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Abstract

This paper introduces vision based loop closure
detection in Simultaneous Localisation And
Mapping (SLAM) using Tree of Words. The
loop closure performance in a complex urban
environment is examined and an additional fea-
ture is suggested for safer matching. A SLAM
ground experiment in an urban area is per-
formed using Tree of Words, a delayed state in-
formation filter and planar laser scans for rela-
tive pose estimation. Results show that a good
map estimation using our vision based loop clo-
sure detection can be obtained in near real, yet
constant, time. It is shown that an odome-
try supported recall rate of almost 70% can be
obtained with a false detection rate of about
0.01%.

1 Introduction

The Simultaneous Localisation And Mapping (SLAM)
problem is one of the most central in robotics research
[Durrant-Whyte and Bailey, 2006; Bailey and Durrant-
Whyte, 2006]. It asks if a mobile robot, put in an
unknown location, can incrementally build a consistent
map of the environment and simultaneously determine
its location within this map. A general solution is re-
quired to enable truly autonomous robots.

In SLAM, the ability to detect that a previously
mapped area is being revisited, a so called loop closure,
is crucial, since it enables an adjustment of the environ-
ment mapped after the area was last visited. A loop clo-
sure is usually detected either by identifying a previously
specified landmark [Bailey, 2001; Davison et al., 2004;
Nieto et al., 2005; Ramos et al., 2007b] or by acknowl-
edging the similarity between two sceneries [Gutmann
and Konolige, 1999; Ho and Newman, 2005]. In this
paper we use the latter, detecting loop closures using vi-
sion based scene similarity detection. Since the images
are treated as a scenery, two images must be taken from

the same area facing the same way for a loop closure to
be detected.

Tree of Words (ToW) was first proposed by Nistér and
Stewénius [Nistér and Stewénius, 2006] as a way of find-
ing the closest match of an image in a large database. We
propose using Tree of Words for loop closure detection
in a SLAM algorithm.

Tree of Words was introduced as a hierarchical ap-
proach to Bag of Words [Sivic and Zisserman, 2003],
which suggests how an image can be represented by
predefined features for fast database querie. The im-
age is simply compressed into a vector of the prede-
fined features, or words, it contains. Bag of Words
compares images by matching clusters of words from
a small vocabulary, i.e. set of predefined words. Tree
of Words on the other hand uses a larger vocabulary
and no clustering. The latter showed promising results
and had significant speed advantages, making it appro-
priate for loop closure detection in a dense urban en-
vironment. Bag of Words has been used in numerous
SLAM implementations [Cummins and Newman, 2008;
Newman et al., 2006; Ho and Newman, 2005; Angeli et
al., 2008]. In these experiments, loop closure detection
is performed without exploiting the estimated vehicle lo-
cation.

After a loop closure has been detected, the relative
difference in position and heading is calculated by align-
ing laser scans of the surroundings, acquired where the
images were taken. Nieto et al have studied laser based
SLAM using Iterative Closest Point (ICP) for scan align-
ment [Nieto et al., 2007]; Ramos et al suggest align-
ing the scans with Conditional Random Fields (CRF)
[Ramos et al., 2007a]. In ICP a mean square cost func-
tion is minimized to align the scans, while CRF estimates
the conditional probability of the joint association of the
scans. We use CRF to get an initial alignment followed
by ICP to adjust the result. The alignment cannot be
performed by ICP exclusively, since the cost function has
many local minima resulting in misalignments.



2 SLAM

2.1 Filter Options

Slighly simplified, there are two main approaches to a
SLAM solution. The first approach is landmark based
SLAM where the map consists of landmarks such as trees
and houses. The state vector maintains the robot state
and each landmark’s position. Consequently, the dimen-
sionality of the state vector grows with the number of
landmarks being observed. Loop closures are detected
by correctly associating a currently observable landmark
to a landmark previously mapped at an earlier stage of
the experiment.

The second approach is trajectory based SLAM where
the state vector consists of the current vehicle state and
past vehicle states, called a delayed state vector. Each
vehicle state is associated to a measurement of the spa-
tial appearence of the surrounding area. Loop closures
are detected by associating the spatial appearance of the
current surroundings to a previous one. After a loop clo-
sure has been detected, the estimated trajectory is ad-
justed. Note that no map features are included in the
state vector. Instead the environment is represented by
the measurements associated to each pose.

