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On Spawning and Combination of Extended/Group
Targets Modeled with Random Matrices

Karl Granström, Student Member, IEEE, and Umut Orguner, Member, IEEE

Abstract—In extended/group target tracking, where the exten-
sions of the targets are estimated, target spawning and combina-
tion events might have significant implications on the extensions.
This paper investigates target spawning and combination events
for the case that the target extensions are modeled in a random
matrix framework. The paper proposes functions that should
be provided by the tracking filter in such a scenario. The
results, which are obtained by a gamma Gaussian inverse Wishart
implementation of an extended target probability hypothesis
density filter, confirms that the proposed functions improve the
performance of the tracking filter for spawning and combination
events.

Index Terms—Extended target, random matrix, Kullback-
Leibler divergence, target spawning, target combination.

I. INTRODUCTION

Multiple target tracking can be defined as the processing
of multiple measurements obtained from multiple targets in
order to maintain estimates of the targets’ current states, see
e.g. [1]. In this context, a point target is defined as a target
which is assumed to give rise to at most one measurement
per time step, and an extended target is defined as a target
that potentially gives rise to more than one measurement per
time step. Closely related to extended target is group target,
defined as a cluster of point targets which can not be tracked
individually, but has to be treated as a single object.

In a target tracking scenario, multiple targets may maneuver
such that they become spatially close and cannot be resolved,
i.e. they appear at the sensor as one target1 and must be
treated as such. Conversely, the individual targets in a group
of unresolved targets may maneuver such that they become
resolved, i.e. they no longer have to be treated as a group. In
this paper, we refer to the former as the target combination
problem, and to the latter as the target spawning problem.

Target spawning, also referred to as splitting targets, is the
event that a new target appears very close to an existing
target, or the event that a single target separates into two, or
more, targets. Spawning occurs e.g. when a platform launches
another platform, or an unresolved group of targets resolve into
multiple closely spaced targets, see e.g. [2], [3]. An interactive
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1Sometimes called group target.

multiple model joint probabilistic data association filter for
tracking a single point target that spawns one point target is
given in [2, Chapter 4].

Target combination, also referred to as target merge, is the
event that multiple single targets form a group of targets. In
certain scenarios target combination can efficiently be seen,
and modeled, as target death2. In other scenarios it may be
computationally efficient to combine resolved single targets
into a group, see e.g. [4].

While tracking point targets, target spawning and combina-
tion events can be handled by additional target births around
the main target and spontaneous target deaths, respectively, in
the tracking filter. On the other hand, in extended/group target
tracking where the target/group size should also be estimated
by the tracker, a target spawning event might potentially cause
a reduction in the size/extent of the main target. Likewise, in
the case of target combination, the size of the combined target
logically can become the sum of the sizes of the individual
targets. This interesting phenomenon that can be observed in
extended and group target tracking, but not in conventional
point target tracking, has to be modeled and taken care of in
the tracking filter.

In this paper we consider combination and spawning for
extended targets. An extended target’s size and shape can be
modeled in different ways, see e.g. [5]–[11], here we use
Koch’s random matrix model [12]. We limit the discussion
to considering combination of two targets, and spawning of
one new target, or equivalently splitting into two targets.

To the best of the authors’ knowledge, there is no previous
work on extended/group target combination, and the only work
that mentions extended/group target spawning is [13]. The
work [13], which also uses the random matrix model [12],
proposes a spawning model that corresponds to a spawned
target whose state’s expected value is identical to the expected
value of the state of the target from which it spawned. This
includes the spawned target’s extension, which also keeps the
expected value of the original target’s extension.

This very simple model cannot be expected to be valid in
all scenarios, especially not when the original target extension
is large and the spawned target’s extension is small, which is
a quite common case. The spawning model presented in this
paper uses a multiple hypothesis structure that considers rea-
sonable alternatives about the spawned target. The spawning
model in [13] has a single hypothesis in which the expected
kinematic and extension states are equal to the original target.
Therefore the model in [13] can be considered to be a special

2When a target disappears from sensor view.
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case of the presented model.
The rest of the paper is organized as follows. In Section II

we present the extended target tracking framework, and give
a problem formulation. Section III contains results on the
approximation of probability density functions, in the form
of four theorems that will be used in the subsequent parts
of the paper. In Sections IV and V we present the proposed
combination and spawning methodologies, respectively, for
the two target case. A discussion about how the presented
methodologies could be used if another extension model
is used is presented in Section VI. A simulation study is
presented in Section VIII, using an example multiple extended
target tracking filter which is briefly described in Section VII.
The paper is finished with concluding remarks in Section IX.

II. EXTENDED TARGET FRAMEWORK
AND PROBLEM FORMULATION

We use the following notation:
• Rn is the set of real column vectors of length n, Sn++ is

the set of symmetric positive definite n×n matrices, and
Sn+ is the set of symmetric positive semi-definite n × n
matrices.

• GAM (γ ; α, β) denotes a gamma probability density
function (pdf) defined over the scalar γ > 0 with scalar
shape parameter α > 0 and scalar inverse scale parameter
β > 0,

GAM (γ ; α, β) =
βα

Γ(α)
γα−1e−βγ , (1)

where Γ( · ) is the gamma function.
• N (x ; m, P ) denotes a multi-variate Gaussian pdf de-

fined over the vector x ∈ Rnx with mean vector m ∈
Rnx , and covariance matrix P ∈ Snx+ ,

N (x ; m, P ) =
e−

1
2 (x−m)TP−1(x−m)

(2π)
nx
2 |P |

1
2

. (2)

where | · | is the matrix determinant function.
• IWd (X ; v, V ) denotes an inverse Wishart pdf defined

over the matrix X ∈ Sd++ with scalar degrees of freedom
v > 2d and parameter matrix V ∈ Sd++, [14, Definition
3.4.1]

IWd (X ; v, V ) =
2−

v−d−1
2 |V | v−d−1

2

Γd
(
v−d−1

2

)
|X| v2

etr

(
−1

2
X−1V

)
,

(3)

where etr( · ) = exp (Tr( · )) is exponential of the matrix
trace, and Γd ( · ) is the multivariate gamma function.
The multivariate gamma function can be expressed as
a product of ordinary gamma functions, see (80) in
Appendix D.

• Wd (X ; w,W ) denotes a Wishart pdf defined over the
matrix X ∈ Sd++ with scalar degrees of freedom w ≥ d
and parameter matrix W ∈ Sd++, [14, Definition 3.2.1]

Wd (X ; w,W ) =
2−

wd
2 |X|w−d−1

2

Γd
(
w
2

)
|W |n2

etr

(
−1

2
W−1X

)
.

(4)

• BE (γ̄ ; a , b) denotes a beta pdf defined over the scalar
0 < γ̄ < 1 with scalar shape parameters a > 0 and b > 0,

BE (γ̄ ; a , b) =
Γ(a+ b)

Γ(a)Γ(b)
γ̄a−1(1− γ̄)b−1. (5)

Let ξk be the extended target state at time tk. In this paper
we define the extended target state as the combination of a
scalar Poisson rate γk > 0, a kinematical state vector xk ∈
Rnx and an extension state matrix Xk ∈ Sd++, i.e. the extended
target state is a triple ξk , (γk,xk, Xk). The kinematical
state xk contains states related to target kinematics, such as
position, velocity and heading, while the extension state Xk is
a random matrix representing the size and shape of the target.
At time tk, each extended target generates a set of sensor
measurements

Zk =
{
z

(j)
k

}Nz,k
j=1

, (6)

where the measurement noise covariance is related to the
extension Xk. In this paper we use the following measurement
model from [12],

p
(
z

(j)
k

∣∣∣xk, Xk

)
= N

(
z

(j)
k ; Hkxk, Xk

)
. (7)

The measurement set cardinality Nz,k is a random draw from
a Poisson distribution whose unknown rate is γk.

Let Zk = {Z1, . . . ,Zk} denote all measurement sets up to
and including time tk. The state estimate, conditioned on Zk,
is assumed to be gamma Gaussian inverse Wishart (GGIW)
distributed,

p
(
ξk
∣∣Zk ) =p

(
γk
∣∣Zk ) p (xk ∣∣Xk,Z

k
)
p
(
Xk

∣∣Zk ) (8a)

=GAM
(
γk ; αk|k, βk|k

)
×N

(
xk ; mk|k, Pk|k ⊗Xk

)
× IWd

(
Xk ; vk|k, Vk|k

)
(8b)

=GGIW
(
ξk ; ζk|k

)
, (8c)

where A ⊗ B is the Kronecker product between matrices A
and B, and ζk|k =

(
αk|k, βk|k,mk|k, Pk|k, vk|k, Vk|k

)
is the

set of GGIW density parameters. The Gaussian covariance is
(Pk|k ⊗ Xk) ∈ Snx+ , where Pk|k ∈ Ss+, and we thus have
nx = ds (refer to [12] for further details).

