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Abstract—This paper presents an algorithm for reduction of
Gaussian inverse Wishart mixtures. Sums of an arbitrary number
of mixture components are approximated with single components
by analytically minimizing the Kullback-Leibler divergence. The
Kullback-Leibler difference is used as a criterion for deciding
whether or not two components should be merged, and a simple
reduction algorithm is given. The reduction algorithm is tested in
simulation examples in both one and two dimensions. The results
presented in the paper are useful in extended target tracking
using the random matrix framework.

Index Terms—Gaussian inverse Wishart, mixture reduction,
extended target, random matrix, Kullback-Leibler divergence.

I. INTRODUCTION

In a broad variety of signal processing and sensor fusion
problems the state variables are modeled using mixtures. A
mixture is a weighted sum of distributions, where the weights
are positive. In case the weights sum to one, the mixture is
also a distribution. If the weights do not sum to one, the
mixture can be called intensity. The individual distributions
are called components, a common component choice is the
Gaussian distribution, leading to Gaussian mixtures (GM).

In target tracking, GMs are used in e.g. the Multi-hypothesis
Tracking (MHT) filter [1], and the Gaussian Mixture PHD-
filters [2]–[4]. To keep the complexity at a tractable level, the
number of components must be kept at a minimum, leading
to the mixture reduction problem. Mixture reduction consists
of approximating the original mixture with a reduced mix-
ture, such that the reduced mixture has (considerably) fewer
components, while the difference between the two mixtures,
defined by some measure, is kept to a minimum.

Several methods for GM reduction have been presented. One
solution is pruning, i.e. removing components whose weight
is below some threshold (and re-normalizing the weights, if
needed). While being very simple, pruning means that the
information contained in the pruned components is completely
lost. A possibly better choice is to merge components, because
merging, to some extent, attempts to preserve some informa-
tion from each of the merged components. For GM merging,
there are top-down algorithms which successively remove
components from the original mixture, and there are bottom-up
algorithms which successively add components to the reduced

mixture1. In terms of the difference measure applied, there are
local algorithms which consider only a subset of the available
mixture information, and global algorithms that consider all
available mixture information.

Examples of GM reduction algorithms include Salmond’s
(local, top-down) [5], Williams’ (global, top-down) [6], Run-
nalls’ (localized version of global measure, top-down) [7],
Huber’s (global, bottom-up) [8], and Schieferdecker’s (global,
top-down) [9]. A nice overview of the existing literature is
given by Crouse et al. [10]. A local top-down approach to
reduction of gamma distribution mixtures is presented in [11].

Gaussian inverse Wishart (GIW) densities have recently been
introduced as a representation for extended targets [12]. The
inverse Wishart distribution is a matrix-variate distribution,
which can be used to model the distribution of a Gaussian
covariance matrix. For a detailed description of the inverse
Wishart distribution, see e.g. [13, Chapter 3]. A multiple
extended target tracking framework, under association uncer-
tainty and clutter, would inevitably face an increasing number
of GIW mixture components. To the best of our knowledge,
reduction of mixtures of GIW distributions has not been studied
before.

In this paper, GIW mixture reduction via component merging
is addressed. The GIW components are merged by analytically
minimizing the Kullback-Leibler divergence (KL-div) [14]
between the components and a single GIW distribution. In the
presented top-down merging algorithm, a similarity measure
based on the KL-div is used, similarly to [7]. However, here
it is considered locally, rather than a local approximation of
the global measure as in [7]. Note that, when it comes to
approximating distributions in a maximum likelihood sense,
the KL-div is considered the optimal difference measure [6],
[7], [9].

The rest of the paper is organized as follows. Section II
defines the problem at hand, and the main result of the paper
is derived in Section III. In Section IV a merging criterion is
presented, and the merging algorithm is given in Section V.
Simulation results are presented in Section VI, and concluding
remarks are given in Section VII.

1In this case, splitting may be a more appropriate name than merging.



