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Abstract—X-band radar systems represent a flexible and low-
cost tool for ship detection and tracking. These systems suffer
the interference of the sea-clutter but at the same time they can
provide high measurement resolutions, both in space and time.
Such features offer the opportunity to get accurate information
about the target’s state and shape. Accordingly, here we exploit
an extended target tracking methodology based on the popular
Probability Hypothesis Density to get information about the
targets observed in an actual X-band radar dataset. For each
target track we estimate the target’s position, velocity and
acceleration, as well as its size and the expected number of radar
returns.

Index Terms—Multiple target tracking, GGIW-PHD, X-band
radar, extended targets, real-world experimental results

I. MOTIVATION AND RELATED WORKS

X-band radar systems represent an useful tool for many civil
and military applications, including weather monitoring, air
traffic control and maritime vessel traffic control. Besides, the
smart processing of data provided by such systems allows us
to get useful information about the parameters characterizing
the wave motion as well as to retrieve surface currents and
bathymetry maps [1]–[3]. Therefore, these devices are arous-
ing increasing interest in last decade: indeed, thanks to their
operative flexibility, comparatively limited costs and easiness
of installation, they result to be particularly suitable to scan
the sea surface with high temporal and spatial resolution on
fixed, moving and - if need be - opportunity platforms.

However, in spite of their versatility, incoherent X-band
radars are mostly employed for high resolution surveillance
purposes but, in these scenarios, they cannot be considered as
reliable as coherent systems in terms of target detection capa-
bilities. Accordingly, the employment of an effective tracking
strategy can play a fundamental role in these circumstances,
leading to a significant improvement in the surveillance per-
formances provided by such systems.

Among the several emerging target tracking methodologies
one of the most promising is the Probability Hypothesis Den-
sity (PHD) filter [4]. Indeed, in [5], [6] authors have proven
that the multi-sensor PHD function behaves, by increasing
the number of sensors, as a mixture of as many Gaussian
components as the true number of targets. These Gaussian
functions become progressively narrower and peakier around

the true target states in a way that is ruled by the Fisher infor-
mation [6]. In other words, the PHD is asymptotically optimal
increasing the number of sensors. The PHD is suitable to deal
with a cluttered environment and with appearing/disappearing
moving targets without using track-management logics.

In the present work we deal with high resolution radar
images or, in other words, with extended targets. Typically,
in the target tracking applications, a target gives rise to at
most one measurement per time step and then the point-wise
target assumption is commonly adopted and well-accepted, see
e.g. [7]. However, in many applications a target can potentially
give rise to more than one measurement per time step, leading
to the problem of extended target, see e.g. [8]. Given the
nature of marine X-band radars, the measurements are such
that there are multiple detections per target. The number of
detections caused by a target per time step is modeled as
Poisson distributed [9], [10]. There are many different models
for the extended targets extension, i.e. the representation of its
size and shape. In this work we have used the random matrix
model [11], [12], which means that the size of an extended
target is approximated by an ellipse.

Previously extended target tracking models have been ap-
plied to laser range data, see e.g. [8], [13]–[18], Kinnect data,
see e.g. [19], and video data, see e.g. [20]. Track-before-
detect of single extended targets can be found in [21], [22].
In this work we present a gamma Gaussian inverse Wishart
(GGIW) implementation of the extended target PHD filter [23]
to process a dataset acquired in October 2013 by a marine X-
band radar mounted in Tuscany (Italy). The detected targets
occupy several of the sensor’s resolution cells and are thus
extended. To the best of our knowledge, this is the first time
algorithms for multiple extended target tracking are applied to
X-band radar data.