Decomposing the target kinematics and extension into a
Gaussian distributed random vector xk and an inverse Wishart
distributed random matrix Xk was proposed by Koch [12], see
also [15]. As in [16], the Poisson rate is modeled as gamma
distributed because the gamma distribution is the conjugate
prior for the Poisson rate, see e.g. [17].

The model (8) assumes the Poisson rate γk to be condi-
tionally independent of xk and Xk. In many applications the
number of measurements depends on the distance between the
sensor and the target, i.e. on the kinematical position, and
also depends on the size of the target, i.e. on the size of
the extension. This assumption neglects such dependencies,
however the probability density over the number of measure-
ments, conditioned on the target kinematics and extension,
is unknown in many applications, and we believe that this
assumption is valid in many cases. Furthermore, the assump-
tion also facilitates further analysis. Modeling the extension
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as a random matrix limits the extended targets to be shaped
as ellipses, however the ellipse shape is applicable to many
real scenarios in which the target and sensor geometry is such
that the target measurements resemble a cluster of detections,
rather than a geometric structure (or for that matter a single
detection). Finally, it is also assumed that multiple targets
evolve independently over time, and generate measurements
independently. This assumption is typical in multiple target
tracking, see e.g. [1].

The first problem considered in this paper is two target com-
bination, i.e. finding the GGIW distribution that corresponds
to a group of two independent GGIW distributed extended
target estimates. The second problem is target spawning, i.e.
finding two GGIW distributions that corresponds to either the
splitting of a GGIW distributed extended target estimate, or the
appearance of a new GGIW distributed extended target estimate
next to an existing estimate.

III. PRELIMINARY RESULTS ON PROBABILITY DENSITY
APPROXIMATIONS

In this section we present four probability density approxi-
mations, that are all needed in the derivation of the main result.
The true densities are approximated by analytical minimization
of the Kullback-Leibler divergence (KL-div) [18], defined for
two pdfs p(x) and q(x) as

KL (p(x)||q(x)) =

∫
p(x) log (p(x)/q(x)) dx. (9)

Note that, when it comes to approximating distributions in
a maximum likelihood sense, the KL-div is considered the
optimal difference measure [19]–[21].

A. Approximating the distribution of functions of gamma
distributed random variables

Let γ1 and γ2 be two gamma distributed random variables,

p(γ1) =GAM (γ1 ; α1, β1) , (10a)
p(γ2) =GAM (γ2 ; α2, β2) . (10b)

It is here of interest to approximate the distributions over
γ = γ1 + γ2 and γ̄1 = γ1

γ1+γ2
. There are some convenient

properties for these quantities which we summarize in (64)
and (65) in Appendix A. However, for these properties to hold,
the inverse scale parameters β1 and β2 must be equal. We
investigate below the general case where β1 and β2 need not
be equal.

1) Approximate distribution of γ:
Theorem 1: Let γ1 and γ2 be distributed as in (10), and

let p(γ) be the true distribution of γ = γ1 + γ2. Let
q(γ) = GAM (γ ; α, β) be the gamma distribution, among
all gamma distributions, that minimizes the KL-div between
p(γ) and q(γ),

q(γ) = arg min
q( · )∈GAM( · )

KL (p(γ)||q(γ)) . (11)

Then the shape parameter α is the solution to

log(α)− ψ0(α) + Ep [log(γ)]− log (Ep[γ]) = 0, (12)

where ψ0( · ) is the digamma function (a.k.a. the polygamma
function of order 0), and the inverse scale parameter β is given
by

β =
α

Ep[γ]
. (13)

�
Proof: Given in Appendix E.

Remark: The expressions for the shape parameter (12) and
the inverse scale parameter (13) correspond to equating the
expected values of log (γ) and γ, respectively, under both
distributions,

Ep [log (γ)] = Eq [log (γ)] , (14a)
Ep [γ] = Eq [γ] . (14b)

2) Approximate distribution of γ̄1:
Theorem 2: Let γ1 and γ2 be distributed as in (10), and

let p(γ̄1) be the true distribution of γ̄1 = γ1
γ1+γ2

. Let
q(γ̄1) = BE (γ̄1 ; a, b) be the beta distribution, among all beta
distributions, that minimizes the KL-div between p(γ̄1) and
q(γ̄1),

q(γ̄1) = arg min
q( · )∈BE( · )

KL (p(γ̄1)||q(γ̄1)) . (15)

Then the shape parameters a and b are the solution to the
system of equations{

ψ0(a+ b)− ψ0(a) + Ep [log (γ̄1)] = 0
ψ0(a+ b)− ψ0(b) + Ep [log (γ̄2)] = 0

(16)

where γ̄2 = γ2
γ1+γ2

= 1− γ̄1. �
Proof: Given in Appendix F.

Remark: The system of equations (16) correspond to equating
the expected values of log(γ̄1) and log(1 − γ̄1) = log(γ̄2)
under both distributions,

Ep[log(γ̄1)] = Eq[log(γ̄1)], (17a)
Ep[log(γ̄2)] = Eq[log(γ̄2)]. (17b)

B. Approximating matrix variate densities

We present below results on how to approximate matrix
variate densities with Wishart and inverse-Wishart densities.

1) Approximation with a W-distribution:
Theorem 3: Let p(X) be a probability density function

defined over X ∈ Sd++. Suppose that q(X) ,Wd (X ; v, V ) is
the minimizer of KL(p||q) among all Wishart densities. Then
V is given as

V =
1

v
Ep [X] (18)

and v is the solution to
d∑
i=1

ψ0((v − i+ 1)/2) + d log(v/2)

− Ep [log |X|] + log |Ep [X] | = 0. (19)

�
Proof: Given in Appendix G.
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Remark: The expressions for the scale matrix V (18) and
degrees of freedom v (19) correspond to equating the expected
values of X and log |X| under both distributions,

Ep[X] = Eq[X], (20a)
Ep[log |X|] = Eq[log |X|]. (20b)

2) Approximation with an IW-distribution:
Theorem 4: Let p(X) be a probability density function

defined over X ∈ Sd++. Suppose that q(X) , IWd (X ; v, V )
is the minimizer of KL(p||q) among all inverse Wishart
distributions. Then V is given as

V = (v − d− 1)
[
Ep(X

−1)
]−1

(21)

and v is the solution to
d∑
i=1

ψ0((v − d− i)/2)− d log((v − d− 1)/2)

+ Ep(log |X|) + log |Ep(X−1)| = 0. (22)

�
Proof: Given in Appendix H.

Remark: The expressions for the inverse scale matrix V (21)
and degrees of freedom v (22) correspond to equating the
expected values of X−1 and log |X| under both distributions,

Ep[X
−1] = Eq[X

−1], (23a)
Ep[log |X|] = Eq[log |X|]. (23b)

C. Numerical root-finding

The equations (12), (16), (19), and (22) each have one
unique solution, and can be solved using numerical root-
finding, see e.g. [22, Section 5.1]. Examples include Newton-
Raphson or modified Newton algorithms, see e.g. [22, Section
5.4], for more alternatives see e.g. [22, Chapter 5].

IV. TARGET COMBINATION

In this section we address the problem of combination of
two extended targets, and describe a methodology that should
be applied by a random matrix based Bayesian extended
target tracking filter in the case of target combination. In
Section IV-A we give a model for extended target combination,
and in Section IV-B we show how the combined distribution
can be computed, given the combination model and two
extended target estimates. In Section IV-C we give a criterion
that can be used to determine whether or not two extended
target estimates should be combined.

A. Combination model

The combination of two extended targets ξ
(1)
k =(

γ
(1)
k ,x

(1)
k , X

(1)
k

)
and ξ

(2)
k =

(
γ

(2)
k ,x

(2)
k , X

(2)
k

)
, yielding

independent sets of measurements Z1 and Z2, can be seen as
the problem of finding the extended target ξk = (γk,xk, Xk)
that would yield a set of measurements Z = Z1 ∪Z2, i.e. the
union of both measurement sets.