In landmark based SLAM two solutions stand out; the
Extended Kalman Filter solution, called EKF-SLAM,
and the particle filter based solution, called FastSLAM
[Montemerlo et al., 2002]. Both have been used in nu-
merous experiments and have been proven to work both
in- and outdoors. In an urban environment maintaining
a landmark based solution is challenging due to the com-
plexity of the environment. The number of landmarks
grows rapidly and the computations scales as the square
of the number of landmarks for EKF-SLAM [Durrant-
Whyte and Bailey, 2006].

Eustice et al [Walter et al., 2007; Eustice et al.,
2006] have examined delayed state filters for view-based
SLAM. They show that the information matrix is exactly
sparse if the state vector is in delayed state format. This
results in constant execution time for time and measure-
ment updates, i.e. an upscaling of the experiment does
not result in a slower filter. The filter is called an Ex-
actly Sparse Delayed-state Filter (ESDF) and is the fil-
ter used in this paper. Exactly sparse refers to the fact
that the vast majority of the elements in the informa-
tion matrix are exactly zero. Other information filters,
such as the Sparse Extended Information Filter (SEIF)
[Thrun et al., 2005], approximate small elements in the
information matrix as zero, resulting in a sparse matrix.
ESDF incurrs no sparse approximation errors, produc-
ing results that can be compared to the full covariance
matrix solution. ESDF has previously been used in out-
door SLAM by Newman et al [Cole and Newman, 2006;
Newman et al., 2006].

A different approach to large scale SLAM is using
submaps [Estrada et al., 2005; Guivant and Nebot, 2002;
Chong and Kleeman, 1999]. Using submaps in the AT-
LAS framework proposed by Bosse has been shown to
work well in a large scale urban environment [Bosse and
Roberts, 2007].

2.2 Exactly Sparse Delayed-state Filter

ESDF utilises a delayed state vector containing a history
of past vehicle poses (positions and headings).

The vehicle pose vector is

x(tk) =





x(tk)
y(tk)
φ(tk)



 (1)

where x(tk) and y(tk) are the vehicle’s position in a two
dimensional plane, and φ(tk) is its heading in the same
plane. Vehicle pose uncertainty is represented by the
covariance matrix

P(tk) =





σxx(tk) σxy(tk) σxφ(tk)
σyx(tk) σyy(tk) σyφ(tk)
σφx(tk) σφy(tk) σφφ(tk)



 . (2)

The current delayed state vector X(tk) and its associ-
ated covariance matrix P(tk) have the following format

X(tk) =

[

xt(tk)
xv(tk)

]

,

P(tk) =

[

Ptt(tk) Ptv(tk)
Pvt(tk) Pvv(tk)

]

,

where xt(tk) is the history of past vehicle poses aug-
mented at times t0 to tN , [xt0(tk) . . . xtN

(tk)]T , and
xv(tk) is the current vehicle pose. All vehicle poses and
uncertainties, past and current, have the format given
by (1) and (2).

Prediction only introduces connections between the
current pose and the previous pose, producing an in-
formation matrix with elements along a tri-diagonal,

Λ(tk) =









Λt0t0
(tk) Λt0t1

(tk)
Λt1t0

(tk) Λt1t1
(tk) Λt1t2

(tk)
Λt2t1

(tk) Λt2t2
(tk) Λt2t3

(tk)
. . .

. . .
. . .









.

Non-tri-diagonal elements are induced by loop closures.

For a thorough description of ESDF filter procedures
such as prediction with and without state vector aug-
mentation, observation, measurement update and state
vector recovery, see Callmer and Granström [Callmer
and Granström, 2008].



Figure 1: Vehicle used in the experiments.

2.3 Vehicle Model

The utility vehicle, Fig. 1, used for data acquisition
is fitted with a wheel encoder that measures vehicle
speed and an inertial measurement unit (IMU) that mea-
sures turn rates. A turn rate vehicle model was used
in the experiments. It has two input signals u(tk) =
[u1(tk) u2(tk)]T , corresponding to speed [m/s] and turn-
rate [rad/s], respectively. The coordinate system for this
model is centered at the laser, which is attached to the
front of the car. The model equations are

xv(tk+1) =





xv(tk+1)
yv(tk+1)
φv(tk+1)



 = f(xv(tk),u(tk+1))

=





xv(tk)
yv(tk)
φv(tk)



 + TsB

[

u1(tk+1)
u2(tk+1)

]

,

B =





cos(φv(tk)) −h cos(φv(tk)) − T1

sin(φv(tk)) −h sin(φv(tk)) + T2

0 1



 ,

T1 = a sin(φv(tk)) + b cos(φv(tk)),

T2 = a cos(φv(tk)) − b sin(φv(tk)),

where a, b and h are vehicle specific parameters explain-
ing the position of the laser sensor, and Ts is the sam-
pling time.

