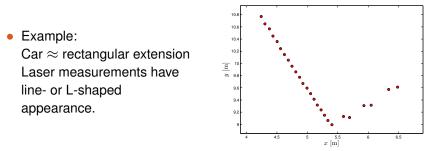
On the Use of Multiple Measurement Models for Extended Target Tracking

Karl Granström, Christian Lundquist

Division of Automatic Control Department of Electrical Engineering Linköping University, Sweden

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013


Introduction

- Measurement modeling is important for estimation performance, for both position and extension (size, shape).
- Includes how extension parameters relate to multiple meas

Introduction

- Measurement modeling is important for estimation performance, for both position and extension (size, shape).
- Includes how extension parameters relate to multiple meas
- The appearance of the measurements is important

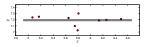
Both extension and appearance can change over time.

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

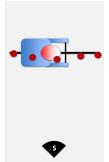
- Most extended targets have constant extensions (orientation may change over time).
- We consider constant extension and time changing appearance, especially abrupt changes.
- Observability of state variables may change with appearance.

- Most extended targets have constant extensions (orientation may change over time).
- We consider constant extension and time changing appearance, especially abrupt changes.
- Observability of state variables may change with appearance.

• Example used in paper:

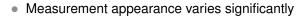

Bicycles measured by a laser mounted at pedal height

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013



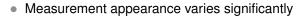
Example: bicycle measured by a laser

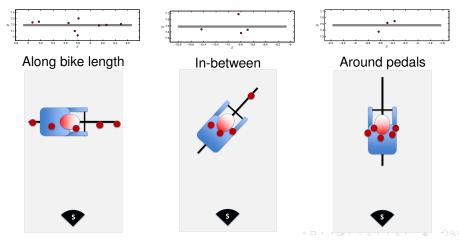
Measurement appearance varies significantly


Along bike length

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

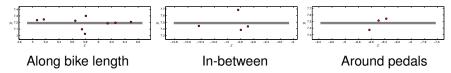
Example: bicycle measured by a laser





K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

Example: bicycle measured by a laser



K. Granström, C. Lundquist

On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

· Measurement appearance varies significantly

- Two "simple" cases can be identified,
 - 1. line shaped measurements,
 - 2. point clusters,

and ambiguous cases in-between the two.

• The measurement model must handle all possible cases.

5(17)

- 1. General model for many different shapes/appearances.
 - Most general
 - Can become computationally complex

- 1. General model for many different shapes/appearances.
 - Most general
 - Can become computationally complex
- 2. Assume geometric shape: bike pprox line with constant length
 - Must distinguish between appearance modes

- 1. General model for many different shapes/appearances.
 - Most general
 - Can become computationally complex
- 2. Assume geometric shape: bike pprox line with constant length
 - Must distinguish between appearance modes
- 3. Point model, i.e. no shape. Estimate only bike's kinematics
 - Simple, low complexity, applicable to all appearance modes
 - Simplistic in terms of shape

6(17)

- 1. General model for many different shapes/appearances.
 - Most general
 - Can become computationally complex
- 2. Assume geometric shape: bike pprox line with constant length
 - Must distinguish between appearance modes
- 3. Point model, i.e. no shape. Estimate only bike's kinematics
 - Simple, low complexity, applicable to all appearance modes
 - Simplistic in terms of shape

- · More information if bike modeled as line, not point
- Heading/orientation and length not observable from point meas
- Observability changes with measurement appearance, and appearance changes with sensor to target geometry.

- · More information if bike modeled as line, not point
- Heading/orientation and length not observable from point meas
- Observability changes with measurement appearance, and appearance changes with sensor to target geometry.
- Measurement modeling must adapt to this.
- Two possible options:
 - 1. Single model with "hard" appearance mode decision.
 - 2. Multiple models in a MM filter, i.e. "soft" decision.

- · More information if bike modeled as line, not point
- Heading/orientation and length not observable from point meas
- Observability changes with measurement appearance, and appearance changes with sensor to target geometry.
- Measurement modeling must adapt to this.
- Two possible options:
 - 1. Single model with "hard" appearance mode decision.
 - 2. Multiple models in a MM filter, i.e. "soft" decision.

