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Abstract—This paper presents a new prediction update for
extended targets whose extensions are modeled as random
matrices. The prediction is based on several minimizations of
the Kullback-Leibler divergence and allows for a kinematic state
dependent transformation of the target extension. The results
show that the extension prediction is a significant improvement
over the previous work carried out on the topic.

Index Terms—Extended target, random matrix, Kullback-
Leibler divergence, inverse Wishart, Wishart, generalized Beta.

I. INTRODUCTION

Extended targets are targets that potentially give rise to more
than one measurement per time step, in contrast to standard
targets that give rise to at most one measurement per time step,
see e.g. [1]. The multiple measurements per time step raise
interesting possibilities to estimate the target’s extension, i.e.
the shape and size. Several extended target models have been
proposed in the literature, see e.g. [2]–[8] and the references
therein.

In the extended target model proposed by Koch et al. [7],
[8], the target extension is modeled as an ellipse, and it
is represented by a positive definite matrix called exten-
sion matrix. The extended target originated measurements
are modeled as being (approximately) Gaussian distributed,
with covariance related to the extension matrix. Following a
Bayesian methodology, the extension matrix is modeled to be
a random variable1 that is inverse Wishart distributed. The
overall extended target state is defined as the combination of
the extension matrix and the usual kinematical state vector.
The parameters of the kinematical state density, and the
extension’s inverse Wishart density, are updated in a Bayesian
recursion, which consists of prediction (time update) and
correction (measurement update).

The focus in this paper is on the prediction update of
extended targets within the random matrix framework. In early
work, see [7], [8], the extension matrix’ prediction was based
on simple heuristics which increase the extension’s covariance,
while keeping the expected value constant. Koch also discusses
the use of a Wishart transition density for the extension state
[7], see also [9], [10]. In this paper we generalize this idea
by including the possibility of a kinematic state dependent
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1Hence we refer to the model [7], [8] as the the random matrix framework.

transformation of the extension. This would, for example, be
useful when the target extension rotates during a coordinated-
turn, a situation which appears very frequently in air traffic
control applications. In order to derive a Bayesian prediction
update for the extension, minimizations of the Kullback-
Leibler divergence are used to approximate densities. This
methodology enables us to make well-defined approximations
when the original density and its approximation have different
numbers of parameters.

The rest of the paper is organized as follows. In Section II
we give a brief introduction to the random matrix framework,
and present the approaches to prediction given in [7]–[10].
Section III presents a problem formulation and defines the
main aim of the study. In Section IV, we give results that
are used in the derivation of the main result, which is a new
prediction update presented in Section V. The merits of the
new update are illustrated in simulations, with comparisons
to previous methods in Section VI. Concluding remarks are
given in Section VII.

II. THE RANDOM MATRIX FRAMEWORK

We use the following notation:
• Rn is the set of real column vectors of length n, Sn++ is

the set of symmetric positive definite n×n matrices, and
Sn+ is the set of symmetric positive semi-definite n × n
matrices.

• N (x ; m, P ) denotes a multi-variate Gaussian probabil-
ity density function (pdf) defined over the vector x ∈ Rnx
with mean vector m ∈ Rnx , and covariance matrix
P ∈ Snx+ ,

N (x ; m, P ) =
e−

1
2 (x−m)TP−1(x−m)

(2π)
nx
2 |P |

1
2

, (1)

where | · | is the matrix determinant function.
• IWd (X ; v, V ) denotes an inverse Wishart pdf defined

over the matrix X ∈ Sd++ with scalar degrees of freedom
v > 2d and parameter matrix V ∈ Sd++, [11, Definition
3.4.1]

IWd (X ; ν, V ) =
2−

ν−d−1
2 |V | ν−d−1

2

Γd
(
ν−d−1

2

)
|X| ν2

etr

(
−1

2
X−1V

)
,

(2)

where etr( · ) = exp (Tr( · )) is exponential of the matrix
trace, and Γd ( · ) is the multivariate gamma function.
The multivariate gamma function can be expressed as
a product of ordinary gamma functions, see e.g. [11,
Theorem 1.4.1].
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• Wd (X ; w,W ) denotes a Wishart pdf defined over the
matrix X ∈ Sd++ with scalar degrees of freedom w >
d − 1 and parameter matrix W ∈ Sd++, [11, Definition
3.2.1]

Wd (X ; w,W ) =
2−

wd
2 |X|w−d−1

2

Γd
(
w
2

)
|W |n2

etr

(
−1

2
W−1X

)
.

(3)

• GBIId (X; a, b,Ω,Ψ) denotes a generalized matrix-variate
beta type-II pdf defined over the matrix X ∈ Sd++,
with scalar parameters a > d−1

2 , b > d−1
2 and matrix

parameters Ω ∈ Sd++, Ψ ∈ Sd+, [11, Definition 5.2.4]

GBIId (X; a, b,Ω,Ψ) =
|X −Ψ|a− d+1

2 |Ω +X|−(a+b)

βd(a, b)|Ω + Ψ|−b
,

(4)

where (X −Ψ) ∈ Sd++ and (Ω−Ψ) ∈ Sd++.
• 0d is an all zero d× d matrix, and Id is a d× d identity

matrix.
Let ξk be the extended target state at time tk, and let Zk denote
the set of all measurements up to and including time tk. The
random matrix framework [7], [8] defines the extended target
state ξk = (xk, Xk) as the combination of a kinematical state
xk ∈ Rnx and an extension state Xk ∈ Sd++. The kinematical
state xk contains states related to target kinematics, such as
position, velocity and heading, while the extension state Xk is
a random matrix representing the target extent. The posterior
pdf of the extended target state ξk, conditioned on Zk, is
modeled as Gaussian inverse Wishart (GIW) distributed [8]

p
(
ξk
∣∣Zk ) =p

(
xk
∣∣Xk,Z

k
)
p
(
Xk

∣∣Zk ) (5a)

≈p
(
xk
∣∣Zk ) p (Xk

∣∣Zk ) (5b)

=N
(
xk ; mk|k, Pk|k

)
IWd

(
Xk ; νk|k, Vk|k

)
.

(5c)

This density approximates the kinematical and extension states
as independent, however, as noted in [8], the measurement
update step “provides for the interdependency between kine-
matics and extension estimation.” The random matrix frame-
work limits the extended targets to be shaped as ellipses,
however the ellipse shape is applicable to many real scenarios
in which the target and sensor geometry is such that the target
measurements resemble a cluster of detections, rather than a
geometric structure (or for that matter a single detection).