3 Tree of Words

To classify an image using ToW, feature descriptors are
first extracted from the image using the feature extractor
SURF [Bay et al., 2006]. Each descriptor is compared to
a large number of predefined descriptor vectors, called
words, using a hierarchical tree search to find its nearest
match. If descriptor a is classified as word m, the image
is said to contain word m, no matter exactly how well
a and m matches. The image is thus compressed into
a list of the words it contains. This list can be readily
stored and compared to a database of classified images.

In a SLAM solution, this enables a fast way to compare
a new scene to a large number of other scenes saved in
the experiment, in order to detect loop closures.

3.1 Building a Vocabulary Tree

The vocabulary is built using a large number of feature
descriptors, extracted from an image database indepen-
dent of the future SLAM experiments. These descriptors
are clustered into a tree structure using k-means cluster-
ing [Hartigan and Wong, 1979]. Each leaf in the tree
represent a word.

The rootnode uses all descriptor vectors to compute
k clusters. Each cluster, described by its cluster cen-
tre vector, is represented in the tree as a node. These
clusters in turn forms k new subclusters, using the de-
scriptors assigned to the cluster. Subsequently a tree of
arbitrary depth n can be formed.

In our SLAM experiments a tree with n = 5 and k =
10 is used. This results in a vocabulary of 100000 words.

3.2 Descriptor Classification

A descriptor vector is classified using the vocabulary
tree. For each level of the tree, the descriptor is com-
pared to the k child nodes’ cluster vectors using angular
comparison. The descriptor vector is eventually classi-
fied as its most similar leaf. Intuitively, ignoring a near-
est neighbours search such as Depth First [Friedman et
al., 1977] or Best Bin First [Beis and Lowe, 1997] should
make classification more uncertain for a larger tree since
descriptor noice would cause missclassifications, but in
[Nistér and Stewénius, 2006] it was shown that a larger
tree only improves classification.

After all descriptors of an image have been classified
as words, the image is described as a list of these words,
called a word vector.

3.3 Add Image to the Database

A new image is added to the database by simply con-
verting it into a word vector which is saved.

3.4 Compare Image to the Database

An image is compared to a database of classified images
by converting it into a word vector. This word vector
is compared to the stored vectors using a weighted com-
parison called scoring. In our SLAM experiments, this
comparison is limited to a smaller set of likely candi-
dates, see Section 3.6.

Each word in the vocabulary tree has been assigned a
significance known as its weight wi. Weighing using In-
verse Document Frequency (IDF) [Jones, 1972] is defined
as

wi = ln
N

Ni

, (4)

where N is the number of images in the database and
Ni is the number of images in which the word has oc-
cured. A common word is given a low weight and an
unusual word a high weight. The elements of the query



and database vectors q and d are

qi = niwi, (5a)

di = miwi, (5b)

where ni and mi are the number of times the word i
has occurred in the query image and database image,
respectively.

The scoring of a database image is defined as

s(q, d) =

∥

∥

∥

∥

q

‖q‖
−

d

‖d‖

∥

∥

∥

∥

= ‖q − d‖ (6)

under some norm. According to Nistér and Stewénius
[Nistér and Stewénius, 2006], scoring using the L1 norm
consequently gives a slightly better result than the L2

norm, but the latter was chosen for loop closure detection
because it is computationaly cheaper.

For the L2 norm, (6) can be rewritten as a scalar prod-
uct according to

‖q − d‖
2

2
= 2 − 2 (qT d). (7)

For simplicity, L2 scoring is implemented as

sL2
(q, d) = qT d. (8)

In this case sL2
(q, d) ∈ [0, 1] with 1 being the score for

identical match.

3.5 Tree of Words with Spatial
Consistency

For SLAM experiments, Tree of Words has too many
false positives when used for loop closure detection. The
problem is caused by the compression of an image into
just a list of words. Two completely dissimilar scenes
can still be similar in this representation since there is
no information describing how the features relate to each
other. We suggest a way to save a simple representation
of the image’s spatial relations for safer matching.