Let Z1 =
{
z

(j)
1

}n1

j=1
and Z2 =

{
z

(j)
2

}n2

j=1
be two sets of

measurements, where z
(j)
i ∈ Rd for all i, j. The corresponding

sample means and sample covariances are given as

z̄i =
1

ni

ni∑
j=1

z
(j)
i , (24a)

Zi =
1

ni

ni∑
j=1

(
z

(j)
i − z̄i

)(
z

(j)
i − z̄i

)T

, (24b)

for i = 1, 2, respectively. Straightforward calculations will
give the following sample mean and sample covariance for Z,

z̄ =
n1

n1 + n2
z̄1 +

n2

n1 + n2
z̄2, (25a)

Z =
n1

n1 + n2
Z1 +

n2

n1 + n2
Z2

+
n1n2

(n1 + n2)
2 (z̄1 − z̄2) (z̄1 − z̄2)

T
. (25b)

Considering that, under the measurement model (7), z̄i and
Zi are the maximum likelihood estimates of Hx(i) and X(i),
an intuitive two target combination model for the kinematical
and extension states can be based on (25) as follows,

xk =
γ

(1)
k

γ
(1)
k + γ

(2)
k

x
(1)
k +

γ
(2)
k

γ
(1)
k + γ

(2)
k

x
(2)
k , (26a)

Xk =
γ

(1)
k

γ
(1)
k + γ

(2)
k

X
(1)
k +

γ
(2)
k

γ
(1)
k + γ

(2)
k

X
(2)
k (26b)

+
γ

(1)
k γ

(2)
k(

γ
(1)
k + γ

(2)
k

)2H
(
x

(1)
k − x

(2)
k

)(
x

(1)
k − x

(2)
k

)T

HT.

For the Poisson rate, the sum of two Poisson distributed
variables with rates γ(1)

k and γ
(2)
k is Poisson distributed with

rate γ
(1)
k + γ

(2)
k . Thus, for the Poisson rate we have the

following model,

γk = γ
(1)
k + γ

(2)
k . (26c)

B. Combined distribution for two extended targets

Let the states ξ(1)
k and ξ

(2)
k of the two extended targets to

be combined be distributed as follows,

p
(
ξ

(1)
k

∣∣Zk ) = GGIW
(
ξ

(1)
k ; ζ

(1)
k|k

)
, (27a)

p
(
ξ

(2)
k

∣∣Zk ) = GGIW
(
ξ

(2)
k ; ζ

(2)
k|k

)
. (27b)

We wish to find the parameter ζk|k of the distribution

p
(
ξk
∣∣Zk ) = GGIW

(
γk ; ζk|k

)
, (28)

where ξk = (γk,xk, Xk) is the state of the combined extended
target and is given by the model (26). In what follows, we use
the quantities γ̄1

k and γ̄2
k given as

γ̄
(1)
k =

γ
(1)
k

γ
(1)
k + γ

(2)
k

, (29a)

γ̄
(2)
k =

γ
(2)
k

γ
(1)
k + γ

(2)
k

= 1− γ̄(1)
k , (29b)
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which are distributed with beta distributions obtained in The-
orem 2.

1) Poisson rate: A gamma distribution for γk = γ
(1)
k +γ

(2)
k

is obtained using Theorem 1.

2) Marginal distribution of kinematical state: Let m
(i)
k|k

and P̂
(i)
k|k be the mean vector and covariance matrix of

the Gaussian marginal distribution of x
(i)
k , i = 1, 2,

see Appendix C. Straightforward calculations show that
p
(
xk
∣∣Zk ) = N

(
xk ; mk|k, P̂k|k

)
, where mk|k and P̂k|k are

given as

mk|k = E
[
γ̄

(1)
k

]
m

(1)
k|k + E

[
γ̄

(2)
k

]
m

(2)
k|k, (30a)

P̂k|k = E

[(
γ̄

(1)
k

)2
]
P̂

(1)
k|k + E

[(
γ̄

(2)
k

)2
]
P̂

(2)
k|k . (30b)

The expected values are given in Appendix A.

3) Extension state: Rewrite (26b) as

Xk =γ̄
(1)
k X

(1)
k + γ̄

(2)
k X

(2)
k + γ̄

(1)
k γ̄

(2)
k X

(12)
k , (31)

where

X
(12)
k = H

(
x

(1)
k − x

(2)
k

)(
x

(1)
k − x

(1)
k

)T

HT, (32)

with expected value and covariance given in Appendix B for
the marginal distributions of x(i)

k .
Below we are going to find an approximate inverse Wishart

density for Xk as follows:

1) Approximate the true density of Xk with a Wishart
distribution. This requires the expected values of Xk

and log |Xk|. The latter expected value does not have
an analytical solution, and must be approximated.

2) Approximate the Wishart distribution with an inverse
Wishart distribution. This requires the expected values of
X−1
k and log |Xk|, which both have analytical solutions

under the Wishart distribution obtained in step 1.

The reason that we do not approximate the true density of
Xk with an inverse Wishart density directly is that this would
require us to approximate also the expected value of X−1

k .
With the two step approach outlined above, only one expected
value approximation is needed, which, we have empirically
found, gives better results.

Using Theorem 3, the distribution over Xk can be approx-
imated with a Wishart distribution

p
(
Xk

∣∣Zk ) ≈Wd

(
Xk ; wk|k,Wk|k

)
. (33)

Theorem 3 requires the expected value of log |Xk|, which does
not have an analytical solution. It is approximated using a
second order Taylor expansion around E [Xk]. The required

first and second order moments of Xk are

E [Xk] = E
[
γ̄

(1)
k

]
E
[
X

(1)
k

]
+ E

[
γ̄

(2)
k

]
E
[
X

(2)
k

]
+ E

[
γ̄

(1)
k γ̄

(2)
k

]
E
[
X

(12)
k

]
, (34)

E [Xk,ijXk,mn] = E
[
γ̄2

1

]
Cov

(
X

(1)
k

)
ijmn

+ E
[
γ̄2

2

]
Cov

(
X

(2)
k

)
ijmn

+ E
[
γ̄

(1)
k γ̄

(2)
k

]
Cov

(
X

(12)
k

)
ijmn

+ E [Xk,ij ] E [Xk,mn] , (35)

where Xk,ij denotes the i, jth element of Xk (ith row and jth
column), and Cov (Xk)ijmn denotes the covariance between
Xk,ij and Xk,mn. Using Theorem 4, the Wishart distribution
(33) is approximated with an inverse Wishart distribution,

p
(
Xk

∣∣Zk ) ≈ IWd

(
Xk ; vk|k, Vk|k

)
. (36)

The required expected values of X−1
k and log |Xk|, under the

Wishart distribution (33), are given in Appendix D.
4) Conditional distribution of kinematical state: The con-

ditional distribution for xk is

p
(
xk
∣∣Xk,Z

k
)

= N
(
xk ; mk|k, Pk|k ⊗Xk

)
, (37)

where mk|k is given in (30). Given P̂k|k in (30), and vk|k and
Vk|k in (36), Pk|k is obtained as the least squares solution to

P̂k|k =
Pk|k ⊗ Vk|k

vk|k + s− sd− 2
. (38)

Due to the symmetry of all three matrices, this least squares
problem has s(s+1)/2 unknown variables and nx(nx+1)/2 =
sd(sd+ 1)/2 equations, thus the problem is overdetermined.

C. Target combination criterion
Two extended targets should be combined into one larger

target if (and only if) they are located close to each other, and
have similar velocity vectors. We decompose this requirement
into two separate criteria, one for the spatial closeness, and
one for the velocity vectors.

1) Spatial closeness: Spatial closeness is defined as
whether or not the two targets’ extensions overlap. Let x̂(i)

k|k =

E
[
x

(i)
k

∣∣∣Zk] and X̂(i)
k|k = E

[
X

(i)
k

∣∣∣Zk]. A point p ∈ Rnx lies

within υ > 0 standard deviations of x̂
(i)
k|k if the following

holds,(
p−Hx̂

(i)
k|k

)T (
υ2X̂

(i)
k|k

)−1 (
p−Hx̂

(i)
k|k

)
< 1. (39)

Let Pi be the set of points p that satisfy (39).
Overlap of the target extensions X

(i)
k and X

(j)
k is here

simplified to whether or not the intersection Pij = Pi ∩ Pj
is non-empty. This corresponds to the non-existence of a
hyperplane that separates the two ellipsoids

(
x̂

(i)
k|k, υ

2X̂
(i)
k|k

)
and

(
x̂

(j)
k|k, υ

2X̂
(j)
k|k

)
, which can be posed as a second or-

der cone program (SOCP) feasibility problem, see e.g. [23,
Problem 4.25]. An SOCP feasibility problem is a type of
convex optimization problem, and it can be readily solved
using standard MATLAB interfaces such as YALMIP [24], [25]
or CVX [26], [27].
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2) Velocity vectors: Two extended targets have similar
velocity vectors if the following holds,(

m
(i)
k|k −m

(j)
k|k

)T

IT

v Λ
(ij)
k|k Iv

(
m

(i)
k|k −m

(j)
k|k

)
︸ ︷︷ ︸

cvij

< uv, (40)

where uv > 0 is a threshold, Λ
(ij)
k|k =

(
P̂

(i)
k|k

)−1

+
(
P̂

(j)
k|k

)−1

and Iv is an nx×nx matrix with identities on the velocity states
(all other elements are zero). This is a modified version of a
criterion that was used to group single measurement targets
[28].