Note that in a Bayesian state estimation recursion, we
(typically) want the predicted pdf p(ξk+1|Zk) to be of the
same functional form as the posterior pdf p(ξk|Zk). For a GIW
distributed extended target (5c), this corresponds to obtaining
the parameters mk+1|k, Pk+1|k, νk+1|k, and Vk+1|k of the
distribution

p
(
ξk+1

∣∣Zk ) =N
(
xk+1 ; mk+1|k, Pk+1|k

)
× IWd

(
Xk+1 ; νk+1|k, Vk+1|k

)
. (6)

In previous work, see [7], [8], the kinematical state xk
is predicted using the Kalman filter prediction [12]. The
extension state prediction is based on simple heuristics. Under
the assumption that “the extension does not tend to change

over time” [8], the inverse Wishart parameters are predicted
such that E [Xk+1] = E [Xk] and Cov (Xk+1) > Cov (Xk).
The following prediction update is used in [8],

νk+1|k =2d+ 4 + e−T/τ (νk|k − 2d− 4), (7a)

Vk+1|k =
νk+1|k − 2d− 2

νk|k − 2d− 2
Vk|k, (7b)

where T is the prediction time and τ is a design parameter.
Note that (7a) is a minor modification of the prediction
νk+1|k = e−T/τνk|k, which is used in [7]. The modification
ensures that the expected value and covariance of Xk always
are well-defined.

In addition to presenting the prediction update given above,
in [7] Koch also discusses using a Wishart extension transition
density,

p(Xk+1|Xk) =Wd

(
Xk+1 ; nk+1,

Xk

nk+1

)
. (8)

This transition density is used in [9]. A modified version of
(8) is suggested in [10],

p(Xk+1|Xk) =Wd (Xk+1 ; δk, AkXkA
T

k) , (9)

where the d × d matrix Ak describes the extension time
evolution, e.g. rotation or scaling of the extension.

The contribution of this paper is a further generalization
of the idea to use a Wishart transition density. The presented
prediction method allows extension transformations that are
functions of the kinematical state.

III. PROBLEM FORMULATION

The state transition density p (ξk+1|ξk) describes the time
evolution of the extended target state from time tk to time
tk+1. In Bayesian state estimation, the prediction step consists
of solving the integral

p
(
ξk+1

∣∣Zk ) =

∫
p(ξk+1|ξk)p

(
ξk|Zk

)
dξk. (10)

The transition density can be expressed as [7]

p (ξk+1|ξk) = p (xk+1 |Xk+1,xk ) p (Xk+1 |xk, Xk ) . (11)

To obtain practical tractability of the prediction update, some
assumptions are required. Previous work [7], [8], [10] assumes
that the extension time evolution is independent of the kine-
matical state,

p (Xk+1 |xk, Xk ) = p (Xk+1 |Xk ) . (12)

This assumption simplifies extension prediction considerably,
and the assumption holds, e.g., when the target performs
constant velocity or constant acceleration motion. However,
during a constant or variable turn-rate maneuver the assump-
tion does not hold. In this case the extension (typically) rotates
during the maneuver, where the rotation is a function of the
turn-rate. The turn-rate is part of the target kinematics, and
thus the extension time evolution is not independent of the
kinematical state. In this paper we relax the assumption (12)
to be able to model transformations of the extension that are
dependent on the kinematic state.
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Regarding the time evolution of the kinematic state, we
adopt the same assumption as [8],

p (xk+1 |Xk+1,xk ) = p (xk+1 |xk ) . (13)

This assumption neglects factors such as wind resistance,
which can be modeled as a function of the target size.
However, constructing a model of such phenomena is not
easy in the general case, and could lead to overly complicated
mathematics. Further, the uncertainty that is neglected in this
approximation is, to a certain degree, captured by the process
noise. This gives the following transition density,

p(ξk+1|ξk) , p(xk+1|xk)p(Xk+1|ξk). (14)

The integral (10), with posterior distribution (5b) and tran-
sition density (14), is∫∫

p(xk+1|xk)p(Xk+1|ξk)

× p
(
xk|Zk

)
p
(
Xk|Zk

)
dxkdXk (15a)

=

∫
p(xk+1|xk)

∫
p(Xk+1|ξk)p

(
Xk|Zk

)
dXk

× p
(
xk|Zk

)
dxk (15b)

=

∫
p(xk+1|xk)p(Xk+1|xk,Zk)p

(
xk|Zk

)
dxk (15c)

=p
(
xk+1, Xk+1|Zk

)
. (15d)

As noted above, we want the predicted pdf to be of the same
functional form as the posterior pdf (5b), however in general
it does not hold that

p
(
xk+1, Xk+1|Zk

)
=p
(
xk+1|Zk

)
p
(
Xk+1|Zk

)
. (16)

Therefore, to simplify further discussion and to obtain practical
tractability we solve∫

p(xk+1|xk)p
(
xk|Zk

)
dxk

×
∫
p(Xk+1|xk,Zk)p

(
xk|Zk

)
dxk (17)

instead of solving (15c). Note that in [7], [10] an assumption2

is made in order to simplify discussion and obtain tractability
of the kinematic state prediction. This is equivalent to solving

p(xk+1|Zk) =

∫
p(xk+1|xk)p

(
xk|Zk

)
dxk, (18a)

p(Xk+1|Zk) =

∫
p(Xk+1|ξk)p

(
ξk|Zk

)
dξk, (18b)

instead of solving (10), and gives a predicted pdf that is of
the same functional form as the posterior pdf.

The prediction (18) does neglect some dependence between
the kinematic state and the extension state, just like the
measurement update (see [8]) neglects some dependence.
However, the posterior kinematic state is always used to
predict the extension state, which provides for interdependency
between the two estimates, and as noted above by quoting
from [8], the measurement update also provides for further

2The assumption in [7], [10] is different than that in (17), see [7] for
comments and justification.

interdependency. It will be shown in the results section that
good estimation performance can be achieved also under this
independence assumption.

For the kinematical state, the transition density is modelled
as

p(xk+1|xk) ,N (xk+1 ; f(xk), Qk+1) , (19)

where f( · ) : Rnx → Rnx is a state transition function,
and Qk+1 is the process noise covariance for the kinematic
state. The function f( · ) is generally nonlinear, see [13] for a
thorough overview of state transition functions.

