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Abstract

In this thesis, different topics for models that consist of both differential and algebraic
equations are studied. The interest in such models, denoted DAE models, have increased
substantially during the last years. One of the major reasons is that several modern object-
oriented modeling tools used to model large physical systems yield models in this form.
The DAE models will, at least locally, be assumed to be described by a decoupled set of
ordinary differential equations and purely algebraic equations. In theory, this assumption
is not very restrictive because index reduction techniques can be used to rewrite rather
general DAE models to satisfy this assumption.

One of the topics considered in this thesis is optimal feedback control. For state-
space models, it is well-known that the Hamilton-Jacobi-Bellman equation (HJB) can be
used to calculate the optimal solution. For DAE models, a similar result exists where
a Hamilton-Jacobi-Bellman-like equation is solved. This equation has an extra term in
order to incorporate the algebraic equations, and it is investigated how the extra term
must be chosen in order to obtain the same solution from the different equations.

A problem when using the HJB to find the optimal feedback law is that it involves
solving a nonlinear partial differential equation. Often, this equation cannot be solved
explicitly. An easier problem is to compute a locally optimal feedback law. For analytic
nonlinear time-invariant state-space models, this problem was solved in the 1960’s, and
in the 1970’s the time-varying case was solved as well. In both cases, the optimal solution
is described by convergent power series. In this thesis, both of these results are extended
to analytic DAE models.

Usually, the power series solution of the optimal feedback control problem consists of
an infinite number of terms. In practice, an approximation with a finite number of terms
is used. A problem is that for certain problems, the region in which the approximate
solution is accurate may be small. Therefore, another parametrization of the optimal
solution, namely rational functions, is studied. It is shown that for some problems, this
parametrization gives a substantially better result than the power series approximation in
terms of approximating the optimal cost over a larger region.

A problem with the power series method is that the computational complexity grows
rapidly both in the number of states and in the order of approximation. However, for DAE
models where the underlying state-space model is control-affine, the computations can be
simplified. Therefore, conditions under which this property holds are derived.

Another major topic considered is how to include stochastic processes in nonlinear
DAE models. Stochastic processes are used to model uncertainties and noise in physical
processes, and are often an important part in for example state estimation. Therefore,
conditions are presented under which noise can be introduced in a DAE model such that
it becomes well-posed. For well-posed models, it is then discussed how particle filters
can be implemented for estimating the time-varying variables in the model.

The final topic in the thesis is model reduction of nonlinear DAE models. The ob-
jective with model reduction is to reduce the number of states, while not affecting the
input-output behavior too much. Three different approaches are studied, namely balanced
truncation, balanced truncation using minimization of the co-observability function and
balanced residualization. To compute the reduced model for the different approaches, a
method originally derived for nonlinear state-space models is extended to DAE models.
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Populärvetenskaplig sammanfattning

Huvudtemat för denna avhandling är optimal styrning av olika typer system. Optimal
styrning handlar om att hitta den strategi som uppnår den bästa kompromissen mellan att
uppfylla de mål som ställs och att utnyttja de resurser som finns tillgängliga. Definitionen
av vad som är en bra kompromiss ges i detta fall av en matematisk funktion, benämnd
kostnadsfunktion. För att kunna beräkna den optimala strategin är det nödvändigt att veta
hur de olika resurserna påverkar de variabler för vilka mål har ställts upp. Detta samband
beskrivs med hjälp av en matematisk modell av systemet, där de variabler som kan an-
vändas för att påverka systemet benämns insignaler. Vanligast är att systemet beskrivs av
en tillståndsmodell, vilket innebär att modellen enbart innehåller differentialekvationer. I
denna avhandling antas dock modellen bestå både av differentialekvationer och algebrais-
ka ekvationer, en så kallad DAE-modell. Huvudanledningen till att man vill kunna hantera
modeller sammansatta av båda typerna av ekvationer är att sådana modeller uppkommer
vid objekt-orienterad modellering.

Den optimala reglerstrategin beräknas genom att lösa Hamilton-Jacobi-Bellman-ekva-
tionen. För att lösa denna ekvation krävs att man löser en olinjär partiell differentialekva-
tion. Lösningen till ekvationen är en funktion som talar om hur systemet ska styras baserat
på vilket tillstånd det befinner sig i, det vill säga en återkoppling. Ett problem är att åter-
kopplingen bara ges av ett slutet uttryck för speciella klasser av problem. Ett enklare
problem är att istället beräkna en lokalt optimal återkoppling uttryckt som en konver-
gent taylorutveckling. För tillståndsmodeller löstes problemet på 1960-talet och i denna
avhandling utökas metoden för att även hantera system beskrivna av DAE-modeller.

En nackdel med den lokalt optimala återkopplingen är att den för vissa problem bara
är en noggrann approximation i ett ganska begränsat område. Därför har en annan typ av
parametrisering av återkopplingen utvärderats, nämligen rationella funktioner. I avhand-
lingen visas det att denna typ av parametrisering i många fall ger en återkoppling som
matchar den optimala betydligt bättre och över ett större område än lösningen uttryckt
som en taylorutveckling.

Att lösa Hamilton-Jacobi-Bellman-ekvationen är oftast väldigt beräkningskrävande.
Dock finns det fall då beräkningarna kan förenklas. Ett sådant fall är när styrsignalerna
påverkar modellen affint. För tillståndsmodeller är det ofta relativt enkelt att se om så är
fallet, medan det för DAE-modeller kan vara betydligt svårare. Därför härleds villkor i
avhandlingen under vilka systemet garanterat är styrsignalaffint.

Det visar sig att affinitet i en extern signal kan användas på fler sätt. Om man vill införa
vissa typer av brus i olinjära DAE-modeller måste bruset komma in affint för att man ska
få en matematiskt väldefinierad modell. Anledningen till att införa brus i modellen kan
vara för att modellera till exempel osäkerheter i modellen eller i mätningar som görs på
systemet. Vad som mäts anges av de så kallade utsignalerna. För system som uppfyller
villkoren studeras en metod, kallad partikelfiltrering, för att estimera variabler i modellen.

Det sista ämnet som behandlas i avhandlingen är modellreduktion. Modellreduktion
handlar om att reducera storleken på en modell utan att påverka dess insignal-utsignal-
beteende i för hög grad. Reduktion innebär i detta fall att antalet differentialekvationer
minskas, vilket till exempel innebär att de optimala lösningarna ovan kan beräknas snab-
bare. Även i detta fall utökas några existerande metoder för tillståndsmodeller till att även
hantera DAE-modeller.
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Notation

Symbols and Mathematical Notation

Notation Meaning
Rn The n-dimensional space of real numbers
Cn The n-dimensional space of complex numbers
∈ Belongs to
∀ For all
⊗ the Kronecker product
A ⊂ B A is a subset of B
A ∩B Intersection between A and B
A ∪B The union of A and B
∂A Boundary of the set A
V(A) Range of the matrix A
N (A) Null space of the matrix A
rankA Rank of the matrix A
corankA Rank deficiency of the matrix A with respect to

rows (see Appendix A)
I, (In) Identity matrix (of dimension n× n)
diag(x1, . . . , xn) Diagonal matrix with x1, . . . , xn as diagonal en-

tries.
f : D → Q The function f maps a set D to a set Q
f ∈ Ck(D,Q) The function f : D → Q is k-times continuously

differentiable
fr;x Partial derivative of fr with respect to x
Q � (�) 0 The matrix Q is positive (semi)definite
Q ≺ (�) 0 The matrix Q is negative (semi)definite
σ(E,A) The set {s ∈ C | det(sE −A) = 0}
eigi(A) The i:th eigenvalue of the matrix A

1



2 Notation

Notation Meaning
Re s Real part of s
Im s Imaginary part of s
C+ Closed right half complex plane
C− Open left half complex plane
‖x‖

√
xTx

min
x
f(x) Minimization of f(x) with respect to x

argmin
x

f(x) The argument x minimizing f(x)

Br Ball of radius r (see Appendix A)
bxc The floor function, which gives the largest integer

less than or equal to x
ẋ Time derivative of x
x(i)(t) The ith derivative of x(t) with respect to t
x{i}(t) Kronecker product of x i times
f [i](x) All terms in a multivariable polynomial of order

i
fm](x) All terms in a multivariable polynomial up to or-

der m
O(x)d f(x) = O(x)d as |x| → 0 if f(x) = |x|dB(x)

where B is bounded near the origin
o(h) f(h) = o(h) as |h| → 0 if f(h)/|h| → 0 as

|h| → 0
A
/
B C The oblique projection of the matrix A along the

space B on the space C
E(x) The expected value of the stochastic variable x
a(x) ≡ b(x) Identically equal, a(x) = b(x), ∀x

Abbreviations
Abbreviation Meaning
ARE Algebraic Riccati Equation
BLT Block Lower Triangular Form
DAE Differential-Algebraic Equation
DP Dynamic Programming
HJB Hamilton-Jacobi-Bellman (equation)
HJI Hamilton-Jacobi Inequality
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PLL Phase-Locked Loop circuit
PMP Pontryagin Minimum Principle
RDE Riccati Differential Equation
RMSE Root Mean Square Error
SDAE Stochastic Differential-Algebraic Equation
w.r.t. with respect to
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Assumptions

Assumption Short explanation
A1 The index reduced system can be expressed in

semi-explicit form (see page 32)
A2 The set, on which the implicit function is defined,

is global in the control input (see page 34)
A3 The considered initial conditions are consistent

(see page 60)
A4 The time-varying DAE model can locally be

solved for ẋ1 and x3 (see page 61)
A5 The functions F̂1, F̂2, L and G in the time-

varying case are analytic (see page 61)
A6 The matricesE1(t) andA22(t) are invertible (see

page 61)
A7 The time-invariant DAE model can locally be

solved for ẋ1 and x3 (see page 72)
A8 The functions F̂1, F̂2, L and G in the time-

invariant case are analytic (see page 72)
A9 The feedback law is described by uniformly con-

vergent power series and places the eigenvalues
correctly for the DAE model (see page 73)

A10 The feedback law is described by uniformly con-
vergent power series and places the eigenvalues
correctly for the state-space model (see page 85)

A11 The linearization of the model and the cost
function have the correct local properties (see
page 98)

A12 The implicit ODE can locally be solved for ẋ (see
page 124)

A13 The implicit function R is independent of u (see
page 127)

A14 The functions F̂1 and F̂2 are independent of x3

and derivatives of u, respectively (see page 131)
A15 The feedback law is described by uniformly con-

vergent power series and stabilizes the DAE
model going backwards in time locally (see
page 164)

A16 The functions F1, F2 and h for a semi-explicit
DAE model with an explicit output equation are
analytic (see page 176)

A17 The linearization of the state-space model is
asymptotically stable, controllable and observ-
able (see page 182)

A18 The eigenvalues of G−1
c Go are distinct (see

page 182)



4 Notation

Assumption Short explanation
A19 The linearization of the DAE model is asymp-

totically stable, R-controllable and R-observable
(see page 192)



1
Introduction

In real life, control strategies are used almost everywhere. Often these control strategies
form some kind of feedback control. This means that, based on observations, action is
taken in order to obtain a certain goal. Which action to choose, given the actual observa-
tions, is decided by the so-called controller. The controller can for example be a person, a
computer or a mechanical device. As an example, we can take one of the most well-known
controllers, namely the thermostat. The thermostat can be used to control the temperature
in a room. In order to perform this task, it measures the temperature in the room and if it
is too high, the thermostat decreases the amount of hot water passing through the radiator,
while if it is too low, the amount is increased instead. In this way, the temperature in the
room is kept at the desired level.

The very simple control strategy the thermostat uses can sometimes be sufficient, but
in many situations better performance is desired. To achieve better performance it is most
often necessary to take the controlled system into consideration. This can of course be
done in different ways, but in this thesis it will be assumed that we have a mathematical
description of the system. The mathematical description is called the model of the system
and the same system can be described by models in different forms. One such form is a
model that consists of both differential and algebraic equations, denoted a DAE model.
The fact that both types of equations can be included in the model opens for the possibility
to model systems in an object-oriented fashion. To concretize what this means consider
the modeling of a car.

Normally, the first step is to model parts of the car, for example, the engine, the
gearbox, the propeller shaft and the car body as separate models. These submodels may
also be modeled using smaller submodels until each submodel is sufficiently small to be
easily modeled. The second step is then to connect all the separate models to obtain the
model of the complete car. Typically, these connections introduce algebraic equations for
example describing that the output shaft from the engine must rotate with the same angular
velocity as the input shaft of the gearbox. The obtained model is then in DAE form.
Other examples of systems which have been successfully modeled as DAE models are

5
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chemical processes (Kumar and Daoutidis, 1999), electrical circuits (Tischendorf, 2003),
multibody mechanics in general (Hahn, 2002, 2003), multibody mechanics applied to a
truck (Simeon et al., 1994; Rheinboldt and Simeon, 1999).

Based on a DAE model of a system, controller design is considered. More specifically,
the focus will be on optimal feedback control. Optimal feedback control means that the
controller is designed to minimize a performance criterion. Therefore, the performance
criterion should reflect the desired behavior of the controlled system. For example, for an
engine management system, the performance criterion could be a combination of the fuel
consumption and the difference between the actual torque delivered by the engine and the
torque commanded by the driver. The procedure would then yield the controller achieving
the best balance between low fuel consumption and delivery of the requested torque.

A problem with optimal feedback control methods are the rather extensive compu-
tations required. The complexity of the computations also scales badly with the size of
the DAE model. To reduce the required computations, two different approaches can be
used. One is trying to find some structure in the model, that can be utilized to simplify
the computations. Another approach is to derive an approximate model which is smaller,
but still reflects the major properties of the original model. Both theses approaches are
examined in this thesis.

1.1 Thesis Outline

The thesis is separated into eleven main chapters. First, some preliminary facts about non-
linear DAE models and optimal feedback control are presented in Chapter 2. Chapter 3 is
the first chapter devoted to optimal feedback control of DAE models. Two different meth-
ods are investigated and some relationships between their optimal solutions are revealed.
Optimal control is also the topic of Chapter 4. However, in this chapter, the optimal con-
trol problem is solved for models described by convergent power series. The method is
rather general, and both time-varying and time-invariant models can be handled, but the
solution is normally restricted to a neighborhood of the origin.

The method in Chapter 4 is known to give the exact optimal solution as long as the
power series solution is untruncated. In practice, truncation is necessary and numeri-
cal examples have shown that the obtained approximation of the optimal solution may
have some bad properties. Therefore, another parametrization of the optimal solution
is considered in Chapter 5, namely rational approximants. The main advantage of this
parametrization is that the approximant can be required to have the same Taylor series as
the optimal solution up to some desired order, while at the same time controlling how fast
the optimal solution should grow when the states tend to infinity.

The methods derived in Chapter 4 and 5 become rather computationally demanding
as the number of states grows. Therefore, different structural properties that may reduce
the computational complexity are studied in Chapter 6. One such case is when the DAE
model has an underlying state-space model that is affine in the control signal and the cost
function is quadratic in that signal as well.

The analysis of affinity in an external input signal proves to be interesting for other
reasons as well. In Chapter 7, it is shown how white noise can be introduced into nonlinear
DAE models in a mathematical well-posed manner. The results rely on that the underlying
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state-space model becomes affine in the disturbance signals. For nonlinear DAE models
with a proper introduced noise, it is then shown how particle filtering can be used to
estimate the time-varying variables in the model.

Chapters 8, 9 and 10 deal with model reduction of nonlinear DAE models. The first
two chapters of these introduce the controllability and observability function, respectively.
These functions are used to measure the energy in the input and output signal. Based on
these functions, a model reduction method for state-space models are extended to the
DAE case as described in Chapter 10.

Chapter 11 summarizes the thesis with some conclusions and remarks about interest-
ing problems for future research.

1.2 Contributions

This thesis is based on both previously published, Sjöberg and Glad (2005); Glad and
Sjöberg (2006); Sjöberg (2006); Sjöberg and Glad (2006b); Gerdin and Sjöberg (2006);
Sjöberg et al. (2007), and previously unpublished results, Sjöberg and Glad (2008a,b).
Moreover, some completely new results are derived in the thesis. A list of contributions,
and the publications where these are presented, is given below.

• The analysis of the relationship among the solutions of two different methods for
solving the optimal feedback control problem for nonlinear DAE models, which
can be found in Chapter 3. The presentation is based on a version of the paper:

T. Glad and J. Sjöberg. Hamilton-Jacobi equations for nonlinear descrip-
tor systems. In Proceedings of the 2006 American Control Conference,
Minneapolis, Minnesota, June 2006.

• The method for proving existence and for computing the optimal feedback law of
DAE models, presented in Chapter 4. The results extend earlier developed methods
for nonlinear time-invariant and time-varying analytic state-space models. Further,
it is proved that a discount factor can be introduced in the cost function for the
infinite horizon case and, under certain technical assumptions, the optimal solution
will still exist and be time-invariant.

The material in Chapter 4 are based upon the conference papers:

J. Sjöberg and T. Glad. Power series solution of the Hamilton-Jacobi-
Bellman equation for descriptor systems. In Proceedings of 44th IEEE
Conference on Decision and Control and European Control Conference,
Seville, Spain, December 2005.

J. Sjöberg and S. T. Glad. Power series solution of the Hamilton-Jacobi-
Bellman equation for time-varying differential-algebraic equations. In
Proceedings of the 45th IEEE Conference on Decision and Control, San
Diego, California, December 2006b.

and the technical report:
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J. Sjöberg and S. T. Glad. Power series solution of the Hamilton-Jacobi-
Bellman rquation for DAE models with a discounted cost. Techni-
cal Report LiTH-ISY-R-2250, Department of Electrical Engineering,
Linköpings universitet, 2008b.

• The results about how rational functions can be used to approximate the optimal
return function and the optimal control law. Parts of the results are published in the
following paper:

J. Sjöberg and S. T. Glad. Rational approximation of nonlinear optimal
control problems. In Proceedings of the 17th World Congress of IFAC,
Seoul, South Korea, July 2008a. Accepted for publication.

• The discussion about under what conditions, the underlying state-space model will
be affine in some external input, presented in Chapter 6. In the same chapter, it is
also shown how these conditions can be used to reduce the number of equations
needed to solve in Chapter 4.

• The results in Chapter 7 on how so-called white noise can be incorporated into a
nonlinear DAE model such that the stochastic model becomes mathematically well-
posed. For DAE models with correctly introduced noise it is also shown how the
particle filtering method can be applied to estimate time-varying variables in the
model. These results have been published in:

M. Gerdin and J. Sjöberg. Nonlinear stochastic differential-algebraic
equations with application to particle filtering. In Proceedings of the
45th IEEE Conference on Decision and Control, San Diego, California,
December 2006.

• The different methods in Chapter 8 and 9 for computing the controllability and
observability functions, respectively. The result about the computation of the con-
trollability function was originally presented in:

J. Sjöberg and S. T. Glad. Computing the controllability function for
nonlinear descriptor systems. In Proceedings of the 2006 American
Control Conference, Minneapolis, Minnesota, June 2006a.