II. PROBLEM FORMULATION

The random matrix framework for extended target tracking,
introduced by Koch [12], decomposes the extended target state
ξ = (x, X) into a kinematical state x ∈ Rnx and an extension
state X ∈ Sd++, where Rnx is the set of real nx-vectors,
Sd++ is the set of symmetric positive definite d× d matrices,
and d is the dimension of the measurements. In [15], [16]
the kinematical and extension state estimate at time step k is
modeled as Gaussian inverse Wishart (GIW) distributed,

p (ξk) = N
(
xk ; mk|k, Pk|k

)
IW

(
Xk ; vk|k, Vk|k

)
, (1)

where N ( · ) denotes a multi-variate Gaussian distribution with
mean vector m ∈ Rnx and covariance matrix P ∈ Snx

+ (set
of symmetric positive semi-definite nx × nx matrices), and
IW( · ) denotes an inverse Wishart distribution with degrees
of freedom v > 2d and parameter matrix V ∈ Sd++. In this
work, the inverse Wishart probability density function (pdf)
from [13, Definition 3.4.1] is used2.

In multiple extended target tracking under clutter and asso-
ciation uncertainty, the target intensity can be described using
a weighted sum of GIW distributions,

p (ξk) =

Jk|k∑

i=1

wiN
(
xk ; m

(i)
k|k, P

(i)
k|k

)
IW

(
Xk ; v

(i)
k|k, V

(i)
k|k

)

=

N∑

i=1

wipi (ξk), (2)

where each distribution pi( · ) is referred to as a GIW com-
ponent. Note that in some target tracking frameworks3 the
weights do not necessarily sum to unity, and therefore p( · )
might not be a probability density. As time progresses, the
number of GIW components grows larger, and approxima-
tions become necessary to keep Jk|k at a computationally
tractable level. One such approximation, called pruning, is
to discard components with weights wi lower than some
truncation threshold T . In this work, we explore merging of
GIW components, i.e. approximating sums of components with
just one component. The result of merging a sum of GIW
components (2) is a sum

p̃ (ξk) =

J̃k|k∑

i=1

w̃iN
(
xk ; m̃

(i)
k|k, P̃

(i)
k|k

)
IW

(
Xk ; ṽ

(i)
k|k, Ṽ

(i)
k|k

)

=

J̃k|k∑

i=1

w̃ip̃i (ξk), (3)

where J̃k|k < Jk|k.
Our approach to GIW mixture reduction takes the following

steps. First we give a theorem which is used to find the
GIW distribution q( · ) which minimizes the Kullback-Leibler
divergence between w̄q( · ) and the sum p = Σi∈Lwipi, where
w̄ = Σi∈Lwi and L ⊆

{
1, . . . , Jk|k

}
. Next we give a criterion

2The definition is also given in (34b).
3For instance PHD and CPHD filters, see e.g. [2]–[4], [17]–[19].

which is used to determine if two GIW components pi( · ) and
pj( · ) should be merged or not, and we then give an algorithm
which, given a threshold U for the merging criterion, reduces
the number of GIW components in the mixture.

III. APPROXIMATING A WEIGHTED SUM OF
GIW-COMPONENTS WITH ONE GIW-COMPONENT

This section contains the main result of the paper – a
theorem that describes how a sum of an arbitrary number of
GIW components can be merged into just one GIW component.
This is performed via analytical minimization of the KL-div,

KL (p||q) =

∫
p(x) log

(
p(x)

q(x)

)
dx, (4)

a measure of how similar two functions p and q are. The KL-
div is well-known in the literature for its moment-matching
characteristics, see e.g. [20], [21], and as mentioned above it
is considered the optimal difference measure in a maximum
likelihood sense [6], [7], [9]. Note that minimizing the KL-div
between p and q w.r.t. q can be rewritten as a maximization
problem,

min
q

KL (p||q) = max
q

∫
p(x) log (q(x)) dx. (5)

Theorem 1: Let p( · ) be a weighted sum of GIW compo-
nents,

p (x, X) =

N∑

i=1

wiN (x ; mi, Pi) IW (X ; vi, Vi)

=

N∑

i=1

wipi (x, X), (6)

where w̄ =
∑N
i=1 wi. Let

q (x, X) = w̄N (x ; m,P ) IW (X ; v, V ) (7)

be the minimizer of the KL-div between p (x, X) and q (x, X)
among all GIW distributions, i.e.