II. THE GGIW-PHD FILTER FOR
MULTIPLE EXTENDED TARGET TRACKING

The measurements were used as input in a gamma-
Gaussian-inverse Wishart (GGIW) implementation of the ex-
tended target PHD filter presented in [23]. The GGIW-PHD filter
is an extension of the GIW-PHD filter presented in [14], [24],
where measurement rate estimation has been added as outlined



TABLE I
NOTATION

• Rn is the set of real n-vectors, Sn+ is the set of symmetric positive semi-
definite n × n-matrices, and Sn++ is the set of symmetric positive definite
n× n-matrices.
• G (γ ; α, β) denotes a gamma probability density function (pdf) defined
over the scalar γ > 0 with scalar shape parameter α > 0 and scalar inverse
scale parameter β > 0,

G (γ ; α, β) = βαΓ(α)−1γα−1e−βγ , (1)

where Γ(·) is the gamma function.
• N (x ; m,P ) denotes the probability density function (pdf) of a Gaussian
distribution defined over the vector x, with mean vector m ∈ Rn and
covariance matrix P ∈ Sn+.
• IWd (X ; v, V ) denotes an inverse Wishart pdf defined over the matrix
X ∈ Sd++ with scalar degrees of freedom v > 2d and parameter matrix
V ∈ Sd++, [26, Definition 3.4.1]

IWd (X ; v, V ) =
2−

v−d−1
2 det(V )

v−d−1
2

Γd

(
v−d−1

2

)
det(X)

v
2

etr

(
−
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2
X−1V

)
, (2)

where etr(·) = exp (Tr(·)) is exponential of the matrix trace, and Γd (·)
is the multivariate gamma function. The multivariate gamma function Γd (·)
can be expressed as a product of the ordinary gamma function Γ (·), see [26,
Theorem 1.4.1].

• Zk =
{
z
(j)
k

}Nz,k

j=1
is a measurement set at time tk , where z

(j)
k ∈

Rnz , ∀j. Zk denotes all measurement sets from time t0 to time tk .
• V (A) is the volume of the surveillance area, λk , βFA,kV (A) is the
mean number of clutter measurements and ck (zk) = 1/V (A) is the spatial
distribution of the clutter over the surveillance volume.
• P∠Z denotes all the partitions P of the set Z. A partition P is a set of
non-empty subsets W called cells. The union of all cells W is equal to the
set Z. The cardinality of a cell W is denoted |W|.
• For each cell W in each partition P the centroid measurement and scatter
matrix are defined as

z̄Wk =
1

|W|
∑

z
(i)
k
∈W

z
(i)
k , (3a)

ZW
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∑
z
(i)
k
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(
z
(i)
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z
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. (3b)

• f [g] denotes the integral
∫
f(x)g(x)dx.

• δi,j is the Kronecker delta, and ⊗ is the Kronecker product.
• In is a n × n identity matrix and 0m×n is an m × n all zero matrix.

in [25]. The derivation details are omitted due to page limits,
the notation is presented in Table I.

A. Models
The extended target state ξk is defined as the triple

ξk , (γk,xk, Xk) . (4)

Here the random vector xk = [pk, vk, ak]
T ∈ Rnx is the

kinematical state, and describes the target’s position pk ∈ Rd,
velocity vk ∈ Rd and acceleration ak ∈ Rd. The random
matrix Xk ∈ Sd++ is the extension state and describes the
target’s size and shape. Under the random matrix model [11],
[12] the target shape is assumed to be an ellipse. Lastly, the
random variable γk > 0 is the measurement rate that describes
how many measurements the target, on average, generates
per time step. In this paper the number of target generated
measurements is assumed to be Poisson distributed, and γk is
in this case the Poisson rate.

Conditioned on a history of previous measurement sets,
denoted Zk, the extended target state ξk is modeled as being
gamma-Gaussian-inverse Wishart distributed [11], [25],

p
(
ξk
∣∣Zk ) =p

(
γk
∣∣Zk ) p (xk ∣∣Xk,Z

k
)
p
(
Xk

∣∣Zk ) (5a)

=G
(
γk ; αk|k, βk|k

)
N
(
xk ; mk|k, Pk|k ⊗Xk

)
× IWd

(
Xk ; vk|k, Vk|k

)
. (5b)

We also use the short hand notation

p
(
ξk
∣∣Zk ) = GGIW

(
ξk ; ζk|k

)
, (6)

where ζk|k =
{
αk|k, βk|k,mk|k, Pk|k, vk|k, Vk|k

}
is the set of

GGIW density parameters.
Note that (5) assumes that the measurement rate is inde-

pendent of the kinematic and extension states. In reality the
number of measurements that a target generates is typically
dependent on the size of the target and the distance between
the target and the sensor (i.e. dependent on the target’s posi-
tion), where a larger and/or closer target typically generates
more measurements compared to a more smaller and/or more
distant target. However, modelling this dependence is not easy
in the general case, and it has been shown in simulations that
the assumption does not restric the estimation performance,
see e.g. [25], [27].

