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Random Set Methods:
Estimation of Multiple Extended Objects

Karl Granström, Member, IEEE, Christian Lundquist,
Fredrik Gustafsson Fellow, IEEE, and Umut Orguner, Member, IEEE

Abstract—Random set based methods have provided a rigorous
Bayesian framework and have been used extensively in the last
decade for point object estimation. In this paper, we emphasize
that the same methodology offers an equally powerful approach
to estimation of so called extended objects, i.e., objects that
result in multiple detections on the sensor side. Building upon
the analogy between Bayesian state estimation of a single object
and random finite set estimation for multiple objects, we give a
tutorial on random set methods with an emphasis on multiple
extended object estimation. The capabilities are illustrated on
a simple yet insightful real life example with laser range data
containing several occlusions.

Index Terms—Random finite set, Probability Hypothesis Den-
sity, Extended Objects.

I. INTRODUCTION

In 2007, former Microsoft CEO Bill Gates predicted that
robotics would be the next hot research field, and indeed
robotics research has seen a lot of activity and effort in the
past decade. The world in which we live is becoming more
and more automated, evidenced by the numerous robots that
operate in air, on land, or in water.

One part of robotics research is multiple object estimation,
defined as the processing of detections, obtained from multiple
sources, in order to obtain and maintain estimates of the states
of the objects of interest. In robotics, this applies to among
other things both the multiple object tracking (MOT) problem,
and the mapping part of the simultaneous localization and
mapping (SLAM) problem. There is also the joint problem,
called simultaneous localization, mapping and moving object
tracking (SLAM-MOT). In SLAM-MOT the objective is to solve
the SLAM problem while simultaneously keeping track of
any moving objects. Note that in SLAM and SLAM-MOT the
localization part is of equal importance. However, mobile robot
localization falls outside the scope of this paper.

The word robot encompasses many different types of agents,
with varying degrees of autonomy. In this paper we will use as
a running example the scene depicted in Fig. 1, i.e., the robot
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Fig. 1. Urban scene with multiple moving objects. The robot (blue vehicle)
must keep track of all the moving objects (pedestrians, cars, bicycles) in order
to operate safely. Illustration by Per Thorneus.

is an autonomous vehicle working in a urban environment. The
robot’s surroundings contain stationary objects, such as houses
and trees, as well as moving objects, such as pedestrians,
bicycles, and other vehicles. In MOT, the objects of interest
are objects that are moving around in the vicinity of the robot.
In Fig. 1 this corresponds to the pedestrians, the cars and the
bicycle. In SLAM the objects of interest are stationary objects,
often called landmarks, which the robot uses in the mapping
and localization process. This corresponds to the buildings and
the small bushes in Fig. 1.

To estimate the states of these stationary and moving objects
means to estimate their locations, their speed and direction
of motion, and possibly also which shape and size they
have. For a robot working in an urban environment, having
such estimates is necessary, e.g., for path-planning, collision
avoidance, and classification of the objects into different types.

Both the MOT and the SLAM problem have received con-
siderable research attention over the past decades, see e.g., [1]
and [2] for MOT and SLAM respectively. With the advent of
the random set methods [3], where the objects are not seen
as individual objects, but as members of an object set, new
statistical tools appeared that allowed MOT [4]–[6], SLAM [7]
and SLAM-MOT [8] to be formulated as random set estimation
problems. The random set methods not only enable a rigorous
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Setup: A robot (blue rectangle) tracks moving objects (red rectangles) using a sensor with limited surveillance area (yellow circle segment).

FIELD OF VIEW
Narrow: With a narrow FOW the robot can essentially only see straight
ahead and only detect a single object.

Wide: If the FOW is wide the sensor can see to the sides as well, and
it becomes possible to detect multiple objects.

L
ow

Single point object: A single ob-
ject that generates at most a sin-
gle detection. This is sufficient for
certain applications, e.g., distance
keeping.

Multiple point objects: Multiple
objects may be detected, and any
object within the sensor’s range
may generate at most a single de-
tection.

H
ig

h

Single extended object: A single
object that may generate multiple
detections. Possible to estimate
the width of the leading vehicle,
in addition to the distance.

Multiple extended objects: Mul-
tiple objects may be detected, and
any object within the sensor’s RNG
may generate multiple detections.

generalization of the single object Bayes filter to multiple
objects, but also provide the tools and approximations that
are necessary to make implementations feasible.