q (x, X) , arg min
q(x,X)∈GIW

KL (p (x, X) ||q (x, X)) . (8)

Then the parameters m, P , and V are given by

m =
1

w̄

N∑

i=1

wimi, (9a)

P =
1

w̄

N∑

i=1

wi
(
Pi + (mi −m) (mi −m)

T
)
, (9b)

V = w̄ (v − d− 1)

(
N∑

i=1

wi (vi − d− 1)V −1i

)−1
, (9c)



and v is the solution to the equation

0 =w̄d log (v − d− 1)− w̄
d∑

j=1

ψ0

(
v − d− j

2

)

+ w̄d log w̄ − w̄ log

∣∣∣∣∣
N∑

i=1

wi (vi − d− 1)V −1i

∣∣∣∣∣

+

N∑

i=1

d∑

j=1

wiψ0

(
vi − d− j

2

)
−

N∑

i=1

wi log |Vi| , (9d)

where |V | is the determinant of V and ψ0 ( · ) is the digamma
function (a.k.a. the polygamma function of order 0). �

Proof: Given in Appendix A.
Remarks: The expressions for m in (9a) and P in (9b) are

well known, see e.g. the textbook [22], and have been used
earlier to merge Gaussians in a target tracking context, see
e.g. [2]–[7], [9], [10]. To the best of the authors’ knowledge
the identities for the calculation of the parameters V and v
have not been published before. The expressions for V and v
in (9c) and (9d) correspond to matching the expected values
of X−1 and log |X| under both densities,

w̄Eq
[
X−1

]
=

N∑

i=1

wi Epi
[
X−1

]
, (10a)

w̄Eq [log |X|] =

N∑

i=1

wi Epi [log |X|] . (10b)

There is a unique solution to (9d), and a value for the
parameter v is easily obtained by applying a numerical root
finding algorithm to (9d), e.g. Newton’s algorithm, see e.g.
[23].

IV. MERGING CRITERION

In this section we derive a criterion that is used to determine
whether or not two GIW components should be merged. When
reducing the number of components, it is preferred to preserve
the overall modality of the mixture. Thus, if the initial mixture
p (x, X) has M modes, then the reduced mixture p̃ (x, X)
should have M modes.

The optimal solution to this problem is to consider every
possible way to reduce Jk|k components, compute the corre-
sponding KL-div:s, and then find the best trade-off between
low KL-div and reduction of Jk|k. For Jk|k components, there
are BJk|k different ways to merge, where Bi is the i:th
Bell number [24]. Because Bi increases rapidly with i, e.g.
B5 = 52 and B10 = 115975, the optimal solution can not be
used in practice.

Instead a merging criterion must be used to determine
whether or not a pair of GIW components should be merged.
In what follows we present a distance measure that can be
thresholded to compare two GIW components, and we also
elaborate on the Gaussian and inverse Wishart parts of this
distance measure.

A. Distance measure

As distance measure the KL-div could be used, however
because it is asymmetrical, KL (p||q) 6= KL (q||p), it should
not be used directly. Instead we use the Kullback-Leibler
difference (KL-diff), defined for two distributions p (x, X) and
q (x, X) as

DKL (p (x, X) , q (x, X))

=KL (p (x, X) ||q (x, X)) + KL (q (x, X) ||p (x, X))

=

∫∫
p (x, X) log

(
p (x, X)

q (x, X)

)
dxdX

+

∫∫
q (x, X) log

(
q (x, X)

p (x, X)

)
dxdX. (11)

Let p (x, X) and q (x, X) be defined as

p (x, X) =N (x ; m1, P1) IW (X ; v1, V1) , (12a)
q (x, X) =N (x ; m2, P2) IW (X ; v2, V2) . (12b)

The KL-div between p( · ) and q( · ) is

KL (p (x, X) ||q (x, X))

=

∫
N (x ; m1, P1) log

(N (x ; m1, P1)

N (x ; m2, P2)

)
dx

+

∫
IW (X ; v1, V1) log

(IW (X ; v1, V1)

IW (X ; v2, V2)

)
dX

=KL (N (x ; m1, P1) ||N (x ; m2, P2))