• The extension of a model reduction procedure for nonlinear state-space models to
nonlinear DAE models, presented in Chapter 10. Having the model in balanced
form, two different methods for reducing it are studied, namely balanced truncation
and balanced residualization. The result has previously been published in:

J. Sjöberg, K. Fujimoto, and S. T. Glad. Model reduction of nonlinear
differential-algebraic equations. In Proceedings of the 7th IFAC Sym-
posium on Nonlinear Control Systems, Pretoria, South Africa, August
2007.

In addition to the contributions presented in the thesis, a paper about nonlinear model
predictive control has been published:
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R. Sjöberg, Findeisen and F. Allgöwer. Model predictive control of contin-
uous time nonlinear differential algebraic systems. In Proceedings of the
7th IFAC Symposium on Nonlinear Control Systems, Pretoria, South Africa,
August 2007.





2
Preliminaries

To introduce the subject to the reader, this chapter presents some basic DAE model theory.
Four key concepts: index, solvability, consistency, and stability will briefly be described.
Furthermore, it will be discussed how the index of a system model can be reduced using
different methods, simply denoted index reduction methods. Finally, an introduction to
optimal control of state-space models will be given.

2.1 System Models

The most natural mathematical model of a system is often a set of differential and alge-
braic equations. However, in most literature about control theory, it is assumed that the
algebraic equations can be used to eliminate some variables. The outcome is a model that
only consists of differential equations, and therefore can be written in state-space form as

ẋ = F (t, x, u) (2.1)

where F : I × Rn × Rp → Rm, I ⊆ R is an interval, x ∈ Rn is the state vector and
u ∈ Rp are the control inputs. The state variables represent the system’s memory of its
past and throughout this thesis, a variable will only be denoted state if it has this property.

The state-space form has some disadvantages. For example, some systems are easier
to model if both differential and algebraic equations may be used, while a reduction to a
state-space model is more difficult. Another possible disadvantage occurs when the struc-
ture of the model is nice and intuitive while using both kinds of equations, but the state-
space formulation loose this feature. A third disadvantage is related to object-oriented
computer modeling tools, such as Dymola. Usually, the models generated by these tools
are not in state-space form, but a set of both algebraic and differential equations, and
the number of equations is often large. This means that reducing the DAE model to a
state-space model may be almost impossible.

11
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Therefore, the focus of this thesis is on a more general class of system descriptions,
called DAE models or differential-algebraic equations (DAE). This class of mathematical
models includes both differential and algebraic equations and can be formulated as

F (t, x, ẋ, u) = 0 (2.2)

where F : I × Rn × Rn × Rp → Rm, I ⊆ R is an interval, x ∈ Rn are variables and
u ∈ Rp are control inputs. A conceptual difference between state-space models and DAE
models is that a DAE model does not need to be solvable w.r.t. ẋ, not even numerically.
A result of this fact is that all components of x will not represent a memory of the past, or
with other words, be described by differential equations. This is shown in the following
small example (Brenan et al., 1996).

Example 2.1: A Pendulum

mg

z1

z2

Figure 2.1: A pendulum

The goal is to model a pendulum. As depicted in Figure 2.1, z1 and z2 are the horizontal
and vertical position of the pendulum. Furthermore, z3 and z4 are the corresponding
velocities, z5 is the tension in the pendulum, the constant b represents resistance caused
by the air, g is the gravity constant, and L is the constant length of the pendulum. A model
which describes the pendulum can be written as

ż1 = z3

ż2 = z4

ż3 = −z5 · z1 − b · z2
3

ż4 = −z5 · z2 − b · z2
4 − g

0 = z2
1 + z2

2 − L2

An immediate observation is that the equations are not possible to solve for ż5 since it is
not present in any of the equations. A first glance also indicates that the model should
have four states, namely z1 to z4. However, as will be shown later in the thesis, it is
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possible by using the constraint 0 = z2
1 + z2

2 − L2 to rewrite the model as

ż1 = z3 (2.3a)

ż3 = −z5 · z1 − b · z2
3 (2.3b)

0 = z2
1 + z2

2 − L2 (2.3c)
0 = z1z3 + z2z4 (2.3d)

0 =
1
L

(
z2
3 + z2

4 − b(z1z2
3 + z2z

2
4)− z2g

)
− z5 (2.3e)

It shows that only z1 and z3 are really determined by differential-equations. The other
variables are given by the algebraic equations (2.3c)–(2.3e).

Hence, the memory of the past is contained in z1 and z3, while z2, z4 and z5 are
algebraically determined from z1 and z3. Therefore, the only states in this example are z1
and z3. Another related property is that the number of algebraic equations has changed
from one in the original set of equations to three in the equations above. The reason is
that the original equations are valid over time.

In the example above, it is also possible to choose z2 and z4 as states and let z1 and
z3 be determined by algebraic equations. This is an important property of DAE models
that different configurations of the variables can be chosen as states. Actually, it might be
necessary to change the choice of states when the solution evolves. For example, consider
the pendulum above. For most positions, the choice between the two pair of states are free.
However, when either z1 or z2 is zero, this variable and its corresponding velocity cannot
be chosen as states. That is, the other pair has to be chosen.

In the reformulation above, i.e., when the dynamic part was separated from the alge-
braic part, the function F in (2.2) was differentiated a number of times with respect to t.
Therefore, an assumption made throughout the thesis is that F is sufficiently smooth, i.e.,
sufficiently many times continuously differentiable.

In some cases, (2.2) will be viewed as an autonomous model

F (t, x, ẋ) = 0 (2.4)

The two most common reasons are either that the control input is a feedback law u =
u(t, x), or that u = u(t) is a known signal, seen as part of the time variability. However,
a third reason is that the system is modeled using a behavioral approach, see for instance
Polderman and Willems (1998); Kunkel and Mehrmann (2001). Then, the control input u
is simply viewed as a variable among the other, and therefore included in x. The system
of equations is then often underdetermined and some variables have to be chosen as inputs
so that the remaining ones are uniquely defined. In engineering applications, the choice of
control variables is often obvious from the physical plant. However, when designing gen-
eral purpose models, for example different electrical components in a modeling library,
the input and output for a particular model may not be determined.

When modeling physical processes, the obtained model will often have more structure
than the general description (2.2). One such structure is the semi-explicit form, which
arises naturally for example when modeling mechanical multibody systems (Arnold et al.,
2004). The model can then be expressed as

Eẋ = F (x, u) (2.5)
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where E ∈ Rn×n is a possibly rank deficient matrix, i.e., rankE = r ≤ n, and F :
Rn+p → Rn. Linear time-invariant DAE models can always be written in this form as

Eẋ = Ax+Bu (2.6)

where A ∈ Rn×n and B ∈ Rn×p. Furthermore, the description (2.5) (and hence (2.6))
can without loss of generality be rewritten as

ẋ1 = F1(x1, x2, u) (2.7a)
0 = F2(x1, x2, u) (2.7b)

where x1 ∈ Rr and x2 ∈ Rn−r. It may seem like all the variables x1 are states, i.e., hold
information about the past. However, as will be shown in the next section this does not
need to be true, unless the partial derivative of F2 w.r.t. x3, denoted F2;x2(x1, x2, u), is
nonsingular at least locally.

In some cases it might be interesting to extend the models above with an equation for
an output signal y as

F (t, x, ẋ, u) = 0 (2.8a)
y = h(x, u) (2.8b)

where y ∈ Rq and h : Rn+p → Rq. In general, an explicit extension of the model with
an extra output equation is unnecessary for DAE models. The output equation can be
included in F (ẋ, x, u, y, t). However, in some situations, it is important to show which
variables are possible to measure and then (2.8) is the best model of the system. One such
case is when noise is introduced into the model. The model is then written as

F
(
t, x, ẋ, w, u

)
= 0

y = h(t, x, u) + e

where w is the process noise and e is the measurement noise.

2.2 Solvability and the Index Concept

Intuitively, solvability means that there exists a solution that satisfies the equations in the
DAE model (2.2) for a given initial value. In this thesis, mostly two different concepts
of solution will be discussed, namely classical solutions (continuously differentiable) and
distributional solutions.

The definition of a classical solution is adopted from Kunkel and Mehrmann (2006)
and is formulated as follows.

Definition 2.1. Consider the model (2.4) and denote the time interval for which (2.4) is
defined as I ⊆ R.

1. A function x(t) ∈ C1(I) is called a solution to (2.4), if it satisfies (2.4) pointwise.
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2. The function x(t) ∈ C1(I) is called a solution of the initial value problem consist-
ing of (2.4) and

x(t0) = x0 (2.10)

if x(t) is a solution of (2.4) and satisfies (2.10).

3. An initial condition (t0, x0) is called consistent, if the corresponding initial value
problem has at least one solution.

4. A model is solvable if it has at least one solution.

Finding consistent initial conditions for DAE models can be rather difficult. It might
seem like it is sufficient to find a point (t0, x0, ẋ0) that satisfies (2.4). The problem is,
as was seen in Example 2.1, the additional algebraic conditions that may appear when
reformulating the problem. These have to be fulfilled as well. For general nonlinear
DAE models, the reformulation is local and in order to do the reformulation, a consistent
point is required. Hence, a Catch-22 situation occurs. The most common approach to
resolve the problem, is to use some method that only relies on structural information
about the equations, see, for instance, Pantelides (1988); Fritzson (2004). These methods
are not ensured to give the correct answer for all models but in practice they usually work
well. Other approaches are to use physical insight or the method derived in (Kunkel and
Mehrmann, 2006, Remark 6.10). However, note that the obtained initial points are only
possible consistent initial conditions since the definition above also requires that there
should exist a solution given the initial point.

For state-space models, solvability follows if the system function F in (2.1) satisfies
a Lipschitz condition, see Khalil (2002). For DAE models, solvability is more intrinsic
since it is not obvious which parts are dynamical and which are not. Therefore, differ-
ent concepts of index have been introduced to classify how difficult a DAE model is to
solve both numerically and analytically. There are a number of different index concepts
depending on which property is used to measure difficulty. The common property is how-
ever that a high index model in some sense is harder to solve than a model of lower index.
Though, it is important to remember that the index is mostly a model property and two
different models in the form (2.2), modeling the same physical plant, can have different
indices. A few examples of indices are differential index, strangeness index, perturbation
index etc. The discussion in this thesis will focus on the two first of them.

The differential index, which is the most common index concept, measures how dif-
ferent the given DAE model is from a state-space model. The strangeness index on the
other hand, indicates how large the difference is between the DAE model and a set of de-
coupled differential equations and algebraic equations. The main motivation for the latter
measure, is that not only differential equations are easy to know how to solve, but also
pure algebraic equations. For example, consider the set of equations Ax = b, which can
be shown to have differential equation one, but has a strangeness index zero.

In the preceding sections, the differential index and the strangeness index, will be
discussed further. More information about different concepts of index can for example
be found in Campbell and Gear (1995), Kunkel and Mehrmann (2006) and the references
therein. Solvability in general are discussed in Kunkel and Mehrmann (2006); Brenan
et al. (1996); Campbell and Griepentrog (1995).
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2.3 The Differential Index

The differential index is the most common of the index concepts. It will also be this
index which, in this thesis, is denoted only the index. Loosely speaking, the differential
index is the minimum number of differentiations needed to obtain an equivalent system
of ordinary differential equations, i.e., a state-space model. A small example showing the
idea can be found below.

Example 2.2
Consider a DAE model given in semi-explicit form

ẋ1 = F1(x1, x2, u) (2.11a)
0 = F2(x1, x2, u) (2.11b)

where x1 ∈ Rd, x2 ∈ Ra and u ∈ Rp. Assume that u = u(t) ∈ C1 is known. Differenti-
ation of the constraint equations (2.11b) w.r.t. t yields

0 = F2;x1(x1, x2, u)ẋ1 + F2;x2(x1, x2, u)ẋ2 + F2;u(x1, x2, u)u̇

If F2;x2(x1, x2, u) is nonsingular, it is possible to rewrite the model (2.11) as

ẋ1 = F1(x1, x2, u) (2.12a)

ẋ2 = −F2;x2(x1, x2, u)−1
(
F2;x1(x1, x2, u)F1(x1, x2, u) + F2;u(x1, x2, u)u̇

)
(2.12b)

Here, ẋ is determined as functions of x, u and u̇ and since one differentiation was needed
to get to a state-space model, the differential index of the original DAE is one.

Now assume that F2;x2(x1, x2, u) is singular but using algebraic manipulations, the
model

ẋ1 = F1(x1, x2, u)
0 = F2;x1(x1, x2, u)ẋ1 + F2;x2(x1, x2, u)ẋ2 + F2;u(x1, x2, u)u̇

can brought to the semi-explicit form (2.7) but with other x1 and x2 than in the first
step. Then, if it is possible to solve for ẋ2 after a second differentiation of the constraint
equation, the original model is said to have index two. If this is not possible, the procedure
is repeated and the number of differentiations will then be the index.

The example above motivates the following definition of the index, see Brenan et al.
(1996).

Definition 2.2. The differential index is the number of times that all or parts of (2.2)
must be differentiated with respect to t in order to determine ẋ as a continuous function
of x, u, u̇ and higher derivatives of u.

Note that all rows in the DAE model need not be differentiated the same number of
times in the definition above. This could be seen in Example 2.2, where only the constraint
equations (2.11b) were differentiated.
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The introduced method to compute the index is rather intuitive. However, according
to Brenan et al. (1996), this method cannot be used for all solvable DAE models. The
problem is the coordinate transformation needed to obtain the semi-explicit form after
each iteration, which not is ensured to exist. A more general definition of the index,
without the state transformation, can be formulated using the derivative array. Consider a
model in the form (2.2). The derivative array is defined as

F dj (t, x,xj+1, u, u̇, . . . , u
(j)) =


F (t, x, ẋ, u)
d
dtF (t, x, ẋ, u)

...
dj

dtj F (t, x, ẋ, u)

 (2.13)

where
xj+1 =

(
ẋ, ẍ, . . . , x(j+1)

)
Using the derivative array, the definition of the index may be formulated as follows (Bre-
nan et al., 1996).

Definition 2.3. The index ν is the smallest positive integer such that F dν = 0 uniquely
determines the variable ẋ as a continuous function of x, t, u and higher derivatives of u,
i.e.,

ẋ = η(t, x, u, u̇, . . . , uν) (2.14)

Note that u is here considered to be a known signal, in principle, possible to include in
the time variability. If u is unknown beforehand, the conditions above need to be satisfied
for arbitrary u. If u cannot be seen as a known signal, the DAE model will not have a
unique solution and the differential index is then undefined. In that case, it is necessary to
use the concept strangeness index, see the discussion in Section 2.4.

As mentioned earlier, the index is a measure of how difficult a DAE model is to han-
dle. Both numerical computation of the solution, see Brenan et al. (1996), and derivation
of control methods become more difficult for models with a high index. For the differ-
ential index there is a major leap in difficulty between models having index zero or one
and models of higher index. Index zero models are ordinary differential equations (ODE)
either in explicit or implicit form. Index one models need one differentiation to be trans-
formed to a state-space model as could be seen in Example 2.2. For initial conditions such
that F2

(
x1(0), x3(0), u(0)

)
= 0, (2.12) is equivalent to the original model. Among other

things, it means that the solution will satisfy F2

(
x1(t), x3(t), u(t)

)
= 0 on the considered

time interval. Hence, the constraints the solution will satisfy are given by F itself, or in
other words, the solution manifold is described by the model.

In general, all constraints may not be visible in F , but may appear after differentiation
as was seen in Example 2.1. There, the solution manifold is given by (2.3c)-(2.3e), where
the two latter constraints are not visible in the original model. This type of constraints are
denoted implicit constraints and occur only for higher index problems. The origin of their
appearance is that the equations must be valid on a time interval I. Together, the explicit
and implicit constraints define the solution manifold, see Kunkel and Mehrmann (2006).

A typical case where high index models occur is mechanical systems modeled using
multibody methods, see Arnold et al. (2004). The index is then often three. It is important
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to note that for time-varying linear and nonlinear DAE models, the index can vary in time
and space. In particular, different feedback laws may yield different indices of the model.
This fact has been used for feedback control of DAE models to reduce the index of the
closed-loop system.

It can be interesting to note that the concept of differential index is also related to
different concepts in the nonlinear theory developed for state-space models. One such
case is the inversion problem where the objective is to find u in terms of y and possibly x
for a model

ẋ = f(x, u)
y = h(x, u)

(2.15)

where it is assumed that the number of inputs and outputs are the same. The procedures
for inversion typically includes some differentiations of y, until u can be recovered from
y and its derivatives w.r.t. t. The number of differentiations needed is normally called the
relative degree or the order. However, for a given output signal y, the model (2.15) is a
DAE model in (x, u). The corresponding index of this DAE model is one higher than the
relative degree.

2.3.1 Reduction of the Differential-Index

It is known that for numerical solution of DAE models, many difficulties arise if standard
discretization schemes for ODE models are applied to high index DAE models. These
difficulties are due to the algebraic constraints and in particular to the implicit constraints.
Also from a control perspective, it is often important to know the solution manifold in
order to design the feedback law. Therefore, often the high index DAE is transformed into
a lower index model, with index one or zero. This process is denoted index reduction,
and the rewritten model should of course have the same solutions for consistent initial
conditions. The key tool for reducing the index of a model and exposing the implicit
constraints is differentiation. Index reduction procedures are often the same methods
used either to compute the index of a model.

Since, the numerical solvers normally use index reduction methods in order to obtain
a model of at most index one, it is a well-studied area, and more information can for
instance be found in Mattson and Söderlind (1993); Brenan et al. (1996); Kunkel and
Mehrmann (2006).

Linear Time-Invariant DAE Models

First, index reduction of linear time-invariant DAE models

Eẋ = Ax+Bu (2.16)

is considered. One method is the so-called Shuffle algorithm, invented by Luenberger
(1978). The procedure can be described as follows. Form the matrix (E A B) and use
Gauss-elimination to obtain the new matrix(

E1 A1 B1

0 A2 B2

)
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where E1 is nonsingular. This matrix corresponds to the DAE model(
E1

0

)
ẋ =

(
A1

A2

)
x+

(
B1

B2

)
u

Differentiation of the constraint equation, i.e., the lower row, yields the description(
E1

−A2

)
︸ ︷︷ ︸

Ē

ẋ =
(
A1

0

)
︸ ︷︷ ︸
Ā

x+
(
B1

0

)
︸ ︷︷ ︸
B̄0

u+
(

0
B2

)
︸ ︷︷ ︸
B̄1

u̇

If Ē has full rank, the following state-space model is obtained by multiplying with the
inverse of Ē from the left

ẋ = Ē−1
(
Āx+

1∑
i=0

B̄iu
(i)
)

(2.17)

Here u(i) denotes the i:th order derivative of u(t). Otherwise, the procedure is repeated.
The procedure is guaranteed to terminate if and only if det(sE−A) 6≡ 0, see Dai (1989).
Concerning solvability, regularity is a key property for a DAE model, and it is therefore
formalized as a definition.