Generalizing the Wishart transition densities of [7], [10],
described in (8) and (9), the extension transition density is
modeled as

p(Xk+1|ξk) ,Wd

(
Xk+1 ; nk+1,

MxkXkM
T
xk

nk+1

)
, (20)

where nk+1 > d − 1 is a scalar design parameter, and the
matrix transformation Mxk , M (xk) : Rnx → Rd×d is a
non-singular matrix valued function of the kinematic state. The
extension state’s time evolution is modeled as being dependent
on the kinematical state via a matrix transformation. The main
motivation for this specific form is the modeling of rotation of
extended targets. However, in general the function Mxk can be
selected arbitrarily, as long as the output is a non-singular d×d
matrix. In terms of, e.g., group target tracking, the extension
can grow or shrink over time, corresponding to Mxk being a
scaling of the extension.

The scalar design parameter nk+1 in (20) is analogous to
the noise covariance Qk+1 in (19), i.e. it governs the extension
state process noise. Let Mk = MxkXkM

T
xk

and let X [ij]

denote the (i, j)th element of the matrix X . By [11, Theorem
3.3.15] the expected value and variance of the (i, j)th element
of Xk+1|xk, Xk are

E
[
X

[ij]
k+1

∣∣∣xk, Xk

]
=M[ij]

k , (21a)

Var
(
X

[ij]
k+1

∣∣∣xk, Xk

)
=

(
M[ij]
k

)2
nk+1

+
M[ii]
k M[jj]

k

nk+1
, (21b)

i.e., given xk and Xk the variance decreases with increasing
nk+1. It can thus be said that a higher nk+1 implies less
process noise for the extension state. Thus, the shorter the
prediction time interval T is, the larger nk+1 should be, and
in the limit limT→0 nk+1 =∞ should hold. One way to model
nk+1 as a function of prediction time is nk+1 = ne−T/τ [7],
[9], with two scalar parameters n and τ . We elaborate further
on nk+1 after we derive the main result of the paper.

The problem considered in this work is to, given a posterior
density (5c) and the transition densities (14), (19), (20), obtain
a solution to (18), where the predicted density p(ξk+1|Zk) is
of the same functional form as (5c), i.e.

p(ξk+1|Zk) =p(xk+1|Zk)p(Xk+1|Zk) (22a)

=N
(
xk+1 ; mk+1|k, Pk+1|k

)
× IWd

(
Xk+1 ; νk+1|k, Vk+1|k

)
. (22b)
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IV. PRELIMINARIES

In this section we first give some known results, and then
give three theorems, which are all needed in our derivation
of a prediction update. For the pdf approximations below,
the true densities are approximated by the minimization of
the Kullback-Leibler divergence (KL-div) [14]. The KL-div is
defined for two pdfs p(x) and q(x) as

KL (p(x)||q(x)) =

∫
p(x) log (p(x)/q(x)) dx. (23)

Note that, when it comes to approximating distributions in
a maximum likelihood sense, the KL-div is considered the
optimal difference measure [15]–[17].

A. Known results

Let p (X) =Wd (X ; v, V ), and let M be any non-singular
d×d matrix. The random matrix MXM is distributed as [11,
Theorem 3.3.1]

p (MXM) =Wd (MXM ; v,MVM) . (24)

Let p (X|V ) = Wd (X ; n, V ) and let p (V ) =
IWd

(
V ; v̄, V

)
. The marginal for X is [11, Problem 5.33]

p (X) = GBIId
(
X;

n

2
,
v̄ − d− 1

2
, V ,0d

)
. (25)

B. Approximating a GBIId -distribution with an IWd-
distribution

Theorem 1: Let p(X) = GBIId (X; a, b, Ω, 0d), and let
q(X) = IWd (X ; v, V ) be the minimizer of the Kullback-
Leibler (KL) divergence between p (X) and q (X) among all
IWd-distributions, i.e.

q (X) , arg min
q( · )=IWd( · )

KL (p (X) ||q (X)) . (26)

Then V is given as

V =
(v − d− 1)(2a− d− 1)

2b
Ω, (27)

and v is the solution to the equation
d∑
i=1

[
ψ0

(
2a+ 1− i

2

)
− ψ0

(
2b+ 1− i

2

)
+ψ0

(
v − d− i

2

)]
− d log

(
(v − d− 1)(2a− d− 1)

4b

)
= 0,

(28)

where ψ0( · ) is the digamma function (a.k.a. the polygamma
function of order 0). �

Proof: Given in a technical report [18, Online] due to space
considerations. �

The equations for V (27) and v (28) in Theorem 1 corre-
spond to matching the expected value of X−1 and log |X|,

Eq
[
X−1

]
= Ep

[
X−1

]
, (29a)

Eq [log |X|] = Ep [log |X|] . (29b)

Notice that in Theorem 1, substituting a value for v into (27)
gives the analytical solution for V . The parameter v can be

found by applying a numerical root-finding algorithm to (28),
see e.g. [19, Section 5.1]. Examples include Newton-Raphson
or modified Newton algorithms, see e.g. [19, Section 5.4], for
more alternatives see e.g. [19, Chapter 5]. In the following
corollary, we supply an alternative to root-finding to obtain a
value for v.

Corollary 1: A closed form solution for v can be obtained
using only (27) together with matching the first order mo-
ments. The expected values of the densities p( · ) and q( · ) are
[11, Theorems 5.3.20, 3.4.3]

Ep [X] =
2a

2b− d− 1
Ω, (30a)

Eq [X] =
V

v − 2d− 2
=

v − d− 1

v − 2d− 2

2a− d− 1

2b
Ω. (30b)

Equating the expected values and solving for v gives

v = (d+ 1)
2a−d−1

2b − 2 2a
2b−d−1

2a−d−1
2b − 2a

2b−d−1
. (31)

�
Matching the expected values, as in Corollary 1, can be seen

as an approximation of matching the expected values of the
log determinant (29b). Indeed, with numerical simulations one
can show that the v given by (31) is approximately equal to
the solution of (28), the difference is typically on the order of
one tenth of a degree of freedom.

References [7], [10], [11] contain discussions about using
moment matching to approximate a GBIId -distribution with a
IWd-distribution. Theorem 1 defines an approximation by
minimising the KL divergence, which results in matching
the expected values (29). The KL criterion is well-known
in the literature for its moment-matching characteristics, see
e.g. [20], [21].

