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Abstract

The possibilities for positioning in cellular networks has increased over time,
pushed by increased needs for location based products and services for a variety
of purposes. It all started with rough position estimates based on timing measure-
ments and sector information available in the global system for mobile commu-
nication (gsm), and today there is an increased standardization effort to provide
more position relevant measurements in cellular communication systems to im-
prove on localization accuracy and availability. A first purpose of this thesis is
to survey recent efforts in the area and their potential for localization. The rest
of the thesis then investigates three particular aspects, where the focus is on tim-
ing measurements. How can these be combined in the best way in long term
evolution (lte), what is the potential for the new narrow-band communication
links for localization, and can the timing measurement error be more accurately
modeled?

The first contribution concerns a narrow-band standard in lte intended for
internet of things (iot) devices. This lte standard includes a special position ref-
erence signal sent synchronized by all base stations (bs) to all iot devices. Each
device can then compute several pair-wise time differences that corresponds to
hyperbolic functions. Using multilateration methods the intersection of a set of
such hyperbolas can be computed. An extensive performance study using a pro-
fessional simulation environment with realistic user models is presented, indicat-
ing that a decent position accuracy can be achieved despite the narrow bandwidth
of the channel.

The second contribution is a study of how downlink measurements in lte can
be combined. Time of flight (tof) to the serving bs and time difference of arrival
(tdoa) to the neighboring bs are used as measurements. From a geometrical per-
spective, the position estimation problem involves computing the intersection of
a circle and hyperbolas, all with uncertain radii. We propose a fusion framework
for both snapshot estimation and filtering, and evaluate with both simulated and
experimental field test data. The results indicate that the position accuracy is
better than 40 meters 95% of the time.

A third study in the thesis analyzes the statistical distribution of timing mea-
surement errors in lte systems. Three different machine learning methods are
applied to the experimental data to fit Gaussian mixture distributions to the
observed measurement errors. Since current positioning algorithms are mostly
based on Gaussian distribution models, knowledge of a good model for the mea-
surement errors can be used to improve the accuracy and robustness of the algo-
rithms. The obtained results indicate that a single Gaussian distribution is not
adequate to model the real toa measurement errors. One possible future study
is to further develop standard algorithms with these models.
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Populärvetenskaplig sammanfattning

Lokalisering, att bestämma sin position, i våra mobilnät är en möjlighet som ska-
pat många nya produkter och tjänster. Det började med att man i gsm (Global
System for Mobile Communication) utnyttjade en grov avståndsmätning som
fanns med i första standarden, samt vilken sektorantenn användaren var anslu-
ten till, för att få en ”tårtbit” som representerade möjliga positioner. Idag har
alla mobilstandarder fler mätningar som relaterar till användarens position, och
nya tekniker utvecklas ständigt för att få bättre noggrannhet och tillgänglighet i
positioneringen. Dessutom har de flesta av dagens telefoner inbyggd satellitbase-
rad positionering, främst gps (Gobal Positioning System), för applikationer som
har speciellt höga krav på positions-noggrannhet. gps förbrukar dock mycket
batteri-effekt, och är ingen lösning för bakgrundstjänster, som kräver tillgång till
position kontinuerligt men inte har samma krav på noggrannhet. Exempel på så-
dana tjänster är kommunikationstjänsten i sig, som behöver veta var mobilen är
och vart den är på väg för att optimera uppkopplingen.

Det som positionering har gemensamt i gps och cellulära nätverk är behovet
av noggranna tidsmätningar, samt algoritmer för att beräkna en position från fle-
ra tidsmätningar. Avhandlingen studerar ett par aspekter på tidsmätningar i nya
standarder, och presenterar skräddarsydda algoritmer för positionering i dessa
fall, samt utvärderar deras potential för positionering.

Den första aspekten är hur man i long term evoluion (lte) använder tidsmät-
ningar från den bas-station (bs) mobilen är uppkopplad mot för att räkna ut ett
avstånd som svarar mot en cirkel kring denna bs. För att komplettera denna in-
formation kan mobilen också räkna ut tidsskillnader från utsända pilotsymboler
från den uppkopplade bs till ett antal andra bs. Dessa svarar geometriskt mot
hyperbler. Positionerings-problemet kan då formuleras som att hitta skärningen
mellan en cirkel och en eller flera hyperbler. Avhandlingen beskriver ett ram-
verk för hur detta problem kan lösas, dels för varje mätning separat, dels som
ett filtrerings-problem där användarens position följs över tiden. Resultat från
fältprov visar att man i 95% av tiden får en noggrannhet som är bättre än 40
meter.

Den andra aspekten relaterar till sakernas internet (Internet of Things, iot),
där det i lte finns en separat standard för smalbandiga kommunikationskana-
ler anpassade för iot. Smalbandigheten gör iot-enheterna batteri-effektiva, men
skapar också problem för de tidsmätningar som krävs för positionering. Standar-
den föreskriver att speciella symboler ska skickas synkront i nerlänk från varje
basstation, och iot-enheten kan från dessa räkna ut tidsskillnader mellan parvisa
bs. Dessa svarar mot hyperbler, och multilateringstekniker kan användas för att
räkna ut deras skärningspunkt med tillhörande osäkerhetsmått. Avhandlingen
presenterar en utförlig prestanda-studie baserad på en professionell simulator
med realistiska modeller för mobilernas rörelse. Resultat är att man kan få en
noggrannhet och tillgänglighet som matchar dagens metoder i cellulära nätverk,
trots den mycket lägre bandbredden.

En tredje studie i avhandlingen är en mer generell analys av hur felet i tids-
mätningar i lte fördelar sig statistiskt. Ett antal olika metoder som är populära
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viii Populärvetenskaplig sammanfattning

inom maskininlärning appliceras på fältdata, och mixturer av normalfördelning-
ar anpassas till observerade mätfel. En bra modell för mätfel kan i sig förbättra
alla metoder för positionering från tidsmätningar, där tumregeln är att ju mer
fördelningen avviker från en normalfördelning, desto större förbättringspotenti-
al finns det i de algoritmer som används idag. Resultatet är att verkliga tidsfel
fördelas sig tämligen olikt en normalfördelning, så ett en möjlig fortsättning på
avhandlingen är att vidareutveckla standardalgoritmer med dessa modeller.
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Notation

Mathematical Symbols and Operations

Notation Meaning

a Scalar variable
a Column vector variable
A Matrix variable
0 Column zero vector of appropriate size
IN Identity matrix of size N × N

[ · ]T Vector/Matrix transpose
[ · ]−1 Non-singular square matrix inverse
tr ( · ) Trace of square matrix
‖ · ‖ Euclidean norm
| · | Cardinality of a set

arg max Maximizing argument
arg min Minimizing argument

Probability Symbols and Operations

Notation Meaning

p( · ) Probability density function
p( · | · ) Conditional probability density function
p( · ; a) Probability density function parameterized by vari-

able or expression a
Ea Expectation with respect to stochastic variable a

Cov(a) Covariance of the stochastic variable a
N (µ,Σ) Normal distribution with mean µ and covariance Σ
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1
Introduction

Positioning capability in devices and gadgets is currently in transformation from
“nice to have” to “a must”. First, we have safety legislations giving tough specifi-
cations on the position information in emergency calls. Then, we have the rapid
development of location based services which requires positioning in situations
where satellite navigation systems do not work (indoors, underground, etc). Fur-
ther, a rapidly increasing number of devices connected to the cellular network
that are not operated by humans. We have the trends of Internet of Things, ma-
chine to machine communication, autonomous vehicles and systems, etc., where
communication and positioning will be the key enabler for future functions and
services.

While cellular radio networks were traditionally designed for communication
purposes, their importance for positioning was soon realized. Awareness of the
location in cellular systems is beneficial for the network operators as well as the
end users. For example, such information enables network operators to manage
their resource consumption, to provide location-based services, and for location-
aware advertisement purposes, among others. Hence, determining the location
of a source in a cellular system has been receiving considerable attention.

Different types of measurements can be defined based on the type of the mea-
sured property of the wireless communication channel. This thesis investigates
the propagation time of a reference signal transmitted between the base station
(bs) with a priory known location and the user equipment (ue). In the rest of this
chapter, a background on timing-based localization in cellular radio networks
is first presented in Section 1.1 followed by problem formulation of the work de-
scribed in Section 1.2. Then, the research motivations for three particular aspects
of localization with the focus on timing measurements are provided. Section 1.3
concerns observed time difference of arrival (otdoa) localization in narrow-band
internet of things (nbiot) systems. Section 1.4 concerns fusion of time of flight
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2 1 Introduction

(tof) and time difference of arrival (tdoa) in long term evolution (lte) systems
using measurements collected from two bss. Section 1.5 concerns a more general
analysis of how the error in time measurements in lte is distributed statistically.
Finally, the author’s publications and contributions are presented in Section 1.6
followed by the outline of this thesis provided in Section 1.7.

1.1 Background

The positioning accuracy in the early stages of realizing the potential of cellu-
lar systems for positioning was rather poor which was due to the fact that the
used signals were not designed for positioning purposes. However, in recent
years there has been a tremendous standardization effort to increase this accuracy,
which was also a result of federal communications commission (fcc) regulations
on emergency calls that were established in the U.S [39].

Dedicated solutions such as global navigation satellite system (gnss) have
been, and are being, used by end users for a long time. However, mutual ben-
efits of more reliable, yet accurate, source of information for users and cellular
network operators emerged a new research direction; combining positioning and
communication systems into a single system.

Timing-based positioning in cellular systems is based on time of arrival (toa),
time of flight (tof), and time difference of arrival (tdoa) measurements. toa is
estimated by cross-correlating the received signal with a replica of the transmit-
ted signal waveform. Both tof and tdoa are based on time of arrival (toa)
measurements at the ue as well as the bs. toa is used to estimate tof by combin-
ing toa estimated at bs and ue, while tdoa is estimated using toa associated
to two different bss. It might be worth mentioning that toa requires accurate
synchronization between ue and bswhereas tdoa only requires synchronization
between bss.

Timing measurements can be translated to absolute, for tof and toa, or rela-
tive, for tdoa, distances between the ue and the set of bss. Knowing the location
of each bs, it is possible to estimate the unknown ue position using different
techniques. Closed-form solutions for hyperbolic positioning can be found for
instance in [24, 50, 115]. Iterative algorithms for solving a nonlinear weighted
least squares form another major group. The Gauss-Newton algorithm is studied
in [22], constrained and unconstrained nls solutions are discussed in [23, 28].
The iterative approaches generally require good initialization to converge to the
global optimum of the cost function and often require many iterations. In or-
der to avoid these issues, the solutions proposed in [30, 61] transform nonlinear
equations into a set of linear ones, thus making real-time implementations possi-
ble. Factor graph-based methods carrying low-complex flags also attracted some
attention [26, 92].

Starting from Release 9, lte integrated positioning reference signals into their
standard. Since then, it can be seen as a continuous trend in all consecutive up-
dates of 3gpp standards to evolve different aspects of positioning. Localization
in lte systems is a mature research area. For example, [90] uses real tdoa mea-
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surements and investigates channel impacts on positioning accuracy. An error
analysis of tdoa is reported in [74]. Baseline performance based on 3gpp 3D
mimo deployment and propagation model is investigated in [106]. The work
in [81] addresses the main requirement for accurate tdoa positioning, synchro-
nization of anchor nodes. Finally, surveys on the obtainable accuracy bounds are
reported in [55], [106], and [99].

The localization accuracy, in all timing-based methods, is influenced by the ac-
curacy of the estimated toas and the number of measured bss, among others. In
line of sight (los) environments toa can be estimated with fairly good accuracy
in lte systems. In non-line-of-sight (nlos) environments, however, more sophis-
ticated algorithms are required. Modeling the observed time measurement error
is widely studied in the literature to mitigate nlos effects.
nlos errors are modeled as a deterministic variable or as a random variable

in [27]. In the former, at a fixed time instance, nlos errors are treated as a con-
stant variable. It is mentioned that nlos errors depend on the propagation envi-
ronment, hence their values are allowed to vary between 100 m to 1300 m in their
simulations. In the second case in which nlos errors are modeled as a random
variable, it is mentioned that the errors can be modeled using an exponential, a
uniform, or a delta random variable. Authors in [88] also model nlos errors as
random variables with an exponential pdf.

Empirical analysis of the real data is performed in [62] to determine the er-
ror pdf of timing-based position estimator. Authors in [62] have modeled the
los errors with a zero-mean Gaussian whose variance depends on the snr of
the received signal. The nlos errors are modeled with a Rayleigh distribution
that should be parameterized depending on the propagation scenario. Using the
Rayleigh distribution for modeling nlos errors is also mentioned in [130].

The introduced timing measurement error models in [55] assume that los er-
rors belong to a zero-mean Gaussian distribution while nlos belong to a shifted
Gaussian distribution. The authors in [46, 47, 57, 82] also model nlos errors
using shifted Gaussian densities and introduce robust timing-based position es-
timation methods. In [58], the second component in the mixture distribution
corresponding to the nlos errors is modeled using the convolution of the prob-
ability distribution function (pdf) of a positive random variable and the zero-
mean Gaussian density of los errors. The authors in [31] consider the Gaussian-
distributed nlos error mitigation problem and consider three different cases in
which nlos are assumed to have known statistics, limited prior information, or
totally unknown statistics.

1.2 Problem formulation

Positioning in cellular networks is often based on indirect observations of the user
equipment’s (ue’s) position, measured from various properties of the wireless
communication channel between base stations (bss) and the ue. The measure-
ments collected from a set of bss are then further processed to infer the unknown
position. In cellular radio networks, the ue is generally assigned to a specific
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bs, the serving bs, which is responsible for the communication link with the ue;
other bss are referred to as neighboring bss.

Today’s cellular radio network standards enable the configuration of position-
ing reference signals (prs) from bss which enable ue to estimate toa measure-
ments. In third generation partnership project (3gpp) lte, prs can be defined
based on orthogonal patterns, as well as muting schemes, where some bss trans-
mit a prs, while other bss are muted, in order to suppress interference and ensure
a wide detectability of signals.
otdoa is a downlink positioning method in lte systems based on prs trans-

mitted by the bs. While otdoa-based positioning is widely studied in the liter-
ature, the performance evaluation for the newly released nbiot systems is not
treated with the same level of detail. One objective of this thesis is to evaluate
the positioning performance in nbiot systems. The downlink tdoa measure-
ments estimated from narrowband positioning reference signals are used in the
evaluations.

In lte systems, positioning is traditionally considered to be enabled, in 2D
coordinates, when the ue provides measurements of at least three different bss.
All the methods introduced in Section 1.1 are based on this requirement. In this
thesis, we additionally investigate positioning based on time series of timing mea-
surements gathered from two bss with known positions. The set of two measured
bss is different along the trajectory. Each report contains tof for the serving base
station, and tdoa measurement for the most favorable neighboring bs relative
the serving bs.

In this thesis, we also report preliminary results for the problem of model-
ing toameasurement errors in presence of nlos propagation error components.
Three main sources of toa estimation errors are [14]:

1. Measurement noise.

2. Multipath conditions resulting in paths that arrive close to the direct path.

3. Undetected direct path in which the direct path is blocked, hence the first
arriving path is erroneously detected as the direct path.

Measurement noises have a zero mean value while the multipath error has a ran-
dom but small mean value, [13] and [12]. The undetected direct path, on the
other hand, is larger than the two others and has a positive mean.

In case of single path propagation, toa measurement errors, e, are modeled
using a two-component mixture pdf. The first component corresponds to the los
path and is modeled using a zero-mean Gaussian distribution eLOS ∼ N (0, σ2

LOS).
The second component, models nlos propagation effects whose pdf is given by
H(e). It must be noted that at each time instance, only one component of the
Gaussian mixture is effective. As discussed in [131], H(e) has a positive bias with
a variance larger than σ2

LOS.
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1.3 TDOA positioning in narrowband IoT systems

Uplink tdoa (utdoa) and downlink otdoamethods rely on different reference
signals and are performed at the bs and at the ue, respectively. otdoa, defined
in 3gpp Rel-9, is a ue-assisted position measurement of tdoa in which the ue
measures the toa of signals received from multiple bss. Then, the computed
toas of several bss are subtracted from the toa of the received signal from a
reference bs to form otdoa.
tdoa positioning, in general, using different reference signals in lte systems

is a well-studied research area. However, performance analysis of positioning
in nbiot systems is limited. nbiot is an emerging cellular technology designed
to target low-cost devices, high coverage, long device battery life (more than ten
years), and massive capacity.

The potential of device tracking in nbiot systems using otdoa measure-
ments is evaluated in Chapter 4. The reference signals from the serving and a
number of neighboring bss are used by the ue to estimate reference signal time
differences and report them back to the network to estimate the position. The ef-
fect of the number of such reports and their reporting schemes on the horizontal
positioning accuracy is also evaluated.

Three different alternatives of deploying nbiot, namely in band, guard band,
and stand alone are presented in Figure 1.1. This study simulates the deployment
ofnbiotwithin the lte spectrum allocation, inside the lte carrier. The extended
pedestrian A (epa) and extended typical urban (etu) channel models are used to
account for multipath propagation effects.

Figure 1.1: Deployment configurations of nbiot [101, ©2017 IEEE].

1.4 Fusion of TOF and TDOA for positioning using two
BSs

ue measurements, collected from at least three base stations, are mainly used
for positioning in cellular networks. To better illustrate the problem of fusing
one tof and one tdoa while three bss are detectable, assume that bss are de-
ployed in a cellular radio network consisting of hexagonal cells [106] as shown
in Figure 1.2. The serving bs S1 is assumed to provide the tof measurement,
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and two neighboring bss S2 and S3 are detected by the ue to form tdoa mea-
surements. We consider the problem in two-dimensional scenarios, and convert
tof and tdoa measurements to corresponding range and range differences. Ge-
ometrically, this means that the tofmeasurement can be represented by a circle
around the serving bs and the tdoa by a hyperbola with foci equivalent to the
two neighboring bss as depicted in Figure 1.2. The ue positioning problem then
becomes a classical circle and hyperbola intersection problem.

S1

S3 S2

r1

r2r3

Measuring stations

Stations far from target
ToF Circle
TDoA hyperbola

Figure 1.2: Circle of tof measurement reported by S1, marked with blue,
and hyperbola of tdoa measurements based on the relative distance of S2
and S3, marked with red [100, ©2016 IEEE].

This work considers a more limited case, with a time series of measurements
associated to two base stations – tof from the serving base station and tdoa
measurements associated to the serving and one non-serving base station. In
such cases, it is not possible to uniquely estimate the position of the ue using
existing methods. Hence, more sophisticated approaches are required to deal
with the ambiguity in the problem. Chapter 5 evaluates the performance of a
solution based on a bank of Kalman filters.

1.5 TOA error modeling in presence of NLOS

propagation components

All wireless positioning methods have one shared source of error, in addition
to measurement noises, coming from propagation effects of the communication
channel. Multipath fading, shadowing, interference, and nlos are examples of
additional errors caused by signal propagation through the wireless channel.
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To deal with performance degradation in nlos conditions, conventional po-
sition estimation techniques which are developed based on los conditions need
to be adopted. As discussed in [131], “identify and discard”, “mathematical pro-
gramming”, and “robust estimation” are the three broad categories of timing-
based position estimation methods which are robust against nlos errors. In this
work, we set the first stage towards developing robust estimation methods by
first modeling the toa error pdf in terms of a mixture of Gaussian distributions.
The goal at this stage is to compare a deterministic, a pure Bayesian, and a quasi-
Bayesian approach and evaluate their performances.