Definition 2.4. Consider a linear time-invariant DAE model

Eẋ = Ax+Bu

where E, A and B are constant matrices. It is called regular if

det(sE −A) 6≡ 0

that is, the determinant is not zero for all s.

The model (2.17) is equivalent to the original DAE in the sense that both give the same
solution for consistent initial conditions. However, without considering the initial condi-
tions, the solution manifold of (2.17) is much larger than for the original DAE model,
since (2.17) is a state-space model with a solution for all initial conditions. It is also pos-
sible to derive another index reduced form, which has the advantage that the dynamical
and the algebraic parts are separated. By first pre-multiplying (2.16) with a constant ma-
trix P and introducing a linear coordinate change z = Qx, the linear DAE model (2.16)
transforms into the canonical form

ż1 = A1z1 +B1u (2.18a)
Nż2 = z2 +B2u (2.18b)

where z1 and z2 are the dynamical and algebraic variables, respectively, and the matrix
N is a nilpotent matrix, i.e., Nk = 0 for some integer k. It can be proved that k is the
index of the model, i.e., k = ν (Brenan et al., 1996). The transformation is possible for all
regular linear DAE models and a computational method can be found in Gerdin (2006).
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The transformed model (2.18) will have the same index as the original DAE model,
and therefore no information is lost. If an index reduced model is desired, the Shuffle-
algorithm can be applied and the result is

ż1 = A1z1 +B1u (2.19a)

z2 = −
ν−1∑
i=0

N iB2u
(i) (2.19b)

Here, it has been assumed that only consistent initial values x(0) are considered. The
form (2.19) is widely used to show different properties for linear time-invariant DAE
models, see Dai (1989). Note that when the dynamical and algebraical parts of the original
DAE model are separated like in (2.19), the numerical simulation becomes very simple.
Only the dynamical part needs to be solved using an ODE solver, while the algebraic part
is given by the control input and derivatives of it. Therefore, no drift off or problems due
to discretization will occur, which is a major advantage with the form (2.19).

There are also results on a nonlinear version of the canonical form (2.18), see Rouchon
et al. (1992).

Quasi-Linear DAE Models

The Shuffle algorithm can be extended to also deal with nonlinear models in quasi-linear
form

E(t, x, u)ẋ = A(t, x, u)

Using pre-multiplication with a matrix function P (t, x, u), the DAE can be reformulated
as (

E1(t, x, u)
0

)
ẋ =

(
A1(t, x, u)
A2(t, x, u)

)
x

Differentiation of the constraints gives the model(
E1(t, x, u)

−A2;x(t, x, u)

)
︸ ︷︷ ︸

Ē(t,x,u)

ẋ =
(

A1(t, x, u)
A2;t(t, x, u) +A2;u(t, x, u)u̇

)
︸ ︷︷ ︸

Ā(t,x,u,u̇)

The matrix Ē is then pre-multiplied with a new matrix function P (t, x, u) to obtain zeroes
in the last rows, and the process is continued until the matrix Ē has full rank. For a more
detailed analysis, see Steinbrecher (2006) or Tidefelt (2007).

General Nonlinear Models

For general nonlinear models, the Shuffle-algorithm may be impossible to perform and
other methods based on the derivative array have to be used. Hence, after some symbolical
differentiations and manipulations, the result is an state-space model

ẋ = η(x, u, . . . , u(ν−1)) (2.20)
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As mentioned earlier, the state-space model (2.20) is equivalent to the original DAE model
in the sense that given consistent initial conditions, the models will have the same solution.
For Example 2.2, it means that (2.11) and (2.12) will have the same solution if the initial
conditions satisfy

0 = F2

(
x1(0), x3(0), u(0)

)
To reduce the solution manifold and regain the same size as for the original problem, the
explicit and implicit constraints, obtained in the index reduction procedure, need to be
considered. For this end, the constraints can be used in different ways.

One approach is to let the explicit and implicit constraints define the initial conditions
as mentioned above. That is, the initial condition x(t0) is assumed to belong to a set Ω0

which consists of points satisfying all the constraints. This approach can be seen as a
method to deal with the constraints implicitly. Another choice is to augment the DAE
model with the constraints as the index reduction procedure proceeds. The result is then
an overdetermined but well-defined index one DAE model, where well-defined means that
the obtained DAE model will have a solution if the original model has one. Theoretically,
the choices are equivalent. However, in numerical simulation they are not.

A drawback with the first method is that it suffers from drift off, which often leads
to numerical instability. It means that even if the initial condition is chosen in Ω0, small
errors in the numerical computations result in a solution to (2.20) that diverge from the
solution of the original DAE model. The reason is the larger solution manifold of (2.20)
compared to the original model. A solution to this problem is to use methods known as
constraint stabilization techniques (Baumgarte, 1972; Ascher et al., 1994).

For the second approach, the solution manifold is the same as for the original DAE
model. However, the numerical solver discretizes the problem and according to Mattson
and Söderlind (1993), an algebraically feasible point in the original DAE may then be
non-feasible in the discretized problem and vice versa. To solve this problem special
projection methods have been derived, see for instance the references in Mattson and
Söderlind (1993).

The problem with non-feasible points occurs because of the overdeterminedness ob-
tained when all equations are augmented. Therefore, Mattson and Söderlind (1993)
present another method where dummy derivatives are introduced. Extra variables are
added to the augmented model which instead of being overdetermined becomes well-
determined. The discretized problem will then be well-determined as well.

2.4 The Strangeness Index

Another index concept is the strangeness index µ, see Kunkel and Mehrmann (2006). The
main difference compared to the differential index is that the DAE model is compared with
a model which is allowed to consist of one part that is an ODE and one part that is a set of
purely algebraic equations. To motivate this definition consider the following example.
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Example 2.3
Consider the model of a chemical reactor

ċ = k1(c0 − c)−R (2.21a)

Ṫ = k1(T0 − T ) + k2R− k3(T − Tc) (2.21b)

0 = R− k3ce
−k4T (2.21c)

where c is the concentration, T is the temperature, R is the reaction rate per unit volume,
c0 is the given feed reactant concentration, T0 is the initial temperature, k1 to k4 are con-
stants and Tc is the cooling temperature which also is used as control input. Hence, the
variables in this model is x = (c, T,R). It can be shown that if (2.21c) is differentiated
w.r.t. t once, the obtained equation can be solved for Ṙ in (c, T,R). Hence, one differen-
tiation was required to obtain a state-space model and the differential index of the original
DAE model is therefore one. However, by solving for R directly, the following model is
obtained.

ċ = k1(c0 − c)− k3e
−k4T c

Ṫ = k1(T0 − T ) + k2k3e
−k4T c− k3(T − Tc)

R = k3ce
−k4T

Here, the model consists of a decoupled set of differential equations and algebraic equa-
tions. Since no differentiation was needed, the strangeness index is zero. This model is of
course as simple, or even simpler, to solve than the index reduced model. Hence, it makes
little sense to let purely algebraic equations raise the difficulty factor, i.e., the index.

In the derivation of the strangeness index a central concept is invariance. The main
motivation for this is that a good measure of difficulty should not be too sensitive to re-
formulations of the model such as variable changes and pre-multiplications with given
matrix functions, see (Kunkel and Mehrmann, 2006, pp.157 – 159,182). However, also
the differential index is invariant under certain reformulations, but not as generally as the
strangeness index, see (Brenan et al., 1996, pp. 33). The strangeness index does also gen-
eralize the differential index in the sense that, unlike the differential index, the strangeness
index is defined for over- and underdetermined DAE models. An overdetermined model
is a model where the number of equations m is larger than the number of unknown vari-
ables, while the opposite holds for an underdetermined model. Normally, the unknown
variables are x, but if a behavioral approach is considered, u can also be included among
the unknowns. Finally, for models where both the strangeness index and the differential
index are well-defined the relation is, in principle, µ = max{0, ν − 1}. For a more thor-
ough discussion about this relationship, the reader is referred to Kunkel and Mehrmann
(1996, 2006).

In the following, conditions under which a solution to (2.4) exists and is unique ac-
cording to the definition in Section 2.2 will be derived. The results come from Kunkel and
Mehrmann (2006) and two of their key proofs are included below. The main reason for
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including the proofs is that they reveal the underlying principles of how to deal with DAE
models. The main element in their theorems is a hypothesis. The hypothesis is investi-
gated on the solution set of the derivative array (2.13) for some integer µ. The solution
set is denoted Lµ and is described by

Lµ = {zµ ∈ I× Rn × . . .× Rn︸ ︷︷ ︸
µ+2

| F dµ (zµ) = 0} (2.22)

while the hypothesis is as follows.

Hypothesis 2.1. Consider the general nonlinear DAE model (2.4), i.e.,

F (t, x, ẋ) = 0

There exist integers µ, r, a, d and v such that Lµ is nonempty and such that for every
zµ,0 = (t0, x0, ẋ0, . . . , x

µ+1
0 ) ∈ Lµ, there exists a neighborhood in which the following

properties hold:

1. The set Lµ ⊆ R(µ+2)n+1 forms a manifold of dimension (µ+ 2)n+ 1− r.

2. It holds that
rankF dµ;x,xµ+1

= r (2.23)

on Lµ, where xµ+1 =
(
ẋ, ẍ, . . . , x(µ+1)

)
.

3. It holds that
corankF dµ;x,xµ+1

− corankF dµ−1;x,xµ
= v (2.24)

on Lµ. Here the convention that corankF d−1;x = 0 is used. (For a definition of the
corank, see Appendix A)

4. It holds that
rankF dµ;xµ+1

= r − a (2.25)

on Lµ such that there are smooth matrix functions of pointwise full rank Z2 and T2

defined on Lµ of size
(
(µ+ 1)m,a

)
and (n, n− a), respectively, satisfying

ZT2 F
d
µ;xµ+1

= 0, rankZT2 F
d
µ;x = a, ZT2 F

d
µ;xT2 = 0 (2.26)

on Lµ.

5. It holds that
rankF dẋT2 = d = m− a− v (2.27)

on Lµ, such that there exists a smooth matrix function Z1 of size n×d of pointwise
full rank satisfying

rankZT1 FẋT2 = d

Note that the different ranks appearing in the hypothesis are assumed to be constant
on the manifold Lµ. If the hypothesis is not satisfied for a given µ, i.e., if d 6= m− a− v,
µ is increased by one and the procedure is repeated. However, it is not certain that a µ
exists such that the hypothesis hold. The strangeness index is then defined as follows.
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Definition 2.5. The strangeness index of (2.4) is the smallest positive integer µ such that
Hypothesis 2.1 is satisfied. A model with µ = 0 is denoted strangeness-free.

If there exist µ, d, a and v such that the hypothesis above is satisfied, it will imply that
the system can be reduced to a model consisting of an implicit ODE and some algebraic
equations. The implicit ODE forms d differential equations, while the number of algebraic
equations are a. The motivation and procedure are described below. The quantity v
measures the number of equations in the original model (2.4) resulting in trivial equations
0 = 0, i.e., v measures the number of redundant equations. Together with the numbers a
and d, all m equations in the original model are then characterized, since m = a+ d+ v.

2.4.1 Derivation of the Reduced Model

The analysis of the implications of the hypothesis is based on the implicit function the-
orem. The analysis is therefore local and performed in a neighborhood of the point
zµ,0 ∈ Lµ. It is important to note that the variables x(j)

0 for j ≥ 1 in this case are seen
as algebraic variables rather than as derivatives of x0. This also means that the derivative
array should be seen as formally derived, that is, ẋ, ẍ are only formal derivatives of x.

From part 1 of the hypothesis, it is known that Lµ is a (µ + 2)n + 1 − r dimen-
sional manifold. It is therefore possible to locally parameterize it using (µ + 2)n +
1 − r parameters. These parameters can be chosen from (t, x,xµ+1) such that the rank
of F dµ;x,xµ+1

(zµ,0) is unchanged if the corresponding columns are removed. Together,
parts 1 and 2 of the hypothesis give that

rankF dµ;t,x,xµ+1
= rankF dµ;x,xµ+1

= r

and therefore can t be chosen as parameter. From part 2, it follows that r variables of
(ẋ, ẍ, . . . , x(µ+1)) are determined (via the implicit function theorem) by the other (µ +
2)n + 1 − r variables. From part 4, it is also known that r − a of those comes from
(ẋ, ẍ, . . . , x(µ+1)). These variables are denoted xh, while the rest of (ẋ, ẍ, . . . , x(µ+1))
must be parameters and are denoted p ∈ R(µ+1)n+a−r.

Since r variables are implicitly determined by the rest and only r − a of these belong
to (ẋ, ẍ, . . . , x(µ+1)), the other r − (r − a) = a determined variables, denoted x3, must
belong to x. Using part 4, it follows that ZT2 Fµ;x3 must be nonsingular. The rest of x
must then be parameters and are denoted (x1, x2) ∈ Rn−a.

Hence, using the implicit function theorem (see Theorem A.1), Hypothesis 2.1 implies
the existence of a neighborhood V ⊆ R(µ+2)n+1−r of (t0, x1,0, x2,0, p0), which is the
part of zµ,0 corresponding to the selected parameters in (t, x1, x2, p), and a neighborhood
Ũ ⊆ R(µ+2)n+1 of zµ,0 such that

U = Lµ ∩ Ũ =
{
θ(t, x1, x2, p) | (t, x1, x2, p) ∈ V

}
where θ : V → U is a diffeomorphism. From this expression, it follows that F dµ (zµ) = 0
if and only if zµ = θ(t, x1, x2, p) for some (t, x1, x2, p) ∈ V. More specifically, x3 and
xh are possible to express as

x3 = G(t, x1, x2, p) (2.28)
xh = H(t, x1, x2, p) (2.29)
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on V and the equation defining the manifold Lµ can be rewritten as

F dµ
(
t, x1, x2,G(t, x1, x2, p),H(t, x1, x2, p)

)
≡ 0 (2.30)

on V, where (xh, p) = H(t, x1, x2, p).
The next step is to show that locally on V, the implicit function G will only depend

on x1, x2 and t. That is, G will be independent of p. Therefore, the derivative of the
following expression w.r.t. p is used.

d

dp
(ZT2 F

d
µ ) =

(
ZT2;x3

F dµ + ZT2 F
d
µ;x3

)
Gp +

(
ZT2;xµ+1

F dµ + ZT2 F
d
µ;xµ+1

)
Hp

= ZT2 F
d
µ;x3

Gp = 0

for all (t, x1, x2, p) ∈ V. Here, it has been used that F dµ ≡ 0, locally, and that
ZT2 F

d
µ;xµ+1

= 0 on V. By construction, the variables x3 were chosen such that ZT2 F
d
µ;x3

is nonsingular. Hence
Gp(t, x1, x2, p) = 0

on V. The function Gp is therefore constant with respect to p, and locally there exists a
function R such that

R(t, x1, x2) = G(t, x1, x2, p0)

Using the function R, (2.28) can be rewritten as

x3 = R(t, x1, x2) (2.31)

and the conclusion is that x3 is independent of derivatives of x on V, since x1 and x2 only
consist of terms in x. Hence, it follows that

F dµ
(
t, x1, x2,R(t, x1, x2),H(t, x̄, p)

)
≡ 0

on V and if this expression is differentiated w.r.t. (x1, x2), the result is

d

d(x1, x2)
(ZT2 F

d
µ ) = ZT2;x1,x2

F dµ + ZT2 F
d
µ;x1,x2

+
(
ZT2;x3

F dµ + ZT2 F
d
µ;x3

)
Rx1,x2

+
(
ZT2;xµ+1

F dµ + ZT2 F
d
µ;xµ+1

)
Hx1,x2

= ZT2 F
d
µ;x1,x2

+ ZT2 F
d
µ;x3

Rx1,x2 = ZT2 F
d
µ;x

(
In−a
Rx1,x2

)
= 0

(2.32)

on V. Here In−a is an identity matrix of dimension n − a × n − a and again F dµ ≡ 0
and ZT2 F

d
µ;xµ+1

= 0 have been used. In part 4 of the hypothesis one requirement was
the existence of a function T2 such that Z2F

d
µ;xT2 = 0. Using the result in (2.32), it is

possible to choose T2 as

T2(t, x1, x2) =
(

In−a
R(t, x1, x2)

)
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The matrix function Z1 will only depend on (t, x1, x2) since both T2 and F depend on
these variables only. However, since the results here are local in their nature and x and ẋ
are continuous, Z1 can even be chosen constant. Now define the model

F̂1(t, x, ẋ) = ZT1 F (t, x, ẋ) (2.33a)

F̂2(t, x) = ZT2 Fµ
(
t, x1, x2, x3,H(t, x1, x2, p0)

)
(2.33b)

Notice that p is here chosen constant since it was shown that it did not influence x3 locally.
The so-called reduced differential-algebraic equation is then

F̂ (t, x, ẋ) =
(
F̂1(t, x, ẋ)
F̂2(t, x)

)
= 0 (2.34)

The reduced differential-algebraic equation can be shown to satisfy Hypothesis 2.1 with
µ = 0, d and a. Hence, this is the model that is ensured to exist if the hypothesis is
satisfied for the original DAE model. Furthermore, F̂2 is known to be solvable for x3

yielding (2.31).
If the original DAE has a continuously differentiable solution, i.e., x(t) ∈ C1, it is

possible to differentiate (2.31) w.r.t. t and eliminate x3 and ẋ3 from F̂1 to obtain

F̂1(t, x1, x2,R, ẋ1, ẋ2,Rx1 ẋ1 +Rx2 ẋ2 +Rt) = 0

on V. Differentiating the expressions for F̂1 w.r.t. (ẋ1, ẋ2) yields

d

d(ẋ1, ẋ2)
F̂1 = ZT1 Fẋ1,ẋ2 + ZT1 Fẋ3Rx1,x2 = ZT1 FẋT2

on V. From part 5 it is known that rankZ1FẋT2 = d and therefore d variables of (ẋ1, ẋ2),
in this case chosen as ẋ1, are determined as a function of the other variables in F̂1. The
other variables ẋ2, become parameters. It means that x1 become states, while x2 continue
to be just parameters.

Summarizing, it is known that at least locally it is possible to solve the reduced
model (2.34) for ẋ1 and x3 yielding the model

ẋ1 = L(t, x1, x2, ẋ2)
x3 = R(t, x1, x2)

(2.35)

From the reasoning above, a theorem can be formulated that describes when the solu-
tion to a nonlinear DAE model (2.4) is a solution to the reduced model (2.35) as well.

Theorem 2.1
Let F in (2.4) be sufficiently smooth and satisfy Hypothesis 2.1 with some µ, a, d and
v. Then every solution of (2.4) also solves the reduced problem (2.35) consisting of d
differential equations and a algebraic equations.