Both the measurement rate and the extension state are
assumed to be approximately constant over time. For the
kinematics state we use the dynamical model [11]

xk+1 =
(
Fk+1|k ⊗ Id

)
xk + wk+1, (7)

where wk+1 is zero mean Gaussian process noise with co-
variance ∆k+1|k = Qk+1|k ⊗Xk+1. Fk+1|k and Qk+1|k are
[11]

Fk+1|k =

1 Ts
1
2T

2
s

0 1 Ts
0 0 e−Ts/θ

 , (8a)

Qk+1|k = Σ2
(

1− e−2Ts/θ
)

diag ([0 0 1]) , (8b)

where Ts is the sampling time, Σ is the scalar acceleration
standard deviation and θ is the maneuver correlation time.
The measurement rate and extension state are assumed to be
approximately constant over time, i.e.,

γk+1 ≈ γk, Xk+1 ≈ Xk (9)

See [11], [12], [28] for longer discussions on dynamics
modeling for the extension state. In this work it was not
necessary to model rotation of the extension, which typically
happens during a turning maneuver. Refer to [28] for a motion
model that allows for kinematic state dependent rotations of
the extension.

The number of target generated measurements is a random
variable that is assumed to be Poisson distributed with rate γk.
The effective probability of detection for a target is [23]

P ek,D = (1− e−γk)PD (10)



where PD ∈ [0, 1]. The measurement model is [11]

zk = (Hk ⊗ Id)xk + ek, (11)

where Hk = [1 0 0] and ek is zero mean Gaussian noise with
covariance given by the target extension matrix Xk.

B. Time update

Let the PHD intensity Dk|k(·) at time tk, given measurement
sets up to and including time tk, be a mixture of GGIW
distributions,

Dk|k (ξk) =

Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ

(j)
k|k

)
, (12)

where Jk|k is the number of components, w(j)
k|k is the weight

of the jth component, and ζ
(j)
k|k is the density parameter of

the jth component. The predicted PHD intensity is a GGIW
mixture,

Dk+1|k (ξk+1) = Db
k+1(ξk+1) +Ds

k+1|k (ξk+1) , (13)

with two parts corresponding to new targets and surviving
existing targets. In this work models for target spawning
were not necessary and were thus omitted. Refer to [29] for
spawning modeling within the random matrix extended target
model.

1) New targets: In previous work on multiple extended
target tracking using PHD filter the birth intensities have
been modeled as distribution mixtures, where each mixture
component corresponds to a location where it is likely that
new targets will appear. In the data set used in this paper it
is not known a priori where the targets are likely to appear,
instead new targets may appear anywhere in the surveillance
area. Following the work in [30], [31] we use the following
intensity for the birth PHD,

Db
k(ξk) =w

(b)
k U (pk)N

(
[vk, ak]

T
; m

(b)
k , P

(b)
k ⊗Xk

)
× G

(
γk ; α

(b)
k , β

(b)
k

)
IWd

(
Xk ; v

(b)
k , V

(b)
k

)
.

(14)

The birth measurement rate and extension are modeled as
gamma and inverse Wishart distributed. The velocity and
acceleration are modeled as Gaussian distributed, however for
the birth position a uniform distribution over the surveillance
area is used.