C. Approximating the density of Vx with a Wd-distribution

Theorem 2: Let x be Gaussian distributed with mean m
and covariance P , and let Vx , V(x) ∈ Snx++ be a matrix
valued function of x. Let p(Vx) be the density of Vx induced
by the random variable x, and let q(Vx) =Wd (Vx ; s, S) be
the minimizer of the KL-divergence between p(Vx) and q(Vx)
among all W-distributions, i.e.

q(Vx) , arg min
q( · )=W( · )

KL (p (Vx) ||q (Vx)) . (32)

Then S is given as

S =
1

s
CII (33)

and s is the solution to the equation

d log
(s

2

)
−

d∑
i=1

ψ0

(
s− i+ 1

2

)
+ CI − log |CII | = 0

(34)

where CI , E [log |Vx|] and CII , E [Vx]. �
Proof: Given in a technical report [18, Online] due to space

considerations. �
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Corollary 2: CI and CII can be calculated using a Taylor
series expansion of Vx around x = m. A third order expansion
yields

CI ≈ log |Vm|+
nx∑
i=1

nx∑
j=1

d2 log |Vx|
dxjdxi

∣∣∣∣
x=m

Pij , (35a)

CII ≈Vm +

nx∑
i=1

nx∑
j=1

d2Vx

dxjdxi

∣∣∣∣
x=m

Pij . (35b)

In (35) the i:th element of the vector x and the i, j:th element
of the matrix P are xi and Pij , respectively. Moreover, the
matrix Vm is the function Vx evaluated at the mean m of the
random variable x. �

The equations for S (33) and s (34) in Theorem 2 corre-
spond to matching the expected values of Vx and log |Vx|,

Eq [Vx] = Ep [Vx] , (36a)
Eq [log |Vx|] = Ep [log |Vx|] . (36b)

Similarly to (28), numerical root-finding can be used to cal-
culate a solution to (34). Note that using a moment matching
approach similar to Corollary 1 to find a value for s is not
advisable, since this would lead to further approximations
(because the true distribution p(Vx) is unknown), and would
possibly require a more complicated numerical solution. For
s > d − 1 and any S ∈ Sd++ there is a unique root to (34),
see [18] for a proof.

D. Marginalising IWd(X|V )W(V ) over V

This result is similar to the property stated in (25) and in
[11, Problem 5.33].

Theorem 3: Let p(X|V ) = IWd (X ; v, V/γ) and let
p(V ) =Wd (V ; s, S). The marginal for X is

p(X) = GBIId
(
X;

s

2
,
v − d− 1

2
,
S

γ
, 0d

)
. (37)

�
Proof: Given in a technical report [18, Online] due to space
considerations. �

V. A NEW PREDICTION UPDATE FOR THE EXTENSION

In this section we present the new approach to prediction,
first for the kinematical state in Section V-A and the for the
extension state in Section V-B.

A. Predicting the kinematical state

For the kinematical state we have

p
(
xk+1

∣∣Zk ) =

∫
N (xk+1 ; f(xk), Q)

×N
(
xk ; mk|k, Pk|k

)
dxk, (38)

In case f (xk) is a linear function, the solution to the in-
tegral (38) is given by the Kalman filter prediction [12]. In
general f(xk) is non-linear, in which case it is straightforward
to solve the integral (38) approximately. Using the extended

Kalman filter prediction formulas, see e.g. [22], the predicted
mean mk+1|k and covariance Pk+1|k are

mk+1|k = f(mk|k), Pk+1|k = Fk|kPk|kF
T

k|k +Q (39)

where Fk|k , ∇xf(x)|x=mk|k is the gradient of f( · ) evalu-
ated at the mean mk|k.

B. Predicting the extension state

For the extension state we have

p(Xk+1|Zk) =

∫∫
p(Xk+1|xk, Xk)p(xk, Xk|Zk)dxkdXk

(40a)

=

∫∫
Wd

(
Xk+1 ; nk+1,

MxkXkM
T
xk

nk+1

)
×N

(
xk ; mk|k, Pk|k

)
× IWd

(
Xk ; νk|k, Vk|k

)
dxkdXk.

(40b)

Using the properties given in (24) and (25), the integral (40b)
becomes

p(Xk+1|Zk)

=

∫
GBIId

(
Xk+1;

nk+1

2
,
νk|k − d− 1

2
,
MxkVk|kM

T
xk

nk+1
,0d

)
×N

(
xk ; mk|k, Pk|k

)
dxk. (41)

Unfortunately, the integral (41) has no analytical solution, it
has to be solved using approximations.

In what follows, we first show how (7) can be heuristically
modified to allow for transformations of the extension, and
then the prediction method from [10] is briefly described.
Lastly the main result of the paper is given: a new prediction
update for the extension state.

1) Heuristic modification of (7): Note first that the predic-
tion (7) corresponds to the case Mxk = Id. The prediction (7)
is hereafter called method 1 (M1).

Including a non-identity transformation matrix M( · ) in
the prediction process can be done heuristically, e.g. by
replacing (7b) with

Vk+1|k =
νk+1|k − 2d− 2

νk|k − 2d− 2
Mmk|kVk|kM

T

mk|k
. (42)

This prediction for the extension evaluates Mxk at the last
estimated kinematic state mk|k, and can thus capture e.g.
rotations. However, it neglects the kinematic state uncertainty
Pk|k completely. The prediction given by (7a) and (42) is
hereafter called method 2 (M2).

2) Prediction method from [10]: An alternative to (42) is
to replace Mxk by Mmk|k in (41). In this case the integral (41)
has an analytical solution, and Theorem 1 can then be used to
approximate the the GBIId -density as an IWd-distribution. A
similar approach is taken in [10], and the extension transition
density used in [10] was given in (9). The matrix Ak in
(9) is a parameter, and is not dependent on the kinematical
state. In [10] the authors use a type of moment matching to
approximate the density, instead of minimization of the KL-div.
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The prediction method from [10] is hereafter called method 3
(M3).

Note that if Ak = Mmk|k/
√
δk, and if τ and δk are

chosen correctly, M2 is equivalent to M3. In Section VI-A we
show how τ can be chosen for this equivalence to hold. The
transition density (9) is used in a multiple model framework in
[10], with m different modes with corresponding parameters
δ
(m)
k and A(m)

k . The extension modes correspond to, e.g., no
rotation, rotation θrad, and rotation −θrad. In the results
section it will be clear from context if it is the single mode,
or multiple mode, version of M3 that is referred to.