In this paper we give a tutorial style overview of random set
methods for multiple object estimation, by making an analogy
between ideal single object estimation and multiple object
estimation. The emphasis in the paper is on estimation of
so called extended objects. Extended objects appeared in the
MOT literature as a generalization of the point object concept.
In extended object estimation the point object assumption
(i.e., at most one sensor detection per object) is relaxed, and
multiple sensor detections per object is allowed. For the sake
of simplicity, we will limit the scope of the paper to only cover
extended object tracking, however note that the presented
methods equally well can be applied to SLAM with landmarks
that are extended objects. A list of concepts that are central
to multiple extended object estimation is given in Table II.

In Section II we will give background and motivation to the
extended object estimation problem. The section is followed
by a series of sections which aim at explaining the random set
estimation problem. Beginning with the core and most ideal
problem of estimating the state of a single object in Section III,
the series is continued by explaining the assumptions and
models necessary when extending the problem to multiple
object estimation in Section IV, and finally ends by explaining
the random set estimation problem in Section V. In these
sections we would like to stress the similarity between the
ideal single object estimation and the random set estimation.
Computationally tractable filters are described in Section VI,
some practical examples are shown in Section VII and the
article is finalized with a summary in Section VIII.

II. BACKGROUND AND MOTIVATION

In order to estimate the states of these multiple objects,
the robot must be equipped with one or several exteroceptive
sensors that allow it to perceive the world, e.g., laser range
sensors, radar sensors, or cameras. To keep things simple, in
this paper we assume that a single sensor is used, and we
assume that this sensor is of a type similar to laser range
sensors and radar sensors. Note however that the material

TABLE II
MULTIPLE OBJECT ESTIMATION CONCEPTS

Kinematic state: The part of an object’s state that contains information
about the kinematics, e.g., position, velocity, acceleration, heading and
turn-rate.

Extension state: The part of an object’s state that contains information
about the spatial extension, e.g., shape, size and orientation.

Point object: An object that causes at most one detection per sensor
scan. A single detection per scan is sufficient to estimate the object’s
kinematic state. The name point object is derived from the fact that
the detection is a single point in the detection space.

Extended object: An object that may cause more than one detection
per sensor scan. Multiple detections per scan make it possible to
estimate both the object’s kinematic state and its extension state. The
name extended object is derived from this possibility to estimate the
extension state.

Random finite set: A set with a finite number of elements. Each element
is a random variable, and the number of elements is also a random
variable.

Probability Hypothesis Density (PHD): First order moment of a multiple
object pdf. The PHD is to an RFS as the expected value is to a random
variable.

PHD filter: Multiple object filter that propagates the object set’s PHD in
time.

CPHD filter: Multiple object filter that propagates the object set’s PHD in
time as well as the entire cardinality distribution. The CPHD filter’s
cardinality estimate has lower variance than the PHD filter’s.

Partition: A division of a set into non-empty subsets, called cells. The
union of all cells is equal to the original set. Partitioning of the set of
detections is important in multiple extended object estimation using
PHD or CPHD filters.

presented here easily can be generalized to other sensor types,
e.g., cameras.

The sensor has a field of view (FOW) and a range (RNG), that
together define the sensor’s surveillance area. Both the FOW
and RNG can be described further in terms of their respec-
tive resolution (RES). With time, technology development is
moving towards an increase in all these properties, i.e., wider
FOW, longer RNG, and higher RES.

Consider the FOW and its RES. Depending on whether the
FOW is narrow or wide, and whether the resolution is low or
high (relative to the size of the objects), four different kinds
of object estimation problems arise, as shown in Table I. At
this point it becomes necessary to distinguish between objects
that may cause only a single detection each, and objects that
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may cause multiple detections each. These types of objects
are called point objects and extended objects, respectively, see
Table II.

In the extended object case, depending on the type of sensor
used the multiple detections will either be spread across the
object’s surface (e.g., when an airborne radar is used to track
ground objects), or be spread along the edge of the object’s
shape (e.g., when laser is used to track vehicles and persons).
In extended object estimation it is generally not of interest to
estimate the locations of the points that cause the detections,
because these points usually change fast with varying sensor-
to-object geometry. Instead it is the principal extended object
as a whole, i.e., its position, shape, size and orientation, that
is of interest. Having estimates of the objects’ extensions in
addition to estimates of the kinematic states is useful for
different robotics applications, e.g.,

• Path-planning and collision avoidance. When a robot
moves it must plan its path such that it only traverses
open area, because trivially it cannot go from one room
to another by going through a wall. Further, in a crowded
scene it must pass by both stationary and moving objects
without hitting them. To succeed in both these tasks, it
is necessary to know not only the location of the objects,
but also their spatial extent.

