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Abstract—This paper considers tracking of extended targets
using data from laser range sensors. Two types of extended
target shapes are considered, rectangular and elliptical, and a
method to compute predicted measurements and corresponding
innovation covariances is suggested. The proposed method can
easily be integrated into any tracking framework that relies
on the use of an extended Kalman filter. Here, it is used
together with a recently proposed Gaussian mixture probability
hypothesis density (GM-PHD) filter for extended target tracking,
which enables estimation of not only position, orientation, and
size of the extended targets, but also estimation of extended
target type (i.e. rectangular or elliptical). In both simulations
and experiments using laser data, the versatility of the proposed
tracking framework is shown. In addition, a simple measure to
evaluate the extended target tracking results is suggested.
Keywords: Multiple target tracking, extended targets,
probability hypothesis density, PHD, Gaussian mixture,
Kalman filter, laser range data, rectangle, ellipse, inter-
section over union.

I. INTRODUCTION

Target tracking is the problem of estimating the states of an
unknown number of targets using noisy and cluttered sets of
measurements. In many typical target tracking scenarios the
point target assumption is made, meaning that it is assumed
that each target generates at most one measurement per time
step. In recent years, tracking of extended targets have received
increasing research attention. Here, extended target is defined
as a target that potentially gives rise to more than one
measurement per time step. Multiple measurements per target
and time step enables the target tracking framework to not
only estimate the location of each target, but also its spatial
size and shape.

Gilholm and Salmond [1] presented an approach for track-
ing extended targets under the assumption that the number
of recieved target measurements in each time step is Poisson
distributed. They show an example where they track point
targets which may generate more than one measurement, and
an example where they track objects that have a 1-D extension
(infinitely thin stick of length l). In [2] a measurement model
was suggested which is an inhomogeneous Poisson point
process. At each time step, a Poisson distributed random
number of measurements are generated, distributed around the
target. This measurement model can be understood to imply
that the extended target is sufficiently far away from the sensor
for its measurements to resemble a cluster of points, rather
than a geometrically structured ensemble. A similar approach
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(a) Measurements of a car.
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(b) Measurements of a human.

Figure 1. Motivating examples: measurements acquired outdoors with a laser
range sensor. In (a) the measurements are approximately rectangular, and in
(b) the measurements are approximately elliptical.

is taken in [3], where track-before-detect theory is used to
track a point target with a 1-D extent.

In [4] the authors model extended objects using an elliptic
random hypersurface model [5]. Extended targets are modelled
as having different measurement sources located on the target,
and an ellipse is estimated that fits around the measurement
sources. However, multiple extended target tracking is not
treated. A Bayesian framework for estimating the location
and radius of a circle from noisy measurements of the circle
circumference is derived in [6]. A likelihood is not stated
directly, instead the problem is posed using an errors-in-
variables model.

In this work we consider estimation of extended targets
using measurements from laser range sensors. Laser range
sensor typically gives measurements with a high degree of
structure, see examples in Figure 1, and are therefore suitable
to use for the estimation of the shape and size of extended
targets. In robotics laser range sensors have been used for
tracking of vehicles and persons, we briefly present some
more recent work here. The typical framework contains a
detection algorithm that supplies a tracking algorithm with
measurements belonging to some predefined class of targets.
In [7], vehicles are modelled as rectangles and are tracked
using a particle filter framework. In [8], work on detection
and tracking of people and cars using a 2D laser range
scanner and a camera is presented. However, there is no
mention of estimation of the shape and size of the targets.
Detection and tracking of pedestrians using 3D laser range
data is presented in [9], where the position and velocity of the
targets are tracked. Place dependent distributions of human
behavior is used to improve tracking of people in [10]. The
place dependency encodes locations in the surveillance area

14th International Conference on Information Fusion
Chicago, Illinois, USA, July 5-8, 2011

978-0-9824438-3-5 ©2011 ISIF 592



where the human targets are more likely to be located, and
also captures areas where the human targets are less likely to
move, e.g. crossing through walls.