3) New prediction for the extension state: Using Theo-
rem 1, the GBIId -distribution in (41) can be approximated as
an IWd-distribution,

p
(
Xk+1

∣∣Zk ) ≈ ∫ IWd

(
Xk+1 ; vk|k,

MxkVk|kM
T
xk

γk|k

)
×N

(
xk ; mk|k, Pk|k

)
dxk, (43)

where vk|k is calculated using Corollary 1 by setting a =
nk+1

2 , b =
νk|k−d−1

2 , and γk|k ,
2bnk+1

(vk|k−d−1)(2a−d−1) . Using

the variable substitution Vxk ,MxkVk|kM
T
xk

, we obtain

p(Xk+1|Zk) ≈
∫
IWd

(
Xk+1 ; vk|k,

MxkVk|kM
T
xk

γk|k

)
×N

(
xk ; mk|k, Pk|k

)
dxk (44a)

=

∫
IWd

(
Xk+1 ; vk|k,

Vxk

γk|k

)
p(Vxk)dVxk .

(44b)

In (44a) the IWd density depends on xk only through
MxkVk|kM

T
xk

, and the second equality then follows as a result
of the variable substitution and standard probability theory for
variable substitutions, see e.g. [23, Theorem 2.1]. Note that
Vxk is a d× d random matrix, and p(Vxk) is a matrix variate
density. Because exact calculation of p(Vxk) is prohibitively
difficult, we use Theorem 2 to approximate p(Vxk) by a
Wishart distribution.3 This gives

p(Xk+1|Zk) ≈
∫
IWd

(
Xk+1 ; vk|k,

Vxk

γk|k

)
×Wd

(
Vxk ; sk|k, Sk|k

)
dVxk , (45)

where sk|k and Sk|k are calculated by setting m = mk|k and
P = Pk|k in Theorem 2, and CI and CII are computed using
Corollary 2. Using Theorem 3 the marginal for Xk+1, which
is the solution to the integral of (45), is given as

p(Xk+1|Zk) ≈GBIId
(
Xk+1; ak+1|k, bk+1|k,Ωk+1|k, 0d

)
(46)

where ak+1|k ,
sk|k
2 , bk+1|k ,

vk|k−d−1
2 and Ωk+1|k ,

Sk|k
γk|k

.
Finally, using Theorem 1 once again we obtain

p(Xk+1|Zk) ≈IWd

(
Xk+1 ; νk+1|k, Vk+1|k

)
, (47)

3Note that Theorem 2 uses the parameters ofN
(
xk ; mk|k, Pk|k

)
in order

to construct the Wishart approximation.

where the prediction updated parameters νk+1|k and Vk+1|k
are

νk+1|k =(d+ 1)

2ak+1|k−d−1
2bk+1|k

− 2
2ak+1|k

2bk+1|k−d−1
2ak+1|k−d−1

2bk+1|k
− 2ak+1|k

2bk+1|k−d−1
, (48a)

Vk+1|k =
(νk+1|k − d− 1)(2ak+1|k − d− 1)

2bk+1|k
Ωk+1|k. (48b)

Hereafter this prediction update is called method 4 (M4). This
method improves upon the prediction updates M2 and M3 by
also considering the kinematic state uncertainty.

C. Another look at the parameter nk+1

In this section we elaborate on the parameter nk+1 in the
extension state transition density. Under the assumption Mx =
Id we have

p(Xk+1|Zk) =GBIId
(
Xk+1;

nk+1

2
,
νk|k − d− 1

2
,
Vk|k
nk+1

,0d

)
,

(49)

and the expected value and variance of the (i, j)th element
X

[ij]
k+1 are

E
[
X

[ij]
k+1

]
= E

[
X

[ij]
k

]
, (50a)

Var
(
X

[ij]
k+1

)
=

(
1 +

νk|k − 2d− 2

nk+1

)
︸ ︷︷ ︸

,ηk+1

Var
(
X

[ij]
k

)
. (50b)

We see that (50) corresponds to exponential forgetting pre-
diction for the (i, j)th element, see e.g. [24]. The forgetting
factor is 0 < η−1k+1 < 1, and the effective window length is

we =
1

1− η−1k+1

= 1 +
nk+1

νk|k − 2d− 2
(51)

time steps. Using exponential forgetting prediction with win-
dow length we approximately means that we only “trust” the
information that was contained in the measurements from the
last we time steps. This gives us a hint as to how a specific
value of nk+1 could be set, either as a global constant, or
dynamically for each individual target at each time step.

An alternative way to interpret nk+1 starts with Corollary 1.
We can rewrite (31) to obtain

νk+1|k =νk|k −
(νk|k − 2d− 2)(νk|k − d− 1)

nk+1 + νk|k − 2d− 2︸ ︷︷ ︸
N(νk|k,nk+1)

, (52)

where N( · ) is a scalar valued function of νk|k and nk+1. This
is analogous to the measurement update [8]

νk+1|k+1 = νk+1|k +Nz,k+1, (53)

where Nz,k+1 is the number of measurements at time step
k+1. Thus, we can view the prediction as “removing” degrees
of freedom corresponding to N(νk|k, nk+1) measurements.
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Fig. 1. Results for one dimensional extensions. (a) The log-distances log10

(
∆pdf (p(x), q(x))

)
when a GBIId is approximated as an IWd. The approximation

is least accurate when the parameter n (cf. (20)) is small. (b). The distances ∆pdf (p(Vx),W) when x is normal distributed and the distribution over Vx is
approximated as aWd. As expected, the accuracy of the approximation decreases when the uncertainty of x increases. (c) The distances ∆pdf ( · , · ) between
the empirical distribution and the three prediction methods for different values of σ. The same transformation function Mx and same values of σ as were
used in (b) are used here. (d) Comparison of the empirical distribution and the three different predicted distributions for σ = 0.3, the legend refers to the
empirical distribution (O) and the three methods M1, M2 and M4. The suggested new prediction outperforms the other methods.

VI. SIMULATIONS

This section presents results from simulations which com-
pare the new prediction method M4 to the methods M1, M2,
and M3. The main focus is on the prediction of the extension
state.

In all simulations of M4, Corollary 1 is used to calculate
vk|k. For computing the quantity sk|k, (34) is solved numer-
ically using the iterative Halley’s method [25]. This requires
the digamma function to be computed, which is performed in
MATLAB using the function psi( ·). Simulations have shown
that sk|k is computed, on average, in just 4 iterations. Note that
the only part of M4 that requires a numerical solution is the
calculation of sk|k. All other quantities required are calculated
using their respective closed form expressions.