• Classification of objects into different object types, e.g.,
car, bicycle or pedestrian in an urban environment. This
is needed, e.g., for the robot to be able to interact with
the objects in a correct manner.

Let us return to the sensor’s properties. The FOW and the
RNG of the sensor are what determine the sensor’s surveillance
area. Typically both the FOW and RNG are limited, and
thus the surveillance area is limited. Trivially, it cannot be
known a priori how many objects there are inside the sensors
surveillance area, and during the course of operation objects
might exit the surveillance area and new objects might enter
it. Objects that are inside the surveillance area may also be
invisible to the sensor due to occlusion from other objects,
and false detections of non existing objects may complicate
things further. Thus, the number of visible objects is both time-
varying and unknown.

An example of the multiple extended object scenario is
given in Fig. 2. The detections display a large degree of
structure, especially the L-shaped cluster caused by a car, and
it is therefore suitable to estimate the shape and size of the
objects, in addition to their positions. The sensor’s FOW is 180
degrees with a resolution of 0.5 degrees and the maximum
RNG is 13 meters, which gives a semi-circular surveillance
area. Existing objects would disappear if they move outside
the semi-circle, and new objects would appear along the edge
of the semi-circle.

In the next section we will overview Bayesian estimation
of a single and ideal object’s state, using a sequence of sensor
detections. The single object case will then be generalized to
multiple objects, and we will show how random set methods
can be used to derive a multiple object analog to single state
Bayesian estimation.
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Fig. 2. Laser range sensor detections (yellow dots) caused by a car, a bicycle
and a pedestrian. The sensor is located in the origin (blue square), object
estimates are shown in red.

III. BAYESIAN STATE ESTIMATION

To be able to estimate the state of multiple objects, one
must be able to estimate the state of a single object. In this
estimation problem, the single state, denoted xk, generates a
single detection, denoted zk in each discrete time step k. A
Bayesian state estimation algorithm is made up of two steps:
the time update and the measurement update.

A. Time update

The time update consists of predicting the motion that the
object performs in between detections. In the general case the
motion is not known, and therefore only simple assumptions
can be made about the type of motion that the object is
performing. To facilitate this a motion model of the form
xk+1 = f(xk,vk) can be used, where f( · ) is typically a
non-linear function. Random process noise vk is included to
handle uncertainties and imperfect modeling. Note that even
for the SLAM problem, where the landmark objects can be
assumed stationary, the time evolution of the objects’ states
must be modeled. In this case it is typically sufficient to model
the state as being (approximately) constant over time.

B. Measurement update

The measurement update consists of using the sensor
detections to update the object estimate, which requires a
measurement model zk = h(xk, ek), where h( · ) is typically
a non-linear algebraic function. A fundamental characteristic
here is that each detection is corrupted by noise ek, i.e., the
state of the object cannot be found by simply taking the inverse
of the measurement model xk = h−1(zk).

C. Bayesian recursion

In each time step the sensor gives a detection zk. Let zk be
all detections from time 1 to time k, i.e., zk = {zi}ki=1. The
objective of single object estimation is to use zk to estimate
the object state xk. This is illustrated in Fig. 3a.
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· · · p
(
xk

∣∣zk ) → Time update → p
(
xk+1

∣∣zk ) → Measurement update → p
(
xk+1

∣∣zk+1
)
· · ·

↑ ↑
Transition density Likelihood
p (xk+1|xk) p (zk+1|xk+1)

↑ ↑
Motion model Measurement model

xk+1 = f (xk,vk) zk+1 = h (xk+1, ek+1)

(1)

Because of the uncertainties involved (process and mea-
surement noise and unknown initial state) the knowledge
of the object’s state x is often described using probability
distributions px

(
xk

∣∣zk ). With the help of a motion model
f( · ) and a measurement model h( · ) the time evolution of
the distribution of the state x can be described in a recursive
Bayesian framework, as outlined in (1).

Propagation of the full distribution can sometimes be unnec-
essary complex from a computational perspective. A simpler
approach is to only propagate the first order moment of the
single object state, called the expected value,

· · · E
[
xk|k

] t.u.→ E
[
xk+1|k

] m.u.→ E
[
xk+1|k+1

]
· · ·

(2)
where m.u. and t.u. are abbreviations for measurement up-
date and time update. Propagating the expected value (2) is,
compared to a full Bayes recursion (1), both simpler and
computationally cheaper.

IV. MULTIPLE OBJECT STATE ESTIMATION

Multiple object estimation is a joint estimation problem that
consists of estimating the number of objects, and estimating
the state of each object. Just as in single object estimation, in
multiple object estimation all of the detections are corrupted by
noise. However, there are additional characteristics that further
complicate the estimation problem.