Two types of extended targets are considered here, rectan-
gular targets and elliptical targets. In computer vision tracking,
rectangles and ellipses have been used as target bounding
boxes, for targets of different types of shape. In comparison,
here we are not concerned with estimation of target bounding
boxes, but rather estimation of the shape, size and location of
targets that are (approximately) rectangular or elliptical using
point measurements. A similar scenario occurs in vision if
feature points are extracted from the images, e.g. Harris corner
points [11].

Here, the target type (ellipse or rectangle) is not detected
from the measurements, but instead inferred in the target
tracking estimation process. Bayesian estimation of extended
targets from multiple measurements requires an appropriate
likelihood function for the multiple measurements a target can
generate. The paper presents a framework for computing these
functions using the predicted measurements and corresponding
innovation covariances for an extended target measured with
a laser range sensor. It is also shown that this framework
can successfully be integrated into an existing framework for
extended target tracking, that is based on a Gaussian mixture
Probability Hypothesis Density (GM-PHD) filter [12].

The extended target tracking framework is evaluated using
both simulations and experiments. In simulations, single ex-
tended targets shaped as rectangles and ellipses are tracked.
The results are evaluated against the ground truth. To eval-
uate the estimated shape and size of the extended targets, a
performance metric called Intersection Over Union (IOU) is
suggested. This measure is inspired by work in the computer
vision research community, where it has been used to compare
shapes to each other. In an outdoor experiment, up to three
humans are tracked simultaneously, and the results are visually
examined and shown to be good.

The paper is organized as follows: the next section defines
the state representation of the extended targets, and relates
the individual states in the state vector to the rectangular and
elliptical shapes, respectively. Section III presents extended
target tracking with a GM-PHD-filter, defines the main problem
considered in this paper and addresses tracking of multiple
extended targets with multiple shapes. In Section IV, a de-
tailed implementational description is given of how predicted
measurements and corresponding innovation covariances are
computed. Section V presents a measure used for performance
evaluation of extended target tracking, and Section VI presents
results from both simulations and experiments. The paper is
ended with conclusions and a discussion of future work in
Section VII.

II. STATE REPRESENTATION

The state vector of a general two dimensional extended
target is given as

x =
[
x y vx vy φ s1 s2

]T
, (1)
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(a) Rectangular target
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(b) Elliptical target

Figure 2. Relationship between target states (1) and target shape.

where x, y and vx, vy are the Cartesian position and velocity
in R2, respectively. The parameter φ is the orientation of
the extended target shape, and s1, s2 represent the size of
the shape. In this paper, two types of extended targets are
considered, rectangular and elliptical shaped targets.

For rectangularly shaped extended targets, the two shape
parameters s1 and s2 encode the length and width of the
target, respectively, as is shown in Figure 2(a). Using this
particular type of shape is motivated by the fact that cars
measured by laser range sensors generate measurements that
are approximately rectangularly shaped, see Figure 1(a).

For extended targets that are shaped like ellipsoids, the two
shape parameters encode the lengths of the major and minor
axis, respectively, as is shown in Figure 2(b). The ellipse
shape for extended targets is motivated by the fact that humans
measured by laser range sensors generate measurements that
are approximately elliptically shaped, see Figure 1(b).

III. EXTENDED TARGET TRACKING

This section presents target tracking using GM-PHD-filters,
defines the main problem addressed in the paper, and briefly
considers estimation of multiple targets of multiple shapes.

A. GM-PHD target tracking

The aim is to estimate the state of a set of extended
targets Xk =

{
x
(j)
k

}Nx,k

j=1
using sets of noisy, possibly cluttered,

measurements Zk =
{
z
(j)
k

}Nz,k

j=1
, for discrete time instants

k = 1, . . . ,K. In this paper, data from laser range sensors
are used. Laser range sensors measure range ri to the nearest
object along rays pointing from the sensor at angles αi. The
measurements in Zk can thus be sorted counter-clockwise
according to the scanning angles αi. Note that this order of
the measurements does not contain information about which
measurement source caused which measurement.