2) Surviving existing targets: The PHD intensity corre-
sponding to existing targets that remain in the surveillance
area is

Ds
k+1|k (ξk+1) =

Jk|k∑
j=1

w
(j)
k+1|kGGIW

(
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(j)
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)
, (15a)

w
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(j)
k|k (15b)

α
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α
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β
(j)
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, (15c)

m
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(j)
k|k, (15d)

P
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v
(j)
k|k − 2d− 2

)
, (15f)

V
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v
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V
(j)
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For the kinematical state xk the prediction follows from the
motion model (8). For the measurement rate the expected value
is kept constant, and the variance is increased by multiplying
with a factor ηk. The extension state’s expected value is also
kept constant, while the degrees of freedom are decreased
corresponding to an increased variance.

C. Measurement update
Let the predicted PHD intensity at time tk be

Dk|k−1 (ξk) = Db
k(ξk) +

Jk|k−1∑
j=1

w
(j)
k|k−1GGIW

(
ξk ; ζ

(j)
k|k−1

)
.

(16)

The measurement update is [23]

Dk|k
(
ξk|Zk

)
= LZk

(ξk)Dk|k−1
(
ξk|Zk−1

)
. (17)

The measurement pseudo-likelihood function LZk
(·) in (17)

is defined as

LZk
(ξk) ,1− P ek,D+ (18)

e−γkPD
∑
P∠Zk

ωP
∑
W∈P

γ
|W|
k

dW

∏
zk∈W

φzk
(ξk)

λkck (zk)
,

where
• the first part corresponds to missed detections, and the

second part corresponds to detected targets;
• the quantities ωP and dW are non-negative coefficients

defined, for each partition P and cell W respectively, as

ωP =

∏
W∈P dW∑

P′∠Zk

∏
W′∈P′ dW′

, (19)

dW =δ|W|,1 +Dk|k−1

[
PDγ

|W|
k e−γk

∏
zk∈W

φzk
(·)

λkck (zk)

]
.

(20)

• φzk
(ξk) , p(zk|ξk) is the likelihood function for a single

target generated measurement. Under the measurement
model (11) it is given as

φzk
(ξk) = N (zk ; (Hk ⊗ Id)xk, Xk) . (21)

For Bayes optimality the measurement update should con-
sider all possible partitions P of the measurement set Zk,
but this is not computationally tractable in practice [8], [14],
[32]. In this work we have used the methods from [8], [14] to
computed a subset of partitions. The posterior PHD is a GGIW
mixture,

Dk|k (ξk) = Dm
k|k (ξk) +Db

k|k (ξk) +Dd
k|k (ξk) , (22)

with three parts corresponding to not detected previously
existing targets, new targets, and detected previously existing
targets.



1) Not detected previously existing targets: Following [30],
[31], it is assumed that when a new target appears it always
generates at least one measurement in the first time step
it exists. This corresponds to the effective probability of
detection being unity, P ek,D = 1. Therefore we only consider
missed detections for previously existing targets. The updated
PHD corresponding to previously existing targets that are not
detected is

Dm
k|k (ξk) =

Jk|k−1∑
j=1

(1− P ek,D)w
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where p(j)(γk) is
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(j)
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)
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Using gamma-mixture reduction, see [25], p(j)(γk) is approx-
imated as

p̃(j)(γk) =w̃
(j)
k|kG

(
γk ; α̃

(j)
k|k, β̃

(j)
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)
. (26)

This gives the PHD intensity approximation

Dm
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2) New targets: The updated PHD corresponding to new
targets is

Db
k|k (ξk) =
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The updated position is Gaussian distributed with mean equal
to the centroid measurement. This update is approximate, but
as shown in [30], [31], the approximation can be justified
as long as most of the probability mass of the likelihood is
contained inside the surveillance area.

3) Detected previously existing targets: The updated PHD
corresponding to detected previously existing targets is

Dd
k|k (ξk) =

∑
P∠Zk

∑
W∈P

Jk|k−1∑
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(j,W)
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and the innovation factor, gain vector, innovation vector and
innovation matrix are
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4) Weights: The weights of the GGIW components corre-
sponding to detected targets are
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D. Extraction, maintenance and reduction

1) Target extraction: In each time step, a set of extracted
targets is computed by taking the GGIW components for which
w

(j)
k|k > w̄0,

X̂k|k =
{
ξ̂
(i)
k|k

}N̂k|k

i:1
, (33)

ξ̂
(i)
k|k = (E [γk] , E [xk] , E [Xk]) , (34)

where the expected values are with respect to the GGIW
component.