In the following subsections, first a method to determine the
parameter τ in M1 and M2 is given in Section VI-A, then a
difference measure for pdfs is presented in Section VI-B. This
is followed by simulation results for one dimensional exten-
sions in Section VI-C, and for two dimensional extensions in
Section VI-D.

A. Determining τ

M1 and M2 contain the parameter τ , which is a “time
constant related to the agility with which the object may
change its extension over time” [8]. Neither Koch [7] nor
Feldmann et al [8] elaborate on how τ is best determined.
To make as fair comparison as possible, here Theorem 1 is
used to determine τ . By Theorem 1, the following holds,∫

IWd

(
X+ ; n,

X

n

)
Wd (X ; v, V ) dX

≈IWd (X+ ; v+, V+) . (54)

By setting v+ equal to (7a), τ can be determined for any
combination of T , v, and n. With this choice of τ , all
prediction methods yield the same result when Mx = Id.

B. Difference measure for probability density functions

In order to measure the algorithms’ prediction perfor-
mances, a distance measure between two pdfs p(x) and q(x)

is needed. Here the L2-norm is used,

∆pdf (p(x), q(x)) ,
∫
|p(x)− q(x)|2dx. (55)

In order to calculate the integral numerically, a uniform
discretization is made over the union of the supports of p(x)
and q(x).

C. Results in one dimension

This section presents results for a one dimensional (d = 1)
extension X . The kinematic state xk is also selected as one
dimensional, i.e. nx = d = 1. The transformation function
M (xk) is given as

M (xk) = 1 + x2
k. (56)

The integral in (55) is computed with a discretization over the
interval [0, 1000] with a discretization interval of length 0.1.

1) Accuracy of Theorem 1: The accuracy of Theorem 1,
i.e. of the approximation

GBIId
(
X+;

n

2
,
ν − d− 1

2
,
V

n
,0d

)
≈ IWd (X+ ; ν+, V+) ,

(57)

is evaluated for different values of the parameters n and ν
by computing ∆pdf

(
GBIId , IWd

)
for each combination of n

and ν. The results, see Fig. 1a, show that the approximation
is least accurate when n is small. A small n corresponds to a
very short effective window we, see (51) and Section V-C.

2) Accuracy of Theorem 2: Let Vx = MxV0Mx, where
Mx is given in (56) and p(x) = N (x ; m,σ). The accuracy of
Theorem 2, i.e. approximation of the pdf of Vx with a Wishart
distribution, is evaluated for different values of the parameter
σ, when m = 2 and V0 = 1. For each σ, an empirical pdf
p(Vx) is computed using 107 samples from N (x ; m,σ). The
results, see Fig. 1b, show that, as expected, the approximation
becomes less accurate as σ becomes larger. While the result in
Fig. 1b is specific for the transformation (56), the observation
that ∆pdf (p(Vx),Wd) increases with σ can be expected to
hold for other transformation functions as well.
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3) Accuracy of the new prediction: The following parame-
ter settings are used for the distribution (5c),

νk|k =50, V0 =1, Vk|k =
(
νk|k − 2d− 2

)
V0,

nk+1 =50, mk|k =2, Pk|k =σk|k ∈ [0.01 , 1] .

For each σk|k value, a total of 107 samples were generated
from (5c) and each sample is predicted by sampling from (20).
The resulting empirical pdf (emp) over Xk+1 is compared to
the pdfs obtained by M1, M2 and M4. Remember that when
τ is computed as in Section VI-A and Ak = Mmk|k/

√
δk, M2

is equivalent to the single mode version of M3. For another
choice of Ak, the error for M3 would be larger than for M2.

Fig. 1c shows ∆pdf (emp,Mi) for different values of the
parameter σ. For all values of σ, M4 outperforms the other
two methods. Fig. 1d shows the pdfs for the case σ = 0.3.
Again it is evident that M4 is the best approximation of the
empirical distribution.

D. Results in two dimensions

This section presents results for a two dimensional (d =
2) extension. A constant turn-rate (CT) model with po-
lar velocity [13] is considered. The kinematic state xk =
[xk, yk, vk, φk, ωk]

T contains the (xk, yk)-position in Carte-
sian coordinates, the speed vk, the heading φk and the turn-
rate ωk. With this kinematic state, it is intuitive to let the
transformation function be a rotation matrix

M (xk) =

[
cos (Tωk) − sin (Tωk)
sin (Tωk) cos (Tωk)

]
. (58)

1) Performance evaluation: For single step prediction,
the predicted expected values E [Xk+1] and covariances
Cov (Xk+1) are compared. Because the covariance of the
extension matrix is a d2×d2 matrix [11, Definition 1.2.6], we
are going to constrain ourselves to illustrate only the d × d
covariance matrix of the diagonal entries of the predicted
extension matrix.

For single and multiple maneuvering targets, the predicted
root mean square errors (RMSE) are computed over Ns Monte
Carlo runs. The predicted kinematical state position RMSE,
and the extension state RMSE, are computed as follows,

RMSEx
k =

(
1

Ns

Ns∑
i=1

(
x̂
(i)
k|k−1 − xk

)2
+
(
ŷ
(i)
k|k−1 − yk

)2) 1
2

,

(59a)

RMSEXk =

(
1

Ns

Ns∑
i=1

Tr

((
X̂

(i)
k|k−1 −Xk

)2)) 1
2

, (59b)

where xk, yk and Xk are the true position and extension,
and x̂

(i)
k|k−1, ŷ

(i)
k|k−1 and X̂(i)

k|k−1 are the predicted position and
extension from the ith Monte Carlo run.

2) Single step prediction: The following parameter settings
are used for the distribution (5c).

νk|k =50, Vk|k =
(
νk|k − 2d− 2

)
V0,

V0 =diag ([5, 2]) , nk+1 =50,

ωk|k =0 or 45 [deg] , Pω =1 or 20 [deg] ,

where Pω is the standard deviation for ωk|k. For each of the
four parameter combinations, a total of 105 samples were
generated, and each sample was then predicted by sampling
from (20). The resulting sample mean XO

k+1 (of the extent
matrix) and sample covariance CO

k+1 (of the diagonal elements
of the extent matrix) are compared to the expected value and
covariance given by M1, M2 and M4. Note again that M2 and
single mode M3 gives equivalent results.