3) Combination criterion: In order to not combine targets
that are close but moving in different directions, or combine
targets moving at similar velocity in different parts of the
surveillance space, two extended targets are combined if (and
only if) the following holds,

(Pi ∩Pj 6= ∅) &
(
cvij < uv

)︸ ︷︷ ︸
,comb

(
ξ̂
(i)

k|k,ξ̂
(j)

k|k

)
(41)

where & is the logical and operator.

V. TARGET SPAWNING

This section addresses the problem of extended target
spawning and describes a methodology that should be applied
by a random matrix based Bayesian extended target tracking
filter in the case of target spawning. Here we will only consider
two target spawning, and we will assume that the spawning
event occurs in between measurement generation, i.e. during
the prediction step of extended target tracking filtering.

Since there might be many different spawning pairs which,
when combined, would give the same original extended target,
we will adopt a multiple hypotheses framework where each
hypothesis represents an alternative spawning event.

A. Spawning model

Let the target distribution be

p
(
ξk−1|Zk−1

)
= GGIW

(
ξk−1 ; ζk−1|k−1

)
. (42)

By means of a prediction update, see [12], [15], [29], a
predicted target distribution

p
(
ξk|Zk−1

)
= GGIW

(
ξk ; ζk|k−1

)
, (43)

can be obtained. In case a spawning event takes place during
the prediction phase, we would instead have two targets

p
(
ξ

(1)
k

∣∣∣Zk−1
)

=GGIW
(
ξ

(1)
k ; ζ

(1)
k|k−1

)
, (44a)

p
(
ξ

(2)
k

∣∣∣Zk−1
)

=GGIW
(
ξ

(2)
k ; ζ

(2)
k|k−1

)
. (44b)

Assume that the Poisson rates relate to each other as follows,

γ
(1)
k =κγk, (45a)

γ
(2)
k =(1− κ)γk, (45b)

where 0 < κ < 1. Further, assume that the two spawned
targets’ extensions relate to each other as follows,

X
(1)
k =κX

(1/2)
k , (46a)

X
(2)
k =(1− κ)X

(1/2)
k , (46b)

i.e. the extensions have the same shape but different size. The
matrix X

(1/2)
k ∈ Sd++ is introduced to simplify the notation

below. Note that (45) and (46) can be interpreted as meaning
that a larger target (i.e. larger extension) will cause more
measurements (i.e. have a higher Poisson rate).

If the two spawned targets (44) were to immediately com-
bine into one target, the resulting combined target is assumed
to be equal to the prediction (43). Under this assumption,
inserting (45) and (46) into the target combination model (26)
gives

xk =κx
(1)
k + (1− κ)x

(2)
k , (47a)

Xk =(1 + 2κ(κ− 1))X
(1/2)
k + κ(1− κ)X

(12)
k , (47b)

γk =γ
(1)
k + γ

(2)
k , (47c)

where X(12)
k is defined as in (32). For a given κ, (47) is the

suggested spawning model.
The assumption that both spawned targets have the same

shape, cf. (46), is limiting, however it is necessary because
we have two unknown variables, X(1)

k and X
(2)
k , and only

one equation (26b). Furthermore, the assumption is not very
critical because it is made in the prediction step, and the
subsequent correction step(s) would correct the shapes.

B. Spawning hypotheses
Given a prior target distribution (42), the prediction method

from [12], [16] is used to obtain the predicted target distribu-
tion (43). Note that, for a given predicted target distribution
(43), there exists an infinite number of spawning pairs (44)
whose combination is identical to the predicted single target.

We generate multiple spawning hypotheses as follows. For
each κ value, and each dimension ` of the extension, one
spawned estimate pair is generated, with parameters ζ(1,`,κ)

k|k−1

and ζ(2,`,κ)
k|k−1 .

1) Poisson rates: It follows from the definition of
GAM( · ) that γ(1)

k and γ
(2)
k are gamma distributed with

parameters

α
(i,`,κ)
k|k−1 =αk|k−1 for i = 1, 2, (48a)

β
(1,`,κ)
k|k−1 =

βk|k−1

κ
, (48b)

β
(2,`,κ)
k|k−1 =

βk|k−1

1− κ
. (48c)

2) Kinematical states: Let X̂k|k−1 = E
[
Xk

∣∣Zk−1
]

under
the pdf (43), and let e` and v` be the `:th eigenvalue and
eigenvector of X̂k|k−1. We set the parameters of the spawned
kinematical states to

m
(1,`,κ)
k|k−1 =mk|k−1 + (1− κ)

√
e`H

Tv`, (49a)

m
(2,`,κ)
k|k−1 =mk|k−1 − κ

√
e`H

Tv`, (49b)

P
(i,`,κ)
k|k−1 =Pk|k−1 for i = 1, 2. (49c)
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Note that other ways are possible, however, empirically we
have found that (49) gives good results.

3) Extension states: Rewriting (47b), we have

X
(1/2)
k =

1

1 + 2κ(κ− 1)︸ ︷︷ ︸
,κ1

Xk −
κ(1− κ)

1 + 2κ(κ− 1)︸ ︷︷ ︸
,κ2

X
(12)
k . (50)

Similarly to Section IV-B3, we first approximate the true
distribution over X

(1/2)
k with a Wishart distribution, and

subsequently approximate the Wishart distribution with an
inverse Wishart distribution.

Using Theorem 3 the distribution over X(1/2)
k is approxi-

mated with a Wishart distribution

p
(
X

(1/2)
k

∣∣Zk−1
)
≈ Wd

(
X

(1/2)
k ; w

(`,κ)
k|k−1,W

(`,κ)
k|k−1

)
. (51)

This requires the expected value of log
∣∣∣X(1/2)

k

∣∣∣, for which
there is no analytical solution. As in Section IV-B3, the
expected value is approximated using a second order Taylor
expansion around E

[
X

(1/2)
k

]
. The necessary first and second

order moments of X(1/2)
k are

E
[
X

1/2
k

]
=κ1 E [Xk]− κ2 E

[
X

(12)
k

]
, (52a)

E
[
X

(1/2)
k,ij X

(1/2)
k,mn

]
=κ2

1 Cov (Xk)ijmn + κ2
2 Cov

(
X

(12)
k

)
ijmn

+ E
[
X

(1/2)
k,ij

]
E
[
X

(1/2)
k,mn

]
. (52b)

The distribution (51) is subsequently approximated with an
inverse Wishart distribution using Theorem 4,

p
(
X

(1/2)
k

∣∣Zk−1
)
≈ IWd

(
X

(1/2)
k ; v

(`,κ)
k|k−1, V

(`,κ)
k|k−1

)
. (53)

Finally, by [14, Theorems 3.3.11 and 3.4.1] we have

p
(
X

(1)
k

∣∣Zk−1
)
≈IWd

(
X

(1)
k ; v

(`,κ)
k|k−1, κV

(`,κ)
k|k−1

)
, (54a)

p
(
X

(2)
k

∣∣Zk−1
)
≈IWd

(
X

(2)
k ; v

(`,κ)
k|k−1, (1− κ)V

(`,κ)
k|k−1

)
.

(54b)

4) Summary: To summarize, for each dimension ` of the
extension and each κ value, a spawned estimate pair is
generated with the following parameters

ζ
(1,`,κ)
k|k−1 =

(
αk|k−1,

βk|k−1
κ , m

(1,`,κ)

k|k−1
, P

(1,`,κ)

k|k−1
, v

(`,κ)

k|k−1
, κV

(`,κ)

k|k−1

)
,

(55a)

ζ
(2,`,κ)
k|k−1 =

(
αk|k−1,

βk|k−1
1−κ , m

(2,`,κ)

k|k−1
, P

(2,`,κ)

k|k−1
, v

(`,κ)

k|k−1
, (1−κ)V

(`,κ)

k|k−1

)
.