For each object the probability of detection is less than
one. In practice, this means that we cannot know for certain
whether or not an object caused any detection. There may also
be false alarms, also called clutter detections. Furthermore,
the detection origin is unknown: we do not know which
detections are clutter and which are caused by actual objects;
and we do not know which object caused which detection.
A final characteristic of multiple object estimation is that we
do not know how many objects there are inside the sensor’s
surveillance area.

Let Nx,k denote the unknown number of objects present at
time k, and let x

(i)
k denote the state of object i at time k. At

time k the set Xk of all present objects is given by

Xk =
{

x
(i)
k

}Nx,k

i=1
. (3)

Each sensor scan gives Nz,k detections z
(j)
k . Let the set of

detections at time k be denoted

Zk =
{

z
(j)
k

}Nz,k

j=1
, (4)

and let Zk be all sets of measurements from time 1 to time k,
i.e., Zk = {Zi}ki=1. The objective of multiple object tracking

is to estimate Xk given Zk, i.e., to determine how many
objects there are, and for the objects that are present, to
estimate the object states x

(i)
k . This is illustrated in Fig. 3b.

Just as in single object estimation, each individual estimate
needs to be both time updated and measurement updated. In
addition to this, classical approaches to MOT have included
data handling and data association. In the next two subsections
we will briefly review these two problems.

A. Data handling

Data handling means to handle the fact that the number
of objects in the sensor’s surveillance area changes over
time. This includes new targets appearing and old targets
disappearing, in MOT literature also called object birth and
object death. Approaches to handle birth and death include
M/N logic and the Score based approach, see e.g., [1].

B. Data association

Using multiple detections to estimate the states of multi-
ple objects requires an approach to the data association, or
correspondence, problem. Data association means to associate
each detection to one of the detection generating sources, i.e.,
either to an object or a clutter source. Correct data association
is very important, because an incorrect association solution can
result in disastrous estimation performance. In each time step,
each detection is assumed to be either clutter, or generated by
an object. For the detections that are generated by objects, a
decision has to be made as to which measurements belong to
already existing objects, and which measurements belong to
newly appeared objects. Note that if it is known that there can
be at most one object, cf. the single object cases in Table I,
the data association problem becomes somewhat easier.

In a multiple point object scenario at most one detection
can be caused by each source, since a point object by def-
inition may cause at most one detection. For multiple point
object estimation, solutions to the data association problem in
MOT literature include global nearest neighbor (GNN), joint
probabilistic data association (JPDA), and multiple hypothesis
tracking (MHT). A comprehensive overview of these methods
is given in [1]. In SLAM literature the joint compatibility
branch and bound (JCBB) algorithm can be found [9].

In contrast to point objects, an extended object by definition
may cause more than one detection, and thus in a multiple
extended target scenario at most one cell of detections can be
caused by each source. In this context a cell of detections is a
non-empty subset of the full set of detections. A partition of
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Fig. 3. The objects’ states x belong to a state space, and the detections z are generated in an observation space. (a) There is a one-to-one correspondence
between the detection and the state. (b) Generalization of the single object case where the detection-to-state correspondence is unknown. (c) The multiple
objects are treated as an RFS whose set members all belong to the same state space, and the detections are treated as an RFS whose set members all belong
to the same observation space. There is a one-to-one correspondence between the object set X and the detection set Z.

the set of detections is a set of cells, such that the union of the
cells is equal to the full set of detections. In the measurement
update each partition must have a likelihood that corresponds
to how probable the partition is.

Naturally there are multiple ways to form such partitions.
For Bayes optimality is it necessary to consider all possible
partitions, but from a practical perspective considering all
possible partitions is computationally intractable. Consider the
laser detections in Fig. 2: there are almost 1087 different ways
to partition the 80 detections. However, an absolute majority of
the possible partitions can be discarded on the basis of being
highly unlikely. One such example is a partition that deems
the small cluster around (x, y) = (−4, 2) and the elongated
cluster around (x, y) = (2, 7) to be from the same target. The
intuition here is that detections are from the same object if
they are clustered together, where the clusters may or may not
have a spatial structure.

Central here is that only the most likely partitions are
considered, while remaining partitions are discarded on the
basis of being too improbable. Note that care must also be
taken in ambiguous cases where a cluster of detections may
have been caused by a single object, or by multiple smaller
objects. One such example can be found in Fig. 2, where it
is not immediately obvious if the elongated detections around
(x, y) = (2, 7) were caused by one object, e.g., a bike, or by
two objects, e.g., two pedestrians. This ambiguity is handled
by letting the estimation algorithm consider both partitions,
with appropriate likelihoods for each partition. Algorithms
for limiting the number of partitions to the most likely ones,
without sacrificing estimation performance, are given in [10],
[11].