The results are shown in Figure 2. It is evident that M1 has
the worst performance of all three methods, because it does not
take the rotation of the extension into account. M2 performs
identically to M4 when Pω is small, however for larger Pω
the sample mean XO

k+1 is slightly distorted, which M2 does
not capture, and M2’s covariance is underestimated compared
to CO

k+1. M4, in comparison, captures the distorted shape of
the sample mean, and M4’s covariance is not underestimated,
rather it is slightly overestimated compared to CO

k+1. Overes-
timation of the covariance is in general seen as more benign
than underestimation, which can cause instability. Moreover,
the increase of the covariance over the correct one CO

k+1 can
be interpreted as a compensation for the approximations made
during the calculation. As a result, M4 outperforms M1 and
M2 in terms of both the first and second order moments of
the predicted pdf over Xk+1.

3) Single maneuvering target: Two single maneuvering
target scenarios were simulated. In Figure 3a the target moves
forward with constant velocity (CV) for 25 time steps, and then
maneuvers with constant turn rate (CT) ωk = 10 deg per time
step for 35 time steps. In Figure 3b the target moves forward
with constant velocity for 25 time steps, and then maneuvers
with a variable turn rate ωk for 50 time steps. The turn rate first
increased from 0 to 20 deg per time step, and then decreased
to 0 deg per time step. The last five time steps is CV motion. In
both scenarios, the target generated 10 measurements in each
time step, and there were no clutter measurements.

For these two scenarios the multiple mode version of M3
was implemented, please refer to [10] for details. In the simu-
lation study in [10], M3 is implemented with three extension
evolution modes which correspond to (1) no change with small
process noise, (2) rotation θ deg with large process noise, and
(3) rotation −θ deg with large process noise, where θ is a
manually set model parameter. In each mode, the kinematical
state is predicted according to a CV model [10].

In the comparison the CT version of M4 outlined above is
compared to M3 with three modes and M3 with five modes,
denoted M3/3 and M3/5 for short. We have chosen to not
compare M4 to the prediction method from [8], because [10]
contains a simulation comparison between M3 with three
modes and [8], and the results show that during manuevers
M3 with three modes outperforms [8].

M3/3 was implemented with the same three modes as in
[10]. M3/5 was implemented with extension evolution modes
that correspond to (1) no change with small process noise,
(2) rotation 2θ deg with large process noise, (3) rotation θ deg
with large process noise, (4) rotation−θ deg with large process
noise, and (5) rotation −2θ deg with large process noise. Note
that [10] also includes a model for the measurement update,
however in this paper we study only the prediction update and



GRANSTRÖM AND ORGUNER : A NEW PREDICTION FOR EXTENDED TARGETS WITH RANDOM MATRICES 9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n =50, ν =50, ω =0◦, Pω =1◦

 

 

O
M1
M2
M4

(a)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n =50, ν =50, ω =0◦, Pω =20◦

 

 

O
M1
M2
M4

(b)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n =50, ν =50, ω =45◦, Pω =1◦

 

 

O
M1
M2
M4

(c)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

n =50, ν =50, ω =45◦, Pω =20◦

 

 

O
M1
M2
M4

(d)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

n =50, ν =50, ω =0◦, Pω =1◦

 

 

O
M1
M2
M4

(e)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

n =50, ν =50, ω =0◦, Pω =20◦

 

 

O
M1
M2
M4

(f)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

n =50, ν =50, ω =45◦, Pω =1◦

 

 

O
M1
M2
M4

(g)
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

n =50, ν =50, ω =45◦, Pω =20◦

 

 

O
M1
M2
M4

(h)

Fig. 2. Results for two dimensional extensions. The legend refers to the empirical distribution (O) and the three methods M1, M2 and M3. The top row
shows a comparison of the expected value, the bottom row shows a comparison of the covariance matrices corresponding to the diagonal elements of the
extension. Each column presents results for a different parameter setting.
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Fig. 3. True target tracks used in simulations. In (a) and (b) the target starts at the origin. In (c) the two targets start in the bottom left.

(a) (b) (c)

Fig. 4. Results for single target tracking for the true track in Fig. 3a. M3/3 in blue, M3/5 in red and M4 in green. (a): Position RMSE. (b) and (c): Extension
RMSE, split into two figures for increased clarity. From time 25 to time 60 the true turn rate is 10 deg per time step. For M3/3 and M3/5, the position RMSE
increases during the maneuver, but is independent of the rotation parameter θ. However the extension RMSE increases with increasing parameter error. Note
that for small parameter errors, M3/3 and M3/5 has lower extension RMSE than M4.

therefore use the standard measurement update [7], [8].
Both scenarios were simulated Ns = 1000 times. To test

M3’s sensitivity to the parameter θ, M4 is compared to M3
using θ ∈ [1 , 20] deg. Figures 4 and 5 show comparisons of
the results from M3/3, M3/5 and M4 for the true target tracks

in Figures 3a and 3b, respectively. In the figures we see the
following:
• M3/3 and M3/5 have lower errors when the target moves

according to a CV model, because their CV model for the
kinematics is better than M4’s CT model for this type of
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(a) (b) (c)

Fig. 5. Results for single target tracking for the true track in Fig. 3b. M3/3 in blue, M3/5 in red, and M4 in green . (a): Position RMSE. (b) and (c): Extension
RMSE, split into two figures for increased clarity. From time 25 to time 75 the true turn rate goes from 0 deg to 20 deg per time step, and then back to 0 deg
again. For M4 the position and extension RMSE are constant for the whole trajectory. For M3/3 and M3/5 the position RMSE is largest when the true turn
rate is highest. During the maneuver, M4 has significantly smaller position and extension RMSEs than M3/3 and M3/5.

motion.
• During the manuevers, M4 has lower position error than

M3/3 and M3/5 because the CT model is better than the
CV model for this type of motion. The position errors for
M3/3 and M3/5 increase with increasing turn-rate, see
Figure 5a.

• During the CT maneuver M3/3 has lower extension error
than M4 if θ ∈ (7 deg , 13 deg) holds, see Figure 4b. For
larger parameter errors, M4 is better because it estimates
the turn-rate online. As the parameter error grows larger,
M3/3’s performance degrades more and more.

• During the CT maneuver M3/5 has lower extension
error than M4 if θ ∈ (3.5 deg , 6.5 deg) or θ ∈
(10.5 deg , 12.5 deg), see Figure 4c. The first interval
corrsponds to 2θ ∈ (7 deg , 13 deg), which is the
same interval as for M3/3. Just as for M3/3, for larger
parameter errors the performance of M3/5 degrades.