The feature extractor provides not only the descrip-
tors, but also the center of the regions in the image where
the features were located. In the image, the region where
descriptor b was extracted, is the region nearest to the
region where descriptor a was extracted. This makes de-
scriptor b the nearest neighbour of a. Note that a is not
necessarily the nearest neighbour of b. a and b are there-
after classified as words m and n, and n is saved as m’s
nearest neighbour. Should word m appear more than
once, the distances to the nearest neighbours are com-
pared and the closest neighbour is chosen. Every image
is now compressed into two vectors; d containing the list
of words and dnn containing the nearest neighbour of
each one of these words.

Scoring finds the possible loop closure matches dm

and spatial relations are used to confirm them. dm

nn
is

compared to qnn to get a list of the common words. For
these words, the nearest neighbour of each word is com-
pared and the ratio of correct neighbours is computed
according to (9).

Nsame nn

Ncommon

= ǫ, (9)

where Nsame nn is the number of common words with the
same nearest neighbour and Ncommon is the number of
common words. If ǫ is above a certain threshold, the
image is considered to be a match. This spatial consis-
tency (SC) representation is only a backup system for
the scoring, but has shown to be efficient.

3.6 Tree of Words in SLAM

Tree of Words always finds a best match, even if there is
no image in the database that is actually similar to the
query image. In most cases, like an image search on the
Internet, getting a dissimilar best match is no disaster.
In a SLAM experiment, an incorrect match used as a
loop closure can destroy the entire estimation. To avoid
this, only a match with a score above a certain threshold
and a spatial consistency ratio above another threshold
will be considered a loop closure.

In our SLAM experiment using an ESDF, every image
acquired is processed according to Algorithm 1.

Algorithm 1 Image SLAM: Closing the Loop

1: Classify new image as a list of words
2: Find set of Loop Closure candidates.
3: if Loop Closure candidates found then

4: Compare image to loop closure candidates.
5: if Image match/es found with score above thresh-

old then

6: Check match/es for spatial consistency.
7: if Image match/es SC ratio is above threshold

then

8: Calculate relative pose
9: Update filter

10: else

11: Ignore image match.
12: end if

13: end if

14: end if

15: Add image to database

Before ToW can be used in SLAM experiments, a tree
must be prepared. The necessary size of the tree de-
pends on the environment in which future experiments
will take place. For an urban experiment, a tree with
100000 words produces acceptable results. In an envi-
ronment where all features look more or less the same,
like an underwater environment, a much larger tree is



needed. Offline experiments on images from the cho-
sen environment, can be used for performace evaluation.
The size of the tree will, besides performance, also effect
execution time and memory requirements. The weight
of each word can now also be calculated. Thereafter,
threshold values for score and spatial consistency ratio
are determined empirically.

Loop Closure Candidate Selection

Loop closure candidates are obtained utilising the known
estimated covariance of the current vehicle pose, com-
puted using the Mahalanobis distance. The 50 last poses
are excluded since they are too close to be possible loop
closures, indicated by the ellipse in Fig. 2.
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Figure 2: Loop closure candidates, indicated by the el-
lipse. The 50 last augmented states are excluded.

Loop closure candidates are not primarily selected to
reduce computational time. Execution time for image
comparison under the L2 norm is almost independent of
the number of loop closure candidates. Comparing an
image to a database of 5000 images takes roughly 20%
longer than comparing it to a database of 100 images –
0.30 sec compared to 0.25 sec for some example images.
Instead, candidates are selected to make the loop closure
comparison consistent with the filter estimation. It is un-
necessary to compare the scene of the current pose with
all other images acquired during the experiment, since
the filter estimate can provide a set of likely candidates.
Ignoring the estimated pose and covariance, results in an
experiment where the filter is considered reliable for map
building but not for loop closure candidate selection.

4 Experimental Results

4.1 Loop Closure Performance

Loop closing capability of Tree of Words with different
thresholds for scoring and spatial consistency ratio, was

examined in ground experiments. An urban data set al-
most 2 kilometers in length with a total of about 155
loop closures was used. A new image was acquired every
1.5 m or 15◦ turn. The experiments were performed in
conjunction with an ESDF, estimating the vehicle trajec-
tory and its uncertainty. Loop closure candidates were
chosen as in Sec. 3.6.

A total of 43000 loop closure candidates were selected
throughout the experiment. Of these, about 42000 were
false candidates.

Using the detected loop closures in filter updates,
changes the filter’s estimated trajectory and its uncer-
tainty. This in turn changes the loop closure candi-
dates selected for comparison. To compare the differ-
ent threshold settings fairly, the loop closure detections
were not used to update the filter. The loop closure can-
didates were therefore constantly chosen by using only
the odometry induced trajectory and its estimated un-
certainty.