An alternative way to approach multiple object estimation
is to use random set methods [3], which relaxes the need for
solving the data association problem, and the need for data
handling. This is the topic of the next section.

V. MULTIPLE OBJECT BAYESIAN STATE ESTIMATION

In this section we will overview multiple object estimation
under random set models. A random finite set is defined as
follows [3].

Definition 1 (Random finite set (RFS)): A random variable
Υ that draws its instantiations Υ = Y from the hyperspace
Y of all finite subsets Y (the null set ∅ included) of some
underlying space Y0. �

While the definition may seem daunting at first, the reality
is that the RFS concept is quite intuitive. In MOT and SLAM,
the underlying space Y0 is typically a Euclidean vector space,
i.e., Y0 = Rny . In SLAM, this would mean that the landmarks’
states are vectors that typically define the landmarks’ positions,
and possibly also their orientations. In MOT, the moving
objects’ states are vectors that define the objects’ positions,
and their kinematic properties such as velocity, acceleration,
heading, and turn-rate. In case the objects are extended, the
state vectors also include any parameters that govern the shape,
size and orientation of the object’s extension.

If Y0 = Rny then the instantiations, or realizations, are

sets Yk =
{

y
(j)
k

}Ny,k

j=1
, where the set cardinality Ny,k is a

discrete random variable, and each set member y
(j)
k ∈ Y0 is

a random vector. Note here that Yk is without order, i.e.,{
y
(1)
k ,y

(2)
k

}
=
{

y
(2)
k ,y

(1)
k

}
. This observation may seem

trivial, however it is important to the multiple object filters
presented below because it disposes of the need for book-
keeping of the order of the object estimates.

Considering the characteristics of multiple object estima-
tion, the number of objects/detections, and each individual
object/detection, can all be modeled as random variables.
Thus, the RFS concept is suitable for modeling multiple object
estimation, both for MOT and for mapping in SLAM. In practice
this means that we see the set of objects (3) and the set of
detections (4) as RFS:s, and as stated in the previous section
the purpose is to estimate Xk given Zk. To this end, both a
time update and a measurement update is needed.

A. Time update

The RFS motion model captures the following:
1) The time evolution of objects that are already located in

the surveillance area, modeled by the RFS F (Xk). This
includes objects that move such that they are still located
in the surveillance area in the next time step, and it also
includes the disappearance of existing objects.
The former is typically achieved by assuming that all
objects move independently of each other, see e.g., [1],
and with the same type of motion model f( · ). However,
note that the motion parameters are estimated individually
for the objects, i.e., one velocity is estimated for each
object. Note also that the same type of motion models
can generally be used regardless of whether a moving
point object or a moving extended object is estimated.



6 IEEE ROBOTICS & AUTOMATION MAGAZINE, VOL. 21, NO. 2, JUNE 2014

The disappearance of objects is captured by a state
dependent probability of survival pS(x) which assigns a
non-zero probability to the event that an object with state
x will not be present in the next time step.

2) The appearance of new objects in the surveillance area.
This can either be an object that spawns from an already
existing object, modeled by the RFS S (Xk), or it could
be an entirely new object, modeled by the RFS Γk.

It should be noted that under the assumption of independent
motion it is not possible to model interactive motion between
multiple objects.

B. Measurement update

The RFS measurement model captures the following:
1) How many detections an object will generate, and how

each detection relates to the object’s state, modeled by the
RFS H (Xk). A typical choice is to model the number of
detections as Poisson distributed, with a state dependent
rate γ (xk), see e.g., [12]. Given the number of detections,
how the set of detections relates to the object’s state is
described with a measurement model h( · ).
Missed detection and occlusion by other objects is
captured by a state dependent probability of detection
pD (xk) which assigns a non-zero probability to the event
that an object with state xk causes no detection at all.

2) How many false detections there are, and how these are
distributed, modeled by the RFS Kk.

This is typically modeled under the assumption that the
objects generate detections independently of each other, and
that multiple detections from the same object are generated
independently of each other. For the extended object case,
different alternatives for the measurement model h( · ) exist,
ranging from the simpler to the more advanced.
• The simplest case is to assume that all objects’ exten-

sions are equal and constant over time. In this case the
measurement uncertainty represents both the effect of
the measurement noise, and the object’s extension. The
measurement model can be similar to the models used
for point objects, with the addition of multiple detections
per object, see e.g., [10]. Conditioned on the number of
detections, the detection set likelihood is the product of
the individual detection likelihoods.