(55b)

If a set K of K different κ values are used, in total dK
spawned estimate pairs are generated, or 2dK GGIW compo-
nents.

VI. ON THE USE OF OTHER SPATIAL DISTRIBUTIONS

By using positive definite matrices to represent the target
extensions our work implicitly assumes that the target extent
is an ellipsoid. Moreover, the spatial distribution of the mea-
surements in our work is a Gaussian density. One potential
extension of the presented work is thus to relax the Gaussian
and/or the ellipsoidal assumption. This would allow different

types of spatial distributions for the target measurements, see
e.g. [30].

The methodology presented here gives hints on what type
of approach can be used in a general setting, e.g. when
parametric densities from the exponential family are used.
The proposed combination model is based on representing
the set of measurements, generated by the individual target’s
spatial densities, with a single spatial density of the same
functional form as those of the individual targets. With a
different parametric spatial density, one would need to write
the formulae for the combined density parameters in terms of
the formulae that connect the parameters of the spatial density
of each target to the corresponding measurements. This is what
is performed in (24) and (25).

The multiple hypothesis methodology for spawning could
also be useful if other spatial distributions are used. In this
work a single ellipsoid is simply divided into alternative
possible ellipsoids, if other distributions from the exponential
family are used, similar division methods must be devised. If
the spatial distribution is multi-modal, the different modes of
the spatial density might provide intuitive alternative divisions.
Note that, in the spawning case and without using the subse-
quent measurements, one can never arrive at a unique solution
for how a single target can be divided into multiple targets.
Therefore, an uncertainty margin must always be left for the
forthcoming measurements to resolve.

VII. MULTIPLE TARGET TRACKING FRAMEWORK

To demonstrate the merits of the presented methodologies
for target combination and target spawning, the methodologies
must be integrated into a multiple extended target tracking
framework. In this section we will briefly describe the frame-
work that we have worked in, we show how combination and
spawning fits into the framework, and we also discuss target
extraction and performance metrics.

A. The GGIW-PHD filter

We have used a modified version of the Gaussian inverse
Wishart (GIW) implementation [29], [31] of the extended
target probability hypothesis density (PHD) filter proposed by
Mahler [32]. In the GIW-PHD filter the extended target state
is composed only of the kinematical and extension states (i.e.
there are no Poisson rates), and the PHD of the target set is
approximated as a mixture of GIW densities as follows [29]

Dk|k (ξk) ≈
Jk|k∑
j=1

w
(j)
k|kN

(
xk ; m

(j)
k|k, P

(j)
k|k ⊗Xk

)
× IWd

(
Xk ; ν

(j)
k|k, V

(j)
k|k

)
, (56)

where Jk|k is the number of mixture components, and the
scalars w(j)

k|k > 0 are the components weights.
In the modified version of the GIW-PHD filter that we use

in the current work, called the GGIW-PHD filter, the extended
target state also includes the Poisson rates. The PHD of the
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TABLE I
GGIW-PHD FILTER TARGET COMBINATION

1: require: Combination criterion parameters υ and uv, and PHD intensity

Dk|k (ξk) =

Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ

(j)
k|k

)
.

2: initialize: I =
{
i
∣∣∣w(i)
k|k ≥ 0.5

}
,

3: D̃k|k (ξk) =
∑
j /∈I w

(j)
k|kGGIW

(
ξk ; ζ

(j)
k|k

)
,

4: ` = |Ic|.
5: repeat
6: ` = `+ 1
7: j = arg max

i∈I
w

(i)
k|k

8: Ij =
{
i ∈ I\j

∣∣∣comb
(
ξ̂
(i)
k|k, ξ̂

(j)
k|k

)
= 1

}
9: if Ij 6= ∅ then

10: n = arg max
i∈Ij

w
(i)
k|k

11: Combine components j and n as presented in Section IV-B, let
ζ̃
(`)
k|k denote the corresponding GGIW distribution parameters.

12: w̃
(`)
k|k = E

[
γ̄
(j)
k

]
w

(j)
k|k + E

[
γ̄
(n)
k

]
w

(j)
k|k

13: I = I\ {j, n}
14: else
15: ζ̃

(`)
k|k = ζ

(j)
k|k

16: w̃
(`)
k|k = w

(j)
k|k

17: I = I\j
18: end if
19: until I = ∅
20: output: Combined PHD intensity, where J̃k|k ≤ Jk|k ,

D̃k|k (ξk) =

J̃k|k∑
j=1

w̃
(j)
k|kGGIW

(
ξk ; ζ̃

(j)
k|k

)
.

target set is approximated as a mixture of GGIW densities as
follows

Dk|k (ξk) ≈
Jk|k∑
j=1

w
(j)
k|kGAM

(
γk ; αk|k, βk|k

)
×N

(
xk ; m

(j)
k|k, P

(j)
k|k ⊗Xk

)
× IWd

(
Xk ; ν

(j)
k|k, V

(j)
k|k

)
(57a)

=

Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ

(j)
k|k

)
(57b)

In both PHD filter implementations, the parameters of the PHDs
are predicted and updated recursively with the measurements.
For details on the implementations, please refer to [16], [29],
[31].

B. Combination in the GGIW-PHD filter

Target combination in the GGIW-PHD filter is performed
after the correction step (measurement update). An algorithm
for target combination is given in Table I. In the algorithm,
all GGIW components with a weight less than 0.5 are left
unaltered. The components with weight larger than 0.5 are
checked for combination in a pairwise manner, starting with
the highest weights. Note that any component is combined
with at most one other component.

TABLE II
GGIW-PHD FILTER PREDICTION WITH SPAWNING

1: require: Spawning weight wsp, set K of κ values, and PHD intensity

Dk|k (ξk) =

Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ

(j)
k|k

)
.

2: initialize: Jaux = Jk|k
3: for j = 1, . . . , Jk|k do
4: Predict j:th component as outlined in [29], [31].
5: if w(j)

k|k > 0.5 then
6: for κ ∈ K do
7: for ` = 1, . . . , d do
8: Compute ζ(1,`,κ)

k|k−1
and ζ(2,`,κ)

k|k−1
as presented in Section V-B.

9: For i = 1, 2, set

w
(Jaux+i)
k+1|k = wspw

(j)
k|k,

ζ
(Jaux+i)
k+1|k = ζ

(i,`,κ)
k+1|k .

10: Jaux = Jaux + 2
11: end for
12: end for
13: end if
14: end for
15: output: Predicted PHD intensity with spawned estimate pairs, where

Jk+1|k ≥ Jk|k ,

Dk+1|k (ξk+1) =

Jk+1|k∑
j=1

w
(j)
k+1|kGGIW

(
ξk+1 ; ζ

(j)
k+1|k

)
,

C. Spawning in the GGIW-PHD filter

Generation of spawning estimate pairs in the GGIW-PHD
filter is performed in the prediction step (time update). An
algorithm for target prediction with spawning is given in
Table II. The spawning weight parameter wsp > 0 can be
understood as follows. If the PHD has N̂x,k GGIW components,
all with weight ≈ 1, the total sum of weights for the spawning
components is approximately

N̂x,k × 2dK × wsp = Nsp. (58)

The quantity Nsp approximates the mean number of spawned
targets. Thus, the more likely spawning events are thought to
be, the larger the spawning weight parameter should be set.

In the algorithm, for each component with weight greater
than 0.5, K additional component pairs (which have negligible
weights compared to the corresponding component, because
typically wsp � 1) are added to the predicted PHD. These
added components correspond to a heuristic modification of
the extended target PHD filter to include spawning hypotheses.
The procedure of adding component pairs is analogous to the
Gaussian Mixture PHD-filter for point targets [33], in which a
single spawned Gaussian component is added for each existing
component.

D. Performance Evaluation

Let the true target set at time tk be Xk =
{
ξ

(i)
k

}Nx,k
i=1

, where

the true target cardinality Nx,k, and each true target state ξ(i)
k ,

are unknown. Estimates of the target states ξ̂(j)
k|k are obtained

by extracting the GGIW components whose weights are larger
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than or equal to a threshold, e.g. 0.5, see [33]. Let the set of
extracted targets be denoted

X̂k|k =
{
ξ̂

(i)
k|k

}N̂x,k
i=1

, ξ̂
(i)
k|k =

(
γ̂

(i)
k|k, x̂

(i)
k|k, X̂

(i)
k|k

)
, (59a)

γ̂
(i)
k|k = E [γk] , x̂

(i)
k|k = E [xk] , X̂

(i)
k|k = E [Xk] , (59b)

where the expected values are taken with respect to the i:th
GGIW distribution.