The loop closure performance was evaluated by the
charateristics true positive rate and false positive rate.
There are different ways to define the true positive rate
and false positive rate. Here, true positive rate is de-
fined as the number of detected loop closures divided by
the total number of loop closures. False positive rate is
defined as the number of incorrect loop closures divided
by the total number of non matching data pairs.

A receiver operating characteristic curve (ROC) dis-
plays the relationship between the two characteristics
of a classifier, true positive (detection) rate versus false
positive (false alarm) rate, as the thresholds for detec-
tion are changed. For any probability of false positive,
as high as possible probability of true positive is wanted.

Loop closure performance without SC

The score threshold is varied from 0.2 to 0.6. The per-
formance is presented as a ROC curve in Fig. 3. It shows
that false positives can be eliminated at the price of fewer
detected loop closures, by raising the threshold. A de-
tection rate of about 70% is achieved with a false alarm
rate of 0.08%.

Loop closure performance with SC

The introduction of spatial consistency is intended to
reduce the false positive ratio while keeping the detected
loop closure ratio high. An SC ratio threshold is selected
and the score threshold is varied to see how SC affects
the ROC curve.

Four SC ratio thresholds are selected; 0, 0.1, 0.2 and
0.25. For these, the score threshold is varied from 0.2 to
0.3. The SC ratio threshold 0 is equal to using no SC
and is included for comparison clarity.

The results can be studied in Fig. 4. The solid line
is scoring without using SC ratio. The pale solid line
has a fixed SC ratio threshold of 0.1 and a varying score
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Figure 3: Loop closure performance of ToW without SC.

threshold. The dash-dotted line has a fixed SC ratio
threshold of 0.20 . Finally, the dashed line has a fixed
SC ratio threshold of 0.25 with a varying SC ratio.
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Figure 4: Loop closure performance of ToW with fixed
SC ratio and varying score.

It is clear that a combination of thresholds for score
and spatial consistency enables a lower false positive ra-
tio with a higher detected loop closure ratio, than using
just a threshold for score. For example, a combination
of a SC ratio threshold of 0.1 and a score threshold of
0.3 results in a false positive ratio of 0.01% while still
detecting almost 70% of the loop closures. Without the
SC ratio threshold, the false positive ratio is almost 10
times higher.

4.2 SLAM ground experiments

Tree of Words is used in SLAM ground experiments to
detect loop closures using images from a forward facing
camera. The filter used in the experiment is an ESDF
and the relative pose is estimated by aligning laser scans
of the surroundings using CRF followed by ICP. The
usage of a forward facing camera requires the vehicle
to revisit an area from the same directions in order to
detect a loop closure. Multiple cameras facing different
directions could be a solution to that problem.

The urban dataset constitutes of a short loop, ending
with a few loop closures. A score threshold of 0.2 and
a SC ratio of 0.2 is used to keep the number of false
positives low.

A total of 613 poses are augmented into the state vec-
tor and three loop closures are detected. The experiment
takes 14 min, or 1.3 sec per pose. About half the execu-
tion time is spent aligning laser scans after the detected
loop closures.

The estimated trajectory compared to GPS ground
truth and dead reckoning can be studied in Fig. 5. The
estimated trajectory is good since the loop closure is
connecting the end of the data set with the beginning.

The forward laser scans are plotted on each estimated
pose, resulting in a laser map. This laser map is overlaid
on an aerial photograph of the experiment area, to il-
lustrate the correspondance between the estimated map
and the real environment. This can be studied in Fig. 6.
It shows how well the filter has estimated the vehicle tra-
jectory compared to the true environment. Three loop
closures were discovered and the quality of the align-
ments makes the end result quite good.
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Figure 5: Comparison of dead reckoning and estimated
trajectory. The ring marks the starting point, stars mark
end points.



Figure 6: Laser map overlaid on aerial photograph.

5 Conclusions

Tree of Words with Spatial Consistency has been shown
to be a simple and fast, yet reliable way to detect loop
closures in an urban environment. The introduction of
Spatial Consistency has shown promising results, en-
abling a significantly lower false positive ratio for a given
true positive rate. This is achieved with a negligible in-
crease in computational complexity. The performance
has been evaluated and the results have been used in a
SLAM experiment in a complex urban area. The loop
closures detected resulted in a good estimation of the
trajectory.
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