• A straightforward way to model the object extension is
to assume a specific geometric shape, e.g., a rectangle
or an ellipse. A popular model for elliptically shaped
extended objects is the random matrix model [13]. This
model decomposes the object state xk into a random
vector xk that represents the kinematic state and a random
matrix Xk that represents the elliptical extension, abbre-
viated as xk = (xk, Xk). Assuming a linear Gaussian
measurement model zk = h(xk, ek) = Hxk + ek,
ek ∼ N (0, Xk), the measurement update is linear.

• A more general model can be obtained by giving the
shape a parametrization that allows for, under certain
conditions, an arbitrary shape, see e.g., [14]. Another
general alternative is to assume that there are reflection
points across the object’s surface, see e.g., [15] where

the reflection points act as point objects and generate the
detections. The shape of the object is then given by the
spatial structure of these reflection points. In this case
the reflection points are used as an intermediary in the
measurement model to describe the relation between the
detections and the object’s state.

C. Bayesian recursion

In Section III a single object Bayes recursion was in-
troduced. With the help of the random finite set concept
introduced above, the single object Bayes recursion can be
generalized to the multiple object case. This requires us to
model both the set of detections (4) and the set of objects (3)
as RFS:s. This is illustrated in Fig. 3c, where the objects are
members of the object set Xk, and the detections are members
of the detection set Zk. Comparing Fig. 3a and Fig. 3c, we
see that there is a one-to-one correspondence in both cases:
between the state xk and the detection zk, and between the
object set Xk and the detection set Zk.

Modeling the objects and detections as RFS:s is fundamental
to allowing us to cast multiple object estimation, in the pres-
ence of false detections and with uncertain detection origin,
in a Bayesian framework. In (5) a random set equivalent to
the single object Bayes recursion (1) is given. Similarly to
the single object case, both motion and measurement models
are needed. If we compare single object estimation, (1) and
Fig. 3a, to the RFS formulation of multiple object estimation,
(5) and Fig. 3c, we see that there are conceptual similarities
between the two. However, while the single object Bayes filter
is computationally tractable, the multiple object generalization
is typically not [3]. To alleviate the large computational
demands approximations are needed, and in the next section
we will review two approximations to the full multiple object
Bayes recursion.

VI. COMPUTATIONALLY TRACTABLE RFS FILTERS

In Section III-C propagating the expected value of the
object’s state (2) was proposed as a computationally cheap
alternative to the full Bayesian recursion (1). In this section
we will overview the multiple object equivalents to (2), i.e.,
we will show how computational tractability of (5) can be
achieved. The corresponding filters are abbreviated PHD and
CPHD filters.1

A. The PHD filter

The first order moment of a single object pdf is the expected
value, and a simplified version of the single object Bayes
recursion (1) is to propagate only the first order moment (2).

The multiple object equivalent to the expected value, i.e.,
the first order moment of a multiple object pdf, is called the
probability hypothesis density (PHD). The PHD is an intensity
function Dk|k (x) that is defined on single target states x ∈ X0

[3], and whose local maxima correspond to object locations. It

1MATLAB implementations of extended object PHD and CPHD filters are
freely available for research purposes. They can be acquired by contacting
the authors.
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· · · p
(
Xk

∣∣Zk
)
→ Time update → p

(
Xk+1

∣∣Zk
)
→ Measurement update → p

(
Xk+1

∣∣Zk+1
)
· · ·

↑ ↑
Set transition density Set likelihood
p (Xk+1|Xk) p (Zk+1|Xk+1)

↑ ↑
Set motion model Set measurement model

Xk+1 = F (Xk) ∪ S (Xk) ∪ Γk Zk+1 = H (Xk+1) ∪Kk+1

(5)

is uniquely determined by the property that, given any region
S in single target state space X0 (i.e., S ⊆ X0) the integral

NS
k|k =

∫
S

Dk|k (x) dx (6)

is the expected number of targets in S [3]. Especially, if S =
X0 is the entire state space then NX0

k|k is the expected total
number of targets [3]. The practical implications of the PHD
can be summarized briefly as follows.

1) Given an estimated PHD, a cardinality estimate N̂X0

k|k is
obtained by taking the integral of the PHD over the entire
state space.

2) Given a cardinality estimate, individual object estimates
can be acquired by taking the N̂X0

k|k largest local maxima
of the intensity function.