MM-ET-PHD

Gaussian Mixture Multi Model Extended Target PHD filter,

$$D_{k|k}\left(\xi\right) = \sum_{j=1}^{J_{k|k}(o)} w_{k|k}^{(j)}\left(o\right) \mathcal{N}\left(\mathbf{x} \; ; \; m_{k|k}^{(j)}\left(o\right) \; , \; P_{k|k}^{(j)}\left(o\right)\right)$$

- Extended target state ξ_k = (x_k, o_k) is combination of kinematic state x_k and mode o_k.
 - Two motion modes: CT and CV
 - Two measurement modes: P and L

Four modes in total: CTP, CVP, CTL, CVL

Details in the paper.

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

K. Granström, C. Lundquist

On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

• Transition density describes time evolution of target,

$$p(\xi_{k+1}|\xi_k) = p(\mathbf{x}_{k+1}|o_{k+1},\mathbf{x}_k) p(o_{k+1}|\mathbf{x}_k,o_k)$$

Transition density describes time evolution of target,

$$p(\xi_{k+1}|\xi_k) = p(\mathbf{x}_{k+1}|o_{k+1},\mathbf{x}_k) p(o_{k+1}|\mathbf{x}_k,o_k)$$

• Typical assumption: Mode transition independent of x_k,

$$p\left(o_{k+1} | \mathbf{x}_k, o_k\right) = p\left(o_{k+1} | o_k\right)$$

• Assumption valid for motion modes.

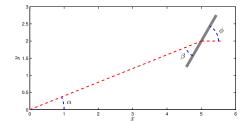
Transition density describes time evolution of target,

$$p(\xi_{k+1}|\xi_k) = p(\mathbf{x}_{k+1}|o_{k+1},\mathbf{x}_k) p(o_{k+1}|\mathbf{x}_k,o_k)$$

• Typical assumption: Mode transition independent of x_k,

$$p\left(o_{k+1} | \mathbf{x}_k, o_k\right) = p\left(o_{k+1} | o_k\right)$$

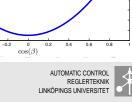
- Assumption valid for motion modes.
- However, measurement modes typically depend on the sensor to target geometry, i.e. on x_k.

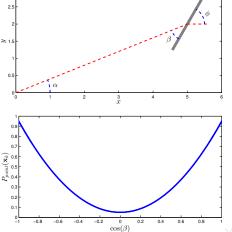


Measurement mode transitions

- *α* is angle to center point
- ϕ is heading/orientation
- $\beta = \phi \alpha$
- If $\cos(\beta) \approx \pm 1$ point mode is more likely

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013




10(17)

Measurement mode transitions

- *α* is angle to center point
- ϕ is heading/orientation
- $\beta = \phi \alpha$
- If $\cos(\beta) \approx \pm 1$ point mode is more likely

Probability of transition to, or staying in, point mode, $P_{\text{point}}(\mathbf{x}_k)$, is function of β , i.e. of \mathbf{x}_k .

• Transition probability for measurement modes

$$T_{k+1|k}^{\text{Meas}}(\mathbf{x}_k) = \begin{bmatrix} P_{\text{point}}(\mathbf{x}_k) & 1 - P_{\text{point}}(\mathbf{x}_k) \\ P_{\text{point}}(\mathbf{x}_k) & 1 - P_{\text{point}}(\mathbf{x}_k) \end{bmatrix}$$

Transition probability matrix

• Transition probability for measurement modes

$$T_{k+1|k}^{\text{Meas}}(\mathbf{x}_k) = \begin{bmatrix} P_{\text{point}}(\mathbf{x}_k) & 1 - P_{\text{point}}(\mathbf{x}_k) \\ P_{\text{point}}(\mathbf{x}_k) & 1 - P_{\text{point}}(\mathbf{x}_k) \end{bmatrix}$$

Transition probability for motion modes

$$T_{k+1|k}^{\text{Motion}} = \begin{bmatrix} P_{\text{same}} & 1 - P_{\text{same}} \\ 1 - P_{\text{same}} & P_{\text{same}} \end{bmatrix}$$

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

• Transition probability for measurement modes

$$T_{k+1|k}^{\text{Meas}}(\mathbf{x}_k) = \begin{bmatrix} P_{\text{point}}(\mathbf{x}_k) & 1 - P_{\text{point}}(\mathbf{x}_k) \\ P_{\text{point}}(\mathbf{x}_k) & 1 - P_{\text{point}}(\mathbf{x}_k) \end{bmatrix}$$