An assignment π̄ between the true target states ξ(j)
k and

the extracted states ξ̂(i)
k|k is computed using the optimal sub-

pattern assignment (OSPA) metric [34]. The tracking results
are evaluated in terms of the following quantities,

d(γ) =
∑
j

∣∣∣γ(j)
k − γ̂

(π̄(j))
k|k

∣∣∣ , (60a)

d(x) =
∑
j

∥∥∥x(j)
k − x̂

(π̄(j))
k|k

∥∥∥
2
, (60b)

d(X) =
∑
j

∥∥∥X(j)
k − X̂

(π̄(j))
k|k

∥∥∥
F
, (60c)

where | · | is the absolute value, ‖ · ‖2 is the Euclidean
norm, and ‖ · ‖F is the Frobenius norm. An estimate of
the target cardinality is given by the sum of weights [3],
N̂k|k =

∑Jk|k
j=1 w

(j)
k|k.

VIII. SIMULATION STUDY

This section presents a simulation study conducted for test-
ing the proposed target combination and spawning functions.

A. Multiple target tracking setup

Four scenarios were simulated. The kinematical state con-
tains 2D position, velocity and acceleration, the extension is
two dimensional (i.e. d = 2, nx = 6 and thus s = 3).
In each scenario, the i:th target’s true extension is X(i)

k =

R
(i)
k diag

([
ā2
i a

2
i

]) (
R

(i)
k

)T

, where āi and ai are the major

and minor axes, and R
(i)
k is a rotation matrix applied such

that either āi or ai is aligned with the direction of motion. The
motion model used in the filter is described in detail in [12],
as in [29] the motion model parameters were set to ts = 1s,
θ = 1s, Σ = 0.1m/s2 and τ = 5s.

The true target motions were not generated using a specific
motion model. This choice may seem simplistic, however
the main focus of this paper is not on motion modeling,
but on spawning and combination. The generated true tracks
are sufficiently realistic to test the presented spawning and
combination functions.

In each scenario a Poisson distributed number of clutter
measurements were distributed uniformly in the surveillance
space, with Poisson rate 10 per scan.

B. True target tracks

1) Target combination: In the first scenario two targets
maneuver such that they move in parallel and give rise
to unresolved sets of measurements, see the true tracks in
Figure 1a. The scenario is meant to simulate a real world

scenario such as a radar tracking two airplanes that begin to fly
in a close formation. It has 24 time steps, starting at time step
12 the targets move in parallel at equal speeds, with their 2σ
ellipses touching3. True target measurements were generated
with γ(i)

k = 20, āi = 10 and ai = 5 for i = 1, 2.
2) Target split: In the second scenario an extended target

splits in half into two smaller extended targets, see the true
tracks in Figure 1b. The scenario is meant to simulate a real
world scenario such as a radar tracking two airplanes flying
in close formation before separating. It has 15 time steps,
the spawning occurs between time steps 5 and 6. True target
measurements were generated with γk = 40, ā = 10 and
a = 10 before spawning, and γ(i)

k = 20, āi = 10 and ai = 5,
for i = 1, 2, after spawning.

3) New target appearance: In the third scenario a new
smaller target appears next to an existing target, see the true
tracks in Figure 1c. The scenario has 15 time steps, the
spawning occurs between time steps 5 and 6. This scenario is
meant to simulate a real world scenario such as a radar tracking
an airplane that launches a weapon. True target measurements
were generated with γ

(1)
k = 40, ā1 = 20 and a1 = 5 for the

larger target, and γ
(2)
k = 10, ā2 = 6.67 and a2 = 1 for the

smaller spawned target.
4) Target occlusion: In the fourth scenario two targets of

different size move in opposite direction towards each other,
and as the targets pass each other the smaller target is occluded
by the larger target, i.e. it is not seen by the sensor and thus
does not produce any measurements. The scenario has 101
time steps, and the true kinematic positions were generated
such that x(1)

51 = x
(2)
51 , i.e. the targets are at the same position

at the 51:st time step. The respective initial positions vary with
the simulated constant speed ς(i) of the targets. In Figure 1d
the true tracks are shown for ς(i) = 1. Only every 25:th time
step is shown for increased clarity.

The spawning event occurs when the smaller target becomes
visible to the sensor again. Because this happens gradually, it
is not possible to give a definitive time for when the spawning
happens. The scenario is meant to simulate a real world
scenario such as a camera that is used to track two persons
moving across the field of view, in opposite directions, and at
different distances from the sensor. For the detections in the
image plane, this would appear as two different sized targets
that move “through” each other.

True target measurements were generated with γ
(1)
k = 30,

ā1 = 10 and a1 = 5 for the larger target, and γ
(2)
k = 15,

ā2 = 8 and a2 = 3 for the smaller target. At each time step
measurements were simulated for both targets, however for the
second target the measurements that fell inside the 3σ ellipse
of the first target were removed to simulate the occlusion.

C. Combination results

For the spatial closeness criterion we set υ = 2, and for
the velocity vectors we set uv = 50. The results are shown
in Figure 2. When the targets are sufficiently close, moving
in the same direction, they are combined into just one target.

3This corresponds to υ = 2 in (39).
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Fig. 1. True tracks for the simulation scenarios. Colors are used to show time steps, dark blue and dark red are the first and last time steps. (a) (b), (c)
and (d) show the true target positions for target combination, target split, new target appearance, and target occlusion, respectively. For the target occlusion
scenario, only every 25:th time step is shown for increased clarity.
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Fig. 2. Combination of two targets. (a) Example result from a single simulation run. The true targets are shown as the light gray filled ellipses, the target
estimates are shown as black ellipses. When the targets are sufficiently close, and have similar velocity vectors, they are combined into one target. (b) Sum
of weights (i.e. estimated cardinality), averaged over 103 runs, shown in blue. Mean ± one standard deviation is shown in light blue. (c) Histogram showing
for which time step the two targets were combined. The two targets move in parallel starting at time step 12 (red line), in 60% of the 103 simulations the
targets estimates were combined after measurement updating in time step 13.
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Fig. 3. Spawning results for the true tracks in Figure 1b. (a) Example result from a single simulation run. The true targets are shown as the light gray
filled ellipses, the target estimates are shown as black ellipses. (b) Estimated cardinality (true cardinality is two). (c) Measurement rate estimation error. (d)
Kinematic state estimation error. (c) Extension state estimation error. The results in (b) to (e) are averaged over 103 Monte Carlo runs, and are shown for
different separation distances. While the GGIW-PHD with spawning can detect the spawning events, adding spawned estimate pairs allows the filter to detect
the spawning at a closer distance.

For υ = 2, the true targets fulfill the combination criterion
between time steps k = 12 and k = 24. Over 103 Monte Carlo
simulations, for 60% of the cases the two target estimates are
combined at time step k = 13, i.e. with a delay of one time
step. The delay is typically caused by the fact that the velocity
vector estimates must converge to similar values first.

D. Spawning results

Three GGIW-PHD filters were run in parallel: one filter with
spawning hypotheses computed using the model presented
in Section V (denoted F1), one filter without a spawning
model (denoted F2), and one filter with a single spawning
hypothesis as in [13] (denoted F3). Neither filter used the



GRANSTRÖM AND ORGUNER: ON SPAWNING AND COMBINATION OF EXTENDED/GROUP TARGETS MODELED WITH RANDOM MATRICES 11

150 200 250 300 350 400 450

−60

−40

−20

0

20

40

60

x1

x
2

(a) (b)

(c) (d) (e)

Fig. 4. Spawning results for the true tracks in Figure 1c. (a) Example result from a single simulation run. The true targets are shown as the light gray
filled ellipses, the target estimates are shown as black ellipses. (b) Estimated cardinality (true cardinality is two). (c) Measurement rate estimation error. (d)
Kinematic state estimation error. (c) Extension state estimation error. The results in (b) to (e) are averaged over 103 Monte Carlo runs, and are shown for
different separation distances. While the GGIW-PHD with spawning can detect the spawning events, adding spawned estimate pairs allows the filter to detect
the spawning at a closer distance.

target combination outlined in Section IV. In F1 and F3 the
spawning weight was wsp = 0.05. In F1 spawning hypotheses
were generated for

κ ∈ K =

{
1

4
,

1

2
,

3

4

}
. (61)

The parameters of F3 were set such that the expected value
was constant for the extended target state, and the variance
was increased. The variance of the measurement rate was
increased by 50%, a matrix diag ([1, 0, 0]) was added to the
kinematical state covariance, and the degrees of freedom of the
extension state was decreased by 25. These parameters were
chosen such that the best possible performance was obtained.