The target dynamics is assumed to be modelled with a
function

xk+1 = f (xk,uk,wk) , (2)

where uk is an exogenous input and wk is process noise
with covariance matrix Qk. State prediction using a dynamic
motion model (2) is straightforward in target tracking, thus
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this part of the problem will not be adressed further in this
publication.

In this work we have used the Gaussian Mixture Proba-
bility Hypothesis Density (GM-PHD) filter for extended target
tracking presented in [12]. If Dk|k−1 (x|Z) is the predicted
PHD-intensity, the corrected PHD-intensity is

Dk|k (x|Z) = LZk
(x)Dk|k−1 (x|Z) , (3)

where the measurement pseudo-likelihood function [13] is
given by

LZk
(x) =1−

(
1− e−γ(x)

)
pD (x) + e−γ(x)pD (x)×

×
∑
p∠Zk

ωp

∑
W∈p

γ (x)
|W |

dW
·
∏
z∈W

φz (x)

λkck (z)
. (4)

The first part of this equation, 1−
(
1− e−γ(x)

)
pD (x), handles

the targets for which there are no detections. The second part
handles targets for which there are at least one detection. The
PHD-intensity is approximated by a Gaussian mixture as in
[14],

Dk (x) =

Jk∑
i=1

w
(i)
k N

(
x ; m

(i)
k , P

(i)
k

)
, (5)

where w(i)
k , m(i)

k and P (i)
k are the weights, mean vectors and

covariance matrices of the Gaussian components, respectively.
As (4) shows, the update step contains a summation over

partitions p of the measurement set Zk, and a summation over
the cells W in each partition p. Let the measurements in a cell
W be denoted

zW ,
⊕
z∈W

z, (6)

where
⊕

is vertical vectorial concatenation. Then, for each
cell of each partition and each predicted Gaussian component,

e−γ(x)pD (x)ωp
γ (x)

|W |

dW
×

×
N
(
zW ; ẑ

W,(i)
k|k−1, S

W,(i)
k

)
(λkck (z))

|W | N
(
x ; x̂

(i)
k|k, P

(i)
k|k

)
(7)

represents the corresponding updated Gaussian component,
where N

(
zW ; ẑik|k−1, S

W,(i)
k

)
is the likelihood of the set

of measurements in the cell W . The key point of being able
to use the above formulas for extended targets with structured
measurements (e.g., with laser sensor reports) is to calculate
the predicted measurements ẑ

W,(i)
k|k−1, innovation covariances

S
W,(i)
k , updated means x̂

(j)
k|k and updated covariances P

(i)
k|k.

The calculation of these quantities must rely on a measurement
model of a form similar to

z
(j)
k = h (xk, ek) , (8)

where ek is measurement noise with covariance matrix R(j)
k .

Once such a model is available,

• the calculation of the measurement prediction ẑ
W,(i)
k|k−1 and

innovation covariance SW,(i)k can be achieved using the
current estimates, and

• as in the implementation presented in [12], the updated
means x̂(i)

k|k and updated covariances P (i)
k|k can be obtained

with a Kalman filter, or one of its non-linear counterparts
such as the Extended Kalman Filter (EKF) or Unscented
Kalman Filter (UKF).

The construction of a measurement model of the form (8)
is at the root of the problem of calculating a measurement
prediction which will be posed as the main problem of our
work in the next subsection.

B. Problem definition
When the extended targets are modeled as points, a mea-

surement model can readily be constructed assuming that each
measurement is close to the target’s center of mass, see e.g.
[12]. Here however, we are concerned with tracking extended
targets (1) using measurements acquired with a laser range
sensor, thus the point target assumption is trivially invalid. As
will be shown using an example, when the extended targets
are not modeled as points but rather as geometric structures,
construction of a measurement model can be significantly
more complicated compared to the point target case.