1.6 Contributions

The main contributions of this thesis can be listed as follows:

1. A survey on the state of the art in radio-based positioning, see Chapter 2.
This material is based on:

K. Radnosrati, F. Gunnarsson, F. Gustafsson. New Trends in Radio Net-
work Positioning. In Proceedings of the 18th International Conference
on Information Fusion (FUSION), Washington DC, USA, July 2015.

2. Simulation of nbiot system and evaluation of the otdoa positioning using
simulated data, see Chapter 4. This material has been published in:

K. Radnosrati, G. Hendeby, C. Fritsche, F. Gunnarsson, F. Gustafsson.
Performance Evaluation of OTDOA Positioning in NB-IOT Systems. In
Proceedings of the 28th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), Montreal, QC,
Canada, October 2017.

3. Derivation of a closed-form solution to the problem of fusing noise-free tof
and tdoameasurements collected from two base stations. The two possible
positions of the ue are then estimated using Gaussian transformation of the
derived closed-form solutions. Using the two estimated positions, a jump
Markov model is formulated that can handle the ambiguity in positions
using extra information available at handover time instances, see Chapter 5.
This material has been published in parts in:

K. Radnosrati, C. Fritsche, G. Hendeby, F. Gunnarsson, F. Gustafsson.
Fusion of TOF and TDOA for 3GPP Positioning. In Proceedings of
the 19th International Conference on Information Fusion (FUSION),
Heidelberg, Germany, July 2016.

An extension of the work, including the extra material presented in Chap-
ter 5, has been prepared and will be submitted to IEEE Transactions on
Vehicular Technology:
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K. Radnosrati, C. Fritsche, G. Hendeby, F. Gunnarsson, F. Gustafsson.
Fusion of TOF and TDOA for Timing-Based Localization. To be sub-
mitted to IEEE Transactions on Vehicular Technology.

4. Initial modeling of toa measurement errors using the experimental data,
see Chapter 6. This contribution is to be extended and is not previously
published.

The content of all publications is reused in this thesis courtesy of ieee.

1.7 Thesis outline

Chapter 2 presents a general positioning framework in which three main levels
of information flow in positioning systems are first highlighted. In the lowest
level, principles of radio measurements are introduced followed by position es-
timation using spatial fusion of the collected measurements in the second level.
The third level consists of modality fusion and temporal filtering in state-space
frameworks. Some practical considerations in radio network positioning are then
discussed followed by discussions on the existing trends towards more accurate
positioning systems.

Chapter 3 further discusses the last two levels introduced in Chapter 2 and
provides theoretical background of position estimation methods in static and dy-
namic systems. In the static case, cost function methods are discussed and two
well-known numerical optimization algorithms, Gauss-Newton and steepest de-
scent, are introduced. Then, linear and nonlinear dynamic systems are briefly
described and recursive state estimation in the Kalman filtering framework is
discussed.

Chapter 4 evaluates positioning performance in nbiot systems using the ob-
served tdoa measurements. The research is motivated by the immense num-
ber of use cases of iot positioning as briefly described. The otdoa positioning
method uses the ue estimation of the relative distance between a reference base
station and a number of neighboring base stations. The estimated reference sig-
nal time differences are then reported by the ue to a positioning center to esti-
mate the unknown location of the ue. The possibility of optimizing the number
of such reports while maintaining the final horizontal position estimation accu-
racy within an acceptable range in a simulated network is investigated.

Chapter 5 evaluates the performance of hybrid tof and tdoa positioning in
lte systems when only two base stations are detected by the ue. The two ana-
lytical solutions to the intersection of tof circle and tdoa hyperbola is derived.
To deal with the ambiguity caused by multiple solutions, a multimodal jump
Markov system is introduced in which each mode of the system contains a possi-
ble position of the ue. A bank of Kalman filters is employed to keep track of all
modes of the system until the set of involved bss changes. The extra information
obtained from this change is used to keep the true mode sequence and discard the
rest. The lower bound on the achievable accuracy using the proposed method is
introduced. The proposed algorithm is evaluated using both simulated and real
data and the results are reported.
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Chapter 6 contains results of modeling toa errors in presence of nlos com-
ponents. The expectation maximization (em) and Gibbs sampling for Gaussian
mixture parameter estimation together with a quasi-Bayesian approach are in-
troduced. The performance of all three methods is then evaluated using both a
simulation study and on the toa error dataset.

Finally, Chapter 7 provides some concluding remarks and possible future re-
search directions.





2
State of the Art in Radio Network

Positioning

Positioning in wireless networks is based on the measurements collected either at
the ue and reported to the network, at the bs, or a combination thereof. All the
measurements, despite the large variety of positioning systems, are essentially ei-
ther based on identity labels of involved bss, commonly referred to as cell identity,
or properties of the communication link between the ue and bs. The positioning
is then either based on snapshot measurements or a time series of measurements.
The survey research articles [23, 36, 55, 109, 117, 135] report extensive informa-
tion about wireless network positioning together with their associated accuracies.
This chapter describes the information flow of current positioning algorithms
and discusses existing trends aiming to enhance the achievable accuracy.

Section 2.1 introduces a generic measurement model and describes a typical
positioning framework consisting of three different layers from the received ob-
servation to the final position. The generic measurement model is then further
explained and different types of available measurements in radio networks are
introduced and their associated accuracies are provided in Section 2.2. Finally,
current trends aiming to improve the achievable accuracy in the presented frame-
work are given in Section 2.3.

2.1 Positioning framework

The information flow in current positioning algorithms can be categorized in
different levels as presented in Figure 2.1. Throughout this thesis, both the
ue and the involved reference points are restricted to two dimensional scenar-
ios. Let θt = (θxt , θyt )

T denote the unknown position of the ue at time t and

`
(i)
t =

(
`

(i)
xt , `

(i)
yt

)
denote the known position of the reference point i.

The generic measurement y(i)
t relative to the reference point i at time t is a

11
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Figure 2.1: Levels of Information fusion for radio network positioning [99,
©2015 IEEE].

function of both θt and �
(i)
t , subject to measurement noise e

(i)
t . Under additive

measurement noise assumption, the generic model is given by

y
(i)
t = ht

(
θt , �

(i)
t

)
+ e

(i)
t . (2.1)

The measurement model (2.1) is in the most generic form where the reference
points can also move in time, as in some ad-hoc network problems. However,
in case of snapshot measurements, or time series of measurements with fixed
reference points, the time subscripts may be ignored.

2.1.1 Level 1: Radio measurement principles

Radio measurement, in the lowest layer of the system, is based on the received
pilot signal which is transmitted over the communication channel for different
purposes including referencing. The transmitted pilot symbol s(i)(t), in the phys-
ical layer, is sampled at the receiver

z(i)(t) =
n∑

k=0

α
(i)
k s

(
β

(i)
k (t − τ(i)

k )
)

+ e
(i)
k (t), (2.2)

where α
(i)
k is the impulse response of the multi-path channel, τ(i)

k is the time delay

per incoming path, and β
(i)
k is the Doppler shift that scales time. Assuming that

the receiver can estimate these parameters, different higher layer position-related
measurements can be defined based on the parameters α, τ, or β as described in
the following. The generic function h( · ) introduced in (2.1) can then be defined
for each position-related measurement.

Measurements based on τ

Three different higher layer measurements can be defined corresponding to τ
(i)
k :
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1. Time of Arrival corresponds to the absolute distance between the emitting
and receiving nodes using the travel time of the signal transmitted between
the two

y
(i),TOA
t =

1
c
‖θt − `

(i)
t ‖ + e(i),TOA

t , (2.3)

where c is the speed of radio waves and the measurement error e(i),TOA
t cap-

tures both the estimation error and the model error due to multipath assum-
ing that the emitter and receiver are perfectly synchronized. Otherwise, an
additional error emerges from the clock offset between transceivers.

2. Time Difference of Arrival is the timing difference between two toa mea-
surements estimated from signals that are sent at the same time. This yields

y
(ij),TDOA
t =

1
c
‖θt − `

(i)
t ‖ −

1
c
‖θt − `

(j)
t ‖ + e(i),TOA

t − e(j),TOA
t . (2.4)

tdoa measurements can be obtained in both uplink and downlink direc-
tions. In the former, the ue transmits a signal to a pair of receiving bss,
hence the network is responsible for estimating the uplink tdoa. In the
downlink mode, a pair of bss will instead send reference signals to the re-
ceiving ue that is responsible for estimating the observed tdoa, known
as otdoa. Since the emission time of the signal is exactly the same, the
synchronization between receiver and transmitter is no longer required. In-
stead, in both cases, the involved bss need to be synchronized.

3. Time of Flight 1 corresponds to the sum of the toa measurements in both
uplink and downlink directions. Figure 2.2 illustrates how tof is estimated
in lte systems. In lte, Ts ≈ 32 ns is the basic time unit [6], hence only NT ,
in steps of 16 Ts, depends on the channel quality and is updated by the
network.

At the uplink transmission time T xUL, the ue transmits either a random ac-
cess or demodulation reference signal and the bs measures the uplink toa
(TOAUL). The bs then sends a first NT to the ue to be used when deciding
when to send the next uplink transmission in relation to the downlin toa
(TOADL). For subsequent uplink transmissions, the bs regularly sends rela-
tive corrections to NT in steps of 16 T s which means that the ue as well as
the network maintains an updated NT . In addition, the bs tries to match a
certain arrival time of uplink signals in relation to the downlink transmis-
sion time (start of DL frame), T xDL, and this is represented by ∆T . The tof
measurement is thus given by,

y
(i),TOF
t = NT Ts − ∆T + e(i),TOF

t

=
2
c
‖θt − `

(i)
t ‖ + e(i),TOADL

t + e(i),TOAUL
t . (2.5)

1or round trip time.
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Figure 2.2: tof measurement in lte systems. In the uplink, random access
(ra) or demodulation reference signal (dmrs) is transmitted. In the down-
link, primary synchronization signal (pss) or secondary synchronization sig-
nal (sss) is transmitted.

4. Angle of arrival (aoa) can be computed by comparing delays τ of the re-
ceived signal to multiple antennas or by using directional antennas. The
high-level measurement is

y
(i),AOA
t = arctan

(
θyt − `

(i)
yt , θxt − `

(i)
xt

)
+ e(i),AOA

t . (2.6)

The angle of the received signal could either be computed using directional
antennas in which the main drawback is implementation cost of such anten-
nas, if their sizes need to be rather small. Using an array of antennas is yet
another alternative in which aoa is inferred indirectly from toa measure-
ment. Sophisticated algorithms are defined for array processing problems,
see [75]. Additionally, aoa estimation can be performed using the antenna
lobe diagram, see [53] for example.

Measurements based on α

Received signal strength (rss) is a ranging measurement that corresponds to the
total energy of the received signal,

∑n
k=0 α

2
i,k . The generic model for rssmeasure-

ment is given by

y
(i),RSS
t = hRSS(‖θt − `(i)‖) + e(i),RSS

t , (2.7a)

where hRSS(|θt − `(i)|) is a deterministic function denoting the received signal

strength due to path loss. Let P (i)
0 denote the measured rss of the ith bs at a
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reference distance d0. The deterministic function for rss due to path loss can be
written as:

hRSS(‖θt − `(i)‖) = P
(i)
0 + 10η log

‖θt − `(i)
t ‖

d0

 , (2.7b)

where η is the path-loss exponent.

Measurements based on β

The estimated parameter β can be interpreted as a measure of the relative speed
between the ue and bs. Thus the measurement model is

y
(i),Doppler
t =

∂‖θt − `t‖
∂t

+ e(i),Doppler
t . (2.8)

2.1.2 Level 2: Spatial fusion

The information obtained from multiple, spatially distributed, sensors is fused at
the second level. Let N denote the number of transmitters from which measure-
ments corresponding to the ones introduced in Section 2.1.1 are obtained. The
set of equations are given by

y
(i),type
t = htype

(
‖θt − `

(i)
t ‖

)
+ e(i),type

t , i = 1, . . . , N (2.9)

where type is either toa, tdoa, aoa, rss, or Doppler. Basic methods of position
estimation using the first four types of measurements are briefly explained in the
remainder of this section, while more advanced methods using timing measure-
ments are introduced and applied in the later chapters.

It must be noted that in addition to the wireless positioning methods other
alternatives also exist. For instance there are some frameworks that do not use
wireless communication infrastructures but rather depend on, for example, im-
age processing techniques or dead reckoning approaches [69]. To maintain the
focus of this thesis they are not discussed.

Using the range or angle measurements, the known position of bss, and the
trigonometry properties, it is possible to estimate the unknown position of theue.
Since no temporal dependency is considered in these methods, and to simplify
the notation, the time subscript t is dropped in the derivations. Additionally, the
measurement noises of N involved bss are assumed to be normally distributed
with zero mean and covariance R i.e., e ∼ N (0,RN×N ). In this Section, we use
different tricks to linearize the system to obtain the matrices HN×2 and YN×1
such that Y = Hθ + e. Thus, θ̂ can be computed as weighted least squares (wls)

estimator, θ̂ =
(
HTWH

)−1
HTWY where the weighting matrix W = R−1. The

only difference is how the H and Y are formed using either of toa, tdoa, or
aoa measurements. In the following, different methods are briefly introduced,
see [45] for more details.
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TOA

The absolute distances between the ue and measured bss are used in lateration
techniques to localize the ue. In a noise-free situation, the toa circles of N ≥ 3
bss intersect in a single location in 2-D. However, in case of noisy measurements,
the circles do not intersect in a single point and thus data fusion techniques are
required to estimate the best possible position. In order to combine the available
observations collected from N bss, and to linearize the equations, one trick is
to subtract the distances between the ue and bss(i), i = 2, . . . , N from a reference
bs(1). Let ri = y(i),TOA, as shown in [45], expanding (2.3) gives

r2
i − r

2
1 = ‖`(i)‖2 − ‖`(1)‖2 − 2θx(`(i)

x − `
(1)
x ) − 2θy(`(i)

y − `
(1)
y ), (2.10a)

the matrices are thus given by

H =


`

(2)
x − `

(1)
x `

(2)
y − `

(1)
y

`
(3)
x − `

(1)
x `

(3)
y − `

(1)
y

...
...

`
(N )
x − `(1)

x `
(N )
y − `(1)

y


, (2.10b)

Y =
1
2


r2
1 − r

2
2 + ‖`(2)‖2 − ‖`(1)‖2

r2
1 − r

2
3 + ‖`(3)‖2 − ‖`(1)‖2

...
r2
1 − r

2
N + ‖`(N )‖2 − ‖`(1)‖2

 . (2.10c)

TDOA

To localize the ue using relative distances given by tdoa measurements, hyper-
bolic localization techniques can be used. Using the same notation as in latera-
tion, the relative distances ri1 = ri − r1. Following the method introduced in [45],
one can get

r2
i1 + 2ri1r1 = r2

i − r
2
1 , (2.11a)

that can be expanded as

r2
i1 + 2ri1r1 = ‖`(i)‖2 − ‖`(1)‖2 − 2θx(`(i)

x − `
(1)
x ) − 2θy(`(i)

y − `
(1)
y ). (2.11b)
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Since the toa measurement r1 is unknown, it should be added to the parameter

vector as well. Thus, θ̃ =
(
θx, θy , r1

)T
and we solve Y = Hθ̃ for θ̃ where

H =


`

(2)
x − `

(1)
x `

(2)
y − `

(1)
y r21

`
(3)
x − `

(1)
x `

(3)
y − `

(1)
y r31

...
...

...

`
(N )
x − `(1)

x `
(N )
y − `(1)

y rN1


, (2.11c)

Y =
1
2


‖`(2)‖2 − ‖`(1)‖2 − r2

21
‖`(3)‖2 − ‖`(1)‖2 − r2

31
...

‖`(N )‖2 − ‖`(1)‖2 − r2
N1

 . (2.11d)

AOA

The position of the ue can be estimated from aoa measurements using angula-
tion technique. Let αi denote the measured angle of the received signal transmit-
ted by the bs(i). As discussed in [45], equation (2.6) gives(

`
(i)
x − θx

)
sin(αi) =

(
`

(i)
y − θy

)
cos(αi), (2.12a)

with

H =


− sin(α1) cos(α1)
− sin(α2) cos(α2)

...
...

− sin(αN ) cos(αN )

 , (2.12b)

Y =
1
2


`

(1)
y cos(α1) − `(1)

x sin(α1)

`
(2)
y cos(α2) − `(2)

x sin(α2)
...

`
(N )
y cos(αN ) − `(N )

x sin(αN )


. (2.12c)

2.1.3 Level 3: Modality fusion and temporal filtering

The so called hybrid positioning techniques are based on a combination of differ-
ent methods introduced in Section 2.1.2 aiming to improve reliability, accuracy,
and wireless resource consumption, among other performance characteristics.

Using measurements of different modality (kind) is not a problem and is cov-
ered in the same nonlinear set of equation framework as (2.1). The only difference
is that other sensor information can be included. The inertial sensor unit in smart-
phones is today used to compute various motion related parameters. These can
be used on the device for positioning, but also transmitted to the network. For
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instance, inertial sensor measurements can be combined with the global position-
ing system (gps) for classification of the user’s motion modes, see [70]. Fusion
of tof and tdoa measurements is another example of this type that is further
discussed in later chapters.

The key idea with filtering is to include temporal correlation in a dynamic
model, so that a prediction of the next position can be computed in a state-space
model (ssm) framework. The unknown, unobserved states x of the system in a
ssm framework are inferred from the measurement function h( · ) and evolved
in time using the transition function f( · ). Although for the linear class of ssm in
white Gaussian noise a closed-form solution exists, nonlinear ssm require approx-
imative approaches to compute the recursions. Further discussions on Bayesian
filtering and corresponding solutions are provided in Section 3.2.

2.2 Practical considerations

This section continues the brief overview of radio network measurements given
in Section 2.1.1, and provides a practical survey similar to [55], extended with
recent measurements and standards. Lower layer techniques for providing these
measurements are not addressed, and instead we refer to [36, 134] for 2nd gener-
ation (2g), [22, 135] for 3rd generation (3g) and [33, 73] for 4th generation (4g)
cellular systems.

2.2.1 Received signal strength

In the rssmeasurement (2.7a), in addition to the measurement noise e(i),RSS
t , one

might also consider the diffraction factor. This way, (2.7a) can be re-written as

y
(i),RSS
t = P

(i)
0 + 10η log

‖θt − `(i)
t ‖

d0

 + e(i),RSS
t + d(i),RSS

t , (2.13)

where d(i),RSS
t is the diffraction. Propagation also features diffraction effects which

resembles shadow fading that is a lowpass spatial process. A number of methods
exists to deal with the diffraction error. One way is to lump them together with
the measurement error, see [133] for more details. Another approach is to capture
these variations in a model/database which essentially forms the fingerprinting
method. A third way is to assume that the shadow fading is only present in the
intermediate to far field from the antenna, but not in the near field. This way, in
the near field, the only source of error is the measurement noise.

2.2.2 TOA and TDOA

Both tof and tdoa are based on toa measurements at the ue as well as the
bs. toa is estimated by cross-correlating the received signal with a replica of
the transmitted signal waveform. toa is used to estimate tof by combining toa
estimated at bs and ue, while tdoa is estimated using toa associated to two
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different bss. [53] provides a novel method for round trip time calculations in
lte systems using the uplink timing alignment mechanism.