+ KL (IW (X ; v1, V1) ||IW (X ; v2, V2)) , (13)

where

KL (N (x ; m1, P1) ||N (x ; m2, P2))

=
1

2

[
log |P2| − log |P1| − nx + Tr

(
P−12 P1

)

+ (m1 −m2)
T
P−12 (m1 −m2)

]
, (14)

and

KL (IW (X ; v1, V1) ||IW (X ; v2, V2))

=
v1 − d− 1

2
log |V1| −

v2 − d− 1

2
log |V2|

+

d∑

j=1

(
log Γ

(
v2 − d− j

2

)
− log Γ

(
v1 − d− j

2

))

+
v2 − v1

2


log |V1| −

d∑

j=1

ψ0

(
v1 − d− 1

2

)


+ Tr

(
−1

2
(v1 − d− 1)V −11 (V1 − V2)

)
. (15)

Showing (14) and (15) is straightforward, the tedious details
are omitted. The KL-div between q( · ) and p( · ) is defined
analogously.

Note that the decomposition of KL(p( · )||q( · )) into a sum
(13) is inherited from the separability of the Gaussian and



inverse Wishart distributions in (12). From (13) it follows that
the KL-diff is separable,

DKL (p (x, X) , q (x, X)) = DNKL +DIWKL

=DKL (N (x ; m1, P1) ,N (x ; m2, P2))

+DKL (IW (X ; v1, V1) , IW (X ; v2, V2)) , (16)

where

DKL (N (x ; m1, P1) ,N (x ; m2, P2))

=
1

2
(m1 −m2)

T
(
P−11 + P−12

)
(m1 −m2)

− nx +
1

2
Tr
(
P−12 P1 + P−11 P2

)
, (17)

and

DKL (IW (X ; v1, V1) , IW (X ; v2, V2))

=
1

2
Tr
([

(v1 − d− 1)V −11 − (v2 − d− 1)V −12

]
(V2 − V1)

)

+
v2 − v1

2


log |V1| −

d∑

j=1

ψ0

(
v1 − d− j

2

)

− log |V2|+
d∑

j=1

ψ0

(
v2 − d− j

2

)
 . (18)

Note that the Gaussian KL-diff (17) has similarities to the
merging criterion

(mi −mj)
T
P−1i (mi −mj) , wi > wj , (19)

which is used to merge sums of Gaussians in e.g. [2], [3], [5].
Thresholding the KL-diff

DKL (p (x, X) , q (x, X)) < U (20)

is a straightforward way to determine whether or not two
Gaussian inverse Wishart distributions should be merged.
Alternatively, the Gaussian and inverse Wishart KL-diff:s can
be thresholded separately,

(
DNKL < UN

)
&
(
DIWKL < UIW

)
, (21)

where & is the logical and operator. In the following two
subsections we will elaborate on the Gaussian and inverse
Wishart KL-diff:s to gain a better understanding of how the
merging criterion works.

B. A closer look at the Gaussian KL-diff

Under the assumption that P2 = αP1, α > 0, and m2 =

m1 +P
1/2
1 me, P

1/2
1 P

1/2
1 = P1, the KL-diff is independent of

the specific values of m1 and P1,

DNKL =− nx +
1 + 1

α

2
mT

eme +
α+ 1

α

2
nx. (22)

If me = 0 the KL-diff is DNKL = 1
2

(
α+ 1

α

)
nx. With a

threshold UN , DNKL < UN is equivalent to α1 < α < α2,
where

αi = 1 +
UN
nx

+ (−1)i

√(
1 +

UN
nx

)2

− 1. (23)

Thus, the upper and lower limit of α is dependent on both the
threshold, and on the dimension of the kinematical state nx.
For a given threshold UN , a larger nx means that α must be
closer to 1 for DNKL < UN to be fulfilled.

If α = 1 the KL-diff is DNKL = mT
eme, i.e. the length of

me squared. For a given threshold UN the difference between
m1 and m2 can at most be

√
UN standard deviations. Thus,

given α = 1, the KL-diff can be defined in terms of the
standard deviation P

1/2
1 , and is independent of the size of

the kinematical state x.