Consider the plots in Figure 3. The extended target estimate
is shifted in y position by 0.7m, and in heading φ by 20◦,
with respect to the true extended target. Using a simple
model of a laser range sensor, predicted measurements can be
computed using line intersection as is shown in Figure 3(a).
However, due to the orientation error, the estimated target is
not showing the same two sides towards the sensor as the true
target, making the set of true measurements Zk fundamentally
different from the set of estimated measurements Ẑk. The
cardinality is different, |Zk| = 16 and |Ẑk| = 14, and the
measurements are located on different sides of the target shape,
causing the data association between the measurements in Zk
and the predicted measurements in Ẑk to become difficult.
However, using the method proposed in this paper, described
further in Section IV, a Ẑk that better corresponds to Zk is
obtained, see Figure 3(b).

The main problem addressed in this paper is thus to ob-
tain predicted measurements and innovation covariances such
that they can be integrated into an existing target tracking
framework. As mentioned above, here the GM-PHD extended
target tracking framework presented in [12] has been used,
however any target tracking framework that relies on the
EKF could have been used just as well. In order to obtain
predicted measurements ẑ

W,(i)
k|k−1 and corresponding innovation

covariances SW,(i)k , information from the set of measurements
in the cell zW is used, i.e. the following two approximations

ẑ
W,(i)
k|k−1 ≈ ẑ

W,(i)
k|k−1

(
zW , x̂k|k−1

)
(9a)

S
W,(i)
k ≈ SW,(i)k

(
zW , x̂k|k−1

)
(9b)

are made. Thus, the predicted measurements and innovation
covariances are functions of the predicted state and the set
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Figure 3. Comparison of estimated measurements, the sensor is located in
the origin. The true extended target is shown as a solid rectangle and the set
of measurements Zk are shown as filled black circles. The estimated extended
target is shown as a dashed rectangle, the estimated set of measurements Ẑk

are shown as filled black squares. In (a), using a straightforward model of the
laser sensor gives a Ẑk which is a poor correspondence to Zk . In (b), the
proposed method is used and Ẑk better corresponds to Zk .

of measurements. In a sense, this is an unconventional use
of an errors-in-variables framework where the measurement
model would depend on the current set of measurements.
In Section IV we describe in detail the proposed method
for computing ẑ

W,(i)
k|k−1

(
zW , x̂k|k−1

)
and SW,(i)k

(
zW , x̂k|k−1

)
.

When these quantities are calculated, a Kalman filter (or
EKF/UKF) measurement update can easily be used to obtain
the updated means x̂

(i)
k|k and updated covariances P (i)

k|k.

C. Multiple shapes and multiple targets

An interesting aspect of extended target tracking with mul-
tiple targets and multiple shapes is how to correctly estimate
the correct shape for each target. As was mentioned in the
introduction, in some previous work the target tracking is
preceeded by a detection algorithm. Thus, a possible way to
infer the type of shape is to consider the measurements and
make a hard decision as to which type they represent.

In this paper, an approach that is slightly similar to track-
before-detect is taken. When a new target appears, the GM-
PHD-filter birth intensity is set such that one Gaussian compo-
nent per target type is given birth to. Then, as the filter iterates
throughout the prediction and correction steps, the weight
w

(j)
k of each Gaussian component is updated. Eventually, the

weights will converge such that only one component remains,
from which the target type can be found. The target types
are thus, while not included in the state vectors, implicitly
estimated via the weights of the Gaussian components in the
PHD-intensity.

IV. COMPUTING PREDICTED MEASUREMENTS AND
INNOVATION COVARIANCES

In this section we present a detailed description of how
predicted measurements and innovation covariances (9) are
computed for extended targets (1) that are either rectangular
or elliptical in shape.