2) Track maintenance: To enable estimation of target
tracks, similarly to [33], [34], a label scheme was utilized.
Each GGIW component is associated to a label `(j)k|k that is
initialized as 0 upon new target birth. If the component is
extracted, and a label has not yet been assigned (i.e. `(j)k|k = 0),
a unique positive integer is assigned as label. In the time
update and measurement update the predicted and corrected
components are assigned the same label as the components
from which they were updated. Label managing is performed
in the mixture reduction step, see below.

A target track is considered confirmed if a GGIW component
with an assigned label has been extracted for at least three
consecutive time steps. The target track remains confirmed
until the corresponding GGIW component is pruned from
the PHD intensity. This procedure effectively minimizes the
number of false target tracks, however it comes at the price
of a delay in the confirmation of the tracks.

3) Mixture reduction: The number of components Jk|k
increases with time and must be reduced in each filter iteration.
In a first step, all components for which either w(j)

k|k < T ,

E[γk] = α
(j)
k|k/β

(j)
k|k < 1, or both, are pruned (i.e. discarded).

Next, component merging is performed using modifications of
the methods from [25], [35]:

• If `(j)k|k = 0 the component is not merged with any other
component.

• Two components j and i are candidates for merging
only if `(j)k|k = `

(i)
k|k and the symmetric Kullback-Leibler

divergence (KL-div) between the two components is less
than U .

• Components are merged such that the weight w̃(j)
k|k is

smaller than a threshold w̄1.

After the merging label management is performed as fol-
lows. Let L be a set of GGIW components with identical

assigned labels. If

max
j∈L

w
(j)
k|k ≥ w̄2 ∨

maxj∈L w
(j)
k|k∑

j∈L w
(j)
k|k

> w̄3, (35)

where ∨ is logical or, then prune all components except the
maximum weight one. Otherwise let the maximum weight
component keep the assigned label and reset `(j)k|k = 0 for
remaining components.

III. EXPERIMENTAL RESULTS

A. Description of the acquisition system
In order to assess the tracking performances of the GGIW-

PHD filter, we consider the detections relevant to a set of
actual data collected by an X-band incoherent radar. It is
well known that these systems can represent a low-cost tool
to detect targets with high temporal and spatial resolutions,
even though they cannot be considered as reliable as coherent
systems in terms of target detection capabilities. Nevertheless,
an effective tracking strategy can play a crucial role to sig-
nificantly improve their surveillance performances, especially
with regard to the retrieval of the target’s shape. In particular,
here we exploit the dataset acquired on October 2013 by a
coastal X-band radar mounted in Tuscany (Italy). The details
of the acquisition system are given in Table II.

TABLE II
PARAMETERS OF THE ACQUISITION SYTEM.

Parameter Value
Antenna rotation period (∆t) 2.41 s
Range resolution (∆r) 7 m
Azimuth resolution (∆ϕ) 0.9◦

Radar scale 3069 m
View angular sector 260◦

B. Detection strategy
The raw data collected by the considered X-band radar have

been processed by an Order Statistic-Constant False Alarm
Rate (OS-CFAR) detector [36], [37].

The statistical analysis of the raw data led us to consider
the Weibull distribution for the sea-clutter description (see
Figure 1). Both the shape and scale parameter of the Weibull
background have been estimated from each range-line of the
raw data by exploiting the procedure shown in [38].

The retrieved value of these parameters allows us to com-
pletely define the Weibull clutter, whose knowledge is required
to compute the local detection threshold [4]. The characteristic
parameters of the employed OS-CFAR detector are listened in
Table III.

TABLE III
PARAMETER SETTINGS OF THE OS-CFAR

Parameter Value
False alarm probability (PFA) 10−9

Samples of the Reference Window (M) 32(16× 2)
Guard Cells (G) 8(4× 2)
Representative rank of the noise level (k) 24(0.75M)



Fig. 1. A comparison of data histogram (black) and relevant Weibull
distributions (red) for two different range lines.