Proof: This theorem follows immediately from the procedure above, see Theorem 4.11
in Kunkel and Mehrmann (2006).
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The procedure described has the advantage that it defines a constructive method to
compute the reduced model. However, the algorithm involves rank tests and those can be
rather sensitive numerically. Another important observation is given in Remark 4.15 in
(Kunkel and Mehrmann, 2006, pp. 167).

Remark 2.1. In the derivation ẍ,
...
x etc. appear. Therefore, it may seem like the so-

lution is required to be smoother than continuously differentiable. However, it can be
shown that for all solutions x(t) ∈ R1(I,Rn) to the original DAE model, it is possible
to locally prescribe a function P ∈ C(I, R(µ+1)n) with P[In 0, . . . , 0] = ẋ(t) such that
Fµ
(
t, x(t),P(t)

)
∈ Lµ. These functions can then be composed to yield a global continu-

ous parametrization P(t). The solutions to the original DAE is then defined as those that
obtain a continuous P(t).

2.4.2 The Solution of the Reduced DAE Model

The next step is to show that the solution to (2.34) is also a solution to the original DAE
model, locally. First consider two problems that may occur. One problem may occur,
when only a point zµ,0 ∈ Lµ is known (and not the whole solution to the DAE model).
Then, it is still possible to compute the reduced model (2.34), but it might fail to have
a solution. A second problem is that the solution to reduced model may not solve the
original DAE model. If the reduced model has a solution x(t) ∈ C, it follows that x3 is a
determined variable and ẋ3 is then the derivative of R w.r.t. t. Having these expressions,
it is also known that ẋ1 must satisfy the equation in (2.35). However, for the original DAE
model it could be the case that ẋ1 and ẋ3 should be parameters (included in p) instead
of being determined variables. That is, there could be a conflict in which variables that
should be dynamic variables and which should not. To ensure that such situations do not
happen, it is assumed that the hypothesis is satisfied for µ+1 with the same d and a as for
µ. From this fact, it is shown in Kunkel and Mehrmann (2006) that the following relations
can be established algebraically

x3 = R(t, x1, x3)
ẋ3 = Rtx1(t, x1, x2) +Rx1(t, x1, x2)ẋ1 +Rx2(t, x1, x2)ẋ2

and with these two expressions, it is known that F̂1 can be solved for ẋ1 as

ẋ1 = L(t, x1, x2, ẋ2)

Hence, neither ẋ1 nor ẋ3 can be part of the parameters, and the procedure to construct the
solution can now be formulated as follows.

Choose x2 = x2(t) and ẋ2 = ẋ2(t). Let p = p(t) be arbitrary but smooth and
consistent with the choice of ẋ2 and the initial values zµ,0. Then, if x1 = x1(t) and
x3 = x3(t) are chosen as the solution to

ẋ1 = L
(
t, x1, x2(t), ẋ2(t)

)
, x1(t0) = x1,0

x3 = R
(
t, x1, x2(t)

)
the equations F dµ+1 = 0 will be satisfied for all t in a neighborhood of t0 and therefore
F = 0. That is, the solution fulfills the original DAE model as well.

Hence, the following theorem can be formulated.
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Theorem 2.2
Let F in (2.4) be sufficiently smooth and satisfy Hypothesis 2.1 with some µ, a, d and
v. Further let µ + 1 give the same a, d and v. Assume zµ+1,0 ∈ Lµ+1 to be given and
let p in (2.30) for Fµ+1 include ẋ2. Then for every function x2 ∈ C1(I,Rn−a−d) with
x2(t0) = xp,0, ẋp(t0) = ẋp,0, the reduced model (2.35) has unique solutions x1 and x3

satisfying x1(t0) = x1,0. Moreover, together these solutions solve the original problem
locally.

Proof: See Theorem 4.13 in Kunkel and Mehrmann (2006).

Often, the considered physical processes are well-behaved in the sense that no equa-
tions are redundant and the number of components in x is the same as the number of
rows in F . Then v = 0 and m = n. Then Theorem 2.2 can be simplified since no free
parameters x2 will occur.

Corollary 2.1
Let F in (2.2) be sufficiently smooth and satisfy Hypothesis 2.1 with µ, a, d and v = 0 and
assume that a+d = n. Furthermore, assume that µ+1 yields the same µ, a, d and v = 0.
For every zµ+1,0 ∈ Lµ+1, the reduced problem (2.35) has a unique solution satisfying the
initial condition given by zµ+1,0. Furthermore, this solution solves the original problem
locally.

Proof: See Kunkel and Mehrmann (2001).

Remark 2.2. Sometimes it is interesting to consider solvability only on a part of the
manifold defined by

Lµ = {zµ ∈ I× Rn × . . .× Rn | Fµ(zµ) = 0}

This is possible if Lµ instead is defined as

Lµ = {zµ ∈ I× Ωx × . . .× Ωxµ+1 | Fµ(zµ) = 0}

where
Ωx(i) ⊆ Rn, i = 0, . . . , µ+ 1

and Ωx(i) are open sets. That is, the region on which each variable is defined is not the
whole Rn. However, if the regions are chosen inappropriate, Lµ may be the empty set.

Linear Time-Invariant DAE Models

For a square linear time-invariant DAE model, i.e., a model with as many equations as
variables x, the solvability conditions will reduce to the following theorem.

Theorem 2.3 (Solvability)
Consider a linear time-invariant DAE

Eẋ = Ax+Bu

with regular sE − A, i.e., det(sE − A) 6≡ 0, and a given control signal u ∈ Cν(I,Rp).
Then the model is solvable and every consistent initial condition yield a unique solution.
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Proof: See Kunkel and Mehrmann (1994) or Kunkel and Mehrmann (2006).

So far, only solutions in classical meaning have been considered. This is a rather
standard and for state-space models (2.1) with a system matrix F smooth enough, it will
basically impose the control input to be continuous. In Theorem 2.3, the control input is
required to be ν times continuously differentiable. This is motivated by the discussion in
Section 2.3.1, where it was shown that in general, the solution may depend on derivatives
up to order ν. In Section 2.4.4, it will be shown that if no derivative of order higher than
k appear, it is enough to require the input to be k + 1 times continuously differentiable.
However, for linear DAE models a more general definition of a solution can be made. The
solution is then defined in a distributional sense, see Dai (1989); Kunkel and Mehrmann
(2006). In the distributional framework, a distributional solution exists even when the
initial condition does not satisfy the explicit and implicit constraints or when the control
input is not sufficiently differentiable. For a more thorough discussion about distributional
solutions, the reader is referred to Dai (1989), or the original works by Verghese (1978)
and Cobb (1980).

2.4.3 Reduction of the Strangeness Index

The procedure presented in Section 2.4 for defining solvability of DAE models is also a
method that can be used to reduce the strangeness index. If µ, d, a and v are found such
that Hypothesis 2.1 is satisfied, it was proved the original model can be expressed in the
form

F̂1(t, x1, x3, x2, ẋ1, ẋ2, ẋ3) = 0 (2.36a)

F̂2(t, x1, x3, x2) = 0 (2.36b)

which is strangeness-free, and if the hypothesis is satisfied for µ + 1 as well, it can be
solved for ẋ1 and x3 to obtain

ẋ1 = L(t, x1, x2, ẋ2)
x3 = R(t, x1, x2)

Unfortunately, the functions L and R are defined by the implicit function theorem and
may be impossible to write in closed form. On the hand, this is most often possible for
the functions F̂1 and F̂2 using the system function F and possibly its derivatives (this is
the purpose of the matrix functions Z1 and Z2 in Hypothesis 2.1). Practical aspects of the
method derived by Kunkel and Mehrmann can be found in Kunkel and Mehrmann (2004)
and in Arnold et al. (2004).

Note that for given µ, d, a and v, the index reduction process is performed in one
step. Hence, no rank assumptions on intermediate steps are necessary. This may be an
advantage compared to other index reduction procedures.

2.4.4 The Strangeness Index for Models with External Inputs

Until now, external inputs have not been considered explicitly. External inputs can be
included in Hypothesis 2.1 either by using a behavioral approach, i.e., to concatenate x
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and u into one variable x, or by treating them as part of the time-variability. The latter
assumes that the signals are known and does not fit our purposes, since the control inputs
(or other external signals) most often are unknown at the time when the index reduced
model is derived. The first approach may work if x1, x3 and x2 can be chosen properly,
but what does properly mean?

For control problems (2.2), it is common that the physical plant defines which vari-
ables are possible to use for controlling the system. It means that the control inputs should
appear as parameters x2 in the analysis in Section 2.4. If this happen, the standard proce-
dure is applicable with x and u concatenated. However, as will be seen in the following
example, this might not be the case. Instead, the control inputs may be categorized as
algebraic variables. That is, as variables determined by the other variables.

Example 2.4

Consider a linear time-invariant DAE model. If the control signal is included in the x
variable, i.e., x = (z1, z2, z3, u)T , the model can be written as1 0 0 0

0 0 1 0
0 0 0 0

 ẋ =

2 0 0 1
0 1 0 2
0 0 1 1

x

The result from Kunkel and Mehrmann’s index reduction procedure is, with µ = 0, the
reduced model

ż1 = 2z1 + u

ż3 = z2 + 2u
u = −z3

Hence, the control input is seen as an algebraic variable which is determined by z3, while
the free parameter is z2.

In the next computation u is instead seen as a known signal, which is included as part
of the time variability. Hence, x = (z1, z2, z3), and the model can be written as1 0 0

0 0 1
0 0 0

 ẋ =

2 0 0
0 1 0
0 0 1

x+

1
2
1

u

After the index reduction procedure has been applied, the outcome is the following model

ż1 = 2z1 + u

z2 = −2u− 3u̇
z3 = −u

and in this case, the strangeness index was one. Hence, by considering u as a known
signal, the strangeness index has increased and u̇ has appeared as a parameter.
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The example above clearly shows that this index reduction procedure does not nec-
essarily choose the control input u as parameter. Therefore, the hypothesis needs to be
slightly modified to better fit our conditions. Consider a DAE model with an external
input

F (ẋ, x, u, t) = 0 (2.37)

with the corresponding solution set

Lµ =

{(t, x,xµ+1, u,uµ) ∈ Rn × . . .× Rn︸ ︷︷ ︸
µ+2

×Rp × . . .× Rp︸ ︷︷ ︸
µ+1

| F dµ (t, x,xµ+1, u,uµ) = 0}

(2.38)

where xµ+1 = (ẋ, . . . , x(µ+1)) and uµ = (u̇, . . . , u(µ)).
Then the modified hypothesis can be formulated as follows.

Hypothesis 2.2. The DAE model (2.37) satisfies Hypothesis 2.1 with the modifications.

1. The set Lµ is given by (2.38) and forms a manifold of dimension (µ + 2)n + 1 −
r + (µ+ 1)p.

2. The rank conditions are satisfied without considering the input, i.e., no partial dif-
ferentiations w.r.t. (u, u̇, . . . , uµ+1) should be included.

That is, except for that Lµ is given by (2.38), all conditions are unchanged. The ex-
tended hypothesis implies that u and its derivatives are possible to choose as parameters,
but different parameters than p, since it is not possible to show that R is independent of
them.

On the contrary, if the DAE model satisfies Hypothesis 2.2 for µ, d, a and v, the
functions F̂1 and F̂2 in (2.36) become

F̂1(t, x1, x2, x3, ẋ1, ẋ2, ẋ3, u) = 0 (2.39a)

F̂2(t, x1, x2, x3, u, u̇, . . . , u
(µ)) = 0 (2.39b)

Similarly to the standard case, it is possible to show that for a solution to the original
DAE model, or if the hypothesis is satisfied with µ increased by one, the reduced DAE
model (2.39) can be solved for ẋ1 and x3 as

ẋ1 = L(t, x1, x2, ẋ2, u, . . . , u
(µ+1)) (2.40a)

x3 = R(t, x1, x2, u, u̇, . . . , u
(µ)) (2.40b)

and the other way around. In the expressions above, it is necessary to require u to be
sufficiently smooth, namely µ + 1 times continuously differentiable, in order to have a
well-defined solution. Furthermore, this assumption is necessary to be able to choose Z1

constant.
In later chapters, models for which F̂2 is assumed independent of derivatives higher

than k, i.e.,
F̂2(t, x, u, u̇, . . . , u(k)) = 0
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where k ≤ µ will be studied. In this case, the smoothness requirement on u can be
relaxed, which might not be obvious since ü,

...
u etc. may still turn up in the analysis.

This property can be shown, using the same idea as used to show that x(t) need not be
smoother than continuously differentiable, despite that higher derivatives of x appear in
the derivative array.

For this end, consider all derivatives as formal, and do the analysis. If Hypothesis 2.2
is satisfied for µ with d, a and v, it will be possible to derive a reduced model (2.39)
with Z1 chosen constant. The fact that Z1 can be chosen constant depends on that T2

can be chosen as in (2.32) and will only depend on R(t, x1, x2, u, . . . , u
(k)) which is a

continuous function. Hence FẋT2 will be a continuous function. If the DAE model (2.37)
also satisfies Hypothesis 2.2 for µ + 1 with d, a and v, it is possible to show, using a
similar approach as in Section 2.4.2, that algebraically

ẋ1 = L(t, x1, x2, ẋ2, u, . . . , u
(k+1)) (2.41a)

x3 = R(t, x1, x2, u, u̇, . . . , u
(k)) (2.41b)

ẋ3 = Rt +Rx1 ẋ1 +Rx2 ẋ2 +Ruu̇+ . . .+Ru(k)u(k+1) (2.41c)

Hence, ẋ1 and ẋ3 are not part of the parametrization. Let x2 = x2(t), ẋ2 = ẋ2(t) and(
u, u̇, . . . , u(k)

)
=
(
u(t), u̇(t), . . . , u(k)(t)

)
. Further, let p = p(t) and(

u(k+1)(t), . . . , u(µ+1)(t)
)

be arbitrary but smooth and consistent with Lµ+1. Finally,
let x1 = x1(t) and x3 = x3(t) be the solution to (2.41). This solution will then satisfy
Fµ+1 ≡ 0 for t in a neighborhood of t0, and then specifically

F
(
t, x(t), ẋ(t), u(t)

)
≡ 0

Therefore, if the only of u up to u(k) appear, the smoothness requirements are reduced.
So far in this thesis, the model has had both x2 and control inputs for generality.

However, in the sequel the models are assumed to be well-determined except for the
external inputs. Therefore, the parameters x2 and ẋ2 are left out. In some parts of this
thesis, the model (2.39) is also assumed to be in semi-explicit form with system functions
F1 and F2 given in closed form. That is, it should satisfy the following assumption.

Assumption A1. The variables ẋ1 can be solved from (2.39a) to give

ẋ1 = F̃1(x1, x3, u, . . . , u
(k+1)) (2.42a)

0 = F̃2(x1, x3, u, u̇, . . . , u
(k)) (2.42b)

where F̃1 and F̃2 are possible to express in closed form.

It may seem strange that ẋ2 has disappeared in F̃1. However, differentiation of (2.42b)
makes it is possible to get an expression for ẋ3 as

ẋ3 = −F̃−1
2;x3

(x1, x3,u)
(
F̃2;x1(x1, x3,u)ẋ1 + F̃2;u(x1, x3,u)u̇

)
where u = (u, u̇, . . . , u(k)). Using this expression, ẋ3 can be eliminated from F̃1. The
class of applications where F̂1 actually is affine in ẋ1 seems to be rather large. One such
example is mechanical multibody systems which often can be written in this form, see
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Kunkel and Mehrmann (2001). For control methods, it is most often undesirable to have
derivatives of the control variable in the equations. One approach which can be used
to avoid this is to redefine the control signal as its highest derivative and introduce an
integrator chain

ẋ1,d+1 = x1,d+2

...

ẋ1,d+k+1 = u(k+1)

If the integrator chain is included, the model (2.42) becomes

ẋ1 = F1(x1, x3, u) (2.43a)
0 = F2(x1, x3, u) (2.43b)

where x1 ∈ Rd+(k+1)p, x3 ∈ Ra and u ∈ Rp. Here u(k+1) is denoted u in order to
notationally match the sequel of this thesis.

To illustrate the method described above an example is presented.

Example 2.5

Consider a system described by the semi-explicit model (2.7) with
F1(x1, x3, u) ∈ C1(Rd × Ra × Rp,Rd) and F2(x1, x3, u) ∈ C1(Rd × Ra × Rp,Ra).
Define the set

Ω = {x1 ∈ Ωx, x3 ∈ Ra, u ∈ Rp | F2(x1, x3, u) = 0}

where Ωx is open, and assume that Ω is nonempty. Note that Ω may not be an open set.
Moreover, assume that the Jacobian matrix of the constraint equations with respect to x3,
i.e., F2;x3(x1, x3, u), is nonsingular on Ω. That is, the rank of F2;x3 is assumed to be
constant and full on Ω.

The solvability of the semi-explicit model can now be investigated. In a behavioral
manner, x and u are concatenated to a vector, and it can be shown that Hypothesis 2.1 is
satisfied on

L0 = {z0 ∈ Ωx × Ra × Rp × Rn × Rp | F d0 (z0) = 0}

with µ = 0, d, a and v = 0 and the resulting reduced model is given by

ẋ1 = F1(x1, x3, u) (2.44a)
x3 = R(x1, u) (2.44b)

in some neighborhood of x1,0 and u0 which both belong to L0. Furthermore, it can be
shown that the same d, a and v satisfy the hypothesis for µ = 1 on

L1 = {z1 ∈ Ωx × Ra × Rp × Rn × Rp × Rn × Rp | F d1 (z1) = 0}

and that the parameters p in F d1 can be chosen to include u̇. Given the initial condi-
tions (x1,0, x2,0, u0) ∈ Ω, the initial conditions (ẍ1,0, ẍ2,0, ẋ1,0, ẋ2,0, u̇0) are possible to
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choose such that z1,0 ∈ L1. From Theorem 2.2, it then follows that for every continu-
ously differentiable u(t) with u(t0) = u0, a unique solution exists for (2.44) such that
x1(t0) = x1,0. Moreover, this solution locally solves the original DAE model.

Note that no u̇ appear in the reduced model and therefore no initial condition u̇(t0) =
u̇0 need to be specified when solving the model in practice.

The implicit function only assures local solvability. It means that around a given point
(x1, x3, u), the implicit functionR(x1, u) is unique and differentiable. However, in some
of the theorems in this thesis, it is desired to talk about a larger region for u. The issue is
that even if the Jacobian of the constraint equations w.r.t. to x3, i.e., F2;x3 , is nonsingular
in the region, it is still not ensured that R is continuously differentiable function there.
For example for the double-cone in Figure 2.2, it is possible to choose either the upper or
the lower nappe.

−2

0

2

−2

0

2
−2

−1

0

1

2

x1
u

Figure 2.2: A double-cone.

Therefore, an assumption have to be introduced in order to select the same solution
to x3 when regions are considered for x1 and u. For simplicity, it is assumed that the
solution to the constraints in the considered region is unique.