A. Predicted measurements for rectangular targets

The first step in predicting a set of measurements is to,
given the set of measurements, estimate how many sides of
the measured target that are shown. For a rectangular target, it
is trivial to conclude that at most two of the sides of the shape
are visible to the sensor at any given moment. Given a set of

measurements Z =
{
z
(j)
k

}Nz,k

j=1
, where each measurement is

a vector z
(j)
k =

[
z
(j),1
k , . . . , z

(j),nz

k

]T
, let C = [cm,n] be the

sample covariance of the measurements with entries

cm,n =
1

Nz,k − 1

Nz,k∑
j=1

(
z
(j),m
k − z̄mk

)(
z
(j),n
k − z̄nk

)
(10)

where z̄mk is the mean of the m:th component of the measure-
ment vectors z

(j)
k . For laser range measurements in 2D we

have nz = 2.
Further, let e1 and e2 be the two eigenvalues of the

covariance matrix C, where e2 > e1. In the noiseless case,
measurements of just one side of a rectangle will have 0
standard deviation along the direction perpendicular to the
measured line, and the corresponding eigenvalue will be 0.
An estimate of the number of sides N that generated the set
of measurements can then be obtained as

N =

{
1 if e2

e1
≥ K

2 otherwise
(11)

where K is a threshold. Empirically K = 25 was deter-
mined to be an appropriate value. Given the measurements
in Figure 4(a)1, the eigenvalues of the corresponding sample
covariance matrix are e1 = 0.1198 and e2 = 0.6629, and the
eigenvalue quota 5.5327 is less than the threshold K.

If the estimated number of sides is two, the measurement
closest to the corner connecting the two sides needs to be
found. This is performed using the function CORNER INDEX
given in Table I, where the distance d from a point z3 to a
line defined by two points z1 and z2 is given by the function

d = point2lineDist (z1, z2, z3)

=
|(zx2 − zx1) (zy1 − zy3)− (zx1 − zx3) (zy2 − zy1)|√

(zx2 − zx1)
2

+ (zy2 − zy1)
2

. (12)

For the measurements in Figure 4(a), the corner is identified
as the point located in x = 5.40, y = 8.99. Given the
identified corner, it is straightforward to compute the number
of measurements belonging to each of the two sides that are
seen by the sensor. In the example given in Figure 4(a), there
are m1 = 3 measurements on one side, and m2 = 6 on
the other. If only one side is measured, i.e. if e2

e1
≥ K, then

trivially all measurements belong to the side that was measured
by the sensor.

Assuming that two sides are shown by the set of measure-
ments Z, the set can be divided into two subsets Z1 and Z2

1The measurements are a subset of the measurements in Figure 1(a). A
subset is used to prevent Figures 4(a) and 4(b) from being too cluttered.
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(d) Measurement covariances

Figure 4. The rectangular and elliptical targets. (a) and (c): Example of measurements of a car and human (filled black circles), respectively, and predicted
measurements located on target surface (filled black squares). The corresponding associations are shown with dashed lines. The measurement identified as
being closest to the corner in the rectangular case is shown with a gray star. (b) and (d): The corresponding measurement covariances.

Table I
CORNER INDEX

Input: Set of measurements Z =
{
z(j)

}Nz

j=1
, sorted counter clockwise

according to scanning angle.
Initialise: Minimum distance dmin =∞, first point z1 = z(1) and last point
zNz = z(Nz).
1: for n = 2, . . . , Nz − 1 do
2: Let zn = z(n) be the current point.
3: Initialise sum of distances d = 0.
4: for k = 2, . . . , n− 1, n+ 1, . . . , NZ − 1 do

5: d = d+

{
point2lineDist (z1, zn, zk) if k < n
point2lineDist (zn, zNz , zk) if k > n

6: end for
7: if d < dmin then
8: Set n̂ = n and dmin = d
9: end if

10: end for
Output: Index to measurement closest to corner n̂.

corresponding to the measurements that are from the two sides,
i.e. |Z1| = m1 and |Z2| = m2. Let β1 and β2 be the angles
of the vectors defined by the first and last point from Z1 and
Z2, respectively. Then, βNi = βi + π/2 are the angles of
the corresponding normal vectors. Further, given an estimated
extended target state x̂, let ξ1, . . . , ξ4 be the surface normals
of the four sides of the rectangle.