TABLE IV
PARAMETER SETTINGS OF THE GGIW PHD FILTER

Parameter Value
Probability of detection PD 0.99
Probability of survival PS 0.99
Clutter density βFA,k 100/V (A)
Sampling time Ts 2.41
Rate forgetting factor ηk 1.05
Acceleration st. dev. Σ 1
Maneuver correlation time θ 1
Temporal decay constant τ 19.5

Birth weight w
(b)
k 10−5

Birth mean m
(b)
k 04×1

Birth covariance P
(b)
k 10−2I2

Birth measurement rate α
(b)
k , β(b)

k 0.04, 0.008

Birth extension v
(b)
k , V (b)

k 12, 0.01Id
Extraction threshold w̄0 0.5
Pruning threshold T 10−3

KL-div merging threshold U 10
Merging weight thresholds w̄1, w̄2, w̄3 1.1, 1, 0.8

C. Extended target tracker results

The X-band radar dataset considered here contains 30 radar
scans. The GGIW PHD filter parameters that were used are
given in Table IV. Before starting the tracking procedure,
the detection results pertinent to each radar scan have been
converted into Cartesian coordinates and then they have been
provided to the GGIW-PHD filter. Figure 2 depicts a sample of
the detector’s output represented into Cartesian coordinates.
Due to the high resolution of the acquisition system, in this
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Fig. 2. Cartesian representation of detector’s output relevant to a single radar
scan. Sensor is located in origin.
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Fig. 3. Output of GGIW-PHD filter relevant to measurements depicted in
Figure 2. Red arrows represent velocity directions of moving targets T1 and
T2. Sensor is located in origin.

map each actual target is represented by a cluster of measure-
ments. False alarms give rise to both punctual detections and
small clusters.

Figure 3 shows the output from the GGIW-PHD filter corre-
sponding to the detections in Figure 2. It is worth to note that
during the acquisition of the considered dataset there were only
two moving vessels (labeled as T1 and T2 in Figure 3) within
the radar observation space. The remaining detection clusters
depicted in Figure 2 are instead representative of steady targets
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Fig. 4. Tracking history for GGIW PHD filter. Numbers indicate target label
identities, and different colors are used for different target tracks. Target tracks
T1 and T2 are assigned label identities 11 and 15, respectively.

like buoys, rocks and fixed boats.
As can be observed from a comparison between Figure 2

and Figure 3, the detection clusters (i.e., the actual targets) are
properly mapped into ellipses during the tracking procedure.
Recall that the shape of each ellipse results from using the
random matrix extended target model [11]. The estimated
positions of all confirmed target tracks are shown in Figure 4.

We also wish to highlight the GGIW-PHD filter’s robustness
in retaining the dimensions of the extended targets over time.
To give an idea of such capabilities, the tracks relevant to T1
and T2 acquired over the 30 scans are reported in Figure 5.

The computational times for the GGIW-PHD filter are given
in Table V. The maximum time for a single filter cycle is less
than 1.5 seconds, which is well under the antenna’s rotation
period (2.41 seconds).

TABLE V
COMPUTATIONAL TIMES [MILLISECONDS]

Operation Mean St.dev. Min Max
Measurement set partitioning 175 75 60 291
Prediction and correction 542 239 24 1107
Mixture reduction 119 62 23 266
Extraction and maintenance 1.6 0.5 0.4 3.8
Total 837 319 116 1478

IV. CONCLUSIONS

Radar images acquired on October 2013 by a coastal inco-
herent X-band radar mounted in Tuscany (Italy) are processed
using the GGIW implementation of the extended target PHD.
Preliminary results have been reported, showing the capability
of the proposed methodology to deal with interference of the
sea-clutter and land and with multiple close-spaced targets

that appear and disappear in time. A GGIW-CPHD filter was
presented in [27], in future work we intend to compare results
for GGIW-PHD and GGIW-PHD for the data.
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