Assumption A2. The model is strangeness-free for arbitrary u ∈ Ωu. Furthermore, the
equation F2(x1, x3, u) = 0 has a unique solution w.r.t. x3 in

Ω = {x1 ∈ Ωx, x3 ∈ Ωy, u ∈ Ωu | F2(x1, x3, u) = 0}

where Ωx, Ωy and Ωu are open and connected sets. Finally, the Jacobian matrix of the
constraint equations with respect to x3, i.e., F2;x3(x1, x3, u), is nonsingular on Ω.

The assumption above implies that the function R can be chosen unique and con-
tinuously differentiable. For the double cone in Figure 2.2, it means that one of the
nappes should be chosen. A more general assumption could have been formulated based
on global implicit function theorems, see for example, Sandberg (1981) and references
therein, but the requirements in these theorems are rather involved.
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2.5 DAE Solvers

In the preceding sections, different methods to reduce either the differential index or the
strangeness index are presented. One reason for the reduction of the indices was that
typically numerical solvers used for integrating dynamical models can only handle mod-
els that are strangeness-free, unless the model describes a specific type of process. A
motivation was that algebraically, the solution manifold is not visible unless the index
is low enough. This is also the main reason why the methods derived in this thesis as-
sume that the models are strangeness-free, and mostly in the forms (2.34) or (2.43). The
strangeness-free model also has the advantage that the dynamic and algebraic parts are
clearly separated. However, an issue is that the computations to obtain the strangeness-
free model can be difficult, for instance, because of the numerical rank tests involved in
Hypotheses 2.1 or 2.2.

Therefore, the interest is turned to the kind of solvers used to simulate object-oriented
models, such as MODELICA models. Such solvers are included in, e.g., Dymola and
OpenModelica. Normally, these solvers reduce the differential index to 1 by differentiat-
ing equations that are chosen using Pantelides’s algorithm (Pantelides, 1988) and structure
the equations so that large DAE models can be simulated efficiently. When the equations
are reduced and structured, standard numerical methods such as Runge-Kutta schemes
can be used.

As mentioned above, Pantelides’s algorithm (Pantelides, 1988) is one of the principal
parts in the solvers, and it decides which equations to differentiate when reducing the
index of large-scale high index DAE model. The algorithm is graph-theoretical and was,
as mentioned in Section 2.2, originally developed to find the conditions that consistent
initial values must satisfy. Later, the algorithm has been deployed by others to find the
differentiations needed to reduce the index of DAE model to at most 1 in DAE solvers.
The advantage of the algorithm is that only structural information about the equations are
used, instead of using rank tests. The disadvantage of this approach is that sometimes an
incorrect result can be obtained, see Reißig et al. (2000). However, in most practical cases
the method seems to find the correct equations to differentiate.

During the index reduction process, some of the variables x(t) are selected as states.
For the user, it means that the initial values can be arbitrarily chosen for these variables.
The initial values of the remaining variables are computed from the initial values of the
states so that the initial value is consistent. It is possible for the user to influence the state
selection by indicating that some variables are preferred as states. The solver typically
also structures the equations as

F̃1(t, x1, x3, ẋ1) = 0 (2.45a)

F̂2(t, x1, x3) = 0 (2.45b)

where x3 can be solved from (2.45b) and ẋ1 can be solved from (2.45a). This means that
an approximation of the transformations discussed in Section 2.4.1 is computed.
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2.6 Stability

This section concerns stability analysis of DAE models. In principle, stability of a DAE
model means stability of a dynamical system on a manifold. The standard tool, and
basically the only tool, for proving stability of nonlinear systems is Lyapunov theory. The
main concept in the Lyapunov theory is the use of a Lyapunov function, see Lyapunov
(1992). The Lyapunov function is in some sense a distance measure between the variables
x and an equilibrium point. If this distance measure decreases or at least is constant, the
state is not diverging from the equilibrium and stability can be concluded. A practical
problem with Lyapunov theory is that in many cases, a Lyapunov function can be difficult
to find for a general nonlinear model. However, for physical systems such as mechanical
and electrical systems, the total energy content of the system can often be used.

The stability results in this section will be focused on two classes of models, namely
models that either are semi-explicit, autonomous and strangeness-free or that are linear.
However, a small discussion about polynomial possibly higher index models will be pre-
sented at the end of this section. For this kind of models a computationally tractable
approach, based on Lyapunov theory, has been published in Ebenbauer and Allgöwer
(2004).

Consider the autonomous DAE model

F (ẋ, x) = 0 (2.46)

where x ∈ Rn. This model can be thought of as either a system without control input or
as a closed-loop system with feedback u = u(x).

Assume there exists an open connected set Ω of consistent initial conditions such that
the solution is unique, i.e., the initial value problem consisting of (2.46) together with
x(t0) ∈ Ω has a unique solution. Note that in the state-space case this assumption will
simplify to Ω being some subset of the domain where the model satisfies a Lipschitz
condition.

Stability is studied and characterized with respect to some equilibrium. Therefore, it
is assumed that the system has an equilibrium x0 ∈ Ω. Without loss of generality the
equilibrium can be assumed to be the origin, since if x0 6= 0, the change of variables
z = x− x0 can be used. At the equilibrium, (2.46) gives

0 = F (0, x0) = F̄ (0, 0)

where F̄ (ż, z) = F (ẋ, x). Hence, in the new variables z, the equilibrium has been shifted
to the origin.

Finally, the set Ω is assumed to contain only a single equilibrium. Hence, in order to
satisfy this assumption, it might be necessary to reduce Ω. However, this assumption can
be relaxed using concepts of set stability, see Hill and Mareels (1990).

The definitions of stability for DAE models are natural extensions of the correspond-
ing definitions for the state-space case.

Definition 2.6 (Stability). The equilibrium point at (0, 0) of (2.46) is called stable if
given an ε > 0, there exists a δ(ε) > 0 such that for all x(t0) ∈ Ω ∩ Bδ it follows that
x(t) ∈ Ω ∩Bε, ∀t > 0.
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Definition 2.7 (Asymptotic stability). The equilibrium point at (0, 0) of (2.46) is called
asymptotically stable if it is stable and there exists a η > 0 such that for all x(t0) ∈
Ω ∩ Bη it follows that

lim
t→∞

∣∣x(t)∣∣ = 0

2.6.1 Semi-Explicit Index One Models

Lyapunov stability for semi-explicit index one models is a rather well-studied area, see
for example Hill and Mareels (1990), Wu and Mizukami (1994) and Wang et al. (2002).
In many cases, using the index reduction method in Section 2.4.3 and by assuming that
Assumption A1 is satisfied, also higher index models can be rewritten in semi-explicit
form. Hence, consider the case when (2.46) can be expressed as

ẋ1 = F1(x1, x3) (2.47a)
0 = F2(x1, x3) (2.47b)

where x1 ∈ Rd and x3 ∈ Ra. The model is assumed to satisfy Assumption A2. This
means that, on some set Ω, which in this case has the structure

Ω = {x1 ∈ Ωx ⊆ Rd, x3 ∈ Ra, | x3 = R(x1)} (2.48)

the model (2.47) has index one and a unique solution for arbitrary initial conditions in Ω.
It is also assumed that Ω is connected and contains the origin.

Lyapunov’s Direct Method

The method known as Lyapunov’s direct method is described in the following theorem,
which is also called Lyapunov’s stability theorem.

Theorem 2.4
Consider the model (2.47) and let Ω′

x ⊂ Ωx be an open, connected set containing the
origin. Suppose there exists a function V ∈ C1(Ω′

x,R) such that V is positive definite
and has a negative semidefinite time-derivative on Ω′

x, i.e.,

V (0) = 0 and V (x1) > 0, ∀x1 6= 0, (2.49a)

Vx1(x1)F1

(
x1,R(x1)

)
≤ 0, ∀x1 (2.49b)

where x1 ∈ Ω′
x. Then the equilibrium (x0

1, x
0
3) = (0, 0) is stable. Moreover, if the function

V is negative definite on Ω′
x, i.e.,

Vx1(x1)F1

(
x1,R(x1)

)
< 0, ∀x1 6= 0 (2.50)

where x1 ∈ Ω′
x, then (x0

1, x
0
3) = (0, 0) is asymptotically stable.

Proof: The proof is to a large extent based on the proof for the state-space case. For
x1 ∈ Ω′

x it follows that (x1, x3) ∈ Ω′ = {x1 ∈ Ω′
x, x3 ∈ Ra |F2(x1, x3) = 0} ⊂ Ω.

Then the model is given by the reduced model

ẋ1 = F1

(
x1,R(x1)

)
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Given an ε, choose r ∈ (0, ε] such that

Br =
{
x1 ∈ Rd, x3 ∈ Ra |

∣∣(x1, x3)
∣∣ ≤ r

}
⊂ Ω′

Since R(x1) is at least continuously differentiable it follows that on Br∣∣(x1, x3)
∣∣ ≤ (1 + L)|x1|

for some L > 0. Choose

Brx1
=
{
x1 ∈ Rd | |x1| ≤

r

1 + L

}
⊂ Ω′

x

Then it is known from for example Khalil (2002), that (2.49) guarantees the existence of
a δx1 > 0 and a corresponding set

Bδx1
= {x1 ∈ Rd | |x1| ≤ δx1} ⊂ Brx1

such that
x1(t0) ∈ Bδx1

⇒ x1(t) ∈ Brx1
, ∀t ≥ t0

Then, we can conclude that
(
x1(t), x3(t)

)
belong to Ω′ and that∣∣(x1(t), x3(t)
)∣∣ ≤ r ≤ ε

By choosing δ ≤ δx1 it is also certain that

|x1| ≤
∣∣(x1, x3)

∣∣ ≤ δ ≤ δx1

That is, by choosing δ smaller than δx1 , it follows that |x1| ≤ δx1 and stability is proved.
The discussion concerning asymptotic stability follows the same line of reasoning. In

Khalil (2002), it is shown that condition (2.50) implies the existence of a ηx1 > 0 such
that for x1(t0) in the set

Bηx1
= {x1 ∈ Rd | |x1| ≤ ηx1} ⊂ Ω′

x

it holds that
∣∣x1(t)

∣∣ → 0 as t → ∞. However, for x1 ∈ Ω′
x it follows that (x1, x3) ∈

Ω′ ⊂ Ω and by using ∣∣(x1, x3)
∣∣ ≤ (1 + L)|x1|

we have that
lim
t→∞

∣∣(x1(t), x3(t)
)∣∣ = 0

if an η ≤ ηx1 is chosen. This concludes the proof.

Note that the previously stated solvability conditions only guarantee that a solution
exists on some time interval I. However, Definitions 2.6 and 2.7 require global existence
of a solution, i.e., a solution for all t > t0. It can be shown that this property is ensured if
there exists a Lyapunov function as required in Theorem 2.4, see Khalil (2002). Briefly,
the idea is that if the solution fails to exist for some t = T < ∞, it must leave any
compact set of Ω. However, the theorem above shows that this does not happen.
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The result in Theorem 2.4 is often more difficult to use for DAE models than for state-
space models, since the implicit function R is required. This means that some kind of
numeric method is needed to verify the conditions, for instance, the power series method
studied later in the thesis.

There are also a number of different generalizations to the results above. For example,
the condition in (2.50) can be relaxed to provide a counterpart to the LaSalle Invariance
Principle (Hill and Mareels, 1990; Khalil, 2002). Another generalization is the incorpo-
ration of systems with solutions exhibiting certain jump discontinuities, see Mahony and
Mareels (1995).

Lyapunov’s Indirect Method

Since the conditions in Theorem 2.4 often are difficult to use in practice, another method
to prove stability is presented. This method is known as Lyapunov’s indirect method. The
main idea is to use the linearization of (2.47) to determine local stability of the origin.
Assume that F1 and F2 are continuously differentiable. Then, the linearization around
(x1, x3) = (0, 0) is given by

ẋ1 = A11x1 +A12x3 + o(x) (2.51a)
0 = A21x1 +A22x3 + o(x) (2.51b)

where

A11 = F1;x1(0, 0) A12 = F1;x3(0, 0)
A21 = F2;x1(0, 0) A22 = F2;x3(0, 0)

and o(x)/|x| → 0, |x| → 0.
The next theorem gives conditions under which stability of the origin (x1, x3) =

(0, 0) can be concluded by investigating its stability as an equilibrium point for the linear
part of (2.51).

Theorem 2.5
Consider the model (2.47) and let Ω′

x ⊂ Ωx be a neighborhood of x1 = 0. Then, the
origin is asymptotically stable if Re eigi(A11 −A12A

−1
22 A21) < 0 for i = 1, 2, ..., d.

Proof: For all (x1, x3) ∈ Ω′ = {x1 ∈ Ω′
x, x3 ∈ Ra |F2(x1, x3) = 0} it is known

that F2;x3 is nonsingular, and since (0, 0) ∈ Ω′ it follows that A22 has full rank. Hence,
(2.51b) can be reformulated as

x3 = −A−1
22 A21x1 + o(x)

Combining (2.51) and the latter equation gives

ẋ1 =
(
A11 −A12A

−1
22 A21

)
x1 + o(x)

On a compact subset of Ω′ it holds that∣∣(x1, x3)
∣∣ ≤ (1 + L)|x1|
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for some L > 0. This makes it possible to write the model as

ẋ1 =
(
A11 −A12A

−1
22 A21

)
x1 + o(x1) (2.52)

Hence, the linearization of the reduced model is obtained and for this model, Theorem 4.7
in Khalil (2002) can be used to prove the statements.

For more information about linearization of DAE models, the reader is referred to
Campbell (1995).

Converse Lyapunov Theorem

Often in this thesis, the model (2.47) is denoted asymptotically stable on a set Ω. Then,
it is assumed that the set Ω, for which (2.47) has a unique solution and in which only
one equilibrium exists, has been reduced to an invariant set. That is, for all x(t0) ∈ Ω, it
follows that x(t) ∈ Ω for all t ≥ t0 and moreover that x(t) → 0 as t→∞.

The following theorem proves that such a reduction of Ω can always be performed.

Theorem 2.6
Consider the model (2.47) and assume that x = 0 is an asymptotically stable equilibrium
to (2.47). Let Ω′

x ⊂ Ωx be an open, connected set containing the origin. Further, let
RA ⊂ Ω′

x be a part of the region of attraction of x1 = 0, where the region of attraction is
defined as the set of all points x1(0) = x1,0 such that x1(t) → 0 as t → ∞. Then, there
is a smooth, positive definite function V (x1) and a continuous, positive definite function
W (x1) both defined for all x1 ∈ RA such that

V (0) = 0 and W (0) = 0
V (x1) →∞, x1 → ∂RA

Vx1(x1)F1

(
x1,R(x1)

)
≤ −W (x1), ∀x1 ∈ RA

where ∂RA denotes the boundary of RA. Furthermore, for any c > 0, the set
{
x1 ∈

RA |V (x1) ≤ c
}

is a compact subset of RA.

Proof: For x1 ∈ Ω′
x, it holds that the model is given by

ẋ1 = F1

(
x1,R(x1)

)
and the result then follows from Theorem 4.17 in Khalil (2002).

Hence, it is always possible to choose an invariant set for x1 by choosing the set
corresponding to some c. However, then a corresponding invariant set for (x1, x3) can be
chosen since x3 = R(x1).

2.6.2 Linear Models

Consider asymptotic stability for regular linear DAE models

Eẋ = Ax (2.53)
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with consistent initial conditions. For such models, the equilibrium x = 0 is unique and
according to Theorem 2.3, the solution is unique. For the case with E = I , i.e., the model
is a state-space model, it is well-known that stability is determined by the eigenvalues of
the matrixA. Also for linear DAE models (2.53), the eigenvalues can be used to determine
stability. However, since the E-matrix for a DAE model normally is rank deficient, both
finite and infinite eigenvalues occur, see Dai (1989). In this case, stability is determined
only by the finite eigenvalues as formulated in the following theorem.

Theorem 2.7
A regular linear DAE model (2.53) is asymptotically stable if and only if

Re σ(E,A) < 0

where σ(E,A) = {s ∈ C | det(sE −A) = 0}.

Proof: See Dai (1989). However, notice that in Dai (1989) the notion stable is used for
the property we denote asymptotic stability.

Notice that the set C does not contain the infinity and therefore the theorem only
considers finite s. For convenience in the sequel, also consider the strangeness-free case.

Corollary 2.2
A regular linear DAE model in semi-explicit form

ẋ1 = A11x1 +A12x3 +B1u

0 = A21x1 +A22x3 +B2u

is asymptotically stable if and only if

ẋ1 = (A11 −A12A
−1
22 A21)x1 + (B1 −A12A

−1
22 B2)u

is asymptotically stable.

Above, it has been assumed that the initial conditions are consistent. However, it is
possible to extend the stability concept to include the more general solutions described in
Section 2.4.2. The same condition as above, i.e., Re σ(E,A) < 0, will still be obtained.
The difference is that possible impulsive behavior at the initial time, due to the inconsis-
tent initial values, has to be disregarded. Therefore, it is important that the definition of
stability in that case does not include the initial time, that is, is formulated for t > t0
instead of t ≥ t0.

2.6.3 A Barrier Function Method

Another interesting Lyapunov based approach to stability analysis of DAE models is pre-
sented in Ebenbauer and Allgöwer (2004). Instead of finding the reduced model (2.35)
explicitly, this approach works with an implicit definition of the solution manifold. This
is particularly attractive for nonlinear polynomial DAE models, since it implies that the
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stability condition can be verified computationally using sum-of-squares relaxations and
semidefinite programming.

To simplify the explanation, assume that the model (2.46) satisfies Hypothesis 2.1 and
that the underlying model (2.35) locally solves the original model. Then the derivative
array Fµ for some µ implicitly defines the solution x(t) on some neighborhood U. It
turns out to be convenient to define the set

Ux = {x ∈ Θ, xµ+1 ∈ R(µ+1)n}

where xµ+1 = (ẋ, . . . , x(µ+1)) and Θ ⊆ Rn is a neighborhood of the origin. A theorem
for stability of a nonlinear DAE model can now be formulated.

Theorem 2.8
The equilibrium x = 0 of (2.46) is stable if there exist a function V ∈ C1(Ωx,R) such
that V is positive definite and V (x) → ∞ when |x| → ∞, a function ρ : R(µ+2)n →
R ∪ {+∞}, and a positive integer µ such that

Vx(x) ẋ ≤
∣∣Fµ(x,xµ+1)

∣∣2ρ(x,xµ+1) (2.54)

is satisfied for (x,xµ+1) ∈ Ux. If (2.54) is satisfied with inequality for all nonzero x ∈ Θ,
the model is asymptotically stable.

Proof: See Ebenbauer and Allgöwer (2004).

The assumptions on the model made in the theorem, ensure that Fµ defines the solu-
tion implicitly. These assumptions can be relaxed. For example, it is possible to handle
systems without a unique solution, time-varying models etc. However, in some of these
cases it is not stability but a convergence property that is proved, see Ebenbauer and All-
göwer (2004) for details.