The performance analysis performed by [129], indicates different levels of
accuracy based on the pilots used, as well as the bandwidth of the lte system.
Let σTOA

LB denote the lower bound (lb) on achievable toa estimation with 68%
confidence interval when the pilot signal is received at ue with signal to noise
ratio (snr) = −13 dB. For an ideal additive white Gaussian noise (awgn) channel,
for a 20 MHz lte system using prs, the lower bound on toa standard deviation
is σTOA

LB = 2.4 ns. Assuming the signal is transmitted at 3×108 m/s, this translates
to about 0.7 m. Using the same pilot signal but reducing the system bandwidth
to 1.4 MHz, the accuracy degrades to σTOA

LB = 66 ns or about 20 m.
Assuming that two independent toa measurements, with σ1,TOA

LB and σ2,TOA
LB ,

are used to estimate the tdoa, the lower bound on the achievable accuracy is

given by σTDOA
LB =

√(
σ1,TOA

LB

)2
+

(
σ2,TOA

LB

)2
. For the 20 MHz and 1.4 MHz lte

systems, with the same setup as above, the accuracy levels are 1 m and 22 m ,
respectively, see [129] for more details.

The emergency call positioning requirements by the fcc in the United States
have been refined several times, initially with requirements on network-based
positioning, and subsequently with tighter requirements on mobile-assisted po-
sitioning [59, 135]. Recently, fcc has yet again refined the requirements to give
particular attention to requirements for positioning of indoor devices [1].

These requirements are presented as a roadmap with stricter requirements
over time, and considering all mobiles, both outdoors and indoors. The require-
ment is a horizontal accuracy corresponding to a dispatchable address or within a
radius of 50 m for 40% of all wireless 911 calls within two years, gradually tight-
ened to 80% of the wireless 911 calls within six years. The highest achievable
accuracies for toa and tdoa estimations are thus currently well in-line with the
requirements of fcc even for the lowest bandwidth (1.4 MHz) of lte systems.

2.2.3 Barometric pressure

All indoor navigation systems, require a reliable source of vertical measurement
(along the z-axis) in multi-story environments to operate with an acceptable level
of accuracy. This information can be obtained for example from gps-based ele-
vation estimation techniques. However, lack of accuracy and reliability on top
of limited availability to outdoor environments motivates more reliable source of
information. One complementary sensor that solves the tricky vertical position
problems is barometric pressure sensors that are based on barometric formula
stating that atmospheric pressure decreases with increasing altitude.

Given a reference point at which the height above the see level `(i)
zt , standard

air temperature Tr , and air pressure pr are known, see Figure 2.3, θzt can be
found by

θzt = pr +
Tr
L

(
pθ
pr

−c̃
− 1

)
, (2.14)
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where c̃ is the constant in barometric formula, L is temperature lapse rate, and
pθ is the known air pressure at location of the ue. Generic measurement of the
altitude of ue relative to the reference point is thus given by

Figure 2.3: The measured elevation of the ue using known pressure at a
reference point.

y i,baro
t = ‖θz,t − `

(i)
z,t‖ + ei,baro

t . (2.15)

An example of a possible use of a barometer in vertically oriented activities is
presented in [94]. Three types of reference points exist:

• Meteorological stations for weather forecast already deployed by the na-
tional meteorological agencies. These stations have coarse spatial density
on the amplitude of tens of kilometers and low update frequency of almost
once an hour.

• The elevation of a person with a smartphone in outdoor environment taken
from Digital Elevation Model (dem)-map based on his current location is
called a "dem reference”.

• The third reference point is based on an ad-hoc fashion of smartphones
within the system.

For the case a reference pressure is unavailable, [84] presents a framework
that does not depend on any special infrastructure and provides accurate ele-
vation measurements using only smartphones. The final accuracy obtained by
applying the system presented in [84] is less than 5 m in 90% of the cases and
less than 3 m in 75% of times.

2.3 Trends

So far, we described the area of positioning in radio networks followed by prac-
tical consideration. However, there are some important trends that are expected
to further improve the achievable accuracy.
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2.3.1 New and better information

New timing measurements

The timing measurement protocol was first introduced in the institute of elec-
trical and electronics engineers (ieee) 802.11v standard as an optional manage-
ment for stations. Those stations who do not support this procedure, shall ignore
a received timing measurement frame. Reference [44] presents the workflow of
various wireless network management procedures of the ieee 802.11v standard
including timing measurements. Initiation of or stopping an ongoing procedure
takes place by a "Request frame” sent by the receiving station. The value of the
trigger field dictates if it is an initiative frame or a stop one.

Indoor environments, however, require more sophisticated measurement pro-
cedures to deal with practical challenges. For instance, while gnss systems in
outdoor environments are equipped with atomic clocks providing precise syn-
chronization between all satellites, WiFi access points are not necessarily syn-
chronized. The synchronization issue is compensated by measuring round-trip
delays [76]. A yet newer protocol, fine timing measurement (ftm) [44], enables
indoor tof positioning. Measurements in the ftm protocol can be performed for
different bandwidths. Additionally, the number of measurement frames is con-
figurable and can take a value between 1 and 32. Figure 2.4 illustrates a generic
implementation of ftm initiated with ftm request.

Massive MIMO

Classic array processing with multiple input multiple output (mimo) antennas as
surveyed in [75], enables accurate direction of arrival estimation. Massive mimo,
where the number of antenna elements is on order of magnitude larger than the
number of communication links they serve, scales very favorably. This and many
other advantages are described in [105].

In addition to the research on communications perspectives, as shown in [51],
massive mimo is also an enabler for accurate localization. Authors in [108] stud-
ied multiple users localization using fingerprinting solution by means of massive
mimo. Using the concept of direct localization, first introduced in [123], authors
in [48] studied direct localization for massive mimo.

Ad-hoc networks

Localization services that are applicable to these networks must meet different
demands such as low power consumption, availability, and reliability. That is
why some existing services such as gps cannot be employed on wireless ad-hoc
networks. To address this issue, one alternative is to use short-range single-hop
localization systems. However, there are cases in which reference nodes are not
in the range of unknown ones. Then, multi-hop techniques must be taken into
account. In these scenarios, beacon positions are broadcasted over multiple hops.
This allows estimation of the distance to beacon nodes by calculating hop sizes
and number of hops.
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Figure 2.4: Fine timing measurement protocol with ftm burst size N where
1 ≤ N ≤ 32. Time of departure (tod) and toa are marked in the figure.

An ad-hoc positioning system based on aoameasurements is reported in [96].
Authors in [127] use a distance vector hop algorithm for wireless sensor networks
based on the received signal strength indicator for positioning. Experimental
results on ad-hoc networks that are self-organized by means of flying robots are
studied in [104]. An extensive survey on position-based routing in vehicular ad-
hoc networks is performed in [65].

2.3.2 New infrastructure

The infrastructure contains different entities that each of them can affect the mea-
surement resolution drastically. All the devices at the lowest layer are connected
to their upper layer devices via a short-range technology such as Bluetooth, Zig-
Bee, etc. In the meantime, devices in the middle layer could vary from a simple
ue acting as a gateway to a machine type communication (mtc) device [18]. Dif-
ferent types of access of the middle devices could be an IP-connectivity to another
gateway, cellular access to the access point (ap) or even an intra-connection to an-
other device of the same layer via a short range technology.
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BLE beacons

Bluetooth low energy (ble) beacons can be low cost tiny computers equipped
with Bluetooth radios. More complex hand-held devices such as smartphones
can also provide the same functionality. The general idea is that these devices
emit short-range signals that can be decoded by another ble-enabled device. The
distance to the receiving beacon can then be estimated. The possibility of iden-
tification of multiple beacons simultaneously in parallel with relative distance
calculations of each beacon, location awareness of the device becomes possible.

IoT

Internet of things (iot) can be seen as a great potential in many lines of research
and development. However, massive signaling traffic produced by numerous ob-
jects that update their locations, causes new challenges that need to be addressed.
Thus, there is a need for appropriate solutions that provide accurate location in-
formation while keeping the signaling level low.

M2M

Machine to machine (m2m) networks contain a number of devices such as radio-
frequency identification, sensors, tags, etc. This type of network is employed in
different location-based applications ranging from health monitoring to battle-
field surveillance. m2m communication networks are self-configurable with the
feature of being accessed remotely. The efficiency of approaches for location esti-
mation ofm2m network devices can be defined by scalability, whether or not they
depend on gps systems, range-based or range free property, and error handling
capabilities.

Fifth generation (5G)

Positioning is one of the most important design specifications for next generation
5g systems. Particularly, the millimeter wave technology operating in carrier fre-
quencies beyond 30 GHz band [11] has specific properties that make it of great
interest for radio-based positioning [118]. The millimeter wave technology al-
lows for packing massive arrays into a small area. For example, authors in [68]
studied the problem of realizing millimeter-wave massive arrays with dimensions
of a tablet.

The possibility of integrating a massive array in small areas, enabled by mil-
limeter wave technology in 5g systems, motivated authors in [52], to study the
concept of personal mobile radar operating at millimeter-waves. Positioning for
vehicular networks using millimeter wave technology in 5g systems is studied
in [126]. More recently, by taking advantage of large mimo and millimeter-wave
technologies, authors in [110] study the problem of positioning and orientation
estimation using only one bs.
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Narrowband IoT

Although gnss solutions are capable of determining the position of an object
with a few meters accuracy in outdoor environments, the robustness of gnss-
based methods is always restricted by the availability of gnss signals. Indoor
environments and dense urban areas are examples where these solutions fail.

As a response, 3gpp lte standard features positioning support since 3gpp
Release 9. The subsequent releases, as explained in [9], further extended capa-
bilities of positioning by introducing specific signaling infrastructures. For more
information on positioning in lte systems see [25, 37, 67].

The immense number of use cases inspired by iot, however, motivated 3gpp
to introduce Release 14, Narrowband iot (nbiot). Wearable technologies, asset
tracking, environmental monitoring are examples of ‘things’ addressed by iot.
Low power consumption and the possibility to communicate in the most chal-
lenging locations, in terms of coverage, are among shared requirements in all
these scenarios.
nbiot aims to offer deployment flexibility allowing an operator to allocate

a small portion of its current available spectrum to nbiot. Co-existence perfor-
mance with legacy gsm, general packet radio service (gprs) and lte technologies
are primary design criterion for nbiot. As reported in [122], nbiot requires a
minimum of 180 kHz system bandwidth for both downlink and uplink. A gsm
operator can replace one gsm carrier (200 kHz) with nbiot. An lte operator
can deploy nbiot inside an lte carrier by allocating one of the physical resource
blocks (prb) of 180 kHz to nbiot.



3
Theoretical Background

Localization in timing-based systems, in general, is based on the known position
of the involved bss. For instance, in tof and toa positioning systems, lateration
is applied that uses the absolute distance between ue and the involved bss. Using
pairwise differences of the absolute distances to each bs gives the tdoameasure-
ment, commonly referred to as hyperbolic localization. The measurements can
be translated into hyperbolas with focal points located at the bss on which the ue
can be. Without any further processing, in all the three measurements, at least
three bss are required in 2D scenarios to locate the ue.

Combining measurements of different types, not limited to those obtained
from radio networks, leads to hybrid approaches that can improve the accuracy
and deal with possible ambiguities. For instance, fusing the information obtained
from gnss signals with inertial sensor measurements, it is possible to take advan-
tage of the fast sampling-rate of inertial sensor observations and correct the drift
using accurate gnss position fixes [69].

Basic position estimators, introduced in Section 2.1.2, are based on the least
squares principle and valid only for linear models. However, for hybrid methods
with nonlinear models more complex algorithms are required to be able to fuse
information obtained from different sources. Additionally, measurement noises
in e.g. tdoa have spatial correlations resulting in symmetric but non-diagonal
covariance matrices. In the rest of this section, the problem of static location es-
timation of the ue is studied. Then, modality fusion and temporal filtering intro-
duced in Section 2.1.3 is discussed in more details for both linear and nonlinear
models.

Let h(θ, `) denote any type of the standard measurement models defined in
Section 2.1.1 where type of measurements are discarded for sake of notation sim-
plicity. The set of available measurements stacked in a vector is then given by
y = h(θ, `) + e.

25
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3.1 Cost function methods

In the static case, there is no assumption of temporal correlation between consec-
utive positions, so the position vector is a sequence of uncorrelated parameters
estimated in a snapshot manner.

Problem formulation

The ue can be localized by finding the position that minimizes a specific cost
function J (θ) that in general is presented by

θ̂ = arg min
θ

J (θ), (3.1)

where J (θ) = ‖y− h(θ, `)‖ is one possibility. Different types of cost functions can
be defined to estimate θ from known measurements y corrupted by the stochastic
unknown error e. For instance, if the probability distribution of the error, pe(e)
is known, the maximum likelihood estimator (mle) corresponding to the cost
function

JML(θ) = log pe (y − h(θ)) , (3.2a)

can be used. The mle is known to be asymptotically efficient [72]. In the spe-
cial case where measurement noises are independent, identically Gaussian dis-
tributed, pe(e) ∼ N (e; 0, σ2

e I), the mle turns into a nonlinear least squares (nls)
problem

J NLS (θ) = (y − h(θ))T (y − h(θ)). (3.2b)

In case of spatial correlations in measurement noise terms pe(e) ∼ N (e; 0,R(θ)),
the weighted version of nls,wnls, should be used instead

J WNLS (θ) = (y − h(θ))T R−1(θ)(y − h(θ)). (3.2c)

Optimization methods

Irrespective of which optimization criteria in (3.2) is considered, in general, there
is no closed form solution to (3.1) and numerical optimization methods are re-
quired [54]. Initialized at θ̂0, these methods produce a sequence of iterative up-
dates {θ̂k}∞k=0. In each iteration k, the algorithm computes the cost function at θ̂k
to decide how to move to the next iterate such that J (θ̂k) < J (θ̂k−1). The itera-
tions terminate either at a given threshold or when no more progress is made.

Two fundamental strategies for iterative updates of the unknown parameter
are line search and trust region approaches. In this thesis we consider the line
search method in which the iteration is defined by

θ̂k = θ̂k−1 + αkpk , (3.3)

where pk is the search direction and αk is the step length that defines how far
to move along the direction pk . Given an appropriate step length αk at each
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iteration, any direction with an angle of less than π/2 radian with −∇θJ (θ̂)k is
called a descent direction. Mainly, all line search algorithms consider a descent
direction pk that satisfies pTk ∇θJ (θ̂k) < 0. This guarantees the reduction in the
cost function if we move along this direction [97]. The general form of the search
direction in line search methods is given by

pk = −Υ −1
k ∇θJ (θ̂k), (3.4)

where Υk is a symmetric and non-singular matrix. Two local search algorithms
that are widely used in positioning applications are steepest descent and Gauss-
Newton [34] as defined in the rest of this section.

Define H(θ) = ∇θh(θ) for the least squares cost functions and
H(θ) = ∇θ log pe(y − h(θ)) for mle. It must be noted that in what follows,
R should be set to an identity matrix of appropriate size if either of cost func-
tions (3.2a) or (3.2b) are to be optimized.

Steepest descent

The most obvious choice of the search direction is the one used in steepest descent
where Υk is the identity matrix, hence pk = −∇θJ (θ̂k). The steepest descent
iterations are given by

θ̂k = θ̂k−1 + αkH
T (θ̂k−1)R−1

(
y − h(θ̂k−1)

)
. (3.5)

As discussed in [97], the steepest descent algorithm is globally convergent but
might be very slow in practice.

Gauss-Newton

Newton’s method uses information of the exact Hessian matrix to find the search
direction. This guarantees a descent direction given that the exact Hessian matrix
is positive definite. Otherwise, a search direction might not even exist and should
be approximated using Hessian modification methods that might result in a di-
rection that is not descent [97]. Gauss-Newton is an approximated version of the
Newton’s method that uses an approximate Hessian (as in Levenberg-Marquardt
method), ∇2

θJ (θ̂k) ≈ 2J (θ̂k)T J (θ̂k) and exact gradient [34], where J (θ̂) is the Jaco-
bian matrix. The Gauss-Newton iterations are given by

θ̂k = θ̂k−1 + αk
(
HT (θ̂k−1)R−1H(θ̂k−1)

)−1
HT (θ̂k−1)R−1

(
y − h(θ̂k−1)

)T
. (3.6)

Note that in the exact Newton’s method, Υk is the exact Hessian ∇2
θJ (θ̂k) giving

the search direction pk = −
(
∇2
θJ (θ̂k)

)−1
∇θJ (θ̂k).

Gauss-Newton with modified step lengths

Possibility of convergence to a local optima is a well-known problem with all line
search methods that might occur in case of poor initialization of the iterations.
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Rate of convergence is yet another important factor in all these optimization al-
gorithms that need to be addressed while designing them. These two criteria
can sometimes conflict with each other, hence extra care needs to be taken. Sec-
tion 4.2 employs the modified Gauss-Newton method with varying step lengths
as in [77] to improve both the convergence rate and global convergence.

Additive updates in each iteration, αk are damped by using αk ∈ (0, 1]

Jk(αk) BJ (θ̂k−1 + αkpk) (3.7a)

M B
{
αk ∈

{
1,

1
2
,

1
4
,

1
8

}
: Jk(αk) < Jk(0)

}
(3.7b)

αk =
{

1
8 M = ∅

max(M) otherwise.
(3.7c)

3.2 Bayesian filtering

Bayesian filters are recursive algorithms used to infer the states of dynamic sys-
tems from noisy observations. In localization context, the state can be the ue’s
location while indirect observations of the state are given by e.g. timing mea-
surements. In each recursion, the previous state estimate together with a priori
known dynamics of the system and current observations are used to update the
state estimate.

Statistical system models

The statistical dynamic model explains how the states evolve in time and is given
by

xt+1 ∼ p (xt+1 | xt) . (3.8a)

The statistical measurement models are used to relate the collected observations
to the system states as

yt ∼ p (yt | xt) . (3.8b)

Assuming that the states of the system, xt , follow a Markovian property

p (xt+1 | x1 . . . xt) = p (xt+1 | xt) , (3.9a)

p (yt | x1 . . . xt , y1 . . . yt−1) = p (yt | xt , y1 . . . yt−1) . (3.9b)

Furthermore, noting that given xt , yt is conditionally independent of y1, . . . , yt−1

p (yt | xt , y1 . . . yt−1) = p (yt | xt) . (3.9c)

The posterior densities are estimated recursively in the Bayesian framework, ini-
tialized at the prior distribution of states p(x0), see [63] and [107].
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Recursive state estimate

Given the set of measurements Y1:t = [y1, . . . , yt], the state estimation problem
is the problem of finding the predictive p (xt+1 | Y1:t) and filtering p (xt | Y1:t)
posterior distributions. The one-step ahead predictive distribution for a given
dynamic model is given by

p (xt+1 | Y1:t) =
∫
p (xt+1 | xt) p (xt | Y1:t) dxt . (3.10)

The filtering distribution then further includes the information obtained from
measurements yt resulting in

p (xt | Y1:t) =
p (yt | xt) p (xt+1 | Y1:t)

p (yt | Y1:t−1)
, (3.11a)

where the normalization constant in (3.11a) is defined as

p (yt | Y1:t−1) =
∫
p (yt | xt) p (xt | Y1:t−1) dxt . (3.11b)

In this thesis, we restrict our analysis to discrete-time filtering of sampled signals
denoted by subscript k. The snapshot positions θ are then indexed by k, stacked
in the states of the system dynamics xk . Bayesian filters can then be applied to
derive the filtering distribution of the state of the system at time instance k given
all the measurements up to k.