The sets Z1 and Z2 can now be associated to one of
the four sides of the rectangle by finding the two sides
for which

∣∣ξi − βN1 ∣∣ and
∣∣ξj − βN2 ∣∣ are minimised. Predicted

measurements are generated for the sides that are in view by
distributing m1 and m2 points uniformly on the two sides. An
example is given in Figure 4(a).

B. Predicted measurements for elliptical targets

Given an angle at which the sensor measures, finding the
intersection between the measurement ray and an ellipse is
performed as follows. Let the ellipse be given by the position
x, y, orientation φ and lengths of the major and minor axis s1
and s2, as in (1). Further, let the range measurement r from
the sensor to the target surface be measured at an angle α.

Thus, the intersection defines a point in Cartesian coordinates[
xr
yr

]
=

[
r cos (α)
r sin (α)

]
, (13)

given in the coordinate frame defined with the sensor position
as origin. The same point can be described in the coordinate
frame defined by the position and heading of the ellipse,
using the appropriate coordinate frame transformation. The
intersection point’s coordinates are now given by[

xer
yer

]
= (R−α)

−1
[
xr − x
yr − y

]
=

[
r (cαcφ + sαsφ)− xcφ − ysφ
r (−cαsφ + sαcφ) + xsφ − ycφ

]
=

[
rθ1 + θ2
rθ3 + θ4

]
(14)

where Rα is the rotation matrix for an angle α and e denotes
the change of reference frame. This point must satisfy the
ellipse equation

(xer)
2

s21
+

(yer)
2

s22
= 1. (15)

Inserting (14) into (15) gives

1 =
(rθ1 + θ2)

2

s21
+

(rθ3 + θ4)
2

s22

=

(
θ21
s21

+
θ23
s22

)
r2 + 2

(
θ1θ2
s21

+
θ3θ4
s22

)
r +

θ22
s21

+
θ24
s22

= Ar2 + 2Br + C (16)

which has the two solutions r = −BA ±
√

B2

A2 − C−1
A . Since

the sensor measures the closest intersection with the target, the
correct range r at a given angle α is r = −BA −

√
B2

A2 − C−1
A .

Note that if no part of the extended target is located along the
measurement ray defined by the angle α, r will be a complex
number.

For elliptically shaped extended targets, the first step in
computing a set of predicted measurements is to find the angles
α1 and α2 within which the sensor can measure the estimated
target. Next, |Z| estimated measurements are generated on
the estimated target surface uniformly spaced in the angle
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dimension between α1 and α2. An example of predicted
measurements is given in Figure 4(c).

C. Innovation covariances

To compute the innovation covariances
S
W,(j)
k

(
zW , x̂k|k−1

)
, the measurement model Jacobian

Hk and the measurement covariances R(j)
k are needed.

As we have not derived an explicit mathematical function
for the measurement model, the measurement model Jacobian

Hk =
dh

dx

∣∣∣∣
x̂k|k−1

, (17)

is computed numerically instead of derived analytically. By
making a small permutation ε to the n:th element of the
predicted state vector, the n:th column of the measurement
Jacobian is approximated as

ẑ
W,(j)
k|k−1

(
zW , x̂ε,nk|k−1

)
− ẑ

W,(j)
k|k−1

(
zW , x̂k|k−1

)
ε

(18)

where x̂ε,nk|k−1 is the predicted state after the n:th element is
permuted by adding ε. Note that in doing so, we only consider
permutations in the predicted state when the Jacobian is ap-
proximated numerically, i.e. we do not consider permutations
in the set of measurements zW . Considering changes in zW

is a topic for future work.
Instead of modelling the covariances according to the sensor

statistics, the covariances are constructed such that the uncer-
tainty of all predicted measurements follow the surface of the
target. One of the axes of the corresponding uncertainty ellipse
is aligned with the surface, and the size of the uncertainty in
this direction is set to the distance to the nearest measurement
point. The size of the uncertainty in the direction perpendicular
to the surface is set to a constant σr.