2.7 Optimal Control

Optimal control is the theory of finding a control input such that a certain measure, or
performance criterion, is minimized for a particular dynamical system. This is a well-
studied area, which goes far back in time, see Sussmann and Willems (1997). Similar to
the stability analysis, optimal control for DAE models is in principle nothing but optimal
control of a state-space system on a manifold. Consequently, the methods for DAE models
will to a large extent rely on results for the state-space case. Therefore, a short summary
of these results is presented using a notation matching the rest of this thesis.

2.7.1 Formulation and Summary of the Optimal Control Problem

An optimal control problem for a continuous-time state-space model can be written as

V (x0) = inf
u(·)

∞∫
0

L(x, u) dt

s.t. ẋ = F (x, u)
x(0) = x0 ∈ Ωx

(2.55)
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where x ∈ Rn, u ∈ Rp, Ωx is a connected set and the cost function L(x, u) is assumed
positive semidefinite in x and positive definite in u. That is, L(x, u) ≥ 0 for all (x, u) ∈
Rn+p and L(x, u) > 0 when u 6= 0.

Note that in (2.55) the minimization is done with respect to the function u(·). The
notation u(·) is used to indicate that it is not yet decided which structure the optimal
control input will have, i.e., if it is to be interpreted as a time signal u(t) or as a feedback
law u(x).

A common requirement in control theory is that the closed-loop system obtained using
the optimal control input have to be asymptotically stable. Therefore, the minimization is
done with respect to all u(·) such that

ẋ = F
(
x, u(·)

)
(2.56)

is asymptotically stable on Ωx. If L is positive definite also in x, i.e., L(x, u) > 0 for
(x, u) 6= 0, the requirement of asymptotic stability is implicitly included by the infinite
time-horizon. The reason is that if x(t) 6→ 0 as t→∞, the performance criterion cannot
converge and the corresponding control law cannot be optimal. However, for a positive
semidefinite L, for example L = u2, the requirement of stability must be considered
explicitly. Otherwise, it will always be optimal to choose u(t) = 0.

In (2.55), it can be seen that the optimal performance criterion V (x0) only depends
on the initial condition and neither the time nor the state at another time instant than the
initial time. This is a result of the infinite horizon together with the assumption that the
system has a unique solution.

There are two different approaches to solve an optimal control problem. One approach
is dynamic programming (DP). This approach can be used to find the optimal solution
for all initial conditions in a set. Another approach is the Pontryagin Minimum Principle
(PMP), which works for a single initial condition. The dynamic programming approach
can be used in the latter case as well, by choosing the set as a single initial condition.
According to Jönsson et al. (2002), the different approaches have some characteristics.
These characteristics are presented below.

The dynamic programming approach can be summarized as follows:

+ It gives sufficient conditions for optimality.

+ The optimal control is obtained as a feedback u(t) = µ
(
x(t)

)
for some function µ.

Therefore, this approach is often called optimal feedback control.

- The optimal control is obtained by solving a possibly nonlinear partial differen-
tial equation, known as the Hamilton-Jacobi-Bellman equation (HJB) (or just the
Bellman equation).

- It requires the performance criterion to be sufficiently smooth, normally C1, which
is not always the case.

The PMP approach also has some advantages and disadvantages:

+ It can be used in cases where the dynamic programming approach fails due to lack
of smoothness of the optimal performance criterion.
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+ It gives optimality conditions that in general are easier to verify than solving the
partial differential equation obtained in the dynamic programming approach.

- It only gives necessary conditions for optimality. Hence, only candidates for opti-
mality are obtained, which must be further investigated.

In this thesis, the objective is to find optimal feedback laws. Therefore, the focus will
in the sequel be on the dynamic programming approach. There are many references on dy-
namic programming. The classical book on this subject is Bellman (1957). However, this
book treats the discrete time case. Early works on the continuous time case are (Kalman,
1963; Isaacs, 1965) and more recent works are (Bryson and Ho, 1975; Leitmann, 1981;
Bertsekas, 1995; Jönsson et al., 2002) etc. An interesting paper about dynamic program-
ming is also the historical overview by Pesch and Bulirsch (1994).

2.7.2 Necessary Conditions For Optimality

First a theorem is presented that yields necessary conditions. That is, given that there exist
a sufficiently smooth V and a corresponding optimal feedback law, they must satisfy the
HJB.

Theorem 2.9
Assume that there exists an optimal control u∗(·) such that (2.56) is asymptotically stable
and that the optimal value of the performance criterion V (x) is continuously differen-
tiable. Then V (x) solves the Hamilton-Jacobi-Bellman equation

0 = min
u

(
L(x, u) + Vx(x)F (x, u)

)
(2.57)

and u∗(t) is the pointwise in time minimizing argument in (2.57).

Proof: Assume there exists an optimal control u∗(·) such that the closed-loop system
is asymptotically stable. The corresponding state trajectory is denoted x∗(t). For an
arbitrary initial condition x0 ∈ Ωx and future time ∆t it follows that

V (x0) = min
u(·)

( ∆t∫
0

L
(
x(s, x0), u(s)

)
ds+ V

(
x(∆t, x0)

))

= min
u(·)

( ∆t∫
0

L
(
x(s, x0), u(s)

)
ds+ V

(
x0 + F

(
x0, u(0)

)
∆t+ o(∆t)

)

= min
u(·)

( ∆t∫
0

L
(
x(s, x0), u(s)

)
ds+ V (x0) + Vx(x0)F

(
x0, u(0)

)
∆t+ o(∆t)

)

where x(s, x0) is the solution to (2.56) with the initial condition x0 and o(∆t) is the ordo-
function defined such that o(∆t)/∆t → 0 as ∆t → 0. In the computation above, first
an Euler approximation of the solution x(∆t, x0) around x0 is performed and then V is
Taylor expanded around x0. Since V (x0) is independent of u, it can be subtracted from
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both sides. Division by ∆t and using the fact that o(∆t)/∆t → 0 as ∆t → 0, it follows
that

0 = min
u

(
L(x0, u) + Vx(x0)F (x0, u)

)
where the property 1/∆t

∫∆t

0
f(x(s)) ds → f

(
x(0)

)
as ∆t → 0 is used and the mini-

mization is performed pointwise in time. However, since x0 was arbitrary in Ωx the result
above can also be formulated as

0 = min
u

(
L(x, u) + Vx(x)F (x, u)

)
for x ∈ Ωx, and the Hamilton-Jacobi-Bellman equation is obtained. The pointwise opti-
mized control input is given as u∗(t) = µ

(
x∗(t)

)
.

The proof shows how the minimization is transformed from a minimization of the
complete control signal u(·) to a minimization performed pointwise in time, where u is
seen as a variable.

In the theorem above and also later in this section, V is required to be continuously
differentiable. This is an assumption made in most references on optimal feedback con-
trol. The reason is that Vx is supposed to have the ordinary interpretation as the gradient
of V . However, even for some rather simple examples, V does not satisfy this condition.
In many cases, this problem is possible to handle using viscosity solutions where Vx is
interpreted as a subgradient, see Bardi and Capuzzo-Dolcetta (1997).

2.7.3 Sufficient Conditions For Optimality

The next fundamental result is that the HJB (2.57) also yields sufficient conditions for
optimality. Hence, if a continuously differentiable function J is found and a correspond-
ing feedback law µ(x), together satisfying the HJB, the solution to the optimal control
problem (2.55) is found. More formally, this is formulated as a theorem.

Theorem 2.10
Suppose there exists a positive semidefinite, continuously differentiable function J(x) sat-
isfying J(0) = 0 and

0 = min
u

(
L(x, u) + Jx(x)F (x, u)

)
(2.58)

for x ∈ Ωx. Let
µ(x) = argmin

u

(
L(x, u) + Jx(x)F (x, u)

)
and assume that by using u(t) = µ

(
x(t)

)
, the closed-loop system (2.56) becomes asymp-

totically stable on Ωx. Then

V (x) = J(x), x ∈ Ωx

and µ(x) is an optimal feedback control law.
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Proof: Consider initial conditions x0 ∈ Ωx. For all u(·) such that the closed-loop sys-
tem (2.56) is asymptotically stable on Ωx, it holds that x0 ∈ Ωx ⇒ x(t) ∈ Ωx and
x(t) → 0 as t→∞. Then, it follows by integration of (2.58) that

J(x0) ≤
T∫

0

L
(
x(t), u(t)

)
dt+ J

(
x(T )

)
with equality for u(t) = µ

(
x(t)

)
. If we let T → ∞ and use that x(T ) → 0 ⇒

J
(
x(T )

)
→ 0 (since the considered feedback laws are stabilizing) the result is

J(x0) =

∞∫
0

L
(
x(t), µ

(
x(t)

))
dt ≤

∞∫
0

L
(
x(t), u(t)

)
dt

which proves optimality.

The obtained feedback is the optimal feedback among the feedback laws keeping
the state x(t) in Ωx and driving it towards the origin. Another common formulation of
the theorem is to introduce Ω̄x ⊆ Ωx and let Ω̄x denote the initial states for which the
trajectories belong to Ωx. Then the optimal solution only holds on Ω̄x instead.

Theorem 2.10 can also be seen as an algorithm to compute the optimal control law
and the corresponding optimal performance criterion. The algorithm can be found in
Algorithm 2.1.

Algorithm 2.1 Computation of the optimal solution.

1. Define the function µ̂ by pointwise optimization over u.

µ̂(x, λ) = argmin
u

(
L(x, u) + λTF (x, u)

)
, x ∈ Ωx

Here, λ ∈ Rn is a parameter vector.

2. Solve the partial differential equation

0 = L
(
x, µ̂(x, Vx(x))

)
+ Vx(x)TF

(
x, µ̂

(
x, Vx(x)

))
(2.59)

to obtain the optimal performance criterion V (x).

3. The optimal feedback law is obtained as µ(x) = µ̂(x, Vx(x)).

The dynamic programming approach yields sufficient conditions, but often the mini-
mization in the HJB is done using the first-order necessary conditions

0 = Lu(x, u) + Vx(x)Fu(x, u)

for x ∈ Ωx. Then, the sufficiency part is lost and it is necessary to show that the obtained
feedback law and performance criterion are optimal. This verification can be done in
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several ways. One standard approach for proving optimality is to use the second order
sufficiency condition. Optimality is then concluded if the second derivative with respect
to u is positive definite, i.e.,

Luu(x, u) + Vx(x)Fuu(x, u) � 0

for x ∈ Ωx.

Control-affine Systems and Quadratic Cost Function

Usually, the minimization involved when solving the HJB is nontrivial. As pointed out
earlier, differentiation with respect to u is then often used, but it is only a necessary
condition. The effect of this, is that further investigation of the different solutions is
necessary to determine whether they are optimal or not.

In this section a special case, for which the minimization w.r.t. to u can be done
analytically, is presented. For this end, consider a model in control-affine form

ẋ = f(x) + g(x)u (2.60)

where f and g are smooth functions and a cost function described as

L(x, u) = l(x) + S(x)u+ uTR(x)u (2.61)

where it is assumed that L(x, u) ≥ 0 for (x, u) and R(x) � 0 for all x. In this case,
Theorem 2.10 can be simplified as follows.

Corollary 2.3
Consider an optimal control problem where the cost function is chosen as (2.61) and
the model is given by (2.60). Suppose there exists a positive semi-definite, continuously
differentiable function J(x) satisfying J(0) and

0 = l(x) + Jx(x)f(x)− 1
4
(
Jx(x)g(x) + S(x)

)
R−1(x)

(
Jx(x)g(x) + S(x)

)T
(2.62)

for all x ∈ Ωx such that

ẋ = f(x)− 1
2
g(x)R−1(x)

(
Jx(x)g(x) + S(x)

)T
(2.63)

is asymptotically stable on Ωx. Then, V (x) = J(x) for x ∈ Ωx and

µ(x) = −1
2
R−1(x)

(
Vx(x)g(x) + S(x)

)T
is the optimal feedback law.

Proof: For the considered case, the HJB becomes

0 = min
u
l(x) + S(x)u+ uTR(x)u+ Jx(x)

(
f(x) + g(x)u

)
(2.64)
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Using completion of squares, the right-hand side can be rewritten as follows

l + Su+ uTRu+ Jx(f + gu) = l + Jxf + (Jxg + S)u+ uTRu =

l + Jxf −
1
4
(Jxg + S)R−1(Jxg + S)T+(

u+
1
2
R−1(Jxg + S)T

)T
R
(
u+

1
2
R−1(Jxg + S)T

)
and since R(x) is positive definite for all x, it means that the minimizing µ(x) is given by

µ(x) = −1
2
R−1(Jxg + S)T

If this feedback law is inserted into the (2.64), equation (2.62) is obtained and the corre-
sponding closed-loop dynamics become (2.63). Hence, if (2.62) has a sufficiently smooth
solution and (2.63) becomes asymptotically stable, it follows from Theorem 2.10 that the
optimal solution is found.

2.7.4 Example

A small, but yet illustrative, example is presented below. The chosen optimal control
problem fits into the conditions in Corollary 2.3, but in order to illustrate the more general
procedure, Algorithm 2.1 it is used instead.

Consider the model
ẋ = αx+ u (2.65)

where x and α both belong to R. The objective is to find a stabilizing feedback law such
that

J
(
x0

)
=

1
2

∞∫
0

βx4 + u2 dt (2.66)

is minimized, where β ∈ R. The goal is a global feedback law and therefore Ωx = R.
For notational convenience, define

H(x, u, λ) =
1
2
βx4 +

1
2
u2 + λ(αx+ u)

where λ ∈ R. The HJB for the given problem can be formulated as

0 = min
u
H(x, u, λ)

The first order necessary condition for optimality, i.e., Hu(x, u, λ) = 0, yields the feed-
back law

µ̂(x, λ) = −λ

and the second order sufficient condition becomes Huu(x, u, λ) = 1/2 > 0 for all
x. Hence, the obtained feedback law must be optimal if u = µ(x) = µ̂

(
x, Vx(x)

)
makes (2.65) asymptotically stable. The partial differential equation in part 2 of Algo-
rithm 2.1 becomes

0 = Vx(x)2 − 2αx− βx4
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which has the solutions
Vx(x) = αx± |x|

√
α2 + βx2

The optimal feedback law then has the form

u = −αx∓ |x|
√
α2 + βx2

and the corresponding closed-loop system is

ẋ = ∓|x|
√
α2 + βx2

Since an asymptotically stable closed-loop system is desired, the optimal feedback law
and Vx(x) can be written as

u = −
(
α+

√
α2 + βx2

)
x, Vx(x) =

(
α+

√
α2 + βx2

)
x (2.67)

and by integration of Vx(x), the optimal cost is obtained as

V (x) =
1
2
αx2 +

1
3β
(
α2 + βx2

) 3
2 − 1

3β
(α2)

3
2 (2.68)

since V (0) = 0. Using the parameters α and β, the behavior of the optimal control
problem can be changed. To get a well-posed problem, β ≥ 0 is assumed. Three different
cases will be investigated:

1. β > 0, α arbitrary:
In this case the state is included in the cost function and (2.65) is either asymptoti-
cally stable, a pure integrator or unstable depending of the choice of α. For β > 0
it follows that

α+
√
α2 + βx2 > 0

for all x 6= 0, but if x = 0 the system is at the equilibrium. If (2.68) is studied, it
can be seen that a small β yields a small cost and vice versa. Furthermore, it can be
realized that if α < 0, i.e., the undriven system is asymptotically stable, a smaller
cost is obtained than if α > 0. These observations coincide with the intuition, since
in first case the undriven system helps the feedback law to reach the origin.

2. β = 0, α > 0:
In this case, the state is not included in the performance criterion and the system is
unstable. The expressions in (2.67) will in this case be

u = −
(
α+

√
α2
)
x = −2αx, Vx(x) =

(
α+

√
α2
)
x = 2αx

and the cost function is
V (x) = αx2

If α is large, i.e., if the divergence is fast, a larger performance criterion is obtained
which corresponds to the intuition. Note the comments in the beginning of this
section about x being present in L. It is possible to choose Vx(x) = 0 and satisfy
the HJB. However, the closed-loop system is then unstable, and it is necessary to
explicitly choose the stabilizing control law.
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3. β = 0, α < 0:
In this case, the state is not included in the cost function and the system is asymp-
totically stable. The expressions corresponding to (2.67) becomes

u = −
(
α+

√
α2
)
x = 0, Vx(x) =

(
α+

√
α2
)
x = 0

and an optimal performance criterion V (x) = 0. This is natural, since it does not
cost anything to have a nonzero state and the state goes towards the origin without
using the control signal. Of course, it is cheapest not to use the control signal in
this case.



3
Optimal Feedback Control of DAE

Models

In principle, the problem of finding optimal feedback laws for DAE models can be solved
by the theory for state-space models. The reason is that under certain regularity condi-
tions, it was shown in Section 2.3.1 that a rather general class of DAE models can be
rewritten either as a state-space model together with some algebraic equations or as a
state-space model with requirements on the initial condition. In both cases, the obtained
system fits into the theory presented in Section 2.7.

A problem is that the underlying state-space model is often hard or even impossible to
express in closed form. Therefore, it is interesting to find methods to compute the optimal
feedback law either based on a general DAE model or at least based on an index reduced
model.

To the author’s knowledge, no approach exists such that a general DAE model (2.2)
can be treated immediately without index reduction. However, for linear time-invariant
DAE models (2.6) such methods exist, see for example Bender and Laub (1987) and
Mehrmann (1989). These methods are based on variational calculus which leads to a
generalized eigenvalue problem to be solved, see Jonckheere (1988).

For nonlinear DAE models in semi-explicit form (2.5), results for higher index models
can also be found based on the dynamic programming approach. In Xu and Mizukami
(1993), an equation similar to the HJB is derived. In this chapter, this HJB-like equation
will be presented and it will be investigated how its solution is related to the solution of
the corresponding HJB for the underlying state-space model describing the same system.

The chapter is organized as follows. The optimal feedback control problem is formu-
lated in Section 3.1. In Section 3.2, the DAE model is rewritten as its underlying state-
space model and the optimal control problem is solved using the ordinary HJB equation.
In Section 3.3, the HJB-like equation is used instead to find the optimal solution and
Section 3.4 shows how the different methods relate to each other. A special case, for
which the first order conditions for optimality become simple, is described in Section 3.5.
Finally, a small example is presented in Section 3.6.
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3.1 Optimal Feedback Control

Consider a semi-explicit system description

ẋ1 = F1(x1, x3, u) (3.1a)
0 = F2(x1, x3, u) (3.1b)

which is assumed to satisfy Assumption A2 for x1 ∈ Ωx and the corresponding set for
(x1, x3, u) is denoted Ω. The model (3.1) can be the result of the index reduction method
in Section 2.4.3 in a case when Assumption A1 is satisfied.