Point estimates of the state vector at each time instance k, if desired, can then
be computed from the marginal posterior distribution p(xk | Y1:k). For example,
choosing the point estimate that gives the minimum mean squared error (mmse)
gives the conditional mean of the state xk given the measurements Y1:k . mmse
is in fact the optimal solution to the optimization of the expected loss function
E{J (x) | Y1:k} when a weighted quadratic loss function is to be optimized. Maxi-
mum a posteriory (map) is another alternative that gives the most probable value
of the sates as the point estimate. In the special case of Gaussian posterior distri-
bution, the two solutions coincide,

x̂MMSE
k|k = Exk {xk | Y1:k}, (3.12)

x̂MAP
k|k = arg max

xk
p(xk | Y1:k). (3.13)

For the general statistical model (3.8), closed-form solutions to the recursions
(3.10) and (3.11a) might not always exist. In the rest of this section we first con-
sider the special case in which (3.8) corresponds to a linear Gaussian ssm for
which analytical solutions exist. Then, one alternative for approximating nonlin-
ear ssm is introduced.



30 3 Theoretical Background

Linear models; closed form solution

In the special case when both the dynamic and the measurement model are linear,
we obtain the class of linear ssm,

xk+1 = Fkxk + ωk+1, (3.14a)

yk = Hkxk + ek , (3.14b)

where ωk ∼ p(ωk) = N (ωk | µωk ,Qk) ∈ Rnω denote the disturbances entering
the system as input and the vector ek ∼ p(ek) = N (ek | µek ,Rk) ∈ R

ne is the
measurement noise.

The well-known Kalman filter (kf) provides an optimal closed form solution
to the estimation problem. Assuming zero-mean noise terms, µeK = µωK = 0, Al-
gorithm 1 presents kf steps starting the recursions from initial state x0 with the
prior uncertainty P0. See [54], and [107] for proof. The algorithm can be used to
obtain parameters of the following distributions

• Predictive distribution:

p(xk+1 | Y1:k) = N
(
xk+1 | xk+1|k , Pk+1|k

)
. (3.15a)

• Filtering distribution:

p(xk | Y1:k) = N
(
xk | xk|k , Pk|k

)
. (3.15b)

Nonlinear models; approximate solutions

In many practical applications, as the ones introduced in Section 2.1.1, the mea-
surement model is not linear. In cases when either one or both of the dynamic
and measurement models are nonlinear, approximations are required. Assuming
that the noise terms enter the system additively, the nonlinear ssm is given by

xk+1 = fk(xk) + ωk+1 (3.18a)

yk = hk(xk) + ek . (3.18b)

The solution to the nonlinear filtering problem can be approximated in different
ways. One general framework is to solve the problem by approximating non-
Gaussian densities, resulting from nonlinearities in the model, by Gaussian den-
sities. See [125], [16], [17], and [15] for more details on generalized Gaussian
filters applications.

Special cases of general Gaussian filters can also be derived using Taylor se-
ries approximations of nonlinear models as in the extended Kalman filter (ekf),
see, [114] and [63].
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Algorithm 1 Kalman filter

Input: x0, P0, yk
Output: xk|k , Pk|k , xk+1|k , Pk+1|k .

Initialization :
x1|0 = x0, P1|0 = P0.

1: for k = 1 to N do
2: State measurement update:

Sk = HkPk|k−1H
T + Rk , (3.16a)

Kk = Pk|k−1H
T
k S
−1
k , (3.16b)

xk|k = xk|k−1 + Kk
(
yk − Hkxk|k−1

)
, (3.16c)

Pk|k = Pk|k−1 − KkHkPk|k−1. (3.16d)

3: State time update:

xk+1|k = Fkxk|k , (3.17a)

Pk+1|k = FkPk|kF
T + Qk . (3.17b)

4: end for
5: return xk|k , Pk|k , xk+1|k , Pk+1|k .

The ekf assumes that the posterior distribution is Gaussian p(xk | Y1:k) '
N (xk | x̄k|k , P̄k|k) and approximates the first two moments. Algorithm 2 summa-
rizes the steps of the ekf filtering method for the nonlinear ssm model (3.18)
with additive noise.

The ekf estimated distributions, and their corresponding point estimates, are
no longer optimal but the algorithm is simple and performs fairly well in many
applications [66]. However in cases with severe nonlinearity, the algorithm might
have poor performance as it is based on a local linear approximation. Perfor-
mance improvements might be possible for example by employing information
in the Hessian of the nonlinear models using a second order Taylor expansion.
However, this further restricts the algorithm to models for which both first and
second derivatives are available. In cases where the dynamic model is linear,
and the measurement model is nonlinear the iterated ekf can provide perfor-
mance improvements [19]. The idea with the iterated ekf is to better approxi-
mate the measurement model by iteratively repeating the measurement update
phase (3.19) until a certain criteria is satisfied.
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Algorithm 2 Extended Kalman filter

Input: x0, P0, yk
Output: xk|k , Pk|k , xk+1|k , Pk+1|k .

Initialization :
x1|0 = x0, P1|0 = P0.

1: for k = 1 to N do
2: State measurement update:

H̃k =
∂
∂x
hk(x)

∣∣∣∣
x=xk|k−1

(3.19a)

Sk = H̃kPk|k−1H̃
T
k + Rk , (3.19b)

Kk = Pk|k−1H̃
T
k S
−1
k , (3.19c)

xk|k = xk|k−1 + Kk
(
yk − hk(xk|k−1)

)
, (3.19d)

Pk|k = Pk|k−1 − KkH̃kPk|k−1. (3.19e)

3: State time update:

F̃k =
∂
∂x
fk(x)

∣∣∣∣
x=xk|k

(3.20a)

xk+1|k = fk(xk|k), (3.20b)

Pk+1|k = F̃kPk|k F̃
T
k + Qk . (3.20c)

4: end for
5: return xk|k , Pk|k , xk+1|k , Pk+1|k .

Two examples of system dynamics

The simplest system dynamics corresponds to the case where the ue is assumed
to have nearly constant position manipulated by a zero-mean stochastic velocity
known as random walk, nearly constant position model or constant position (cp)
model [80]. In this case, the state vector contains only the position of the ue and
in two-dimensional scenarios, this implies that xk = (θx,k , θy,k)T . Assuming that
the disturbances ωk in (3.14) are modeled as white Gaussian noise and enter the
system additively,

xk+1 = F (CP)xk + ωk+1, (3.21a)

ωk+1 ∼ N
(
02,Q

(CP)
)
, (3.21b)
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with

F (CP) = I2, Q(CP) = σ2
ω

(
T 0
0 T

) (
T 0
0 T

)T
, (3.21c)

where σω is the noise standard deviation in m/s and T is the sampling interval.
In some applications, it is useful to further extend the state vector by the

velocity of the ue. The assumption is that the velocity of the ue is fairly constant,
and the acceleration is modeled as noise entering the dynamics. This is referred
to as a nearly constant velocity model or constant velocity (cv) model [80]. The
state vector in 2D then becomes xk = (θx,k , θy,k , vx,k , vy,k)T where vx and vy are
the velocities in x and y directions, respectively. The dynamics of the system are
then given by

xk+1 = Fxk + ωk+1, (3.22a)

ωk+1 ∼ N
(
0,Q(CV)

)
, (3.22b)

with

F (CV) =
(
I2 T I2
0 I2

)
, Q(CV) = σ2

ω

(
T 2

2 I2
T I2

) (
T 2

2 I2
T I2

)T

. (3.22c)

The process noise standard deviation for cv models is in m/s2. For more infor-
mation, see the survey article [80] that reports different types of motion models
used in target tracking applications.

Jump Markov models

In cases where the system has multiple operational modes, the general statistical
model (3.8) needs to be extended accordingly. For example, consider the simpli-
fied tracking problem based on the measurement model ỹ(t) = x̃2(t) + ẽ(t), where
x̃(t) is a slowly varying scalar process. We could in principle solve for x̃(t) and get
x̃(t) = ±

√
ỹ(t) − ẽ(t), and the core problem is which branch to select, the positive

or negative one.
One alternative to handle multi-modality in the positioning problem is to de-

rive the filtering distribution of the states of a jump Markov model (jmm). In
general, jmm is a state-space model where both the motion and measurement
models can depend on the mode of the system, δt . The general class of jmms
without any assumptions on the system and noise models are defined as

xk+1 = f (xk ,ωk , δk), (3.23a)

yk = h(xk , ek , δk), (3.23b)

where the set of possible modes of the system is given by δk ∈ S. In this thesis,
the set of modes S is assumed to contain integers. Additionally, the mode exhibits
Markov property. Switching between the modes can either be deterministic or be
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given by an additional model Π
a,b
k denoting the probability of transition from

mode a to mode b.
The filtering distribution of jmm can be computed in a filter bank framework.

A filter bank can then be applied to ensure keeping track of all possible modes
of the system at each time instant. Positioning using a bank of kfs is further
investigated in Section 5.1.2 for linear jmm with additive noise terms.
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OTDOA Positioning in NBIOT Systems

Cellular communication networks, as discussed in [111], play an important role
in iot applications. Contrary to the broadband services in which high data rates
are required, in most cases, lower data rates are acceptable for iot applications
[83] but with tighter requirements on better coverage, lower power consumption,
and cheaper devices [3]. Thus, 3gpp developed two machine type communication
(mtc) technologies, lte mtc (lte-m) and nbiot, introduced in its Release 13 for
low power wide area iot connectivity. Limited positioning support for both lte-
m and nbiot in Release 13, motivated 3gpp for improvements in Release 14 [83].
lte-m is based on lte and operates on a minimum system bandwidth of

1.4 MHz but with additional features resulting in better support for iot services
[103]. nbiot, on the other hand, is a new radio access technology that requires
180 KHz system bandwidth allowing for more deployment flexibility [122].

This chapter investigates otdoa positioning in nbiot systems where at least
three base stations are detected by the ue to form timing measurements. We first
motivate the research by giving a number of use cases of iot positioning in Sec-
tion 4.1 followed by the formulation of the otdoa positioning in nbiot systems
given in Section 4.2. Section 4.3 presents different scenarios and a simulated
nbiot network followed by performance evaluations discussed in Section 4.4.

4.1 Use cases of IOT positioning

The intensive expansion of iot could be seen as a result of rapid growth in use
cases where machine-type communications are needed. The existing connectivity
solutions fail to satisfy the three main requirements of wide coverage area, low
cost device design, and low power consumption, simultaneously. Hence, the key
features and capabilities that are to be addressed and optimized in nbiot are, ue
complexity reduction, long battery life and deeper coverage to reach challenging
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locations such as deep inside buildings. The new technologies also can leverage
existing lte infrastructure and spectrum, coexisting with today’s mobile broad-
band services.

Tracking, logistics and wearables are all exemplary iot use cases in which
position awareness is required. For example, in indoor localization applications
where gnss solutions fail, nbiot modules are a promising alternative. Tracking
with low sampling rate is another use case in which relying on a nbiotmodule as
a low-cost alternative to a gsm tracker, is beneficial. gnss based solutions might
not always be the best alternative due to lost connectivity as well as high power
consumption. Base stations might also be far away from the location of the user
which requires the ue’s transmitter to operate at high power.

Depending on the use case, the required positioning accuracy might vary rang-
ing from a few meters up to hundreds of meters. The authors in [83] report that
the benchmark target for lte-m and nbiot has been 50 m horizontal accuracy.

4.2 OTDOA positioning in NBIOT systems

To enhance toa measurement precision, resulting in higher otdoa positioning
accuracy, lte introduced prs. nbiot systems are also equipped with a specific
prs, narrowband positioning reference signal (nprs), supporting downlink ot-
doa based positioning. Specifically, for in-band deployment, prs symbols are
reused also in the nprs, which typically is extended with a large number of repe-
titions to allow accumulation at the device for detectability. The signal to interfer-
ence and noise ratio (sinr) threshold requirement for reference and neighboring
cells of nbiot devices compared to lte systems is also improved. This results in
better positioning support with otdoa techniques in nbiot devices compared
to the legacy lte as finding the minimum three cells for trilateration is more
probable.

In the rest of this section, we present different aspects of iot positioning
within lte standardization. nprs transmission schemes compensating lower
bandwidth of nbiot systems together with the principle of reference signal time
difference (rstd) estimation are briefly explained.

4.2.1 IOT positioning in LTE standardization

Devices involved in iot use cases require low-power consumption while demand-
ing a certain level of positioning accuracy. They might be located indoors where
gps signals are not detectable or even might not support gps or any other gnss.
Thus, the primary objective of nbiot is to provide a radio access technology that
allows for low device complexity, with low power consumption while still provid-
ing an adequate throughput for the connected devices.

NPRS transmission schemes

The reference signals used for toa estimation are transmitted at so-called posi-
tioning occasions [40]. In lte systems, in each positioning occasion, NPRS consec-
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utive subframes are sent every TPRS subframe. In legacy lte, NPRS can be 1, 2,
4, or 6, while TPRS can be 160, 320, 640 or 1280 ms, see [6]. Figure 4.1 shows an
example of positioning occasion corresponding to a 20 MHz lte system with 100
Resource Blocks (rb). The bandwidth of each rb is 180 kHz and the prs, in this
example, has 10 MHz bandwidth. ∆PRS is the cell specific subframe offset which
defines the starting subframe of the prs transmission relative to the start of the
system frame cycle.

For nbiot, the carrier bandwidth is 180 kHz, which fills up one lte rb. To
address the requirements of iot use cases, nbiot systems must ensure coverage
and good performance in challenging indoor environments. Thus, denser nprs
transmissions compared to the legacy lte prs configuration are needed to sup-
port aggregation of data for adequate coverage.

Denser nprs transmission occasions is achieved by extending NNPRS to also
include 10, 20, 40, 80 or 160 subframes. Figure 4.1 illustrates an example of
nbiot nprs transmission. Narrower bandwidth, as shown in the figure, can be
compensated by longer NNPRS. Supporting NNPRS = 160 subframes, it is possible
to configure a transmission schedule to use all nbiot resources, enabling even a
continuous nprs.

Figure 4.1: Example of the prs and nprs transmission schemes for a 20 MHz
lte system with 10 MHz prs bandwidth and an in-band deployment of
nbiot system with 180 kHz nprs bandwidth. Maximum number of NPRS
is 6 subframes. The narrower bandwidth of the nprs is compensated by
allowing NNPRS to be increased up to 160 subframes [101, ©2017 IEEE].
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Table 4.1: Parameters of epa and etu tapped-delay lte channel models.
epa channel etu channel

Tap tap delay
[ns]

Relative power
[dB]

tap delay
[ns]

Relative power
[dB]

1 0 0.0 0 -1.0
2 30 -1.0 50 -1.0
3 70 -2.0 120 -1.0
4 90 -3.0 200 0.0
5 110 -8.0 230 0.0
6 190 -17.2 500 0.0
7 410 -20.8 1600 -3.0
8 2300 -5.0
9 5000 -7.0

4.2.2 Channel model

There are different channel models recommended for specific propagation en-
vironments [32] where they typically characterize multipath fading, path-loss
attenuation, and shadow fading. For an extensive survey on wireless channel
modeling see for example [93].

The tapped-delay models are based on ITU-R [119] and 3gpp [2] channel mod-
els where each tap identifies a multipath signal. Depending on the environment,
3gpp agreed on using pedestrian A from [119] for low delay spread and typical
urban from [2] for high delay spread as stated in [8].

The evolution of lte towards higher operating bandwidths, however, required
revisions in the channel models [116]. An extension of the previous channel mod-
els were thus introduced and named epa and etu whose detailed parameters are
described in [4] and [5]. These models can be also extended to multiple antenna
scenarios, as described in [136] by considering spatial correlations as identified
in [7]. The multipath profile corresponding to epa and etu is summarized in
Table 4.1. Multipath in epa and etu is modeled as series of amplitude weighted
delayed copies of the input signal.

4.2.3 RSTD estimation

The ue measurement for otdoa positioning is the rstd which is the relative
time difference between the bs, or evolved node b (eNB), j and the reference
eNB i. rstd is calculated as the smallest time difference between two subframe
boundaries received from two different eNBs.

This thesis focuses on the impact of multipath fading propagation conditions
on the rstd estimations. This work considers this phenomena using a tapped-
delay line channel model . Let L be the number of multipath channels with com-
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plex valued gains α`, the tapped delay line model is then given by

h(t) =
L−1∑
`=0

α`δ(t − τ`), (4.1)

where τ` indicates the time delay of the `th tap and δ(t) is the Dirac delta function.
Then, denoting the transmitted signal by u, the received version r would be given
by

r[i] = u[i] ? h[i] + ω[i], (4.2)

where ? stands for convolution and ω[i] is additive thermal noise at the receiver.
The cross-correlation between the received sequence r[i] and the reference se-
quence, denoted by R(τ) is computed per subframe. To consider NNPRS consecu-
tive nprs occasions, the average of the set of cross-correlation estimates per posi-
tioning occasion is formed and denoted by Rave. Finally, the first tap is estimated
as

τ̂ = arg min
τ

{
Rave(τ)

max(Rave)
≥ ζ

}
, (4.3)

where ζ is the threshold value related to the multipath channel. The simulations
of this thesis use ζ = 0.5, which implies half of the strongest peak, see [106]. In
order to estimate the position using the otdoa method, each ue must be linked
to rstdmeasurements of multiple eNBs. Let τ̂ (`) correspond to the toa from the
`th eNB to the ue. Then,

τ̂ (i,j) = τ̂ (i) − τ̂ (j), (4.4)

where τ̂ (i,j) is the rstd between eNB j and the reference eNB i.
Let hOTDOA(θ) = r i − r j , (i, j) ∈ K , and i , j, be the otdoa measurement

model. Further, assume that y(i,j) contains the rstd reports in (4.4), translated to
relative distances, of the K most powerful eNBs,

y(i,j) = hOTDOA(θ) + e(i,j), (4.5)

where the additive error term e(i,j) represents the measurement error times the
speed of light. The performance of otdoa positioning in nbiot systems is evalu-
ated using both snapshot estimation method and also in a filtering framework.

4.3 Simulation study

To evaluate the potential of optimizing resource consumption, rstd reports are
simulated to be sent to the mobile location center periodically or on on-demand.
In the latter case, we further investigate two different scenarios. In one scenario,
the main interest is to maintain a minimum accuracy level while reducing the
resource consumption. In the second scenario, we allocate a certain maximal
budget and try to find a reporting pattern that maximizes the final achievable
accuracy. All different cases are introduced in Section 4.3.3. To increase the ro-
bustness of the filtering method, measurement noise outliers are detected using
confidence bounds estimated from filter innovations.
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4.3.1 Network deployment

The simulated cellular network consists of 16 macro sites each having 3 cells,
located in a hexagonal grid with an inter-site distance of 577 m. The ue starts at
a random position in the cellular network and passes through the network with
different speeds. Figure 4.2 illustrates the cellular network deployment in which
the red dots are macro sites, each with three cells, and the blue line represents
the ue’s trajectory. The ue trajectory represents a typical asset tracking use case,
which is one important mobile iot use case.
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Figure 4.2: Deployment configurations of nbiot. The blue line represents
the ue trajectory [101, ©2017 IEEE].

The radio distance wrapping technique, as described in [106], is used in this
work. This technique simulates a network in which all sites are assumed to be
surrounded by other sites. That is, all the ues that might be on the border of the
deployed network in Figure 4.2 are assured to be covered by other sites.

4.3.2 RSTD report budget

As described in Section 4.2.1, nbiot supports a densernprs transmission scheme
than prs, allowing aggregation of data. This enhances toa detection accuracy
compared to other narrowband systems. The nbiot system with an in-band con-
figuration, as shown in Figure 1.1, within the 20 MHz lte standard is simulated
in this work. The nprs bandwidth is 180 KHz where NNPRS = 40 subframes are
transmitted every TNPRS = 160 ms. The simulated nbiot system parameters are
given in Table 4.2.

