.1 Proof of Theorem 3

We have p(X) given as

p(X) =

∫
p(X|V )p(V )dV =

∫
IWd

(
X ; v,

V

γ

)
Wd (V ; s, S) dV (60a)

=

∫ {
2

(v−d−1)d
2 Γd

(
v − d− 1

2

)
|X| v2

}−1 ∣∣∣∣Vγ
∣∣∣∣(v−d−1)/2

etr

(
−0.5X−1V

γ

)
×
{

2
sd
2 Γd

(s
2

)
|S| s2

}−1

|V |
s−d−1

2 etr(−0.5S−1V )dV (60b)

=

{
Γd

(
v − d− 1

2

)
Γd

(s
2

)
|X| v2 |S| s2

}−1

2−
(v+s−d−1)d

2 γ−
(v−d−1)d

2

×
∫
|V |

v+s−2d−2
2 etr

(
−0.5

(
X−1

γ
+ S−1

)
V

)
dV (60c)

=

{
Γd

(
v − d− 1

2

)
Γd

(s
2

)
|X| v2 |S| s2

}−1

2−
(v+s−d−1)d

2 γ−
(v−d−1)d

2

× 2
sd
2 Γd

(
v + s− d− 1

2

) ∣∣∣∣∣
(
X−1

γ
+ S−1

)−1
∣∣∣∣∣
v+s−d−1

2

×
∫
Wd

(
V ; v + s− d− 1,

X−1

γ
+ S−1

)
dV (60d)

=

{
Γd

(
v − d− 1

2

)
Γd

(s
2

)
|X| v2 |S| s2

}−1

2−
(v+s−d−1)d

2 γ−
(v−d−1)d

2

× 2
(v+s−d−1)d

2 Γd

(
v + s− d− 1

2

) ∣∣∣(γX)
−1

+ S−1
∣∣∣− v+s−d−1

2

(60e)

=

{
Γd

(
v − d− 1

2

)
Γd

(s
2

)
|X| v2 |S| s2

}−1

γ−
(v−d−1)d

2

× Γd

(
v + s− d− 1

2

) ∣∣∣∣X−1

(
S

γ
+X

)
S−1

∣∣∣∣− v+s−d−1
2

(60f)

=
Γd
(
s+v−d−1

2

)
Γd
(
v−d−1

2

)
Γd
(
s
2

)γ− (v−d−1)d
2

(∣∣X−1
∣∣ ∣∣∣Sγ +X

∣∣∣ ∣∣S−1
∣∣)− v+s−d−1

2

|X| v2 |S| s2
(60g)

=
1

βd
(
s
2 ,

v−d−1
2

)γ− (v−d−1)d
2

∣∣∣Sγ +X
∣∣∣− v+s−d−1

2

|X| s−d−1
2 |S| v−d−1

2

(60h)

=
|X|

s−d−1
2

∣∣∣X + S
γ

∣∣∣− s+v−d−1
2

βd
(
s
2 ,

v−d−1
2

) ∣∣∣Sγ ∣∣∣ v−d−1
2

(60i)

which, by [1, Theorem 5.2.2], is the probability density function for

GBIId
(
X;

s

2
,
v − d− 1

2
,
S

γ
, 0d

)
. (61)
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