With multiple measurements on the target surface, this gives
measurement covariance ellipses that are aligned to the surface
tangent, thus giving a combined uncertainty that covers the
part of the target surface that was measured by the sensor.
Examples of measurement covariances for the measurements
given in Figures 4(a) and 4(c) are shown in Figures 4(b) and
4(d).

V. EXTENDED TARGET TRACKING PERFORMANCE
EVALUATION

In this section we address evaluating the estimated shape
of the extended target. As the velocity of the extended target
does not affect its shape and size, the two velocity states vx
and vy are excluded here for the sake of simplicity. For a
rectangular or elliptical extended target with true state x0 =[
x0 y0 φ0 s01 s02

]T
, there are four alternative estimates

that give an identical shape in the state space:

x̂1 =
[
x0 y0 φ0 s01 s02

]T
, (19a)

x̂2 =
[
x0 y0 φ0 + π s01 s02

]T
, (19b)

x̂3 =
[
x0 y0 φ0 + π

2 s02 s01
]T
, (19c)

x̂4 =
[
x0 y0 φ0 − π

2 s02 s01
]T
. (19d)
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(a) Linear motion
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(b) Linear and curved motion

Figure 6. Trajectories used in simulations. The target trajectories are showed
in black. The sensor is located in the origin, the surveilance area boundary is
showed with a dashed gray line.

For example, let the orientation of a rectangular target be
φ = 0rad and let the lengths of the two sides be s1 = 4m and
s2 = 2m. The estimation errors of the corresponding estimated
states may be as large as π

2 rad, −2m and 2m, despite the fact
that if visualised, the estimated shape and size of the extended
target is identical to the true one. Thus, only considering
the estimation errors of the extended target tracking results
may give a false picture of the quality of the extended target
tracking results.

In this paper, we evaluate the extended target tracking results
by considering the estimated x, y-position, and by considering
a measure called Intersection-Over-Union (IOU). Let Â be the
area of the estimated extended target, and let A0 be the area
of the true target. By computing the area of the intersection
between the estimate and the true target, and dividing by the
union of the two areas,

Â ∩A0

Â ∪A0

∈ [0 1] (20)

a measure is obtained, where 1 represents a perfect overlap
of the estimated and true extended target, and 0 represents
that there is no overlap at all. The IOU-measure captures
differences in x, y-position, in shape orientation φ and in the
shape size parameters s1 and s2. It should be noted though
that the IOU-measure does not consider any difference in target
type, thus the measure could very well be close to one despite
the fact that the true target is rectangular and the estimated
target is elliptical, or vice versa.

The estimated target type is evaluate by considering the
sum of the Gaussian components’ weights w(j)

k for each type.
Assuming that there is only one rectangular target present, the
weights for the Gaussian components representing rectangular
targets should sum to one, and the weights for the components
representing elliptical targets should sum to zero.

VI. RESULTS

This section presents results from simulations and experi-
ments using the presented work.

A. Simulations

A number of different simulations were performed in order
to assess the estimation results of the extended target tracking
filter. Two simulated trajectories were used, one linear motion,
shown in Figure 6(a), and a combination of linear and curved
motion, shown in Figure 6(b).
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(a) Rectangular target, linear motion
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(b) Elliptical target, linear motion
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(c) Rectangular target, linear and curved motion
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(d) Elliptical target, linear and curved motion

Figure 5. Simulation results: the top row shows linear motion (Figure 6(a)), the bottom row linear and curved motion (Figure 6(b)). Each figure shows the
estimation error in x and y position, the IOU measure and the sum of the weights for each target type (black is rectangles, gray is ellipses).