Based on the geometry of the user, hearability of cells, and channel conditions,
we form the snr vector containing signal strengths received from each cell. The
cells below a given threshold are assumed to be out of coverage and the K remain-
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Table 4.2: The deployed nbiot parameters.
Deployed nbiot

System carrier bandwidth 20 MHz
nbiot configuration In-band
nbiot carrier bandwidth 180 kHz
Number of consecutive nprs 40
nprs period 160 ms

ing ones with highest snr form Nrep = K − 1 tdoa measurements. In this setup,
the reference cell is the one with highest snr value.

Let Trep be the interval at which the ue reports rstd measurements to the
positioning center. In periodic reporting, the ue forms Nrep rstd estimates and
reports it to the positioning center periodically every Trep seconds. Alternatively,
in the on-demand reporting method, the ue decides the number of rstds depend-
ing on the snr of the measured cells. In cases where the ue receives nprs signals
from strong cells, it forms more rstds to increase the accuracy. Weaker signals
are assumed to correspond to the bss further away from the ue that are more
prone to severe measurement errors. In cases where the received signals are not
strong enough, the ue reports less cells to lower the resource consumption.

4.3.3 Positioning scenarios and budget constraints

Let K be the set of bss in the nbiot cellular network; K = {1, . . . , N }. The K most
powerful bss, measured in dB, in the set K are used to form rstdmeasurements.
The parameter K , the number of bss to be chosen, depends on a specific budget of
reports. Hence, K determines the number of bss used in the position estimation
method.

The modified Gauss-Newton method introduced in (3.7) is used for the static
case while ekf (see Algorithm 2) is applied for the filtering scenario. rstd mea-
surements are performed with respect to a reference bs, resulting in a correlated
measurement noise covariance matrix R. Diagonal and off-diagonal elements of
R are similar to the ones reported in [71], to capture spatial correlations.

Static case

In the static case, we evaluate the obtainable position estimation accuracy using
nprs signals as a function of the number of measured cells. The unknown po-
sition of the ue is estimated using the modified Gauss-Newton method given
by (3.7) initialized at the serving bs position.

Dynamic case

In this case we consider three differentue speeds 3, 10, and 30 km/h modeled as a
cvmotion (3.22c). The unknown position and velocity of the ue are then tracked
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in an ekf filtering framework. The reporting budget per minute B is defined as
B = 60

Trep
× Nrep. Reports are either sent periodically or on an on-demand basis

forming five different cases:

• Case 1: Two reports every two seconds, B = 60.

• Case 2: Three reports every three seconds, B = 60.

• Case 3: Five reports every four seconds, B = 75.

• Case 4: The ue increases the accuracy by forming more rstd reports if
the snr values of available cells are above a certain threshold. However, it
cannot exceed the maximum budget of Bmax = 85.

• Case 5: Varying number of reports every four seconds. The ue has a max-
imum budget Bmax = 45 and depending on the snr values, reports less or
more cells to optimize resource consumption.

4.4 Result and Conclusions

4.4.1 Simulation study

The accuracy of different scenarios is numerically evaluated and the results are
presented by the cumulative distribution function (cdf) of the root mean squared
error (rmse) of the horizontal accuracy.

Figure 4.3 illustrates the cdf of the horizontal positioning accuracy of the
otdoa estimates for the static case for the epa and the etu channel models, sep-
arately. Each curve is the result of 50 Monte Carlo simulation runs. Although the
maximum positioning error is the same for both channels, the 90th percentile of
the error with 4 cells is around 76 m for the epa channel and 495 m for the etu.
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Figure 4.3: The otdoa performance for horizontal position accuracy of
static case for both channel models [101, ©2017 IEEE].
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The large positioning errors in Figure 4.3 can be explained by multiple factors.
There might be situations where less than three cells are heard. Although this
can be handled using a tracking filter, the optimization method in the static case
fails to converge as no unique optimum exists. nprs signals received from cells
belonging to the same site is another major influencing factor. Although it is
mentioned that the ue uses measurements from unique sites, this is not always
possible as there are situations when 3 unique sites are not within range. In cases
where the serving cell, initial point, is far away from the true position, the final
estimate can be a local minimum of the cost function. In the snapshot positioning
method, where no temporal correlation is considered, good initialization is more
important.

Figure 4.4 illustrates how poor initialization can be handled using tracking.
The ue speed is 30 km/h and rstds are sent as in case 1. The shaded areas are
the range of positioning errors obtained from 50 Monte Carlo runs and solid lines
are the average positioning error.

Figure 4.4: rmse over time for nbiot positioning using ekf for case 1 [101,
©2017 IEEE].

Figure 4.5 presents the performance of the periodic reporting methods, cases
2 and 3, introduced in Section 4.3.3 for different ue speeds. The figure suggests
that in epa channel models, more frequent reporting with less cells gives better
results for all different speeds.

Cases 4 and 5 are compared to the periodic reporting for all cases and the
results are presented in Table 4.3. For example, in the etu channel, for a ue
moving with 30 km/h, case 4 improves the 90th percentile of positioning error
from 238 m in case 3 to 183 m as seen in Figure 4.6b. Case 5 on the other hand,
reduces reports per minute to almost a half while giving almost the same error
characteristics.
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Figure 4.5: The otdoa performance for horizontal position accuracy of ekf
for both channel models [101, ©2017 IEEE].
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Figure 4.6: Comparison of on-demand with periodic reporting
schemes [101, ©2017 IEEE].

4.4.2 Conclusions

The performance of device tracking in nbiot systems has been investigated with
respect to the horizontal positioning accuracy. The new transmission scheme of
nprs was used to compensate narrower bandwidth of the system and improve
toa estimates. Given a certain nprs transmission scheme, the rstd was formed
and used for downlink otdoa positioning.

The results were obtained for the epa and etu wireless channel models corre-
sponding to low and high delay spread environments, respectively. We evaluated
positioning in both static and dynamic cases.
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Table 4.3: Positioning error statistics and reporting budget B obtained by
ekf for ue speeds 3/10/30 km/h for both channel models .

Channel Case
RMSE [m]

Budget
Mean 67% 90%

EPA

1 14/15/18 14/14/18 26/27/35 60
2 13/15/19 14/15/17 25/29/36 60
3 16/15/20 16/15/18 33/31/41 75
4 12/13/16 11/13/15 22/26/32 75-85
5 15/19/19 14/16/18 29/34/38 35-45

ETU

1 104/111/131 115/118/145 180/195/244 60
2 99/105/135 111/116/137 178/193/238 60
3 87/95/117 101/103/124 160/162/213 75
4 71/80/97 80/94/110 127/142/183 75-85
5 100/118/118 113/128/129 188/230/223 35-45





5
Positioning Using Fusion of TOF and

TDOA

It is often presumed in ue-assisted positioning that at least three different bss
must be measured in order to localize a target uniquely. However, there might be
situations where information associated to three bss is unavailable. For example,
the uemay only detect less than three base stations. In cases where signals from
only two bss are detectable, the ue cannot be localized uniquely with an accept-
able level of uncertainty using conventional methods for snapshot positioning.

This thesis proposes an approach based on fusion of tof and tdoa measure-
ments gathered from two bss over a time series. Solving the set of nonlinear
equations for the 2-D position in noise-free scenarios gives two possible closed-
form solutions for the ue position. The derived solutions are used to estimate
the snapshot position of the ue for realistic measurement model using the un-
scented transformation. The estimated positions of the unscented transforma-
tion are then fed to a bank of Kalman filters as position measurements of the
ue. While the ue passes through the cellular network, it will be handed over to
other bss based on an event-triggered handover procedure. As soon as a handover
occurs, the weights of unlikely modes in the filter bank get noticeably smaller rel-
ative to the likely modes. The ambiguity in the positions can then be resolved as
soon as a change in the set of bss occurs.

In the remainder of this chapter we first provide background and related work
of timing-based and hybrid localization methods in Section 5.1. The results of the
simulation study and real data experiments are given in Section 5.2.

5.1 Background

Estimating the 2-D location of a ue from toameasurements, either forming tof
or tdoa measurements, associated to at least three bss is a well studied prob-
lem. One typical example is to position the ue due to an emergency call, where
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the ue is requested to report tdoa measurement associated to detected base sta-
tions. With this snapshot measurement report, the network needs measurements
associated to at least three base stations.

To increase the location estimation accuracy, hybrid approaches are intro-
duced in the literature. In a majority of radio-based hybrid positioning approaches,
aoameasurements are used together with tdoa [30] and toa [87, 98]. However,
collecting aoa measurements in practical applications is not always trivial. The
angle at which a signal arrives at the receiver can be computed either by using
a directional antenna or by inferring it indirectly from toameasurements using
antenna arrays [29, 75, 120]. Since directional antennas with suitable size and
cost are generally difficult to realize, antenna arrays are more commonly used.
However, as shown in [112], the position accuracy obtained by toa measure-
ments cannot be further improved by aoameasurements obtained from antenna
arrays.

Although hybrid positioning solutions can be of great use in cases where the
number of available bss are limited, all these studies assume that at least three
bss are available. Positioning using measurements gathered from only two base
stations has not been widely studied until very recently. In [124], the location of
a fixed object is estimated using toa and aoameasurements collected from two
bss. The algorithm is only valid in circular scattering environments and need
to be tailored for each individual scenario with various scattering radius proper-
ties. Another recent study in [132], uses one tdoa and two aoa measurements
collected from two base stations for passive localization of one static source. Al-
though a localization error of around 300 m (for aoa noise standard deviation of
two degrees) might be acceptable in some static source localization applications,
in dynamic scenarios, there is no chance to estimate the velocity and other proper-
ties of the ue. The authors in [64] investigate the position estimation of a vessel in
an automatic identification system using toa and tdoameasurements. The per-
formance of the estimator is evaluated in terms of geometric dilution of precision
and no realistic noisy measurements is tested with the proposed method.

In this work, bss to which range is measured at each time instant change along
the trajectory. Contrary to the nbiot scenario where the snr values were used
to form the serving and non-serving bss, we here assume that the serving bs is
the bs that has the smallest geometric distance to the ue. Similarly, the neighbor-
ing bs is defined to be the bs which, geometrically is, the second closest to the
ue. With these assumptions, it is possible to define areas identifying which bs is
providing tof measurements and which pair of bss are detected for tdoa mea-
surements as shown in Figure 5.1a and Figure 5.1b, respectively. Interestingly,
the areas for tof measurements define hexagonal cells, while the areas for the
detected bs pairs for tdoa measurements define parallelograms (e.g., the area
where bs S1 and S5 are detected for the tdoameasurement is defined as the par-
allelogram having corners defined by S1 and S5. In this setup, S1 provides the
tofmeasurement, and the tdoa is measured based on signals from S1 and S5).

In the simulation study reported in Section 5.2.1, we consider that the ue is
moving on a predefined trajectory, which has a flower-shape structure as depicted
in Figure 5.1. The serving bs and the neighboring bss involved in the positioning
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Figure 5.1: Simulation scenario with flower-shaped trajectory, and areas
identifying (a) which BS is providing TOF measurements, and (b) which pair
of BSs is detected for TDOA measurements

process will change depending on the current location of the ue.

5.1.1 Static case

Let r1 denote the distance between the unknown position of the ue, denoted
by θ, to the serving cell BS1 and r2 the distance to the neighboring cell BS2.
The noise-free absolute and relative ranges are 2r1 and r21 = r2 − r1, respectively.
Further, let g(r1, r21) be the inverse mapping that relates the unknown position
ue to the range measurements, θ = g(r1, r21). In the rest of this section, we first
derive closed form solutions of the ue’s position given r1 and r21. The available
tof and tdoa measurements are noisy measurements of true distances 2r1 and
r21 = r2 − r1, used to estimate the ue’s position.

Noise free case

To facilitate the derivation, the first step is to temporarily use a local coordinate
system, where the two bss, S1 and S2, are symmetrically located at the x-axis as
illustrated in Figure 5.2. Define a rotation R and translation t such that, θ̄ =
Rθ + t and ¯̀

i = R`i + t, where ¯̀
1 = (−D/2, 0)T and ¯̀

2 = (D/2, 0)T . We define the
solution as θ̄ = ḡ(r1, r21). Since the change back to global coordinates is given by
θ = RT (θ̄ − t), the desired mapping is given by θ = g(r1, r21) = RT

(
ḡ(r1, r21) − t

)
.

Note that the rotation matrix R does not affect scale, so the distances ri are the
same in local coordinates, and the BS separation is also the same in global and
local coordinates.

Geometrically, the solution in the noise-free case is given by the intersection
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Figure 5.2: Equivalent local coordinate system for the two bs scenario [100,
©2016 IEEE].

of a circle and a hyperbola, defined by(
θ̄x −

D
2

)2
+ θ̄2

y = r2
1 ,

θ̄2
x

a2 −
θ̄2
y

b2 = 1,

where a2 = 1
4 r

2
21 and b2 = 1

4 (D2 − r2
21). Algebraically, the two intersections are

given by

θ̄ =



[
ḡx(r1, r21)
δḡy(r1, r21)

]
, r1 + r2 > D

[
ḡx(r1, r21)

0

]
, r1 + r2 = D

∅, otherwise

, (5.1a)

with

ḡx(r1, r21) =
r21 (r21 + 2r1)

2D
, (5.1b)

ḡy(r1, r21) =

√(
D2 − r2

21

)
((2r1 + r21)2 − D2)

2D
, (5.1c)

where δ ∈ {±1} is a discrete parameter representing the two possible intersection
points. Note that the circle and hyperbola can intersect in no, one or two points,
where two solutions is the normal case, and only having one solution is a degen-
erated case when r1 + r2 = D and the solution lies on the x axis. The case of no
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solution, corresponding to r1 + r2 < D, can happen for noisy measurements and
may need special care.

Noisy case

Let edl,1 and eul,1 denote the measurement noises of the serving bs in the down-
link and uplink directions, respectively. The measurement noise of the second bs
has only contributions from the downlink and is denoted by edl,2. The noisy tof
and tdoameasurement models are thus defined by

z1 = 2r1 + edl,1 + eul,1, (5.2a)

z2 = r2 − r1 + edl,2 − edl,1, (5.2b)

where edl,i ∼ N (0, σ2
dl) and eul,1 ∼ N (0, σ2

ul). We define the measurement vector
z = (z1, z2)T where z ∼ N ((2r1, r21)T ,R) with R given by

R = Cov(z) =
[
σ2

dl + σ2
ul −σ

2
dl

−σ2
dl 2σ2

dl

]
. (5.3)

Let e =
(
edl,1 + eul,1, edl,2 − edl,1

)T be the measurement noise vector. The stochas-
tic vector (z − e) can be related to the ue position through a nonlinear mapping
θ (δ) = g(z − e, δ), mapping R

2 → R
2. Nonlinearities in g( · ) mean that the

corresponding position will be non-Gaussian distributed. Hence, the ue posi-
tion estimation problem turns into the problem of efficiently approximating the
mean and covariance of Gaussian random variables that have been transformed
through nonlinearities.

In the following, we let θ̂ (δ) denote the ue position estimate. There is a vast
literature on how to treat nonlinearities and compute θ̂ (δ). First and second
order Gaussian approximations are based on Taylor series expansions to approx-
imate a linear model. For example, a first-order Taylor approximation of the
nonlinear mapping g(z − e, δ) around the measurement vector z is given by

g(z − e, δ) ≈ g(z, δ) − g′(z, δ)e, (5.4)

where g′( · ) is the gradient of g( · ) with respect to z. From this linear approxima-
tion, we obtain the mean and covariance which is sometimes referred to as Gauss’
approximation formula, yielding

θ̂ (δ) = Ep(e)g(z − e, δ) ≈ g(z, δ) (5.5a)

Pθ(δ) = Cov(g(z − e, δ)) ≈ g′(z, δ)R (g′(z, δ))T (5.5b)

Thus, the position estimator θ̂ (δ) is rather simple, as it only replaces the noise-
free measurements r1 and r21 by the noisy measurements z.

The Unscented transform (ut) is another method that differs from the Taylor-
series-based in the sense that it does not approximate the nonlinear function,
rather it tries to directly approximate the first two statistical moments.
ut approximates θ(δ) = g(z − e, δ) and its associated uncertainty as the first

two moments of a Gaussian distribution, N (θ(δ),Λ(δ)). The approximation pro-
cess is given by Algorithm 3, see [54], [107] for detailed explanation.
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Algorithm 3 Unscented Transformation for n variable Gaussian distribution,
Input: R, g(z, δ), λ.
Output: θ̂(δ),Λ(δ)

1: Define σi and ui using the singular value decomposition of R = UΣU T , where U T U = I and Σ = diagσ2
i , as

R = UΣUT =
n∑
i=1

σ2
i uiu

T
i , (5.6)

where ui is the i:th column of U and σ2
i = Σi,i is the i:th diagonal element of Σ.

2: Form a set of 2n + 1 sigma points

τ(0) = 0, (5.7a)

τ(±i) = ±
√

2 + λσiui , i = 1, . . . , n. (5.7b)

where λ is a design parameter.
3: Map the sigma points to θ̃(n)(δ) = g(z − τ(n), δ) by propagating them through nonlinear function g(.) for n ∈
{0,±i}.

4: Compute the constant weights wn

w(0) =
λ

2 + λ
, (5.8a)

w(±i) =
1

2 (2 + λ)
, i = 1, . . . , n. (5.8b)

5: Estimate the mean and covariance of the transformed variable from the mapped sigma points

E[g(z, δ)] ≈ θ̂(δ) =
∑
j∈n

w(j) θ̃(j)(δ) (5.9a)

Cov[g(z, δ)] ≈ Λ(δ) =
∑
j∈n

w(j)
(
θ̃(j)(δ) − θ(δ)

)
×
(
θ̃(j)(δ) − θ(δ)

)T
. (5.9b)

5.1.2 Dynamic case

In the dynamic case, we would like to use filtering methods to solve the prob-
lem. Given the sequence of δ, this can be done using a kf. However, as δ is
unknown, we resort to enumerating possible δ combinations, and keeping track
of how likely they are. This is known as a filter bank. Since the number of pos-
sible mode combinations in the filter bank grows exponentially, the problem be-
comes intractable over time. Hence, to make the algorithm tractable, the number
of mode combinations need to be reduced. Next, a filter bank approach will be
described with the model structure.

Filter bank solution

We use a bank of Kalman filters to compute the filtering distribution of the jump
Markov state-space model. Applying the filter bank assures keeping track of
both possible modes of the system along the trajectory. Then, it is possible to
avoid making a hard decision until the set of involved bss changes.
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To better illustrate how a change in the pair of bss introduces two solutions,
see Figure 5.3 in which the two possible solutions are marked with blue and black
dots while the ue goes through the network. Initiating at time 0, the ue starts its
path at point (600, 0)T . The serving bs is bs5 and the neighboring bs is bs1. Let
t̃ be the time at which the first handover occurs and the new set of bss change to
bs5 and bs2. Two possible positions at time t̃−1 are (690, 390)T and (690,−390)T

while the former is the true position of the ue.
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Figure 5.3: Simulated network deployment with seven bss and the true tra-
jectory, marked with green, together with the true and ambiguous solutions,
marked with blue for δ = 1 and black for δ = −1. Time instance at which the
measured bs pair change are marked with red crosses.

Using the additional information obtained at the time of handovers, the true
sequence of modes gets a higher weight relative to the other set of mode making
it possible to keep the relevant estimates and discard the rest. The method is
illustrated by the flow diagram given in Figure 5.4.