The so called PHD filter propagates the object set’s PHD in
time [3],

· · · Dk|k (x)
t.u.→ Dk+1|k (x)

m.u.→ Dk+1|k+1 (x) · · · (7)

and represents a computationally tractable approximation to
full multiple object Bayes filter (5). The PHD filter can be
interpreted as an RFS equivalent to propagating the expected
value of a state vector (2). In principle it is possible to derive
a second order multiple object filter, however such a filter is
considered unlikely to be computationally tractable [3].

Practical implementations of the PHD filter require approxi-
mations of the PHD intensity, either using Monte Carlo samples
(a.k.a. particle filters), or using a distribution mixture

Dk|k (x) =

Jk|k∑
j=1

w
(j)
k|kp

(
x ; ζ

(j)
k|k

)
, (8)

where ζ(j)k|k denotes the parameters for the jth component of
the distribution mixture. In MOT and SLAM applications, the
Gaussian distribution prevails as a popular choice for modeling
the object state distribution, as well as the transition density
and likelihood. This is the case also for PHD filters.

For the multiple point target case, a Gaussian mixture (GM)
PHD filter is given in [16]. In this filter, the object state is
a point that can be seen as representing the object’s center
of mass. For the case of multiple extended objects, GM-PHD
filters are given in [10], [17]. In the former, the object state
is a point that represents the object’s center of mass [10];
in the latter the object state also contains parameters for the
spatial extension of the object [17]. Under the random matrix
extended object model [13] a PHD filter for multiple extended
objects is given in [11].

A known drawback of the PHD filter is that its cardinality
estimate has high variance, a problem that is manifested e.g.,
when there are missed detections. The result is typically that
the cardinality is underestimated. The cause of the high vari-
ance is the approximation of the full cardinality distribution
with a Poisson distribution, which has a single parameter
corresponding to the mean. Because the Poisson distribution
has equal mean and variance, when the true cardinality is high,
the corresponding estimate is high and thus also has a high
variance.

To improve upon the PHD filter’s cardinality estimate, the
cardinalized probability hypothesis density (CPHD) filter was
introduced [3]. The CPHD filter is the topic of the next
subsection.

B. The CPHD filter

In addition to propagating the PHD in time (like the PHD
filter does), the CPHD filter also propagates the full cardinality
distribution Pk|k(n),

· · ·
{
Dk|k (x)
Pk|k (n)

t.u.→
{
Dk+1|k (x)
Pk+1|k (n)

m.u.→
{
Dk+1|k+1 (x)
Pk+1|k+1 (n)

· · ·

(9)

Just as in the PHD filter, in the CPHD filter the PHD intensity
must be approximated, either using Monte Carlo samples or
distribution mixtures. In addition, the cardinality distribution
is typically propagated as a truncated version of the full
distribution. In practice this means that the probability Pk|k(n)
of n targets is only computed for n ∈ [0, Nmax]. Here Nmax

must be chosen such that it is larger than the largest number
of objects that it is believed will appear in the surveillance
area at any one time.

Using a GM approximation for the PHD intensity, a CPHD
filter for point objects is given in [18]. An extended object
CPHD filter implementation is presented in [19].

VII. EXPERIMENTAL RESULTS

In this section we will illustrate object estimation with an
experiment in which pedestrians are tracked using a laser
range sensor. Modern laser range sensors have a wide FOW
with high resolution, the RNG varies from being on the order
of 10’s of meter and upwards, with high resolution. An
example of laser range data is given in Fig. 2. The laser range
sensor falls into the the multiple extended object category, see
Table I. Pedestrian tracking using a laser sensor is a suitable
introductory example of multiple extended object estimation
due to its relative simplicity.
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Fig. 4. Results from experiment. (a) Variable probability of detection. Behind the three extended target estimates (white ellipses) the probability of detection
is lower. Image created using the method from [11]. (b) Laser range data from four pedestrians. The edge of the surveillance area is shown as the black
semi-circle. The detections are shown as dots, where the colors denote different time steps. (c) Results for the data in (b). For clarity the extension estimate
is only plotted every fourth time step, the small dots show only the kinematic positions.

• As a model for the shape of a pedestrian an ellipse is
typically sufficient: in this particular example we will use
the random matrix model [13]. In Fig. 2 this shape model
has been applied to the pedestrian and bicycle detections.
However, note that an ellipsoidal model is not always
suitable when laser range sensors are used, e.g., not for
detections from the car. In Fig. 2 the car detections have
been applied to a rectangular extended object model [17].