C. A closer look at the inverse Wishart KL-diff

Under the assumption that V2 = βV1, the KL-diff becomes
independent of the specific value of V1. If v2 = v1 the KL-diff
is

DIWKL =
(v1 − d− 1)d(β − 1)2

2β
. (24)

With a threshold UIW , DIWKL < UIW is equivalent to β1 <
β < β2 where

βi = 1+
UIW

(v1 − d− 1)d
+(−1)i

√(
1 +

UIW
(v1 − d− 1)d

)2

− 1.

(25)
The upper and lower limit of β is dependent on the threshold
UIW , the dimension of the measurements d, and on the inverse
Wishart degrees of freedom v1. A higher threshold gives larger
β2 and smaller β1, while a higher d and/or v1 forces both limits
closer to one.

Unfortunately there is no obvious way to choose v2 as a
function of v1 to make the KL-diff independent of the specific
value of v1, making it difficult to make a similar examination
of how the inverse Wishart degrees of freedom affect the KL-
diff.

D. Discussion

The subsections above give some intuition as to how U
(or UN and UIW ) affects the merging criterion, however it is
difficult to give specific hints for choosing a numerical value
of U . Such a value is likely best determined empirically. In the
results section below we will examine all four GIW parameters,
and how they affect the KL-diff, in numerical examples.

V. MERGING ALGORITHM

In this section we present a merging algorithm that uses
the merging method and criterion defined above, see Table I.
In the algorithm a choice is made regarding how aggressively
the components are bundled for merging, i.e. how aggressively
Jk|k is reduced. There are many possible ways to do this, two
are given in Table I. Both alternatives start by picking out the
GIW component with highest weight, say the j:th. The first
alternative, L1 in Table I, then merges component j with all
other components i for which it holds

DKL (pj (x, X) , pi (x, X)) < U. (26)



TABLE I
GAUSSIAN INVERSE WISHART REDUCTION

1: require: p (xk, Xk) as in (2), a merging threshold U , and θ ∈ {1, 2}.
2: initialize: Set ` = 0 and I =

{
1, . . . , Jk|k

}
.

3: repeat
4: Set ` = `+ 1 and j = argmax

i∈I
w

(i)
k|k

5: Set L = Lθ , where L1 =
{
i ∈ I

∣∣∣Dij < U
}

,

L2 =
{
i ∈ I

∣∣∣∃ {i1 = i, . . . , iN = j}

3 Dik+1
ik

< U, k = 1, . . . , N − 1
}
,

and Dij = DKL (pj (x, X) , pi (x, X)).
6: Use Theorem 1 to compute

w̃
(`)
k|k , m̃

(`)
k|k , P̃

(`)
k|k , ṽ

(`)
k|k , Ṽ

(`)
k|k (28)

for the components i ∈ L.
7: I = I\L
8: until I = ∅
9: output: p̃ (xk, Xk) =

∑J̃k|k
i=1 w̃iN

(
xk ; m̃i, P̃i

)
IW

(
Xk ; ṽi, Ṽi

)
,

where the number of components is J̃k|k = `.

The second alternative, L2 in Table I, finds all other
components such that for each component i ∈ L2, there exists
a sequence of indices {i1 = i, . . . , iN = j} such that

DKL

(
pik (x, X) , pik+1

(x, X)
)
< U, k = 1, . . . , N − 1.

(27)
L1 is a special case of L2, where {i1 = i, i2 = j}, and it
immediately follows that |L1| ≤ |L2|, where |L| is the
cardinality of the set L. Thus L2 merges more components
than L1, resulting in a higher reduction of Jk|k, but also a
cruder approximation of p(x, X).

VI. SIMULATION RESULTS

This section presents results from numerical simulations.
Simulations of the Gaussian and inverse Wishart parts of the
KL-diff are presented in Section VI-A, and merging of GIW
components in nx = d = 1 and nx = d = 2 dimensions
are presented in Sections VI-B and VI-C. In Section VI-D we
compare the two merging choices L1 and L2 in nx = d = 1
dimension.