Jump Markov state-space model

The estimated positions θ̂(δ) and their associating covariance matrices Λ(δ) given
by (5.9) are used as the measurements yt in the state-space model. The motion of
the ue is modeled using the cvmodel (3.22c) translational kinematics where the
unknown inputs to the system are modeled as process noise. The (Kalman filter
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Figure 5.4: Flow diagram of the proposed method.

bank) model is defined by

xt+1 = Fxt + ωt+1, (5.10a)

0 = Hxt + ct(δt) + et(δt), (5.10b)

ωt+1 ∼ N (0,Q) , (5.10c)

et(δt) ∼ N (0,Λt(δt)) , (5.10d)

p (δt+1 | δt) = Π
δt+1,δt
t , (5.10e)

with

F =
(
I2 T I2
0 I2

)
, H =

(
1 0 0 0
0 1 0 0

)
, (5.10f)

ct(δt) = −θ̂t(δt) = −yt , Q = σ2
ω

(
T 2

2 I2
T I2

) (
T 2

2 I2
T I2

)T

, (5.10g)

where σω is the process noise standard deviation, T is the sampling interval, and
Π

δt+1,δt
t models the mode transition probability at time t. The transition probabil-
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ities are modeled as a first-order Markov chain where p(δt | δt−1, δt−2, . . . , δ1) =
p(δt | δt−1).

Kalman filter bank

The posterior distribution of states xt , t ∈ {1 : N } is a mixture of 2N distributions.

Enumerating each unique sequence of modes by δ(i)
1:t , the posterior distribution is

given by

p(xt | y1:t) =
2t∑
i=1

w
(i)
t · p(xt | δ

(i)
1:t , y1:t), (5.11)

where for i = 2t number of unique sequences of modes, δ(i)
1:t = {δ(i)

j }
t
j=1, the

mixing probability w(i)
t is defined as w(i)

t , p(δ(i)
1:t | y1:t). Using the Markovian

property of modes, the mixing probabilities in the mixture distribution is given
by

w
(i)
t ∝ w

(i)
t−1Π

δ
(i)
t ,δ

(i)
t−1

t N
(
yt | ŷ

(i)
t , S

(i)
t

)
, (5.12)

where St is the innovation covariance computed by the Kalman filter applied to
each individual mode. The complete filter bank, as introduced above, grows ex-
ponentially in the number of filters, as time evolves, leading to the computation
of the posterior distribution to become intractable. To overcome this issue, one
needs to reduce the size of the filter bank.

Mode reduction

Mode reduction can be performed by introducing a pruning or merging step
on the tree of mode sequences. Generally, there are different ways for pruning
and/or merging in online algorithms, see for example [60],[54]. In this work,
a filter bank with pruning of low-probability branches is applied to compute
the posterior distribution of the branches with highest probabilities only. To do
so, a sequence-splitting step is defined, in which the existing high-probability
branches are extended with all possible modes at each time instance. In the
next step, weights of all the newly constructed branches are updated and only
M branches with highest probabilities are kept and the rest are discarded. The
remaining branches are then updated in a measurement update phase. The whole
algorithm for the filter bank with pruning is given in Algorithm 4.

State selection

The result of running parallel filters introduced in Algorithm 4 can be used to
construct a set of quadruples {δ1:t , x̂1:t(δ), P̂1:t(δ), w1:t(δ)}. The surviving modes
include both the desired solution, the ue position, and the second solution of the
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Algorithm 4 Kalman filter bank with pruning
Input: x0, P0, y1:N

Output: x̂
(i)
t|t , P

(i)
t|t , δ(i)

1:t , w
(i)
t for i ∈ {1 : M}.

Initialization :
δ

(k)
1:0 = ∅, x̂(k)

0|0 = x0, P (k)
0|0 = P0, w(k)

0 = 1 for k = 1.

1: for t = 1 to N do
2: State time update: for i = 1, . . . , k

x̂
(i)
t|t−1 = F x̂

(i)
t−1|t−1, (5.13a)

P
(i)
t|t−1 = FP

(i)
t−1|t−1F

T + Qt|t . (5.13b)

3: Splitting: for all {δ(i)
1:t−1}

k
i=1 construct:

δ
(i,−1)
1:t−1 = {δ(i)

1:t−1,−1} (5.14a)

δ
(i,+1)
1:t−1 = {δ(i)

1:t−1,+1} (5.14b)

k = 2k (5.14c)

4: Weight update: for i = 1, . . . , k

w̃
(i)
t = w

(i)
t−1Π

δ
(i)
t ,δ

(i)
t−1

t N
(
yt |ŷ

(i)
t , S

(i)
t

)
, (5.15a)

w
(i)
t =

w̃
(i)
t∑M

j=1 w̃
(j)
t

. (5.15b)

5: Pruning: (if k > M)

Sort the weights in descending order, w(1)
t ≥ w(2)

t ≥ . . . ≥ w(M)
t . . .. Keep the first M sequences and discard

the rest.

k = M (5.16)

6: State measurement update: for i = 1, . . . , k

S
(i)
t = HP

(i)
t|t−1H

T + Λt (δ
(i)
t ), (5.17a)

K
(i)
t = P

(i)
t|t−1H

T
(
S

(i)
t

)−1
, (5.17b)

x̂
(i)
t|t = x̂

(i)
t|t−1 + K

(i)
t

(
yt − Hx̂

(i)
t|t−1

)
, (5.17c)

P
(i)
t|t = P

(i)
t|t−1 − K

(i)
t HP

(i)
t|t−1. (5.17d)

7: end for
8: return x̂

(i)
t|t , P

(i)
t|t , δ(i)

1:t , w
(i)
t .
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intersection problem. The state selection stage of Figure 5.4 uses additional infor-
mation gained at each time instance of handover to provide a single sequence of
state estimates together with their associated uncertainties.

Figure 5.5 illustrates the first 19 seconds of the algorithm applied on the sim-

ulated network with M = 2. As the figure suggests, the mode sequence δ
(1)
1:18

contains the ue’s estimated positions and δ
(−1)
1:18 contains the shadow solutions. At

t = 19, the set of invovled bss change, hence δ
(1)
19 gets a large weight. At this

point, the whole sequence δ
(−1)
1:18 is discarded and the mode history for both fil-

ters becomes δ
(1)
1:18. The branches are then extended with both possible modes at

t = 19 and the same procedure is repeated in the rest.

Figure 5.5: Mode sequences of the first 19 seconds corresponding to the
simulated network. During the first 18 seconds, both solutions have equal
weights. At t = 19, when the set of bss change, the wrong branch is dis-
carded.

In order to formulate the state selection procedure for a filter bank with gen-
eral M pruned branches, assume that t̃ is the time at which the set of bss change
and t̃0 be the last time until which state and covariance estimates are available.
In the map sense, the state and covariance estimates are obtained by first finding
the mode with highest probability at time t̃

δ̂ = arg max
δ

wt̃(δ) (5.18a)
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and then

x̂t̃0:t̃ = x̂t̃0:t̃(δ̂) (5.18b)

P̂t̃0:t̃ = P̂t̃0:t̃(δ̂) (5.18c)

Additionally, it is possible to find the minimum variance estimate for all the M
remaining branches based on

x̂t =
∑
δt

wt(δ)x̂t(δ) (5.19a)

P̂t =
∑
δt

wt(δ)
[
P̂t(δ) + (x̂t(δ) − x̂t)(x̂t(δ) − x̂t)T

]
(5.19b)

5.1.3 Lower bounds on position estimation

In this section, we study lower bound on the estimated positions for both snap-
shot and filtering estimators. Since no information of the true mode of the sys-
tem is available, the Cramér-Rao Lower Bound (crlb) analysis for the snapshot
method is performed for the true mode of the system. For the dynamic case, we
introduce a performance measure on the covariance of state estimates x̂t|t using
measurements y1:t .

CRLB for the static case

The theoretical lower bound on the covariance matrix of the estimation error, for
any unbiased estimator, can be obtained from the crlb theory given that certain
regularity conditions are satisfied [79]. Let θ̂(y) denote the estimator of the pa-
rameter vector θ from uncertain measurements y in an static system. The lower
bound on the covariance, P CRLB, is the inverse of the Fisher information matrix
(fim) J (θ) [41], [42]. Given the statistical model p(y; θ) of the measurement vec-
tor y parameterized by the deterministic unknown parameters θ, the fim is de-
fined by

[J (θ)]i,j = E

[
∂ ln p(y; θ)

∂θ(i)

∂ ln p(y; θ)

∂θ(j)

]
= −E

[
∂2 ln p(y; θ)

∂θ(j)∂θ(j)

]
, (5.20)

where the expectation is taken with respect to p(y; θ). The covariance of θ̂(y) is
bounded from below by the inverse of (5.20),

Cov(θ̂(y)) =∆ Ey

[(
θ̂(y) − θ

) (
θ̂(y) − θ

)T ]
� J (θ)−1, (5.21)

where Cov(θ̂(y))−J (θ)−1 � 0 denotes positive definiteness of the resulting matrix.
The required regularity conditions under which (5.21) holds are:

1. ∂ ln p(y;θ)
∂θ(i) exists and is integrable for the whole parameter vector space

2. ∂2 ln p(y;θ)
∂θ(j)∂θ(j) exists and is integrable for the whole parameter vector space
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The special case of Gaussian observations of the form y ∼ N (µ(θ),C(θ)),
where both the mean and covariance depend on parameter vector θ, is discussed
for example in [72]. Assuming that the mode of the system is known a priori, the
crlb for the parameter vector θ = (θx, θy)T is then computed from the inverse of
the Gaussian fim. Let r(θ) = (r1(θ), r21(θ))T be the vector function of distances,
the Gaussian fim for the special case of this problem is given by

[J (θ)]i,j =
[
∂r(θ)

∂θ(i)

]T
R−1

[
∂r(θ)

∂θ(j)

]
. (5.22)

Figure 5.6 presents the expected lower bound on the location estimation error,
assuming σ = 8 m and known mode of the system δ, for the simulated network
illustrated in Figure 5.3. While an error of below 80 m is expected in most of the
area inside the bs coverage, there are certain points where the expected position-
ing error is extremely large. The reason is that the geometry of the two measured
bss relative to the ue that makes the positioning problem ill-posed. That is, the
set of involved bss and the ue get aligned on nearly a straight line so that the
information matrix (5.22) becomes ill-conditioned.
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Figure 5.6: crlb of position estimation error assuming σ = 8 m. The error is
given for the trajectory of the simulated network illustrated in Figure 5.3. In
most parts of the trajectory, marked with dark blue, low theoretical bounds
on positioning errors are expected. However, there are certain parts of the
trajectory, marked with yellow, large positioning errors are predicted.

Approximate performance measure for the dynamic case

The exponential growth of hypotheses of the optimal filter, from which the Mean
Squared Error (mse) can be computed, make it intractable to compute. Thus,
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we derive an approximate performance measure of the optimal filter bank for a
linearized model, where each model is linearized around the true position.

The original tof and tdoa measurement models (2.5) and (2.4) can be writ-
ten as a nonlinear function ht(xt) = (ri , rj − ri)T where the indices i, j correspond
to the serving and neighboring base stations, respectively. Linearizing around the
two solutions (from the circle-hyperbola intersection problem) using a first-order
Taylor series gives

xt+1 = Fxt + ωt (5.23a)

zt = H lin
t (δ)xt + clin

t (δ) + et (5.23b)

where c(δ) is the linearization constant and H lin
t (δ) = ∂

∂xht(xt)
∣∣∣
xt=θ(δ)

with δ ∈
{1,−1} and where we define that δ = 1 assigns the true solution and δ = −1 the
shadow solution. The performance measure of the approximated jump Markov
linear model can then be computed.

A filter bank algorithm generally does not know which mode is the correct
one and thus has to estimate it together with the unknown state xt . What follows
is an approximate measure to predict the performance of any such filter bank

algorithm. Let δ(1)
1:t = {1, . . . , 1} denote the mode sequence containing the true

solutions and let δ(−1)
1:t = {−1, . . . ,−1} denote the mode sequence of ambiguous

solutions. Further, let {x̂(i)
t|t (z

0
1:t), P

(i)
t|t }i∈{−1,1} denote the sufficient statistics of the

mode conditioned posterior p(xt | δ
(i)
1:t , z

0
1:t) of the optimal Kalman filter, where

z0
1:t is the noise-free version of (5.23). Then, a performance measure is given by

CPM
t|t =

∑
i∈{−1,1}

αt(i)
[
P

(i)
t|t +

(
x̂

(i)
t|t (z

0
1:t) − x̂t|t(z

0
1:t)

) (
x̂

(i)
t|t (z

0
1:t) − x̂t|t(z

0
1:t)

)T ]
(5.24)

where x̂t|t(z
0
1:t) =

∑
i∈{−1,1} αt(i) · x̂(i)

t|t (z
0
1:t) and αt(i) = Pr{δ(i)

1:t |z
0
1:t}. Ideally, the

weighting factors αt in (5.24) are αt(1) = αt(−1) = 0.5 whenever the branches
are initiated from two solutions that are either very close to each other or are
equal. In the rest of the trajectory, the tracking filter does not allow for a big
jump between the current estimate and the arriving measurement resulting in
zero weight for the wrong solution. Figure 5.7 illustrates ambiguities in solutions
for the case of ideal mode probability weightings corresponding to the simulated
network deployment whose two possible solutions are given in Figure 5.3.

5.2 Result and conclusion

The filter bank solution for positioning using two BSs proposed in Section 5.1
is numerically evaluated and the results are presented for both the simulated
network and for the real experiments.
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Figure 5.7: Ambiguity in position estimates with respect to possible
branches over the trajectory of the simulated network illustrated in Fig-
ure 5.3. Blue dots indicate the true position of the ue. Black dots are used
to indicate areas at which the second solution, marked with black, is equally
likely as the first solution.

5.2.1 Simulation study

The simulated cellular network consists of 7 macro sites each having 3 cells, lo-
cated in a hexagonal grid with an inter-site distance of 1500 m. The ue starts at
a certain point in the cellular network and passes through the network with a
pre-defined flower-shape path. Figure 5.3 illustrates the cellular network deploy-
ment in which the red dots are macro sites, each with three cells, and the green
line represents the true ue trajectory.

The noise-free scatter plot of two solutions obtained from the ut approxima-
tions are also given in Figure 5.3. The mode of the system changes along the
trajectory depending on the set of measuring bss and their geometrical positions.
For instance, in the beginning, θ = [600, 0]T , BS5 and BS1 are the set of mea-
sured bss. The true position of the system thus corresponds to the mode δ = 1.
As the ue moves along the trajectory at the position θ ≈ [680, 400]T the mea-
sured base stations switches to BS5 and BS2. The position of the system then
corresponds to the situation with mode δ = −1.

In the simulations, standard deviation of the process noise is set to σω =
1 m/s2. The covariance matrix for the measurement noise is given by Λt(δ), esti-
mated using (5.9b). The sampling period for the simulation scenario is T = 50 s.
The positions are initialized randomly inside a circle of radius 50 m centered
at the closest bs and the initial velocity along the x- and y-axis is set to zero,
vx0|0 = vy0|0 = 0 m/s. The quantities for the initial uncertainty of the states, P0|0,
are σx0

= σy0
= 10 m and σvx0

= σvy0
= 1 m/s.
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Figure 5.8: Normalized weights after the pruning stage for the filter bank
with M = 2 branches. The handover times are indicated with black dashed
bars.

Figure 5.8 illustrates the Normalized weights after the pruning stage of each
mode along the trajectory for one Monte Carlo run. The filter bank is allowed to
have branches resulting M = 2. The handover times are marked with the dashed
lines. As soon as a handover occurs, the information obtained from the change in
the set of involved bss results in a jump in the probability of the modes. For in-
stance, as Figure 5.8 suggests, initializing the filter bank with equal probabilities
for two modes, results in equal weights until t = 19 s. During this interval, the
ue true position corresponds to the estimates with mode δ = 1. At t = 19 s, when
the set of involved bss change, the second mode, marked with black, contains the
ue position.

The performance of the kf bank estimator is evaluated by repeating the simu-
lations for a total number of 1000 Monte Carlo runs. In each run, the filter bank is
allowed to have M = 2 pruned modes. The numerical rmse is then compared to
the performance measure introduced in Section 5.1.3. The values for the bound
are also obtained over 1000 runs of measurement realizations.

Figure 5.9a presents the comparison between rmse, computed for the mmse
estimate of the filtering posterior distribution of the filter bank, and the square
root of tr

(
CPM
t|t

)
introduced in (5.24). Figure 5.9b, presents how the positioning er-

ror is improved by using additional information obtained from handovers. That
is, the positioning error is given for the mmse estimates x̂t|t given in (5.18b) of
posterior distribution p(xt |δ1:t̃ ,1:t ) where t̃ > t. Once the true mode sequence up
to the time instance of bs change is known, the states are estimated. Although
the estimation error for the proposed algorithm is promising, it must be noted
that in the simulated network, non-line-of-sight conditions are not considered.

The scatter plot of the estimated positions of the kf bank estimator averaged
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(b) Proposed filter.

Figure 5.9: Performance measure of the approximative filterbank (5.24),
rmse of the mmse estimate p(xt |y1:t), and rmse of the MMSE estimate
p(xt |δ1:t̃ , y1:t) where t̃ > t, obtained in the simulation in logarithmic scale.
The handover times are indicated with red bars in Figure 5.9a.

over 1000 Monte Carlo runs is presented in Figure 5.10.
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Figure 5.10: Scatter plot of estimated trajectory for the simulated network.
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5.2.2 Experimental results

Three separate antennas were used to collect measurements in the Kista area in
Stockholm, Sweden. The network mimics a macro-cell deployment of lte in
urban areas. The inter-site distance of bss were between 350 m to 600 m where
the height of all the antennas were few meters above the average height of the
buildings in the surrounding environment.

The synchronization of the transceivers were highly accurate, with standard
deviation of less than 10−12 s. The ground truth trajectory is obtained by logging
gps measurements. The whole trajectory took 18 minutes to be measured. For a
more detailed description of hardware and the measurement campaign, see [90].
Figure 5.11 presents the measurement path, color coded based on the distance of
the ue to each bs.
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Figure 5.11: Distance of the ue from the three bss along the whole path.

The performance of the proposed method is evaluated for the experimental
scenario in terms of the scatter plot of the estimated position and the positioning
error. The sampling period of the filters for the real data is T = 5 s. The filters are
initialized at the closest bss with vx0|0 = vy0|0 = 0. The quantities for the initial
uncertainties are the same as the simulation scenario.

Figure 5.12 presents the estimated positions on top of the true position for
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Figure 5.12: The final kf bank estimates, marked with white, on top of the
GPS-logged positions of the ue, marked with green.

the whole path in the network. Most of the times, the estimated positions follow
the true trajectory with high accuracy. However, in the area x ≈ [500, 600]T and
y ≈ [400, 500]T, the measurements suffer from large nlos conditions, [90]. The
poor accuracy in some areas of the real network deployment scenario is due to
both the geometry of the antennas and the ue and also as a result of nlos effects
in the measurements.
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Figure 5.13: The cdf of the horizontal positioning error of the kf bank esti-
mator applied on the data from real experiments.
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5.2.3 Conclusions

In this chapter, a filter bank framework was introduced for positioning based on
tof and tdoa measurement reports obtained from two base stations. We first
derived the two possible analytical solutions of the intersection of tof circle and
tdoa hyperbola. Nonlinear mapping between the collected noisy measurements
to the 2D positions of the uewas then approximated using an estimator based on
the unscented transformation.