The considered class of optimal control problems has an infinite time horizon and can
be formulated as

V
(
x1(0)

)
= min

u(·)

∞∫
0

L(x1, x3, u) dt (3.2)

subject to the dynamics (3.1) and the boundary conditions

x1(0) = x1,0 ∈ Ωx
lim
t→∞

x1(t) = 0

The cost function L is assumed to be positive semidefinite and positive definite in u. The
minimization is done with respect to all u(·) such that two conditions are satisfied. One
condition is that the obtained closed-loop system

ẋ1 = F1

(
x1, x3, u(·)

)
(3.3a)

0 = F2

(
x1, x3, u(·)

)
(3.3b)

is asymptotically stable, see Section 2.6. Another condition, specific for the DAE case,
is that (3.3) is required to be strangeness-free. This condition is added since different
feedback laws u = k(x1, x3) may yield different indices of (3.3). The effect would be that
the size of the dynamical and algebraical parts would change and some of the variables
x1 could be algebraically determined from the other variables in x1 and x3. It would also
make the problem harder to analyze, since implicit constraints could occur. However,
in the case when the system is given in semi-explicit form satisfying Assumption A2,
it will be shown that the index is automatically preserved for the optimal control input
u(·). Therefore, since the closed-loop system (3.3) is strangeness-free, x1 will define the
dynamical part and x3 is determined algebraically from x1. The initial conditions are then
given for x1 while the initial conditions for x3 are assumed to be chosen consistently, i.e.,
such that F2

(
x1,0, x2,0, u(x1,0)

)
= 0. Assumption A2 together with the fact that only

consistent initial conditions are considered also yields that the closed-loop system will
have a unique solution. This is an important fact when it comes to V being a function of
the initial conditions only.

In some articles about optimal control for DAE models, e.g., Cobb (1983); Bender
and Laub (1987); Jonckheere (1988); Xu and Mizukami (1993), the possibility of chang-
ing the index using feedback is utilized. The optimal feedback law is then required to
yield a strangeness-free closed-loop model (3.3, even if the open loop system (3.1) has a
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higher index. For linear DAE models, such a choice is ensured if the model is impulse
controllable, see Dai (1989).

Notice that the requirement L(x1, x3, u) being positive semidefinite and positive def-
inite in u is somewhat restrictive in our case, but is made in order match the assumptions
in Xu and Mizukami (1993). Since x3 = R(x1, u), which is guaranteed from Assump-
tion A2, it follows that a more relaxed requirement is L

(
x1,R(x1, u), u

)
being positive

semidefinite and positive definite in u.

3.2 The Hamilton-Jacobi-Bellman Equation for the
Reduced Problem

Assumption A2 makes it possible to solve the optimal feedback control problem (3.2) as
an optimal feedback control problem for a state-space system (2.55). For x1 ∈ Ωx and
u ∈ Rp, the considered optimal problems can be written as

V (x1,0) = inf
u(·)

∞∫
0

L
(
x1,R(x1, u), u

)
dt

s.t. ẋ1 = F1

(
x1,R(x1, u), u

)
x1(0) = x1,0 ∈ Ωx

The cost function L is positive semidefinite and positive definite in u. From Theo-
rem 2.10, it follows that the optimal control problem is solved by finding a positive defi-
nite, continuously differentiable V (x1) satisfying the HJB

0 = min
u

(
L(x1,R(x1, u), u) + Vx1(x1)F1(x1,R(x1, u), u)

)
, x1 ∈ Ωx (3.4)

This V (x1) is then the optimal performance criterion in (3.2). Note that if (3.4) is only
possible to solve on a set smaller than the set on which the DAE model can be rewritten
as a state-space model, it is assumed that Ωx is redefined as the smaller set. Furthermore,
remember that V (x1) is only proved to be optimal on some set Ω′

x ⊂ Ωx for which
x1,0 ∈ Ω′

x is such that the obtained feedback law u = µ(x1) gives an asymptotically
stable closed-loop system and keeps x1(t) within Ωx for t ≥ 0, unless Ωx is chosen to be
an invariant set, see comments in Section 2.7.3.

The first-order necessary condition for optimality of (3.4) yields the set of equations

0 = Lu + Vx1F1;u + (Lx3 + Vx1F1;x3)Ru

0 = L+ Vx1F1

where the quantities in the right hand sides are evaluated at
(
x1,R(x1, u), u

)
. Using that

F2

(
x1,R(x1, u), u

)
= 0

identically in u, differentiation with respect to u gives

F2;x3

(
x1,R(x1, u), u

)
Ru(x1, u) + F2;u

(
x1,R(x1, u), u

)
= 0
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which can be solved for Ru(x1, u) as

Ru(x1, u) = −F2;x3

(
x1,R(x1, u), u

)−1
F2;u

(
x1,R(x1, u), u

)
Since x3 = R(x1, u) is the unique solution of (3.1b), it is also possible to write these
equations as

0 = Lu + Vx1F1;u − (Lx3 + Vx1F1;x3)F
−1
2;x3

F2;u (3.6a)

0 = L+ Vx1F1 (3.6b)
0 = F2 (3.6c)

where the right hand sides are evaluated at (x1, x3, u). One way of looking at (3.6) is to
regard (3.6a) and (3.6c) as p + a equations from which one tries to solve for u and x3

as functions of x1 and Vx1 . When these quantities are substituted into (3.6b) the result
is a first order partial differential equation for V as a function of x1. When this partial
differential equation is solved the result can be substituted back into the expression for u
to give the optimal feedback law.

To ensure that the optimal solution is found, the second order sufficient condition
mentioned in Section 2.7.3 can be used. It will require Ruu to be computed which is
possible and the expressions can be found in Chapter 6.

3.3 The Hamilton-Jacobi-Bellman-Like Equation

In Xu and Mizukami (1993), the optimal control problem (3.2) is solved using a different
approach. According to their Theorem 3.1, the optimal solution can be found by solving
the Hamilton-Jacobi-Bellman-like equation

0 = min
u

(
L(x1, x3, u) +W1(x1)F1(x1, x3, u) +W2(x1, x3)F2(x1, x3, u)

)
(3.7)

for some continuous functions W1(x1) and W2(x1, x3) such that W1(x1) is a gradient of
some continuously differentiable function V (x1). This V (x1) is then the optimal cost in
(3.2).

Using the first-order necessary condition for optimality, the control is defined by the
following set of equations

0 = Lu(x1, x3, u) +W1(x1)F1;u(x1, x3, u) +W2(x1, x3)F2;u(x1, x3, u) (3.8a)
0 = L(x1, x3, u) +W1(x1)F1(x1, x3, u) +W2(x1, x3)F2(x1, x3, u) (3.8b)

where x3 is considered to be independent of u when differentiating with respect to u.
From these equations it is not immediately obvious how to obtain a relation from which
W1 can be computed. Similar equations to (3.6) can be obtained by restricting (3.8) to
points satisfying F2 = 0. The result is the following system of equations

0 = Lu(x1, x3, u) +W1(x1)F1;u(x1, x3, u) +W2(x1, x3)F2;u(x1, x3, u) (3.9a)
0 = L(x1, x3, u) +W1(x1)F1(x1, x3, u) (3.9b)
0 = F2(x1, x3, u) (3.9c)
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If W2 is considered unknown, the set of equations (3.9) is still underdetermined. Hence,
more equations are needed or W2 has to be considered as given. It should be mentioned
that in Xu and Mizukami (1993), only sufficient conditions are given, i.e., if a W1 and a
W2 can be found such that (3.7) is satisfied, the optimal solution is found, and they do not
mention what kind of conditions W2 has to satisfy. This will be investigated in the next
section.

3.4 Relationships Among the Solutions

The reduced Hamilton-Jacobi equation (3.4) and the Hamilton-Jacobi-like equation (3.7)
solve the same underlying optimal control problem. Therefore, it is natural that the func-
tions V , W1 and W2 are related and below these relationships are investigated.

Lemma 3.1
Suppose there exist a function V (x1) and a feedback u = k(x1) solving (3.4) on Ωx.
Then W1(x1) = Vx1(x1), u = k(x1) solve (3.7) under the constraint F2(x1, x3, u) = 0.
Moreover, with the choice

W1 = Vx1 , W2 = −
(
Lx3 + Vx1F1;x3

)
F−1

2;x3
(3.10)

the necessary conditions for optimality (3.9) are satisfied for u = k(x1) together with
x3 = R

(
x1, k(x1)

)
.

Proof: When F2 = 0, the right hand sides of (3.7) and (3.4) coincide. Comparing (3.6)
and (3.9) shows that (3.9) is satisfied for u = k(x1), x3 = R

(
x1, k(x1)

)
with W2 chosen

as in (3.10).

The converse relation is given by the following lemma.

Lemma 3.2
Assume that for x1 ∈ Ωx1 it holds that:

• (3.7) has a solution u = ψ(x1, x3)

• F2

(
x1, x3, ψ(x1, x3)

)
= 0 has a solution x3 = η(x1)

• W1(x1) = Vx1(x1) for some function V (x1)

Then Vx1(x1) and u = k(x1) = ψ
(
x1, η(x1)

)
solve (3.4) for x1 ∈ Ωx. Moreover, for

(x1, x3, u) ∈ Ω satisfying (3.9), it follows that

W2 = −
(
Lx3 +W1F1;x3

)
F−1

2;x3
(3.11)

Proof: We have

L
(
x1, η(x1), ψ

(
x1, η(x1)

))
+ Vx1(x1)F1

(
x1, η(x1), ψ

(
x1, η(x1)

))
= L

(
x1,R

(
x1, k(x1)

)
, k(x1)

)
+ Vx1(x1)F1

(
x1,R

(
x1, k(x1)

)
, k(x1)

)
= 0

1If this Ωx is smaller than the Ωx on which the system can be written as a state-space system, Ωx is redefined
as the smaller region.
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since the minimal value in (3.7) is attained for u = ψ(x1, x3) for all x1 ∈ Ωx and
x3 ∈ Rn2 , and then particularly for x3 = η(x1). Since x1 ∈ Ωx it is also known that
η(x1) = R

(
x1, k(x1)

)
. According to (3.7)

0 ≤ L(x1, x3, u) + Vx1(x1)F1(x1, x3, u) +W2(x1, x3)F2(x1, x3, u)

for all x1 ∈ Ωx, x3 ∈ Rn2 and u ∈ Rp. In particular, it follows that

0 ≤ L(x1,R(x1, u), u) + Vx1(x1)F1

(
x1,R(x1, u), u

)
and (3.4) is satisfied.

Since a u solving (3.9a) is given by u = ψ(x1, x3), (3.9b) and (3.9c) give

0 = L
(
x1, x3, ψ(x1, x3)

)
+W1(x1)F1

(
x1, x3, ψ(x1, x3)

)
0 = F2

(
x1, x3, ψ(x1, x3)

)
Differentiation of these relations with respect to x3 yields

0 = Lx3 +
(
Lu +W1F1;u

)
ψx3 +W1F1;x3 (3.12a)

0 = F2;x3 + F2;uψx3 (3.12b)

If (3.9a) is multiplied from right by ψx3 and after (3.12) is inserted, the result is that W2

has to satisfy
0 = W1F1;x3 + Lx3 +W2F2;x3

Due to the fact that F2;x3 is nonsingular for (x1, x3, u) ∈ Ω, it follows that

W2 = −
(
Lx3 +W1F1;x3

)
F−1

2;x3
(3.13)

Hence, for a system that satisfies Assumption A2 one further necessary condition for
the optimal solution, namely (3.13), is obtained.

3.5 Control-Affine-like DAE Models

In this section, a special class of problems is considered for which the necessary condi-
tions become simple. The models in the class should be possible to write as

ẋ1 = f1(x1, x3) + g1(x1)u (3.14a)
0 = f2(x1, x3) + g2(x1)u (3.14b)

while the cost function should be expressed in the form L(x1, x3, u) = l(x1) + 1
2u

Tu.
Then (3.9a) can be solved explicitly in u for all x1, x3 since (3.9a) will become

0 = uT +W1(x1)g1(x1) +W2(x1, x3)g2(x1) (3.15)

and from Lemma 3.2, it follows that

W2(x1, x3) = −W1(x1)f1;x3(x1, x3)f−1
2;x3

(x1, x3) (3.16)
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Note that f2;x3(x1, x3) is nonsingular for all (x1, x3) such that f2(x1, x3) = 0 is solvable
since F2;x3(x1, x3, u) is nonsingular for all (x1, x3, u) ∈ Ω and then particularly for
u = 0. Combining (3.15) and (3.16) yields

u = −ĝ(x1, x3)TW1(x1)T

and after some manipulation the necessary conditions can be rewritten as

0 = l(x1) +W1(x1)f̂(x1, x3)−
1
2
W1(x1)ĝ(x1, x3)ĝ(x1, x3)TW1(x1)T (3.17a)

0 = f2(x1, x3)− g2(x1)ĝ(x1, x3)TW1(x1)T (3.17b)

where

f̂(x1, x3) = f1(x1, x3)− f1;x3(x1, x3)f−1
2;x3

(x1, x3)f2(x1, x3)

ĝ(x1, x3) = g1(x1)− f1;x3(x1, x3)f−1
2;x3

(x1, x3)g2(x1)

Note that the even though the DAE model is affine in the control input, this might not
be the case for the underlying state-space model.

3.6 Example

In this section a small example showing the different methods is presented.
Consider the simple system

ẋ1 = x3

0 = u− x3
1 − x3

which satisfies Assumption A2 with performance criterion

J =

∞∫
0

(x2
1

2
+
u2

2
)
dt

The necessary conditions (3.6) give

0 = u+ Vx1 · 0 + Vx1 · 1

0 =
x2

1

2
+
u2

2
+ Vx1x3

0 = u− x3
1 − x3

Eliminating u and x3 gives the following equation for Vx1

V 2
x1

+ 2x3
1Vx1 − x2

1 = 0

To get a positive definite solution for V the solution for Vx1 must be chosen as

Vx1 = x1(
√

1 + x4
1 − x2

1)
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and the corresponding optimal feedback law then becomes

u = −Vx1 = −x1(
√

1 + x4
1 − x2

1)

If instead (3.8) is used to solve the optimal control problem, it leads to the equations

0 = u+W1 · 0 +W2 · 1

0 =
x2

1

2
+
u2

2
+W1x3 +W2(u− x3

1 − x3)

Since the system satisfies Assumption A2, it is known from Lemma 3.2 that W2 must
satisfy (3.13), i.e.,

W2 = W1

On the solution manifold {x ∈ Rn, u ∈ Rp | F2(x1, x3, u) = 0}, i.e., when 0 =
u − x3

1 − x3, the same equation for W1 as for Vx1 is obtained and therefore the solution
is the same.



4
Power Series Solution of the

Hamilton-Jacobi-Bellman Equation

In Chapter 3, optimal control for DAE models in semi-explicit form, which possibly could
come from higher index problems, was discussed. Unfortunately, there are practical issues
with these methods. One issue is that in order to explicitly and not numerically solve the
optimality conditions, an expression in closed form of the implicit function R is needed.
However, in many cases it is impossible to express the implicit function in closed form.
Another problem with the methods in Chapter 3 is that even if R can be expressed in
closed form, the optimality conditions can only be solved to obtain an explicit solution
for a small class of problems. Therefore, an alternative approach to solve the optimal
control problem will be presented in this chapter.

The idea is to compute the power series of the optimal solution instead. This turns
out to be an easier problem. For state-space models this idea was first considered by
Al’brekht (1961). He shows that the terms in the power series expansions can be obtained
sequentially, by first solving a quadratic optimal control problem for the linearized system
and then a series of linear partial differential equations. Further, a formal proof of the
convergence of the power series is presented in the case when the input signal is scalar
and the system has the form ẋ = f(x) + Bu. In Lee and Markus (1967), these results
are extended to general state-space systems, ẋ = f(x, u), and this work is extended even
more in Lukes (1969). In the earlier works (Al’brekht, 1961; Lee and Markus, 1967),
the functions involved are required to be analytic functions around the origin. In Lukes
(1969), this requirement is relaxed to twice continuously differentiable functions. An
alternative proof to the one presented in Lukes (1969) is given in van der Schaft (1991)
where the requirements on the cost function are relaxed. Krener (1992) studied the case
when the dynamics of an external signal generator are included and in Krener (2001) he
also investigated the case when the system is not stabilizable or not detectable. The latter
reference also considers the Hamilton-Jacobi inequality.

Other classes of problems that have been studied are for example the case with bilinear
system dynamics and quadratic cost which can be found in Cebuhar and Costanza (1984)
and the extension to discrete-time systems described in Navasca (1996). The case of finite
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time optimal control is found in Willemstein (1977), and Yoshida and Loparo (1989) use
Carleman linearization to study both finite and infinite time optimal control problems.

A possible problem with the methods based on power series expansion is that validity
of the optimal solution can only be guaranteed locally. Therefore, Navasca and Krener
present a method that uses power series solutions around extremals to enlarge the region
where the solution is optimal, see Navasca and Krener (2000).

In practice, the series solution needs to be truncated and the result is an approximate
solution. Therefore, this kind of methods are often denoted approximate methods even
though the complete power series expansions of the performance criterion and feedback
law yield the true optimal solution. There are other methods that theoretically describe the
exact optimal solution but in practice are truncated, see Beard et al. (1998) and references
therein.

This chapter is organized as follows. In Section 4.1, the problem formulation for finite
horizon optimal control problems is presented. Section 4.2 shows how a locally optimal
solution is computed when the system is described in state-space form. The extension
to nonlinear DAE models is described in Section 4.3. In Section 4.4 the infinite horizon
case is considered. Most of the assumptions in the theorems are formulated based on the
reduced DAE model. However, in Section 4.5 some of these assumptions are formulated
in terms of the original DAE model instead. Finally, some examples are presented in
Section 4.6, and some proofs in Section 4.7.

4.1 Problem Formulation

The considered optimal control problem can be defined as to minimize the integral crite-
rion

G
(
x1(T )

)
+

T∫
τ

L(t, x1, x3, u)eλt dt (4.1)

where x = (x1, x3) satisfies the differential-algebraic system

F̂1(ẋ1, x1, x3, u, t) = 0 (4.2a)

F̂2(x1, x3, u, t) = 0 (4.2b)

with some initial condition x1(τ) = x1,0. The function G is the terminal cost, L is the
cost function and λ is the discount factor. The optimal return function is defined as

V (τ, x1,0) = inf
u(·)

(
G
(
x1(T )

)
+

T∫
τ

L(t, x1, x3, u)eλt dt
)

(4.3)

The optimal control problem will be considered for τ in an interval [T0, T ] and x1,0 in
some neighborhood of the origin. The initial condition is assumed to be consistent, that
is, to satisfy the following assumption.

Assumption A3. The initial condition satisfies F̂2

(
x1,0, x2(τ), u(τ), τ

)
= 0.
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In order to ensure that the solution manifold of the system is described by the model
equations, the system will be required to satisfy the following assumption, that is, to be
strangeness-free.