• As a model for the motion of a pedestrian, a simple
constant velocity or constant acceleration model, see e.g.,
[20], is typically sufficient. When humans walk around
they may “turn on a dime,” and it is therefore necessary
to have a sufficiently large process noise covariance.

Like many other sensors the laser range sensor is subject
to the occlusion problem, i.e., the sensor cannot see an object
if it is located behind another object. In an environment with
several pedestrians, trivially some pedestrians will walk behind
others. As they do so they will be either fully occluded (not
detectable at all) or partially occluded (only parts of the
object is detectable). In order to correctly estimate the number
of pedestrians, and their respective locations, the estimation
filter must be able to handle the occlusion problem. In the
experiment presented here, occlusion is handled by model-
ing the probability of detection as non-homogeneous in the
surveillance area. In brief, the intuition is that an object that is
occluded cannot cause any detections, and thus the probability
of detection for that particular object is zero. Because the true
object locations are unknown, the object estimates are used
instead to compute an approximate probability of detection.
The idea is illustrated in Fig. 4a.

The experimental data, also used in [10], [11], is shown in
Fig. 4b. The sensor was mounted at waist height, and four
pedestrians walked around in the surveillance area, however
at most three pedestrians were present at any given time.
One of the pedestrians remained still around the position
(x, y) ≈ (0.4m, 6m) during most of the experiment, see
Fig. 4b. Another pedestrian then moved behind and in front
of the still pedestrian, causing multiple instances of both
full and partial occlusion. Thanks to the non-homogeneous
probability of detection, the filter can maintain estimates of
the objects even when they move through occluded parts of
the surveillance area.

The pedestrian estimates are shown in Fig. 4c. For this
data there is unfortunately no ground truth available that the
estimates can be compared to. However, visual inspection of
the estimates in Fig. 4c, and comparison to the data in Fig. 4b,
shows that the results are good. The pedestrian that repeatedly
moves through an occluded area can be tracked also during
the occlusions. The estimated extension ellipses are a good
approximation of the size of a person measured at waist height.

Comparisons of the estimated and true number of targets
can be found in [10], [11]. The results show that the estimated
number of targets is more robust against errors when the size
and shape of the pedestrians is estimated, compared to when
the shape and size is assumed constant.

VIII. SUMMARY

Multiple object estimation is a well established research
area which recently has met a considerable interest in safety
and security applications, as for example the urban situation
awareness problem illustrated in Fig. 1. The first generation of
vehicles with situation awareness had a low resolution radar,
the case in the upper left corner of Table I, which is sufficient
for adaptive cruise controllers. The second generation have
higher resolution, corresponding to the upper right corner
in Table I, which is used for collision avoidance systems.
To get fully automated vehicles, as have been demonstrated
in, e.g., DARPA’s grand challenges, the laser range sensor is
instrumental. Its high resolution and field of view is illustrated
in the lower right corner of Table I. The main difference is
that the vehicle now gets plenty of detections from each object.
Fig. 2 shows a snapshot of real laser range data, where suitable
extension models have been fitted to the data caused by the car,
the bike and the pedestrian, respectively. To find these shapes,
and to track them over time, is the goal in multiple extended
object estimation. This research field has evolved over time
along the following main thrusts:

1) Bayesian state estimation for single point objects
(Fig. 3a). This includes Kalman filter approaches, as well
as filter banks and particle filters, yielding a Gaussian
mixture or particle representation of the state probability
density function. The Bayesian filter has a very simple
structure, illustrated in (1).

2) Bayesian state estimation for single extended objects.
Using parametric extension models such as ellipses or
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rectangles, the extension parameters can be augmented
to the state vector, and the problem is recast to 1 above.

3) Bayesian state estimation for multiple point object track-
ing (Fig. 3b). This gives a combinatorial explosion in
complexity due to the association of detections to objects
and clutter as outliers. For that reason, suboptimal track
handling algorithms have been developed to again recast
the problem to 1 above.

4) Bayesian estimation of the PHD for multiple extended
objects. The PHD filter is a mathematically beautiful
approach, originally developed for multiple point object
estimation, and later generalized to extended objects. The
filter in (5) has the same simple structure as in (1).

The PHD is a representation of object existence probability.
It should not be confused with the state’s density function,
though it has the same function form, and the same numerical
representations with particles or Gaussian mixtures have been
proposed in literature.

Fig. 4 shows an example where ellipse models are fitted
to each object. An additional benefit with having extended
objects is that occlusion can be modeled in a direct and
natural way. Ultimately, such filters should be able to give
very accurate situational awareness including both stationary
and moving objects and their extensions in a scenario such as
in Fig. 1.
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