In order to estimate the ue’s position from the two ut estimates, they were
fed into a filter bank as pseudo measurements of the position of the ue. We
note that, while the ue goes through the network, the set of involved bss for tof
and tdoa estimations changes. The additional information obtained from the
handover was then used by the filter bank to keep only the mode sequence(s)
that corresponds to the ue’s position and discard the rest. This allows us to deal
with the ambiguity in the ue’s position in cost of a certain delay.

The performance bounds of the filter bank was derived and compared to the
rmse in a simulation study. Further, the developed filtering framework was
tested on real-field data collected from the network in the Kista area in Stock-
holm, Sweden. The results indicated good performance for simulation study and
the experimental data.



6
Non-line-of-sight Error Estimation

Localization error in timing-based systems highly depends on both the hardware
used for timing measurements, the characteristics of the radio channel and on
the geometry of bss relative to the ue. For instance, in toa methods, the syn-
chronization of the bss is one dominant factor where a synchronization error in
the order of 100 ns causes a localization error of 30 m. Various synchronization
schemes have been studied in the literature, where gps synchronization seems to
be one of the best solutions leading to a theoretical synchronization on the order
of nanoseconds.

Timestamp accuracy is another crucial factor in all timing-based methods.
The timestamp of each radio signal reflect the true propagation time plus pro-
cessing times at both the transmitter and the receiver. While processing time at
the bss is equal for all the involved bss, the delay imposed by the physical and
media access control (mac) layers results in timestamp accuracies on the order
of microseconds. One mitigation to the delay problem is to use a physical layer
timestamp to at least avoid the delay caused by themac layer. This can be further
improved by introducing sub-sampling steps in the physical layer, but is beyond
the scope of this thesis and hence not discussed further.

Various environmental characteristics in wireless networks can also affect the
localization accuracy of positioning systems in general. Timing-based systems,
specifically, have two major sources of error; measurement noise and nlos prop-
agation errors. Measurement noise is usually modeled as a zero-mean Gaussian
random variable, N (0,Rls), while nlos error usually has a positive mean.

In this chapter we investigate the problem of modeling toa errors in pres-
ence of nlos components in terms of Gaussian mixtures. The background the-
ory is given in Section 6.1 in which three different algorithms are introduced for
Gaussian mixture parameter estimation. Finally, Section 6.2 evaluates the per-
formance of all three algorithms and models the real data toa error using the

67
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introduced quasi-Bayesian algorithm.

6.1 Background theory

nlos components make the measurement errors inherently multimodal. In cases
where the underlying distribution is multimodal, modeling with a single Gaus-
sian, might lead to a mean value in region with low probability and hence overes-
timating the covariance. A classic example is the "Old Faithful" dataset contain-
ing measurements of the time between eruptions against duration of eruptions,
both in minutes, of a geyser. Figure 6.1a presents scatter plot of the measure-
ments together with a single Gaussian fit where the fit fails to capture the two
dominant clumps of the data leading to a poor mean estimate and large covari-
ance. Figure 6.1b, presents how a Gaussian mixture model can better represent
the data. A more sophisticated algorithm is thus required to better model the
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(a) Single Gaussian.
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(b) Two-component Gaussian mixture.

Figure 6.1: Fitted Gaussian models to the Old Faithful dataset.

noise under nlos conditions. In this section, we briefly introduce Gaussian mix-
ture models followed by two well-known methods, em and Gibbs-sampling, for
estimating unknown parameters of the model. Then, a quasi-Bayes (qb) estima-
tor is given as an alternative algorithm for joint estimation of the mixing proba-
bilities and mixture components.

6.1.1 Gaussian mixture models

The multivariate Gaussian distribution of a D-dimensional random vector e de-
noted by N (µ ∈ RD ,Σ ∈ RD×D ) has the form

N (e|µ,Σ) =
1(

(2π)D/2|Σ|
)1/2

exp{−1
2

(e − µ)TΣ−1(e − µ)}. (6.1)
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As the example in Section 6.1 suggested, a single Gaussian might fail to capture
the underlying distribution of a multimodal dataset correctly. A powerful tool is
to use Gaussian mixture models formed by a linear combination of basic Gaus-
sian densities (6.1). Using a sufficient number of densities with properly chosen
coefficients and adjusted means and covariances, almost all complex continuous
densities can be accurately approximated [21].

Let k ∈ {1, 2, . . . , K} represent the number of mixture components each de-
fined by N (e|µ(k),Σ(k)). Further, let π(k) denote the mixing coefficients, that sat-
isfy 0 ≤ π(k) ≤ 1 and

∑K
k=1 π

(k) = 1. While Gaussian mixture models can be used
in different applications, in this thesis we are interested in joint estimation of π(k),
µ(k) and σ (k) given a set of random toa measurement errors including both mea-
surement noise and nlos propagation errors. Although the error terms are one
dimensional, in this section we generalize our study to multi-dimensional ran-
dom variables. Applying the generalized algorithms to the one-dimensional toa
errors is then straightforward. Let e = {en}, n ∈ {1, . . . , N } be a set of independent
random variables collected from N observations.

In order to motivate the em method, in this thesis, we formulate Gaussian
mixtures in terms of latent variable models. For this purpose, we define the
discrete latent variable sn ∈ {1, . . . , K} representing a discrete latent state. This
way, one can interpret the mixing coefficients as prior probabilities such that
p(sn = k) = π(k). The joint distribution of en and sn is given by

p(en, sn) = p(sn)p(en|sn), (6.2a)

with

p(sn) =
K∏
k=1

(
π(k)

)
I(sn=k)

, (6.2b)

p(en|sn) =
K∏
k=1

N (en|µ(k),Σ(k))I(sn=k), (6.2c)

where I(sn = k) is the indicator function. Finally, the Gaussian mixture distribu-
tion can be obtained by marginalizing (6.2a) over sn and is given by

p(en) =
∑
s

p(en, sn) =
K∑
k=1

π(k)N
(
en|µ(k),Σ(k)

)
. (6.3)

Defining vectors π = (π(1), π(2), . . . , π(K)), µ = (µ(1), µ(2), . . . , µ(K)),
Σ = (Sigma(1), Sigma(2), . . . , Sigma(K)) the likelihood function of the fitted Gaus-
sian mixture model is defined by

p(e | π, µ,Σ) =
N∏
n=1

K∑
k=1

π(k)N (en | µ(k),Σ(k)). (6.4)
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Extra care must be taken while estimating, or learning, the parameter vector
ψ = (π, µ,Σ) as the latent variables sk are hidden. As shown in [95], comput-
ing a map estimate of the posterior distribution p(ψ | e) is a non-convex prob-
lem. Additionally, it is shown that the parameters are not identifiable and hence
p(ψ | e) is multimodal, since a unique maximum likelihood estimator does not ex-
ist. To deal with these issues, authors in [43] employed gradient-based methods
to compute the local minimum of the negative log likelihood. While this might
be feasible in many cases, it imposes some constraints, see [95]. In the following,
three alternatives are discussed.

6.1.2 Expectation maximization

The membership of data points to each individual Gaussian distribution in the
mixture model (6.3) is unknown. Parameters of each distribution are also un-
known. The ultimate goal of the parameter estimation is then to estimate values
of the distribution parameters jointly with the mixing coefficients. The em algo-
rithm (first introduced in [10] and re-visited in [89] and [91]) is one of the most
popular techniques for parameter estimation in all models with missing data or
latent variables.

The em algorithm iteratively alternates between two steps over the observed
variables e and unobserved latent variables s. It must be noted that em, in gen-
eral form, can be applied to all parametric mixture models. However, in this
thesis, we treat the specific case of Gaussian models for which closed-form solu-
tions of the iterations can be derived. Additionally, em can be employed to find
either map estimates of the parameters or to maximize the likelihood function
and for continuous or discrete latent variables. Here, we use the version tailored
for maximizing the likelihood function with discrete latent variables.

The log-likelihood function to be optimized, assuming that all the parameters
are known, is given by

`(ψ) = ln p(e, s | ψ). (6.5)

The unknown, un-observed latent variables in (6.5), however, prevent us from
computing this likelihood. That is, all the information that we have about s is
given by the posterior distribution of s given current values the observed vari-
ables and parameters, p(s|e,ψ). The em algorithm overcomes this problem by
taking the expectation of (6.5) with respect to the estimated parameters at the
previous step and the observed data. Let j denote the iteration number, the ex-
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pectation is given by

Es [ln p(e, s | ψ)] =
N∑
n=1

Es

ln
 K∏
k=1

(
π(k)N (en | µ(k),Σ(k))

)
I(sn=k)


 (6.6a)

=
N∑
n=1

K∑
k=1

E

[
I(sn = k){lnπ(k) + lnN (en | µ(k),Σ(k))}

]
(6.6b)

=
N∑
n=1

K∑
k=1

p(sn = k | en,ψ
(k)
j−1) ln

(
πkN (en | ψ(k))

)
. (6.6c)

In the E step, the algorithm parameterizes the expectation (6.6a) in terms of some
general ψ using the current value of parameters ψj−1. To do so, conditional
probability of sn given en and the best guess of parameters at iteration j − 1,
p(sn = k | en,ψj−1) in (6.6c) should be computed. Using Bayes’ theorem, this
value is given by

p(sn = k | en,ψ
(k)
j−1) =

p(sn = k | ψ(k)
j−1)p(en | sn = k,ψ

(k)
j−1)∑K

k′=1 p(sn = k′ | ψj−1)p(en | sn = k′ ,ψ
(k′)
j−1)

=
π(k)N (en | µ

(k)
j−1,Σ

(k)
j−1)∑K

k′=1 π
(k′)N (en | µ

(k′)
j−1,Σ

(k′)
j−1)

. (6.7)

The parameters are then updated in the M step by maximizing the parameter-
ized function with respect to ψ. This can be achieved by setting the derivative
of the log of the likelihood function (6.4) with respect to µ(k), Σ(k), and π(k) to
zero individually. The closed form solutions are provided in Algorithm 5 that
also summarizes iterations in the em. It must be noted that the log-likelihood
function monotonically increases in each iteration until it reaches a local optima,
see [95] for proof. Thus the difference between two consecutive log-likelihood
values in Algorithm 5 should always be either positive or zero.

6.1.3 Gibbs sampling

The frequentist em algorithm, as stated, is a well-studied method for estimation
of parameters of mixture densities together with their corresponding mixing coef-
ficients. The algorithm is specifically powerful in the sense that it can be applied
to almost any parameterized densities with any number of clusters K . However,
as a likelihood estimator, it might get to a local maximum. Furthermore, in some
applications, in addition to the point estimates given by em, the uncertainty of
the estimated values might also be of interest. In these cases, Bayesian inference
approaches can be used to overcome these issues. There is a vast literature on
using Bayesian inference for mixture models parameter estimation, see for in-
stance [35], [38], [102], and [20]. Although Markov chain Monte Carlo (mcmc)
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Algorithm 5 em algorithm for Gaussian mixtures

Input: µ0, Σ0, π0
Output: µ, Σ, π

Initialization :
µ = µ0, Σ = Σ0, π = π0

1: while convergence = false do
2: Calculate the log-likelihood function given current parameters

`old = ln p(e | π, µ,Σ). (6.8)

3: Perform the E step by computing responsibilities for the known number of
components k = 1, . . . , K and for n = 1, . . . , N

ζnk =
πKN (en | ψ

(k)
j−1)∑K

k′=1 πk′N (en | ψ
(k′)
j−1)

. (6.9)

4: Perform the M step by updating the parameters for k = 1, . . . , K

ζk =∆
N∑
n=1

ζnk , (6.10a)

πk =
ζk
N
, (6.10b)

µk =
1
ζk

N∑
n=1

ζnken, (6.10c)

Σk =
∑N
n=1 ζnkene

T
n

ζk
− µkµTk . (6.10d)

5: Re-calculate the log-likelihood value given the updated parameters

`new = ln p(e | π, µ,Σ). (6.11)

6: Check for convergence of the algorithm. If `new−`old is below a pre-defined
threshold set convergence to true.

7: end while
8: return µ, Σ, π.

methods might take more time to converge, they will reach the target distribution
eventually.

One of the simplest, yet widely applicable, mcmc algorithms is Gibbs sam-
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pling, first discussed in [49]. The idea with Gibbs sampling is to draw samples of
each variable conditioned on the values of all other variables. Thus, this method
is known to give dependent draws of the target distribution where parameters
are autocorrelated. That is why, the convergence rate might not be as fast as
other techniques, for instance, assume that the goal is to draw a sample from the
joint distribution of M random variables, p(z̃) = p(z̃(1), z̃(2), . . . , z̃(M)). Given an

initial sample z̃0, we can obtain z̃1 by drawing z̃(i)
1 iteratively as follows

• draw z̃
(1)
1 ∼ p(z̃(1) | z̃(2)

0 , z̃
(3)
0 , . . . , z̃

(M)
0 )

• draw z̃
(2)
1 ∼ p(z̃(2) | z̃(1)

0 , z̃
(3)
0 , . . . , z̃

(M)
0 )

...

• draw z̃
(M)
1 ∼ p(z̃(M) | z̃(1)

0 , z̃
(2)
0 , . . . , z̃

(M−1)
0 )

Repeating this procedure, the draws will eventually be made from the target
distribution. It must be noted that these updates can either be performed in
order or randomly. Applying Gibbs sampling in fitting mixture models to the
data becomes simpler if conjugate priors are used for the unknown parameters
ψ. We first introduce semi-conjugate priors for unknown parameters π, µ, and Σ
of the Gaussian mixture model, for more details see [78].

Prior distributions

In the special case that each component in the mixture model has univariate
Gaussian distribution, the inverse chi-squared, χ2

1 distribution can be used as
a conjugate prior for the variances. For a general Gaussian mixture model with
multivariate Gaussian densities, the inverse Wishart distribution, denoted by IW,
is a conjugate prior for Σ(k)

Σ(k) ∼ IW(Σ(k) | ν(k)
0 ,Ω

(k)
0 ), (6.12)

where ν(k)
0 is the the degrees of freedom used to adjust the strength of the prior

belief for each component and Ω
(k)
0 is the scaling matrix used to model the larger

variance of a component i by increasing Ω
(i)
0 . Subscript 0 denotes that these are

prior parameters. The prior model for µ(k) is a normal distribution conditioned
on the covariance matrix Σ(k)

µ(k) | Σ(k) ∼ N (µ(k) | m(k)
0 ,V

(k)
0 ), (6.13)

where m(k)
0 is the prior belief of each component’s mean and V

(k)
0 is defined by

an additional precision parameter τ̃ (k), V (k)
0 = Σ(k)/ τ̃ (k). Finally, the prior dis-

tribution of mixing coefficients is given by the Dirichlet distribution with prior
parameters α0

π(k) ∼ Dir(π|α0) =
Γ (α(1)

0 + . . . + α(k)
0 )

Γ (α(1)
0 ) × . . . × Γ (α(k)

0 )
(π(1))α

(1)
0 −1 × . . . × (π(k))α

(k)
0 −1. (6.14)
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The joint conjugate prior distribution is thus given by

p(ψ) = Dir(π|α0)
K∏
k=1

N (µ(k) | m(k)
0 ,V

(k)
0 )IW(Σ(k) | ν(k)

0 ,Ω
(k)
0 ). (6.15)

The full joint distribution is then defined by

p(e, s, µ,Σ,π) = p(e | s, µ,Σ)p(s | π)p(π)
K∏
k=1

p(µ(k))p(Σ(k))

=
N∏
n=1

K∏
k=1

(
π(k)N (en | µ(k),Σ(k))

)
I(sn=k)

× p(ψ). (6.16)

Posterior distribution

The conditional posterior distributions of the latent variables and the unknown
parameters can be derived from the conjugate prior distributions.

• Latent variables

p(sn = k | en, µ,Σ,π) =
π(k)N (en | µ(k),Σ(k))∑K

k′=1 π
(k′)N (en | µ(k′),Σ(k′))

. (6.17)

• Covariance matrices

p(Σ(k) | e, s) = IW(Σ(k) | ν(k)
0 + N (k),Ω

(k)
0 + O(k)), (6.18a)

where N (k) =∆
∑N
n=1 I(sn = k) is the number of observations corresponding

to component k and

O(k) =
N (k)τ̃ (k)

N (k) + τ̃ (k)
(m(k)

0 − ē
(k))(m(k)

0 − ē
(k))T

+
N∑
n=1

I(sn = k)(en − ē(k))(en − ē(k))T , (6.18b)

where ē are the mean values estimated from data.

• Means

p(µ(k) | e, s,Σ(k)) = N (µ(k) | m(k),V (k)) (6.19a)

with

m(k) =
τ̃ (k)m

(k)
0 + N (k)ē(k)

N (k) + τ̃ (k)
(6.19b)

V (k) =
1

N (k) + τ̃ (k)
Σ(k) (6.19c)
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• Mixing coefficients

p(π(1), . . . ,π(K) | s) = Dir
(
α

(1)
0 + N (1), . . . , α

(k)
0 + N (K)

)
(6.20)

The Gibbs sampling method thus can be used to compute a point estimate
of the unknown parameters from the posterior distributions given above. Al-
gorithm 6 provides the I iterations in a Gibbs sampler used to infer Gaussian
mixture mode parameters.

Algorithm 6 Gibbs sampling for Gaussian mixture parameter inference

Input: ν0, Ω0, m0, V0, and α0
Output: p(Σ(k) | e, s), p(µ(k) | e, s,Σ(k)), and p(π | s)

Initialization :
Initialize Σ, µ, and π using prior distributions (6.12), (6.13), and (6.14), re-
spectively.

1: for i=1 to I do
2: Draw samples of s using current parameter values from the posterior dis-

tribution (6.17).
3: Update Σ from the posterior distribution p(Σ(k) | e, s) given by (6.18) using

current values of s.
4: Update µ from the posterior distribution p(µ(k) | e, s,Σ(k)) given by (6.19)

using current values of s and Σ.
5: Update π from the posterior distribution p(π | s) given by (6.20) using

current values of s.
6: end for
7: return p(Σ(k) | e, s), p(µ(k) | e, s,Σ(k)), and p(π | s).

6.1.4 Quasi-Bayes approximation

The Bayesian algorithm for learning ψ involves the specification of an a priori
density for ψ and the subsequent recursive computation of the posterior p(ψ|e)
as seen in the Gibbs sampling method in Section 6.1.3. This results in an unavoid-
able increase in computer time and memory requirements that might make the
formal Bayes learning procedure less practical in some applications. As an alter-
native, a qb procedure which is both highly computationally efficient and retains
the flavor of the formal Bayes solution, has been proposed by [86], [85], and [113].
By a suitable approximation, a recursive procedure can be obtained that can be
efficiently computed.