• In Figures 5b and 5c, M3/3 and M3/5 perform better
than M4 during the time steps that correspond to a small
parameter error. However, for the time steps where the
parameter error is larger, M4 has significantly better per-
formance than M3. Despite using two additional rotation
modes, M3/5 does not have a clearly better performance
than M3/3 for this type of maneuver.

In comparison, M3 and M4 are quite similar in that the
extension transition density is a Wishart density that allows
for, among other things, rotations of the extension. However,
M3 requires a rotation parameter to be set, which can be
difficult, especially in the multiple target case where the targets
can maneuver with individual time varying turn-rates. The
results show that the RMSEs increase when the parameter is
set incorrectly.

In this comparison the multiple model framework M3 was
implemented in two versions: one with the same three modes
as were used in the simulation study in [10, Section IV], and
one version with two additional rotation modes. An important
issue to stress is that M3 can be implemented more flexibly,
i.e. with more than 5 modes. A straightforward improvement
would be to add additional rotation modes that have different
probable θ values. Using a larger discrete set of parameter

TABLE I
MEAN CYCLE TIME ± ONE ST.DEV. (ms)

Method: M3/3 M3/5 M4
Cycle time: 36± 2 84± 2 10± 1

values, M3 would cover the unknown parameter space more
efficiently. With M4, the measurements are used to estimate
an individual turn-rate for each target, and in a sense M4
can be considered as a continuous parameter version of M3.
However, note that in order to match M4, M3 might require a
considerable number of modes, with a corresponding increase
in computational demands. Table I gives the cycle times for
M3/3, M3/5 and M4, averaged over all Monte Carlo runs.
M3/3 is about 3.5 times slower than M4, and M3/5 is about
8.5 times slower. In this sense, M4 is more efficient than M3,
because it handles a variable turn-rate using a single mode.

A final issue that must be mentioned for a fair comparison of
M3 and M4 is that M3 uses Koch’s random matrix model [7],
while M4 uses Feldmann et al.’s random matrix model [8].
Due to this, it is not possible to make use of a CT model
for M3. The ability to use such a CT model for M3 would
enable one to obtain a good turn-rate estimate, which can be
substituted into the multiple model framework of M3 to reduce
its errors. This is essentially the idea that was used for model
M2.

4) Multiple maneuvering targets: In [26], [27] a GIW
version of the extended target PHD filter [28] is given. For
prediction the standard method M1 is used. In the results
section of [26] it is noted that multiple targets that move
according to a CV model are easy to track with a CV motion
model. However, targets that maneuver according to a CT
model, while simultaneously being spatially close, are difficult
to track. One problem is the simple CV prediction (7), which
is insufficient to describe the target motion during maneuvers
[26]. A result is that the filter cannot keep spatially close
targets resolved during the maneuvers, resulting in cardinality
being underestimated.

The presented prediction method M4 was used in the GIW-
PHD filter [26], and tested on a scenario with two targets. This
scenario was also used in [26], and the true target tracks are
shown in Figure 3c. While moving in parallel, the targets’
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Fig. 6. Results for the multiple target scenario in Fig. 3c. At separation
distances d ≥ 6m the cardinality is estimated correctly.

extents were separated by a distance d. In [26] it was shown
that the targets needed to be separated by d ≥ 21m for the
cardinality to be estimated correctly during the CT maneuver.
At closer distance, the GIW-PHD filter could not keep the two
targets resolved.

For this paper the scenario was simulated for separation
d = 0, 0.5, 1, . . . , 10 [m]. For each separation d, the scenario
was simulated Ns = 100 times. The mean estimated cardinal-
ity is shown in Figure 6. From the results we can make two
observations. The first is that cardinality is estimated correctly
for separation d ≥ 6m, which is an improvement over [26]
where d ≥ 21m was needed. This performance improvement
is a direct result of using a prediction that allows for kinematic
state dependent rotations of the extension estimate.

The second observation is that at separation d ≤ 4m, the
cardinality is underestimated during CV motion (from time
40 to time 75), because the filter cannot keep the targets
resolved. This is actually worse performance than [26], where
the cardinality was estimated correctly during CV motion at
separation d = 0m. The explanation is that the kinematic state
motion model that is used in [26] is a better model for CV
motion that the CT model used in this paper.

5) Summary of 2D results: The results show that when
the turn rate is known with high accuracy, the prediction
methods M2, M3 and M4 perform similarly. However, when
the turn rate is uncertain, M4 performs better because it
estimates the turn rate directly from the measurement data,
and it also considers the effects of turn rate uncertainty on
the extension estimate. The scenario with two maneuvering
targets shows that including rotation of the extension can
significantly improve performance for multiple maneuvering
target tracking.

VII. CONCLUDING REMARKS

This paper presented a new prediction update for extended
targets whose extensions are modeled as random matrices.
The new prediction allows for transformation of the target
extension during target maneuvers, and the main tools for
deriving the prediction are presented in terms of three different
theorems. Two of the theorems show how matrix variate
probability density functions can be approximated, the third

theorem shows how a conditional matrix variate distribution
can be marginalized.

Results from simulating a single prediction step show that
the presented prediction method outperforms related work in
terms of the expected value, and covariance of the predicted
extension. In two simulations with a single maneuvering target,
it is shown that the presented prediction method is more
general than related work, because it can estimate the turn rate
online and does not rely on setting a parameter. In a simulation
with two targets it was shown that the presented prediction
method can improve performance significantly when the tar-
gets maneuver while being spatially close.

In future work, we plan to include the presented prediction
method in a multiple model framework. This could include
motion modes for, e.g., constant velocity motion, constant
turn rate motion with rotation of the extension, and scaling
of the extension. It would also be interesting to see how
a scaling of the extension matrix could be made dependent
on the kinematic state, possibly using a kinematic state that
corresponds to the scaling rate. As noted in [7], [8], [10],
scaling of the extension matrix has important applications for
group target tracking.

This work has not considered the measurement update
within the random matrix framework, see e.g. [10], [29]
for some recent work on this topic. Coupling the extension
measurement update to the turn rate could possibly improve
estimation of the turn rate. Finally, in this work, we have used
the random matrix model of Koch [7] and Feldmann et al. [8]
which uses inverse Wishart densities to represent the target
extents. A drawback of this methodology could be that in
higher dimensions, a single parameter might not be sufficient
to represent the uncertainty of the extent matrix. Hence,
the consideration of more general matrix-variate densities,
with many parameters to represent the uncertainty, might be
necessary for high dimensions.
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