Transition probability for motion modes

$$T_{k+1|k}^{\text{Motion}} = \begin{bmatrix} P_{\text{same}} & 1 - P_{\text{same}} \\ 1 - P_{\text{same}} & P_{\text{same}} \end{bmatrix}$$

• Full transition probability matrix is Kronecker product

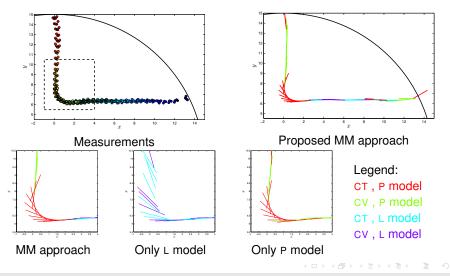
$$T_{k+1|k}\left(\mathbf{x}_{k}\right) = T_{k+1|k}^{\text{Meas}}(\mathbf{x}_{k}) \otimes T_{k+1|k}^{\text{Motion}}$$

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

ヘロト ヘワト ヘビト ヘビト

Results from experiments

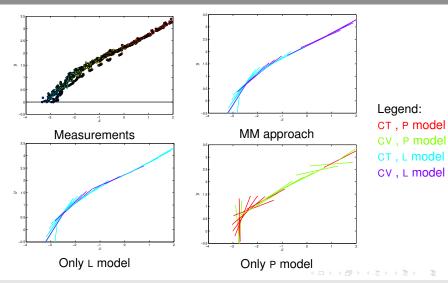
- MM-PHD filter tested on 40 datasets.
 - Single maneuvering bicycle
 - Multiple (2) maneuvering bicycles
- Background was removed by hand before the experiments
- Results in the paper are from a subset of the datasets



Results from experiments

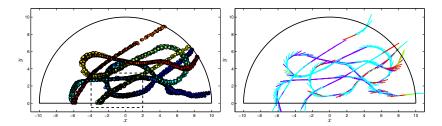
- MM-PHD filter tested on 40 datasets.
 - Single maneuvering bicycle
 - Multiple (2) maneuvering bicycles
- Background was removed by hand before the experiments
- Results in the paper are from a subset of the datasets
- Three MM-PHD filters compared. CT and CV motion model.
 - 1. P and L measurement models
 - 2. Only P model
 - 3. Only ∟ model

Single target results


K. Granström, C. Lundquist

On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

Single target results



K. Granström, C. Lundquist

On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

Multiple target results & Summary

Legend: CT, P model CV, P model CT, L model CV, L model

- * ロ > * @ > * 注 > * 注 > ・ 注 ・ の & @

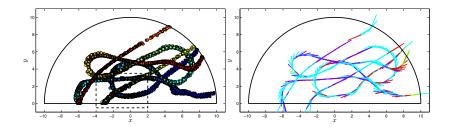
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

15(17)

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

Multiple target results & Summary

- In general: estimated mode corresponds to expectation/intuition.
- Only P model works in most cases, however heading/orientation is more uncertain.
- Only L model sometimes fails during turns.



15(17)

Multiple target results & Summary

- In general: estimated mode corresponds to expectation/intuition.
- Only P model works in most cases, however heading/orientation is more uncertain.
- Only L model sometimes fails during turns.
- Using both models generally superior.
- In MM case ∟ model can aid in detecting CT maneuvers.

15(17)

Concluding remarks

Conclusions:

- The paper presents a MM-ET-PHD filter with kinematic state dependent mode transitions
- Applied to bicycle tracking using laser range measurements
- In addition to multiple motion modeling, the MM approach is suitable when the measurement appearance changes over time

Concluding remarks

Conclusions:

- The paper presents a MM-ET-PHD filter with kinematic state dependent mode transitions
- Applied to bicycle tracking using laser range measurements
- In addition to multiple motion modeling, the MM approach is suitable when the measurement appearance changes over time

Future work:

- Other types of sensors
- Other types of targets
- Multiple target types, each with multiple appearance modes

Thank you for listening!

Any questions?

K. Granström, C. Lundquist On the Use of Multiple Measurement Models for Extended Target Tracking, FUSION 2013