A. Merging criterion

This section presents results that evaluate the merging
criterion in Section IV. Let p1 (x, X) and p2 (x, X) be defined
as

p1 (x, X) =N (x ; m1, P1) IW (X ; v1, V1) , (29a)
p2 (x, X) =N (x ; m2, P2) IW (X ; v2, V2) . (29b)

The evaluation is performed ceteris paribus, i.e. by changing
the parameters of the Gaussian while holding the parameters
of the inverse Wishart equal, and vice versa.

1) Different Gaussian parameters: Let P2 = αP1, and
m2 = m1 + P

1/2
1 me. A contour plot of the KL-diff for

two uni-variate Gaussians (nx = 1) is shown in Figure 1a.
In accordance with the discussion in Section IV, the KL-diff

increases with the length of me, and it increases when α < 1
or α > 1 .

2) Different inverse Wishart parameters: Let V2 = βV1 to
make the KL-diff independent of the specific value of V1. For
a given β, setting v2 = 2d+2+β(v1−2d−2) will give correct
expected value of X . We make changes to this value by multi-
plying with a factor η, i.e. v2 = η (2d+ 2 + β(v1 − 2d− 2)).
A contour plot of the KL-diff for one dimensional inverse
Wisharts is shown in Figure 1b, in this figure v1 = 20. The
contours DKL = 3 are shown for v1 = 20, 40, 60, 80, 100 in
Figure 1c, where it shows how the area enclosed by DKL = 3
decreases when v1 increases.

B. Merging of one dimensional components

An intensity p (x, X) with four GIW components, nx = d =
1, was reduced to two components using a KL-diff threshold
of U = 3. The GIW components and sums are shown before
and after merging in Figure 2.

C. Merging of two dimensional components

An intensity p (x, X) with two GIW components, nx = d =
2, was reduced to one component using a KL-diff threshold
of U = 12. The GIW components are shown before and after
merging in Figure 3.

D. Comparison of merging algorithms

An intensity p (x, X) with 50 GIW components, nx =
d = 1, was reduced using both L1 and L2 in Table I. The
GIW mixture parameters were sampled uniformly from the
following intervals,

wi ∈ [0.05 0.95] , mi ∈ [0 10] , Pi ∈
[
0.252 0.752

]
, (30)

vi ∈ [50 250] ,
Vi

vi − 2d− 2
∈ [15 50] , (31)

i.e. Vi was sampled such that, given a sampled vi, the expected
value of X belongs to [15 50]. The original mixture, and the
two approximations, are shown in Figure 4. Using L1 the
reduced mixture has 29 components, using L2 gives only 23
components, but also a cruder approximation.

VII. CONCLUDING REMARKS

This paper presented a reduction algorithm for mixtures of
Gaussian inverse Wishart distributions. A theorem was given,
which is used to reduce an arbitrary number of GIW compo-
nents to just one component by analytically minimizing the
Kullback-Leibler divergence, in a maximum likelihood sense
the optimal difference measure. Using the Kullback-Leibler
difference, a merging criterion for pairs of GIW components
was given. The criterion has the benefit of decomposing easily
into separate criterions for the Gaussians and inverse Wisharts,
respectively. A simple algorithm for GIW mixture reduction
was also given, and tested in simulation examples in both one
and two dimensions.

The outlook on future work includes considering a global
difference measure between the original and reduced mixture,
instead of just a local measure. The reduction algorithm will
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Fig. 1. Contour plots showing the KL-diff when the Gaussian inverse Wishart parameters are changed. (a) KL-diff for two uni-variate Gaussian distributions.
(b) KL-diff for two one dimensional inverse Wishart distributions, here v1 = 20. (c) KL-diff for pairs of one dimensional inverse Wishart distributions, the
outlines show DKL = 3 and the legend shows the value of v1.
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Fig. 2. Four GIW components, nx = d = 1, merged into two components using a threshold U = 3. (a) shows the Gaussian parts of the components before
and after merging, and (b) shows the sums of the Gaussians before and after merging. (c) shows the inverse Wishart parts of the components before and after
merging, and (d) shows the sums of the inverse Wisharts before and after merging.
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Fig. 3. Two GIW components, nx = d = 2, merged into one component
using a threshold U = 12. Shown are the kinematical state means m (dots),
the corresponding covariances P (solid ellipses), and the estimated expected
values of the extension state X (dashed ellipses).

be used in the Gaussian inverse Wishart PHD-filter for multiple
extended target tracking under association uncertainty and
clutter [19].