1) Target split and new target appearance: The second
and third scenarios were simulated 103 times each, Figures 3
and 4 show the results. The mean sum of weights, and the
performance metrics (60), are shown for different distances
between the kinematical positions. When the extended targets
are still very close, no filter is able to detect the spawning
event. However, when the targets start to separate, F1 detects
the event at a shorter distance, or equivalently at an earlier
time step, than F3. The worst performance is obtained with
F2, i.e. the filter without any spawning model.

There is also a significant difference between the three
filters with respect to the performance metrics (60), with
F1 clearly having the best performance. After the spawning
event is detected by F1 and F3, the measurement rate and
kinematical state starts to converge towards the correct value.
The extension state has a small positive error, however this
is expected. As the two targets turn away from each other,
their corresponding extensions rotate, and the simple extension
prediction used, see [12], does not account for rotations. As
noted in previous work [29], during maneuvers the extension

estimation error is always larger than during straight line
motion.

2) Target occlusion: The fourth scenario was simulated
with different target speeds,

ς(i) = [0.5, 0.51, . . . , 1.0] , i = 1, 2. (62)

For each speed, the scenario was simulated 102 times. The
mean estimated cardinalities of all three filters are shown for
different target speeds and target distances in Figures 5a, 5b,
and 5c, respectively. Figure 5d illustrates the contour plots for
Figures 5a, 5b, and 5c, superposed onto each other.

As the two targets approach each other, all three filters can
track both targets until the point where the targets’ respective
1σ ellipses are touching. After this point, all three filters
estimate cardinality to one target, which is expected. As the
targets move away from each other, F1 correctly estimates
the cardinality as two around a point which corresponds to
when the 4σ ellipses of the targets are touching, regardless
of the target speed ς

(i)
k . The filter F2 corrects the cardinality

estimate at a much later point, especially at lower speeds, and
the performance of F3 is inbetween F1 and F2.

This strange dependence of the spawning performance on
the target speeds observed in F2, and to a lesser degree
also in F3, deserves an explanation. When the second target
is occluded, all three filters estimate a single target. Hence
when the targets start to separate after the occlusion event,
F2 predicts and expects a single target in the next sampling
instant. On the other hand, F1 and F3 also expect a single
target with large probability, however with small probability,
F1 and F3 also expect two targets thanks to the spawning
hypotheses their PHDs contains. As the targets separate further,
one of the spawning hypotheses gains weight and eventually
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Fig. 5. Spawning results for the true tracks in Figure 1d. (a), (b) and (c) show the mean estimated cardinality for F1, F2 and F3, respectively. Dashed lines
corresponds to cardinality 1.1, solid lines correspond to cardinality 1.9. (d) Contour plot of the estimated cardinality for F1 (blue), F2 (green), and F3 (red),
respectively. Distance is computed as x

(1)
k − x

(2)
k , i.e. the difference in x-position, explaining why there are negative distances.

dominates the single target hypothesis easily when the targets
are sufficiently separated. This happens earlier for F1 than F3.

The filter F2 always expects a single target. For obtaining
the correct cardinality, it has to initiate/give birth to a new
extended target. When the targets move/separate fast, the size
of the single extended target predicted by the filter cannot
catch up with the swiftly enlarged size of the measurement
cluster (due to the target separation). Since the predicted target
size remains small while the size of the measurement cluster
becomes large, a new target is initialized/born easily under this
estimate-measurement mismatch. Hence F2 can compensate
the lack of spawning hypotheses by initiating a new extended
target when the targets separate fast.

However, when the speeds of the targets are small (i.e.
when the targets separate slowly), the predicted target size
can easily match the overall measurement cluster size, and the
incentive to initiate a new target is greatly reduced. Only when
the targets are very far can F2 realize that a single elliptical
target extent is too poor an explanation for the separated
measurement clusters, and initiate a new target.

Hence when the targets separate slowly, new target initiation
in F2 is delayed too much, and the lack of the spawning
hypotheses becomes really critical.

3) Summary: To summarize, it is possible for the GGIW-
PHD filter to detect spawned targets when spawning hypotheses
are not used, however it becomes increasingly difficult as
the separation speed decreases. The GGIW-PHD filter with
spawning hypotheses detects the spawned targets at the same
distance, independent of the separation speed.

Further, used in the GGIW-PHD filter and run on the sce-
narios in this paper, the presented spawning method clearly
outperforms the spawning method presented in [13].

E. Cycle times
Adding spawning hypotheses increases the number of GGIW

components in the filter, and as a consequence the computa-
tional complexity increases. Conversely, using the combination
functionality decreases the complexity. Mean cycle times for
the scenarios in Figures 1a and 1b are given in Tables III and
IV, respectively. As expected, the mean cycle time increases
when spawning hypotheses are used, and it decreases when
target combination is used. Note that one should not compare
the cycle times for the filter without spawning and the filter
without combination, because, while the filters are identically
implemented, they are run on different scenarios.

TABLE III
CYCLE TIMES [s] FOR THE SCENARIO IN FIGURE 1A

Filter Mean Median St.dev.
w comb 0.11 0.06 0.17
w/o comb 0.25 0.12 0.34

TABLE IV
CYCLE TIMES [s] FOR THE SCENARIO IN FIGURE 1B

Filter Mean Median St.dev.
F1 0.82 0.66 0.73
F2 0.11 0.09 0.07
F3 0.14 0.12 0.09

IX. CONCLUDING REMARKS

This paper presented models for combination and spawning
of extended targets modeled with random matrices. These
models were then used in order to propose functions for
multiple extended target tracking filters similar to those used in
multiple point target tracking filters. Results show that with an
appropriate combination criterion, two extended targets can be
combined into one larger target when they are spatially close,
and moving in the same direction, while at the same time
taking care of their extensions. For spawning, the results show
that by including spawning hypotheses the spawning events
can be detected earlier than the case when the spawning hy-
potheses are not used. The results also show that the presented
extended target spawning method outperforms earlier work on
the topic.

The simulation study clearly shows that adding spawning
hypotheses enables earlier detection of spawned targets, how-
ever this comes at the price of increased complexity. In the
present implementation, spawning hypotheses are added in
each time step for GGIW components with weights w > 0.5.
As an alternative, the measurement sets could be used to
determine when it is appropriate to add spawning hypotheses.

The analysis in the paper is limited to the two target
case. The results can be directly applicable to combination
and spawning events with more than two targets, if the
combination/spawning involves two (groups of) targets at a
time. The analysis of target combination can be generalized
to more than two targets combining at the same time with a
considerable amount of work. The more challenging scenarios
where more than two (groups of) targets are spawned from an
extended target is left as an interesting topic of future work.
The combination and spawning functions could also be tested
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on experimental data, e.g. from a laser range sensor, a radar
sensor, or a camera.

APPENDIX A
PROPERTIES OF GAMMA DISTRIBUTED RANDOM

VARIABLES

Let γ1 and γ2 be independent and Gamma distributed with
equal inverse scale parameters,

p(γ1) =GAM (γ1 ; α1, β) , p(γ2) =GAM (γ2 ; α2, β) .
(63)

Then γ = γ1 + γ2 is Gamma distributed [35]

p(γ) =GAM (γ ; α1 + α2, β) (64)

and γ̄1 = γ1
γ1+γ2

is Beta distributed [35]

p(γ̄1) =BE (γ̄1 ; α1 , α2) . (65)

Let γ̄2 = γ2
γ1+γ2

= 1 − γ̄1. It follows immediately from the
definition of the beta distribution that γ̄2 is beta distributed,

p(γ̄2) = BE (γ̄2 ; α2, α1) . (66)

The first and second order moments of γ̄1 are

E[γ̄1] =
α1

α1 + α2
, E[γ̄2

1 ] =
α1(α1 + 1)

(α1 + α2)(α1 + α2 + 1)
, (67)

and consequently the expected value of γ̄1γ̄2 = γ̄1(1− γ̄1) is
straightforward to compute.