1) Linear motion: In the first simulation a rectangularly
shaped extended target moves from right to left throught the
surveilance area. The orientation of the target is 0rad and the
length and width is s1 = 5m and s2 = 2.5m, respectively.
The estimation results are shown in Figure 5(a). A similar
simulation was performed using an elliptical extended target.
The motion is again from right to left, and the orientation
is 0rad. The lengths of the major and minor axes are s1 =
2.5m and s2 = 1.25m, respectively. The estimation results are
shown in Figure 5(b).

2) Linear and curved motion: In this simulation the motion
of the extended target was a combination of linear and curved
motion. A rectangular target with length and width s1 = 5m
and s2 = 2.5m was simulated first, the estimation results are
shown in Figure 5(c). In a similar simulation, an elliptical
target with lengths of the major and minor axes s1 = 2.5m
and s2 = 1.25m, respectively, was simulated. The estimation
results are shown in Figure 5(d).

3) Comments: Under linear motion, the rectangular target
is estimated with high accuracy, while the elliptical target is
slightly underestimated in size (s1 and s2 are underestimated).
Under linear and curvet motion the problem is slightly more
complicated for the rectangular target as it moves close to

the sensor, however the overall results are good. For the
elliptical target, the size is underestimated again. Estimation of
target type (rectangular or elliptical) is shown via the Gaussian
component weights in the bottom plots in each figure. As is
shown, the filter quickly converges to the correct target type.

B. Experiment

The suggested framework for extended target tracking was
tested in an experiment using laser range data. The data
set used contains 600 range scans acquired in an outdoor
environment, with five persons moving through the surveilance
area (at most three persons simultaneously). The first person
enters the surveillance area at time 22 and moves to the center
where he remains still for the remainder of the data. The
second person enters at time 38, and proceeds to move behind
the first person, both entering and exiting an occluded part of
the surveilance area. Remaining three persons enters and exits
the surveilance area at later times during the experiment. The
results from the experiment are shown in Figures 7 and 8.

Since the second person moves through parts of the
surveilance area that are occluded by the first person, the
results show target loss (i.e. cardinality error) at three time
steps. Using a variable probability of detection, this problem
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Figure 7. Experiment results, showing the estimated x and y position, as
well as the area of each extended target.
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Figure 8. Experiment results, showing the trajectories of each of the two
targets. A grayscale is used to highlight the different time steps, and for every
5:th time step the corresponding shape and size of each target is plotted.

can be overcome. However we have chosen to not include this,
since the space constraints do not allow a description of the
method used to compute the variable probability of detection.

As there is no ground truth, it is difficult to evaluate the
quality of the estimated extended target, including the shape
parameters φ, s1 and s2. In this paper we have chosen to
compute the area of each extended target, since this area
can be compared to a rough estimate of the area of a cross
section of the human torso, under the assumption that it
is elliptically shaped. Under the assumption that an average
person is roughly 50cm to 60cm wide (torso and arms) and
25cm to 30cm deep, the average area can be said to be some-
where between 0.1m2 and 0.15m2. Comparing these values
to the estimated areas (see Figure 7) show that the ellipses
representing the persons have estimated areas of resonable
size, with the exception of two instances in time between time
200 and time 300. These two times correspond to time when
two targets are spatially very close, and are thus merged into
just one target, producing a considerably larger target. The
person standing still shows a stable estimated area, the persons
that are moving throughout the whole experiment shows much
more changes in the estimated area.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method to compute predicted
measurements and corresponding innovation covariances when

rectangular and elliptical extended targets are measured by
laser range sensors. The method can easily be inserted to an
existing extended target tracking GM-PHD-filter, enabling effi-
cient estimation of the extended target’s location, orientation
and size, as well as estimation of the extended target type.

In future work, we plan to investigate the reasons behind
the underestimation of target size for elliptical targets. Fur-
thermore, the presented work needs to be integrated with
the variable probability of detection such that targets can be
tracked while they are occluded by other targets. The target
tracking framework also needs to be tested in experiments
with laser range data that contains measurements of both
rectangular and elliptical targets, in order to test the estimation
of target type further.
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