Maximizing the observed likelihood given by

p(e1, e2, . . . , eN | ψ) =
N∏
n=1

p(en | ψ) (6.21)
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has the drawback of singularities in points where one of the components has a
mean exactly equal to the observation with no variance, see [95]. At any such
points, the likelihood value goes to infinity. The author in [56] suggests a new op-
timization function that includes the maximum likelihood estimator as a special
case. Let the prior distributions be given by

µ(k) | Σ(k) ∼ N (m(k)
0 ,Σ(k)/ τ̃ (k)) (6.22a)

(Σ(k))−1 ∼Wi(ν(k)
0 ,Ω

(k)
0 ) (6.22b)

where Wi(ν0,Ω) denotes the Wishart distribution. The suggested log- likelihood
function is given by

`QB(ψ) = log p(e1, e2, . . . , eN | ψ) +
K∑
k=1

(a(k)/2) log |(Σ(k))−1|

− 1/2
K∑
k=1

tr
[(
c(k)(m(k) − µ(k))(m(k) − µ(k))T + B(k)

)
(Σ(k))−1

]
. (6.23)

Setting the design parameters a(k) = c(k) = B(k) = 0 gives the maximum likeli-

hood estimator as a special case. Instead, as shown in [56], setting a(k) = 2ν(k)
0 − 1,

c(k) = τ̃ (k), and B(k) = 2Ω(k)
0 results in the posterior mode estimator. Another

interpretation of (6.23) is to see it as a penalized maximum likelihood. In this
interpretation, assuming that a(k) and c(k) are greater than zero and B(k) is posi-
tive definite, `QB → −∞ if Σ(k) → 0. The qb algorithm sets the design parame-

ters based on the values of prior beliefs. That is, a(k) = ν
(k)
0 − K , c(k) = τ̃ (k) and

B(k) = Ω
(k)
0 .

The unknown parameters ψ can be estimated from (6.23) using any numerical
optimization method. However, in this thesis, we note that priors in (6.22) are
independent of the latent variables. Thus, the problem fits into an em algorithm
where each parameter can be estimated in an iterative manner [10]. To do so, we
set the derivative of `QB(ψ) with respect to the mixture parameters to zero and
then iterate in an em algorithm by updating one parameter and fixing the others.

The E step of the algorithm is similar to Section 6.1.2 where the responsibili-
ties are computed by

ζnk = p(sn = k | en,ψ
(k)
j−1) =

π
(k)
j−1N (en | µ

(k)
j−1,Σ

(k)
j−1)∑K

k′=1 π
(k′)
j−1N (en | µ

(k′)
j−1,Σ

(k′)
j−1)

(6.24)

In the M step we first derive the expression for π(k) by setting the derivative of
`QB(ψ) with respect to π(k) to zero

0 =
∂`QB(ψ)

∂π(k)
=
∂p(e1, e2, . . . , eN | ψ)

∂π(k)
(6.25)
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Since the extra terms of (6.23) do not depend on mixing coefficients, this term is
also similar to Section 6.1.2, hence

π(k) =
∑N
n=1 ζnk
N

(6.26)

Then, we maximize µ(k) by setting ∂`QB(ψ)
∂µ(k) to zero

0 = ck(Σ
(k))−1(m(k)

0 − µ
(k)) +

N∑
n=1

(Σ(k))−1(en − µ(k))ζnk (6.27a)

That yields

µ(k) =
c(k)m

(k)
0 +

∑N
n=1 enζnk

ck +
∑N
n=1 ζnk

. (6.27b)

Finally, covariances are maximized by setting ∂`QB(ψ)
∂(Σ(k))−1 = 0

0 =1/2
(
a(k)Σ(k) − c(k)(m(k)

0 − µ
(k))(m(k)

0 − µ
(k))T − B(k)

)
+ 1/2

N∑
n+1

(
Σ(k) − (en − µ(k))(en − µ(k))T

)
ζnk (6.28a)

That gives

(Σ(k))−1 =

a(k) +
N∑
n=1

ζnk


×

B(k) +
N∑
n=1

ζnk(en − µ(k))(en − µ(k))T + c(k)(m(k)
0 − µ

(k))(m(k)
0 − µ

(k))T

−1

(6.28b)

Algorithm 7 summarizes the iterations of the qbmethod for learning parameters

of Gaussian mixtures. The design parameters a(k), c(k), B(k), and m(k)
0 are used to

initialize the parameters using prior distributions given in (6.22). The likelihood
given initial parameters can then be calculated as in the E step of em but with a
different likelihood function (6.23) . The M step is then performed using closed-
form equations (6.26), (6.27b), and (6.28b). The procedure is repeated until a
convergence criterion is met or the maximum number of iterations is reached.

6.2 Performance evaluation

In this section, the performance of the three estimators are evaluated over both
simulated samples and real toa measurements collected from lte bss with net-
work parameters given in Section 5.2.2. In the simulation study, three different
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Algorithm 7 qb algorithm for Gaussian mixtures

Input: µ0, Σ0, π0, m0, τ̃, ν0, and Ω0
Output: µ, Σ, π

Initialization :
µ = µ0, Σ = Σ0, π = π0, a(k) = ν

(k)
0 − K , ck = τ̃ (k), and B(k) = Ω

(k)
0 for k =

1, . . . , K .
1: while convergence = false do
2: Calculate the log-likelihood function given current parameters

`QB
old = `QB(ψ) (6.29)

3: Perform the E step by computing responsibilities for the known number of
components k = 1, . . . , K and for n = 1, . . . , N

ζnk =
π(k)N (en | µ(k),Σ(k))∑K

k′=1 π
(k′)N (en | µ(k′),Σ(k′))

. (6.30)

4: Perform the M step by updating the parameters ψ(k) for k = 1, . . . , K us-
ing (6.26), (6.27b), and (6.28b) sequentially.

5: Re-compute the log-likelihood value given the updated parameters

`QB
new = `QB(ψ) (6.31)

6: Check for convergence of the algorithm. If `QB
new−`QB

old is below a pre-defined
threshold set convergence to true.

7: end while
8: return µ, Σ, π.

scenarios are defined. The data points in each scenario have unique characteris-
tics in terms of their actual underlying distribution. Evaluations are performed
in terms of the mse of the estimated parameter vector given by

∑J
j=1(ψ̂j − ψj )2.

6.2.1 Simulated model

In all simulations, the whole dataset consists of 500 Monte Carlo samples of size
N = 1000 for a 2-component mixture of 2-dimensional Gaussian distributed ran-
dom vectors. The number of unknown parameters to be estimated can be ex-
pressed as a function of components k as

J(k) =
k(d2 + 3d)

2
+ k − 1. (6.32)
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That is, in total, 11 unknown parameters should be estimated. In the first sce-
nario, the mean of the two components are well separated from each other while
covariances are equal and measurements are equally drawn from each compo-
nent. In the second scenario, measurement errors in presence of outliers are sim-
ulated. For this purpose, 1 out of 100 measurements are simulated such that
they come from a distribution with 4 times bigger standard deviations. The last
scenario investigates the performance of each algorithm modeling the samples
if the data is in fact coming from a 2-dimensional single Gaussian distribution
rather than a real mixture. Figure 6.2 visualizes 1 sample of all scenarios of the
simulated models and Table 6.1 summarizes the scenarios and gives their true
parameters. Parameter values of the em algorithm are initialized randomly. µ0
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Figure 6.2: One sample of all three scenarios whose true parameters are
given in Table 6.1. The first component is marked with blue and the second
component with red.

in Algorithm 5 is obtained by multiplying the largest data point in each sample
by a uniform distribution and Σ0 is obtained by multiplying the absolute value
of the largest number by an identity matrix of appropriate size. In both Gibbs
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Table 6.1: The simulated two-component mixture of two-dimensional Gaus-
sians in three different scenarios.

Scenario mean covariance
mixing

coefficient

1
µ(1) =

(
1
2

)
Σ(1) =

(
1 0

0.25

)
π(1) = 0.5

µ(2) =
(

1
−2

)
Σ(2) =

(
1 0

0.25

)
2

µ(1) =
(
1
2

)
Σ(1) =

(
1 0

0.25

)
π(1) = 0.99

µ(2) =
(
1
2

)
Σ(2) =

(
16 0

4

)
3

µ(1) =
(
1
2

)
Σ(1) =

(
1 0

0.25

)
-

µ(2) =
(
1
2

)
Σ(1) =

(
1 0

0.25

)

sampling method and the qb, all components have equal prior distributions. The
Gibbs sampler is allowed to have 100 iterations while both em and qb are either
stopped if the change in likelihood between two consecutive iterations is less than
exp(−6) or if they reach maximum number of 100 iterations.

As the obtained results reported in Table 6.2 present, all three methods have
reasonable accuracy for the first scenario while Gibbs sampler outperforms the
others in cost of much higher convergence time. Figure 6.3 presents the conver-

gence rate of the estimated parameters µ(k)
d of the three algorithms for one sample

with d denoting the dimension and k the component number. As the Figures sug-
gest, qb and em both have relatively fast convergence rate while Gibbs sampler
requires more iterations.

In the second scenario where data samples are simulated such that 1% of the
data is outlier, the qb algorithm outperforms the two others in the MSE sense. In
the scenario where the underlying distribution is a single multivariate Gaussian,
both qb and em can appropriately estimate the unknown parameters.

To further validate the qb algorithm, its likelihood value over the iterations
is also presented in Figure 6.4. As the figure suggests, the likelihood value is
monotonically increasing until convergence to the estimated optimal value.

6.2.2 Experimental data

In this section, the performance of the qb algorithm is evaluated on the real ex-
perimental data. toa measurement errors corresponding to the explained data
collection campaign in Section 5.2.2 are computed relative to the logged GPS po-
sitions. That is, at each time instant, knowing the location of the bs, the true
distance to the ue is calculated using GPS positions and then subtracted from
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Table 6.2: MSE of estimated parameters corresponding to the three scenarios
described in 6.1 over 500 Monte Carlo simulations.

Scenario Parameter
MSE

qb em Gibbs

1

µ̂(1) 0.0732 0.2257 0.0048
µ̂(2) 0.0753 0.2276 0.0049

Σ̂
(1)

0.1566 0.5172 0.0048

Σ̂
(2)

0.1575 0.5102 0.0051
p̂(sn = 1 | e,ψ) 0.0004 0.0103 0.0001

ψ̂ 0.4630 1.4911 0.0196

2

µ̂(1) 0.0008 0.0087 0.0052
µ̂(2) 1.6160 0.7774 14.6624

Σ̂
(1)

0.0012 0.0123 0.0051

Σ̂
(2)

10.3177 15.5936 43.4677
p̂(sn = 1 | e,ψ) 0.0003 0.0005 0.0001

ψ̂ 11.9360 16.3925 58.1404

3

µ̂(1) 0.0035 0.0325 0.0129
µ̂(2) 0.0421 0.0874 37.9156

Σ̂
(1)

0.0026 0.0130 0.0065

Σ̂
(2)

0.0157 0.0302 53.6914
ψ̂ 0.0639 0.1631 91.6264

the toameasurement to obtain toa errors.
There exists algorithms such as a modified version of em introduced in [121]

or the adaptive model proposed in [128] that can be applied to jointly estimate k
and parameters. However, in this thesis, the goal is to model the underlying distri-
bution of the toa errors with a Gaussian mixture with known number of compo-
nents. We identify k using the two well-known model selection criteria, Akaike’s
Information criterion (aic) and Bayesian Information criterion (bic) given by

AIC(k) = −2 log p(e1, . . . , eN | ψ) + 2J(k) (6.33a)

BIC(k) = −2 log(e1, . . . , eN | ψ) + J(k) logN. (6.33b)

The two criteria are computed using the qb method for k = 1, 2, . . . , 10 and
the results are presented in Figure 6.5. For both bss, according to the values
of the information criteria, the underlying distribution can be modeled using a
3-component Gaussian mixture.

The estimated parameters for the one-dimensional Gaussian mixtures using
all three algorithms introduced in Section 6.1 are reported in Table 6.3. It must be
noted that in this one-dimensional case all the multivariate distributions should
be changed to their univariate counterparts. For instance, the Wishart distribu-
tion (6.22) is changed to the Gamma distribution, hence (σ (k))−2 ∼ Γ (α(k), β(k))
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Figure 6.3: Convergence rate of qb, em, and Gibbs sampling algorithms for

estimating parameters µ(k)
d with k denoting the component and d the dimen-

sion corresponding to scenario 1 in Table 6.1. The true values are marked
with green. The iteration number at which qb and em algorithms termi-
nated are marked with red and black vertical dashed lines, respectively.

with 2α(k) = a(k) + 1 and 2β(k) = b(k). The conditional prior for µ is also given by
a uni-variate Normal distribution µ(k) ∼ N (m(k), (σ (k))2/ν(k)) with ν(k) = c(k).

Table 6.3: Estimated paramters of the 3-component, 1-dimensional, Gaus-
sian mixture fitted to the toameasurement dataset using qb, em, and Gibbs
sampling algorithms.

bs Comp
QB EM Gibbs

µ̂ σ̂2 π̂ µ̂ σ̂2 π̂ µ̂ σ̂2 π̂

Serving
1 -0.872 29.548 0.583 1.449 59.952 0.775 -0.7 28.551 0.6
2 15.542 62.476 0.404 19.557 60.77 0.188 16.12 50.157 0.3999
3 0.2142 992.026 0.013 26.572 84.396 0.037 1.1 1140 0.0001

Neighboring
1 3.0691 33.361 0.627 1.3232 27.5096 0.832 2.888 33.780 0.727
2 24.193 246.872 0.308 14.9358 82.6445 0.142 24.753 223.156 0.206
3 -2.856 2.862 0.065 45.6678 64.8427 0.026 -2.397 2.957 0.067

The two components with mean values close to zero can be interpreted as
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Figure 6.4: The log-likelihood values over iterations of qb and em algo-
rithms.
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Figure 6.5: Information criteria values given by the qb algorithm for k =
1, . . . , 10 for both serving and neighboring bss.

measurement noise and multipath propagation errors. As stated in Section 1.2,
these two sources of error should have close-to-zero means. The third compo-
nent, for both bss, has a larger mean value further away from the origin. This
can be interpreted as the nlos error whose variance is larger than measurement
noise variance. While both qb and Gibbs sampler estimated two components
with means close to zero, em estimates one component with small mean and
two components with larger mean values. The nlos component is estimated by
all three algorithms with almost similar statistics for the serving bs. However,
in case of the neighboring bs, qb and Gibbs sampler estimates are very similar
while em estimates nlos component closer to the origin with much less variance.

Figure 6.6 illustrates the histogram of the errors of the serving and neighbor-
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ing bss where the y-axis is normalized by density. The Gaussian mixture pdf
parameterized by the estimated parameters reported in Table 6.3 are also illus-
trated in Figure 6.6. As it can be observed from Figure 6.6b, for the neighboring
bs, qb and Gibbs sampler capture the measurement noise and multipath propa-
gation errors better than em.

(a) Serving bs. (b) Neighboring bs.

Figure 6.6: Histogram of toa measurement error of the serving, and neigh-
boring bss involved in the data collection experiment performed in Kista
area, Sweden. The bin width of histogram is 1 m. The Gaussian mixture pdf
parameterized by the estimated values reported in Table 6.3 is marked with
red.

In order to further evaluate the fit of the estimated parameters, Figure 6.7
compares the empirical cdf of each dataset with the parametric cdf computed
by the estimated parameters of the three algorithms. The empirical cdf is ob-
tained from Matlab built-in function. For errors above 10 m the empirical cdf
and parametric cdf corresponding to all the three algorithms have almost equal
values. However, around 60% of the times, error terms are below 10 m. In such
cases, Gibbs sampler and qb outperform em, specially for the neighboring bs.
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Figure 6.7: Empirical cdf (marked with green), parametric cdf using qb
estimates (marked with red), em estimates (marked with blue), and Gibbs
sampler estimates (marked with black).





7
Concluding Remarks and Future Work

The initial part of this thesis was devoted to a survey of the state of the art in
radio network positioning and introduced a general positioning framework and
system models. The main contribution of the remainder of the thesis was then to
study positioning in radio cellular networks using timing-based measurements.
In particular, we evaluated the potential of timing-based positioning in two dif-
ferent scenarios:

• otdoa positioning in nbiot systems

• Fusion of tof and tdoa for 3gpp lte positioning using measurements col-
lected from two bss

Finally, initial results of toa measurement error modeling in presence of nlos
components have been reported. In the following subsections, concluding re-
marks and possible future works on each of the contributions are provided.

7.1 State of the art in radio network positioning

The purpose of this survey was to describe the over-all picture of how state of the
art is organized today (see Figure 2.1), recent advances in how the fundamental
measurements are computed in recent standards, and pointing out new trends.

The survey presented in this thesis gives the fusion community a fast way into
the state-of-the-art in network positioning. It gives an overall picture of the field,
the fundamental measurements available, and its organization. This allows for
creating relevant simulations and performance analyses, and indicates directions
for new research contributions.

87
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7.2 Performance of OTDOA positioning in NBIOT

systems

To fulfill different requirements of iot positioning, 3gpp standardization evolved
towards nbiot systems with enhanced positioning support. The recent 3gpp Re-
lease 14 introduces new positioning reference signals with configurable downlink
transmission schemes tailored for the narrower system bandwidth. While exten-
sive studies have been performed on timing-based positioning for the legacy lte
systems, nbiot systems have not been treated equally. This thesis evaluated the
performance of localization in nbiot systems in terms of the horizontal position-
ing accuracy in a simulation study. The ue assisted otdoa positioning method
was tested to take full advantage of the enhanced nprs. Simulations accounted
for imperfections in wireless channels by considering tapped-delay channel mod-
els; epa and etu. The positioning performance of both channel models was eval-
uated for both static and dynamic cases. In the static case, it was assumed that
the ue detects at least three and up to six unique bss. In the dynamic case, an
rstd reporting budget was defined and the effect of the budget on the device
tracking performance in nbiot systems was evaluated.

One possible extension is to derive the theoretical performance limit of nbiot
positioning. Additionally, algorithms more robust against measurement outliers
can be developed and compared against the theoretical lower bounds. For exam-
ple, in a filtering context with a decent prior, gating can be applied, as a simple
alternative to order statistics. A second alternative is to formulate the rstd re-
porting budget in terms of a mixed integer optimization problem. For instance,
given a certain lowest acceptable accuracy threshold, the developed algorithm
should adaptively change the number of reported bss and the reporting interval.

7.3 Fusion of TDOA and TOF for positioning with two
involved BSs

Different aspects of timing-based 2D positioning in lte systems when at least
three base stations are detected by the ue have already been studied in the lit-
erature. This thesis considered the scenario in which only two bss, one serving
and one neighboring, could be detected. Fusion of the tof measurement of the
serving and tdoameasurement of the serving relative to the neighboring bss has
been studied.

The limited number of detected bss results in ambiguity in the position of the
ue. A framework based on a bank of Kalman filters was proposed to deal with
the ambiguity in the estimates. Lower bounds on the estimation accuracy were
then compared to the obtained rmse in a simulation study. To further evaluate
the developed filtering method, it was tested on real toa measurements. The
achieved results for both the simulated and real data indicated good performance
of the introduced method.

One possibility for future work is to extend the filter bank solution with a
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smoothing stage to further increase the estimation accuracy. Additionally, using
the geometrical distance for finding the serving bs could also be improved by
defining a more relevant handover criterion. The simulation study could also
be further extended to be more realistic by adding nlos imperfections to the
measurement errors.

7.4 TOA error modeling in presence of NLOS

components

The first step towards developing a timing-based position estimation method
which is robust against nlos effects, is to estimate the pdf of the errors. This
thesis has set the stage for a robust method by modeling toa errors in terms of
Gaussian mixtures. The number of components in the mixture model was first
estimated by investigating aic and bic. Given the prior knowledge on the num-
ber of components, the maximum likelihood based em algorithm, pure Bayesian
Gibbs sampler, and the quasi-Bayesian algorithms were defined and compared
to each other in a simulation study with known true parameter values. Then,
they all were tested on real toa measurements obtained through data collection
experiments performed in lte network to estimate the Gaussian mixture pdf
components.

A future research direction is to derive the distribution of tdoameasurement
errors and then estimate its parameters using the qb algorithm. This allows us
to model both the toa and tdoa errors in the applications introduced in this
thesis. The next step would then be to develop an iterative algorithm that jointly
estimates the error pdf and the position.
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