APPENDIX A
PROOF OF THEOREM 1

A. Expected value of inverse extension

Let X be inverse Wishart distributed IW (X ; v, V ). Then
X−1 is Wishart distributed W

(
X−1 ; v − d− 1, V −1

)
[13,

Theorem 3.4.1]. The expected value of X−1 is [13, Theorem
3.3.15]

E
[
X−1

]
= (v − d− 1)V −1. (32)
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Fig. 4. Merging of 50 GIW components. (a) shows the Gaussian sum,
before merging (green) as well as after merging using L1 (red) and L2

(blue). (b) shows the corresponding inverse Wishart sum. Using L1 results in
28 GIW components, using L2 results in 21 components, but also a cruder
approximation.

B. Expected value of log determinant of extension

Let y be a uni-variate random variable. The moment gen-
erating function for y is defined as µy (s) , Ey [esy], and the



expected value of y is given in terms of µy (s) as

E [y] =
dµy (s)

ds

∣∣∣∣
s=0

. (33)

Let y = log |X|, where X ∼ IW (X ; v, V ). The moment
generating function of y is

µy (s) = E [|X|s] =

∫
|X|s p (X)dX (34a)

=

∫
|X|s 2−

(v−d−1)d
2 |V |

v−d−1
2

Γd
(
v−d−1

2

)
|X| v2

etr

(
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2
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dX (34b)

=

∫
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2 |V |
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2

Γd
(
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2
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(
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2
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dX (34c)

=
Γd
(
v−2s−d−1

2

)

Γd
(
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2

)
( |V |

2d

)s ∫
IW (X ; v − 2s, V )dX

(34d)

=
Γd
(
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2 − s
)

Γd
(
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2

)
( |V |

2d

)s
, (34e)

where Γd( · ) is the multivariate gamma function. By [13,
Theorem 1.4.1], the logarithm of Γd( · ) can be expressed as

log Γd(a) =d(d− 1) log π +

d∑

i=1

log Γ

(
a− i− 1

2

)
. (35)

The expected value of y is

E [y] = E [log |X|] (36a)

=
d

ds

(
Γd
(
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C. Proof of Theorem 1

The density q (x, X) is

q (x, X) ,arg min
q(x,X)

KL (p (x, X) ||q (x, X))

=arg max
q(x,X)

N∑

i=1

wi

∫∫
N (x ; mi, Pi)

× IW (X ; vi, Vi) log (q (x, X)) dxdX, (37)

where the i:th double integral over x and X can be rewritten
as ∫∫

N (x ; mi, Pi) IW (X ; vi, Vi) log (q (x, X)) dxdX

= log w̄ +

∫
N (x ; mi, Pi) logN (x ; m,P ) dx

+

∫
IW (X ; vi, Vi) log IW (X ; v, V ) dX. (38)

The integral over x simplifies to
∫
N (x ; mi, Pi) logN (x ; m,P ) dx (39a)

=

∫
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and the integral over X simplifies to
∫
IW (X ; vi, Vi) log IW (X ; v, V ) dX (40a)

=
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where the expected values are derived above. We thus have

q (x, X) , arg min
q(x,X)

KL (p (x, X) ||q (x, X)) (41a)

= arg max
q(x,X)

N∑

i=1

wi (log w̄ + fi (m,P ) + gi (v, V ))

(41b)
= arg max

q(x,X)

h (m,P, v, V ) . (41c)

Differentiating the objective function h ( · ) w.r.t. m, setting
equal to zero and solving for m gives

m =
1

w̄

N∑

i=1

wimi. (42)

Differentiating the objective function h ( · ) w.r.t. P , setting
equal to zero and solving for P gives

P =
1
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)
. (43)

Differentiating the objective function h ( · ) w.r.t. V , setting
equal to zero and solving for V gives
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(
N∑

i=1

wi (vi − d− 1)V −1i

)−1
. (44)

Differentiating the objective function h ( · ) w.r.t. v, inserting
V (44), and setting equal to zero gives
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wi log |Vi| . (45)
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