APPENDIX B
MATRIX PRODUCT OF SUM OF GAUSSIANS

Let x1 ∈ Rnx and x2 ∈ Rnx be two independent Gaussian
distributed random vectors with mean vectors m1 ∈ Rnx
and m2 ∈ Rnx and covariance matrices P1 ∈ Snx+ and
P2 ∈ Snx+ , and let H be a d × nx matrix. Then the quantity
x12 = H (x1 − x2) ∈ Rd is Gaussian distributed,

p (x12) =N (x12 ; m12, P12) , (68a)
m12 =H (m1 −m2) , (68b)
P12 =H (P1 + P2)HT. (68c)

Let M12 = m12m
T
12. The expected value and covariance of

the d× d matrix X12 = x12x
T
12 are given by [14]

E [X12]ij =P12,ij +M12,ij , (69a)

Cov (X12)ijkl =P12,ikP12,jl + P12,ilP12,jk

+ P12,jlM12,ik + P12,ilM12,jk

+ P12,jkM12,il + P12,ikM12,jl, (69b)

where E [X12]ij is the expected value of the i, j:th element
of X12, and Cov (X12)ijkl is the covariance of the i, j:th and
k, l:th elements of X12. The expected value (69a) is derived
using the first and second order moments of x12, deriving the
covariance (69b) requires tedious calculations involving the
first to fourth order moments of x12, see [14].

APPENDIX C
MARGINAL DISTRIBUTION OF KINEMATICAL STATE

The marginal distribution p
(
xk
∣∣Zk ) is a multivariate

student-t distribution [12]4, with expected value and covari-
ance [12]

E [xk] =mk|k, (70a)

Cov (xk) =
Pk|k ⊗ Vk|k

vk|k + s− sd− 2
, P̂k|k, (70b)

for vk|k > sd+2−s. The multivariate student-t distribution can
be approximated with a multivariate Gaussian distribution by
analytical minimization of the KL-div. This gives the following
marginal distribution,

p
(
xk
∣∣Zk ) ≈N (xk ; mk|k, P̂k|k

)
. (71)

APPENDIX D
EXPECTED VALUES

A. Gamma distributed random variables

Let γ1 and γ2 be independent and gamma distributed

p(γ1) =GAM (γ1 ; α1, β1) , (72a)
p(γ2) =GAM (γ2 ; α2, β2) , (72b)

with β1 6= β2. The expected value of γ = γ1 + γ2 is

E[γ] = E[γ1 + γ2] = E[γ1] + E[γ2] =
α1

β1
+
α2

β2
. (73)

Let γ̄1 = γ1
γ1+γ2

. The expected value of log γ̄1 can be rewritten
as

E[log γ̄1] = E[log γ1]− E[log(γ1 + γ2)] (74a)
=ψ0(α1)− log(β1)− E[log(γ1 + γ2)]. (74b)

There is no analytical solution to E[log(γ1 + γ2)], however it
can be computed after Taylor expanding the function log(γ1 +
γ2) around the point γ0

1 = E[γ1] and γ0
2 = E[γ2], which gives

E[log(γ1 + γ2)] ≈ log

(
α1

β1
+
α2

β2

)
− 1

2

α1

β2
1

+ α2

β2
2(

α1

β1
+ α2

β2

)2 . (75)

B. Inverse random matrix

1) Inverse Wishart: Let X be inverse Wishart distributed
p (X) = IWd (X ; v, V ). Then X−1 is Wishart distributed
p
(
X−1

)
=Wd

(
X−1 ; v − d− 1, V −1

)
[14, Theorem 3.4.1].

The expected value of X−1 is [14, Theorem 3.3.15]

E
[
X−1

]
= (v − d− 1)V −1. (76)

2) Wishart: Let X be Wishart distributed p (X) =
Wd (X ; v, V ). Then X−1 is inverse Wishart distributed
p
(
X−1

)
= IWd

(
X−1 ; v + d+ 1, V −1

)
[14, Theorem

3.4.1]. The expected value of X−1 is [14, Theorem 3.4.3]

E
[
X−1

]
=

V −1

(v − d− 1)
. (77)

4See also [36].
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C. Log-determinant of random matrix

Let y be a uni-variate random variable. The moment gen-
erating function for y is defined as µy (s) , E [esy], and the
expected value of y is given in terms of µy (s) as

E [y] =
dµy (s)

ds

∣∣∣∣
s=0

. (78)

1) Inverse Wishart: Let y = log |X|, where p (X) =
IWd (X ; v, V ). The moment generating function of y is

µy (s) = E [|X|s] =

∫
|X|s p (X)dX (79a)

=
Γd
(
v−d−1

2 − s
)

Γd
(
v−d−1

2

) (
|V |
2d

)s
. (79b)

By [14, Theorem 1.4.1], the logarithm of Γd( · ) can be
expressed as

log Γd(a) =
1

4
d(d− 1) log π +

d∑
i=1

log Γ

(
a− i− 1

2

)
. (80)

The expected value of y is

E [y] = E [log |X|] (81a)

=
d

ds

(
Γd
(
v−d−1

2 − s
)

Γd
(
v−d−1

2

) (
|V |
2d

)s)∣∣∣∣∣
s=0

(81b)

= log |V | − d log 2−
d∑
j=1

ψ0

(
v − d− j

2

)
. (81c)

2) Wishart: Let y = log |X|, where p (X) =
Wd (X ; v, V ). Analogously to the derivation above, the ex-
pected value of y is

E [y] = E [log |X|] (82a)

= log |V |+ d log 2 +

d∑
j=1

ψ0

(
v − j + 1

2

)
. (82b)

APPENDIX E
PROOF OF THEOREM 1

Proof: We have q( · ) given by

q(γ) ,arg min
q

KL(p||q) (83a)

=arg max
q

∫
p(γ) log q(γ)dγ (83b)

=arg max
q

(
α log β − log Γ(α)

+ (α− 1) Ep[log(γ)]− β Ep[γ]
)
. (83c)

Differentiating the objective function with respect to β, setting
the result equal to zero, and solving for β, gives

β =
α

Ep[γ]
. (84)

Differentiating the objective function with respect to α, setting
the result equal to zero, and inserting β given in (84), gives

log(α)− ψ0(α) + Ep[log(γ)]− log (Ep[γ]) = 0. (85)

APPENDIX F
PROOF OF THEOREM 2

Proof: We have q( · ) given by

q(γ) ,arg min
q

KL(p||q) (86a)

=arg max
q

∫
p(γ̄1) log q(γ̄1)dγ̄1 (86b)

=arg max
q

(
log Γ(a+ b)− log Γ(a)− log Γ(b) (86c)

+ (a− 1) E[log(γ̄1)] + (b− 1) E[log(1− γ̄1)]
)
.

Differentiating the objective function with respect to a, and
setting the result equal to zero gives

ψ0(a+ b)− ψ0(a) + E[log(γ̄1)] = 0. (87)

Differentiating the objective function with respect to b, and
setting the result equal to zero gives

ψ0(a+ b)− ψ0(b) + E[log(γ̄2)] = 0, (88)

where γ̄2 = γ2
γ1+γ2

= 1− γ̄1.

APPENDIX G
PROOF OF THEOREM 3

Proof: We have q( · ) given as

q(X) ,arg min
q

KL(p||q) (89a)

=arg max
q

∫
p(X) log(q(X))dX (89b)

=arg max
q

[
1

2
(v − d− 1) Ep [log |X|]

− 1

2
Tr
(
V −1 Ep [X]

)
− 1

2
vd log(2)

− Γd(v/2)− 1

2
v log |V |

]
(89c)

Taking the derivative of the objective function with respect to
V , equating the result to zero, and solving for V , we get

V =
1

v
Ep [X] (90)

Now, we take the derivative of the objective function with
respect to v, equate the result to zero, and insert the V in
(90), to obtain

d∑
i=1

ψ0((v − i+ 1)/2) + d log(v/2)

− Ep [log |X|] + log |Ep [X] | = 0. (91)
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APPENDIX H
PROOF OF THEOREM 4

Proof: We have q( · ) given as

q(X) ,arg min
q

KL(p||q) (92a)

=arg max
q

∫
p(X) log(q(X))dX (92b)

=arg max
q

[
1

2
(v − d− 1) log |V |

− 1

2
Tr
(
V Ep(X

−1)
)
− 1

2
(v − d− 1)d log(2)

− log Γd((v − d− 1)/2)− 1

2
vEp(log |X|)

]
(92c)

Taking the derivative of the objective function with respect to
V , equating the result to zero, and solving for V , we get

V = (v − d− 1)
[
Ep(X

−1)
]−1

(93)

Now, we take the derivative of the objective function with
respect to v, equate the result to zero, and insert the V in
(93), to obtain

−
d∑
i=1

ψ0((v − d− i)/2) + d log((v − d− 1)/2)

−Ep(log |X|)− log |Ep(X−1)| = 0. (94)
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