Assumption A4. The system equations (4.2) can be uniquely solved to give

ẋ1 = L(t, x1, u) (4.4a)
x3 = R(t, x1, u) (4.4b)

for all t ∈ [T0, T ] and (ẋ1, x1, x3, u) ∈ Ω, where Ω is an open set containing the origin.

Note that although Assumption A4 requires the model to be strangeness-free, the
model may still be the result of an index reduction process of a higher index model that
satisfies Hypothesis 2.2 and for which an integrator chain has been introduced, see Sec-
tion 2.4.4.

Assumption A4 ensures that the DAE model has an underlying ODE model as can be
seen in (4.4). In principle, it means that methods for state-space models can be used. The
major computational challenge is the fact that the functions L andR need not be explicit.
Therefore, the focus in this section is on a method for finding optimal feedback laws
that only requires the power series expansions of L and R. For this end, the following
assumption will be fundamental.

Assumption A5. The functions F̂1, F̂2, L and G are real analytic in some open set
W ⊆ Rd+n+p, containing the origin (ẋ1, x1, x3, u) = 0, for all t ∈ [T0, T ].

Analyticity of F̂1, F̂2, L and G makes it possible to express them as power series

F̂1(ẋ1, x1, x3, u, t) = −E1(t)ẋ1 +A11(t)x1 +A12(t)x3 +B1(t)u

+ F̂1h(ẋ1, x1, x3, u, t) (4.5a)

F̂2(x1, x3, u, t) = A21(t)x1 +A22(t)x3 +B2(t)u+ F̂2h(x1, x3, u, t) (4.5b)

L(t, x, u) = xTQ(t)x+ uTR(t)u+ 2xTS(t)u+ Lh(t, x, u) (4.5c)

G(x1) = xT1 Mx1 +Gh(x1) (4.5d)

which are convergent around the origin (ẋ1, x1, x3, u) = 0, uniformly for all t ∈ [T0, T ].
The functions F̂1h and F̂2h include terms beginning with order two, while the higher order
terms of the performance criterion, that is Lh and Gh, are of order three at least.

For notational convenience the matrices in (4.5) will often will be concatenated and
partitioned as

A(t) =
(
A11(t) A12(t)
A21(t) A22(t)

)
, B(t) =

(
B1(t)
B2(t)

)
,

Q(t) =
(
Q11(t) Q12(t)
Q21(t) Q22(t)

)
, S(t) =

(
S1(t)
S2(t)

)
where all the matrices are assumed to be continuous real matrix functions.

Assumption A6. The matrices E1(t) and A22(t) are invertible for all t ∈ [T0, T ].
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The considered class of feedback laws can be expressed as

u(t, x1) = D(t)x1 + uh(t, x1) (4.6)

where D(t) is a continuous matrix function. The function uh(t, x) consists of terms of
order two or higher in x and is uniformly convergent in a neighborhood of the origin for
t ∈ [T0, T ].

The choice to just consider feedback laws based on x1 is motivated by the fact that
the dynamics of the system is described by x1. However, for systems not satisfying
Assumption A4, one could also consider to have a feedback law

u(t, x1) = D1(t)x1 + uh(t, x1) +D2(t)x3

where D2 is chosen such that the system becomes invertible around the origin.
Throughout the chapter, it will for notational reasons be assumed that Ω is covered

by W , that is, Ω ⊂ W .

4.2 State-Space Models

If the equation F̂2 = 0 is absent and F̂1 = 0 is explicit in ẋ1, the optimal control problem
can be rewritten in the ordinary form

V (τ, x0) = inf
u(·)

(
G
(
x(T )

)
+

T∫
τ

L(t, x, u)eλt dt
)

s.t. ẋ = F (t, x, u),
x(τ) = x0

(4.7)

This problem is a standard optimal control problem and the solution is found using the
Hamilton-Jacobi-Bellman equation (HJB), see Bryson and Ho (1975); Bertsekas (1995),

−Vt(t, x) = min
u

L(t, x, u)eλt + Vx(t, x)F (t, x, u) (4.8)

where Vt and Vx denote the partial derivatives of V w.r.t. t and x, respectively. It follows
that the optimal feedback law u∗(t, x) has to satisfy the following equations.

0 = L
(
t, x, u∗(t, x)

)
eλt + Vt(t, x) + Vx(t, x)F

(
x, u∗(t, x)

)
0 = Lu

(
t, x, u∗(t, x)

)
eλt + Vx(t, x)Fu

(
t, x, u∗(t, x)

) (4.9)

Unfortunately, this nonlinear partial differential equation can only be solved explicitly in
a few special cases. However, in Willemstein (1977), it is shown that under the given
assumptions and for feedback laws described by uniformly convergent power series, the
optimal control problem (4.7) has an optimal solution. Furthermore, the corresponding
optimal return function becomes analytic in a neighborhood of the origin and for t ∈
[T0, T ]. It means that it can be written as

V (t, x) = xTP (t)x+ Vh(t, x) (4.10)
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where P (t) is a positive definite matrix function and Vh(t, x) contains terms of at least
order three in x.

Based on this observation a computational method can be derived. If the unknown se-
ries expansions of V and u together with the known series expansions of F , L and G are
substituted into (4.9), two polynomial equations in x are obtained, where the coefficients
in the polynomials are differential equations in t. The HJB must be satisfied for all con-
sidered values of x, which in this case means that polynomial equations must be satisfied
in a neighborhood of the origin. The coefficients corresponding to different orders in x
will yield separate differential equations in t. Solving these differential equations then
yields the optimal solution.

In the finite horizon case, the function eλt with the discount factor λ does not introduce
any extra complications, since it can be treated as any other time-variability in the cost
function. However, because of the specific structure this function, the equations (4.9)
can be rewritten in a way that will simplify the computations and also better explain the
equations with a discount factor in the infinite horizon case.

Consider the change of optimal return function

V̄ (t, x) = V (t, x)e−λt (4.11)

where V̄ (t, x) also becomes analytic in a neighborhood of the origin and for t ∈ [T0, T ].
Then

Vt(t, x) = V̄t(t, x)eλt + V̄ (t, x)λeλt

Vx(t, x) = V̄x(t, x)eλt

Substitution of these equations into (4.9) gives

0 = L
(
t, x, u∗(t, x)

)
+ λV̄ (t, x) + V̄t(t, x) + V̄x(t, x)F

(
x, u∗(t, x)

)
0 = Lu

(
t, x, u∗(t, x)

)
+ V̄x(t, x)Fu

(
t, x, u∗(t, x)

) (4.12)

Hence, the explicit dependence of eλt in the equations has been removed. However, note
that since this only is a change of variables, (4.12) are completely equivalent to (4.9)
concerning solvability. That is, if there exist solutions V (t, x) and u∗(t, x) which solves
(4.9), there will exist V̄ (t, x) and u∗(t, x) solving (4.12). Therefore, the equations above
are used in the following theorem, which both formalizes the existence of an optimal
solution and gives the expressions to compute it.

Theorem 4.1
Consider the optimal control problem (4.7). Suppose that Assumption A5 is fulfilled and
that the weight matrices satisfy(

Q(t) S(t)
ST (t) R(t)

)
� 0, R(t) � 0, M � 0

for t ∈ [T0, T ]. Then the optimal feedback control u∗(t, x) exists and is the unique
solution of (4.12) for small |x| and t ∈ [T0, T ]. Furthermore, the optimal return function
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and optimal feedback are of the form (4.10) and (4.6), respectively. In these expressions,
P (t) and D∗(t) are given by

0 = Ṗ (t) + P (t)
(
A(t) + λ

2 I
)

+
(
A(t) + λ

2 I
)T
P (t)

−
(
P (t)B(t) + S(t)

)
R(t)−1

(
P (t)B(t) + S(t)

)T +Q(t) (4.13a)
0 = P (T )−M (4.13b)

and
D∗(t) +R−1(t)

(
ST (t) +B(t)TP (t)

)
= 0 (4.13c)

The higher order terms in (4.10) and (4.6) can be calculated recursively from the
following expressions.

V̄ [m]
x (t, x)Ac(t)x+ V̄

[m]
t (t, x) + λV̄ [m](t, x) =

−
m−1∑
k=3

V̄ [k]
x (t, x)B(t)u[m−k+1]

∗ (t, x)

−
m−1∑
k=2

V̄ [k]
x (t, x)F [m−k+1]

h (t, x, u∗)− L
[m]
h (t, x, u∗)

− 2
bm−1

2 c∑
k=2

u
[k]
∗ (t, x)TR(t)u[m−k]

∗ (t, x)− u
[m/2]
∗ (t, x)TR(t)u[m/2]

∗ (t, x) (4.14a)

V̄ [m](T, x) = e−λTG[m](x) (4.14b)

where m = 3, 4, . . ., Ac(t) = A(t) +B(t)D∗(t), and

u
[k]
∗ (t, x) = −1

2
R(t)−1

{
V̄ [k+1]
x (t, x)B(t)

+
k−1∑
i=1

V̄ [k−i+1]
x (t, x)F [i]

h;u(t, x, u∗) + L
[k]
h;u(x, u∗)

} (4.14c)

for k = 2, 3, . . .. In (4.14) the convention that
∑l
k = 0 for l < k is used and the terms

u[m/2] are to be omitted if m is odd.

Proof: The existence of an optimal solution is proved exactly as in Willemstein (1977),
with eλt included in the cost function L(t, x, u). Then, the computation of V (t, x) and
u∗(t, x) can be done using (4.12), which yields (4.13) and (4.14).

The fact that recursive computation is possible can be motivated by the following
observations,

F
[k]
h (t, x, u∗) = F

[k]
h (t, x, u[1]

∗ + u
[2]
∗ + . . .+ u

[k−1]
∗ )

L
[k]
h (t, x, u∗) = L

[k]
h (t, x, u[1]

∗ + u
[2]
∗ + . . .+ u

[k−2]
∗ )
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and

F
[i]
h;u(t, x1, u∗) = F

[i]
h;u(t, x1, u

[1]
∗ + . . .+ u

[i]
∗ )

L̂
[i−1]
h;u (t, x1, u∗) = L̂

[i]
h;u(t, x1, u

[1]
∗ . . .+ u

[i−1]
∗ )

since Fh(t, x, u) and Lh(t, x, u) are power series beginning with terms of order two and
three, respectively. Therefore, the right-hand side of (4.14a) will only depend on the terms

u
[1]
∗ , . . . , u

[m−2]
∗ , V̄ [2], . . . , V̄ [m−1] (4.15)

while the right-hand side of (4.14c) only depends on

u
[1]
∗ , . . . , u

[k−1]
∗ , V̄ [2], . . . , V̄ [k+1] (4.16)

The lowest order terms in u∗(t, x) and V̄ (t, x), i.e.,

u
[1]
∗ (t, x) = D∗(t)x, V̄ [2](t, x) = xTP (t)x (4.17)

is therefore computed using the Riccati Differential Equation (RDE) in (4.13a) together
with the boundary condition (4.13b) and the equation (4.13c). Having these, the higher
order terms can be computed using (4.14), which together defines a linear differential
equation for the coefficients of V̄ [m](t, x), with the right hand side known and with the
boundary condition V̄ [m](T, x) = e−λTG[m](x). From V̄ [i](t, x), i = 2, . . ., the terms of
corresponding order of V (t, x) can then be found using (4.11).

Note that in the finite horizon case, there is no guarantee for a stabilizing feedback
law, and thereby a stable solution, not even locally around the origin. This is one of the
major reasons for studying the infinite horizon as will be seen in Section 4.4.

4.3 DAE Models

To solve the optimal control problem described by (4.2) and (4.3), it is reformulated as
the following equivalent optimal control problem

V (x1,0) = inf
u(·)

(
G
(
x1(T )

)
+

T∫
τ

L̂(t, x1, u)eλt dt
)

(4.18a)

subject to the dynamics
ẋ1 = L(t, x1, u) (4.18b)

where L is given by (4.4a) and

L̂(t, x1, u) = L
(
t, x1,R(t, x1, u), u

)
(4.18c)

where R is given by (4.4b)
Under Assumption A4, this reformulation can always be done for consistent initial

values. The optimal control problem is then, in principle, a standard problem in the state
variables x1 which solution is given by

−Vt(t, x1) = min
u

L̂(t, x1, u)eλt + Vx1(t, x1)L(t, x1, u)
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If F̂1 and F̂2 are assumed to satisfy Assumptions A4, A5, and A6, it is ensured by the
implicit function theorem, i.e., Theorem A.1, that L(t, x1, u) and R(t, x1, u) are analytic
and will therefore have convergent power series expansions. This means that if the as-
sumption concerning positivity of the cost matrices is satisfied, Theorem 4.1 is applicable
and the optimal solution can be computed using the expressions in Theorem 4.1 given
that the power series expansions of L and L̂ around (x1, u) = (0, 0) can be computed
recursively. The procedure for doing this will be shown in the next section.

4.3.1 Power Series Expansion of the Reduced Problem

A keystone in the derived method is that the power series expansions of R(t, x1) and
L(t, x1, u) can be computed recursively. Let

ẋ1 = L(t, x1, u) = L[1](t, x1, u) + Lh(t, x1, u) (4.19a)

x3 = R(t, x1, u) = R[1](t, x1, u) +Rh(t, x1, u) (4.19b)

where both Lh(t, x1, u) and Rh(t, x1, u) are continuous in t and contain terms in x1

and u of order two and higher.
From (4.5b) the series expansion of F̂2 is given by

F̂2(x1, x3, u, t) = A21(t)x1 +A22(t)x3 +B2(t)u+ F̂2h(x1, x3, u, t)

By combining this equation with (4.19b), it follows that

0 = A21(t)x1 +A22(t)
{
R[1](t, x1, u) +Rh(t, x1, u)

}
+B2(t)u+ F̂2h

(
t, x1,R[1](t, x1, u) +Rh(t, x1, u), u

)
(4.20)

The equation above has to be satisfied for all (x1, u) in a neighborhood of the origin. This
means that the first order term of R(t, x1, u) will be given by

R[1](t, x1, u) = −A−1
22 (t)A21(t)x1 −A−1

22 (t)B2(t)u (4.21)

since all other terms are of higher order than one. Furthermore, since F̂2h(x1, x3, u) has
an order of at least two, it follows that

F̂
[m]
2h

(
t, x1,R(t, x1, u), u

)
=

F̂
[m]
2h

(
t, x1,R[1](t, x1, u) + . . .+R[m−1](t, x1, u), u

)
(4.22)

This makes it is possible to derive a recursive expression for a general order term of
R(t, x1, u) as

R[m](t, x1, u) = −A−1
22 (t)F̂ [m]

2h

(
t, x1,R[1](t, x1, u) + . . .+R[m−1], u

)
(4.23)

Now consider the Taylor series of (4.5a), i.e.,

F̂1(ẋ1, x1, x3, u, t) =

− E1(t)ẋ1 +A11(t)x1 +A12(t)x3 +B1(t)u+ F̂1h(ẋ1, x1, x3, u, t)
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Combined with (4.19), the result is the equation

0 = −E1(t)L[1](t, x1, u)− E1(t)Lh(t, x1, u) +A11(t)x1

+A12(t)
(
R[1](t, x1, u) +Rh(t, x1, u)

)
+B1(t)u

+ F̂1h

(
L[1](t, x1, u) + Lh(t, x1, u), x1,R[1](t, x1, u)

+Rh(t, x1, u), u, t
) (4.24)

By assumption E1(t) is nonsingular for t ∈ [T0, T ] and for notational reasons, it will
in the sequel of this section, be assumed that it is an identity matrix. The first term in
L(t, x1, u) is obtained as

L[1] = A11(t)x1 +A12(t)R[1](t, x1, u) +B1(t)u = Â(t)x1 + B̂(t)u

where

Â(t) = A11(t)−A12(t)A−1
22 (t)A21(t)

B̂(t) = B1(t)−A12(t)A−1
22 (t)B2(t)

and the second equality is obtained using (4.21). Since F̂1h(ẋ1, x1, x3, u, t) contains
terms of at least order two it follows that

F̂
[m]
1h

(
L(t, x1, u), x1,R(t, x1, u), u, t

)
=

F̂
[m]
1h

(
L[1](t, x1, u) + . . .+ L[m−1](t, x1, u), x1,

R[1](t, x1, u) + . . .+R[m−1](t, x1, u), u, t
)

which shows that higher order terms in L(t, x1, u) can be computed recursively using the
expression

L[m](t, x1, u) =

A12(t)R[m](t, x1, u) + F̂
[m]
1

(
L[1](t, x1, u) + . . .+ L[m−1](t, x1, u), x1,

R[1](t, x1, u) + . . .+R[m−1](t, x1, u), u, t
)

The equations to find the coefficients of R and L will be linear in the m:th order
coefficients. It means that if the equations are solved recursively, the computation can
be done rather fast. However, if the number of variables in either x1 or x3 are large, the
number of equations will grow rapidly.

For physical systems, the DAE model is often semi-explicit, i.e., satisfies Assump-
tion A1, and can be written as

ẋ1 = F̂1(x1, x3, u)

0 = F̂2(x1, x3, u)

The computations above can then be simplified substantially, since the power series of
L(t, x1, u) is obtained, without solving any equations, as the composition of the power
series of F̂1 and R.
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Having the power series expansions ofR(t, x1, u), the series expansion of (4.18c) can
be computed as

L̂(t, x1, u) =
(
x1

u

)T
ΠT (t)

(
Q(t) S(t)
ST (t) R(t)

)
Π(t)

(
x1

u

)
+ L̂h(t, x1, u)

=
(
x1

u

)T (
Q̂(t) Ŝ(t)
ŜT (t) R̂(t)

)(
x1

u

)
+ L̂h(t, x1, u)

(4.26)

where

Π(t) =

 I 0
−A−1

22 (t)A21(t) −A−1
22 (t)B2(t)

0 I

 (4.27)

and

L̂h(t, x1, u) =

= Lh(t, x1,R(t, x1, u), u) + 2xT1 Q12(t)Rh(t, x1, u)

+ 2R[1](t, x1, u)Q22(t)Rh(t, x1, u) + 2uTS2(t)Rh(t, x1, u)

+Rh(x1, u)TQ22(t)Rh(t, x1, u)

(4.28)

4.3.2 Application of the Results for State-Space Models

The optimal control problem with the system model (4.19a) and the cost function (4.26)
is now solvable using the method described in Section 4.4.2. Using the first order terms
of the series expansions (4.19a) and (4.26), the RDE (4.13a)–(4.13b) and the expression
for the first order term in the feedback (4.13c) for the DAE formulation become

0 = Ṗ (t) + P (t)
(
Â(t) + λ

2 I
)

+
(
Â+ λ

2 I
)T (t)P (t)

−
(
P (t)B̂(t) + Ŝ(t)

)
R̂−1(t)

(
P (t)B̂(t) + Ŝ(t))T + Q̂(t) (4.29a)

0 = P (T )−M (4.29b)

and

0 = D∗(t) + R̂−1(t)
(
ŜT (t) + B̂T (t)P (t)

)
(4.29c)

The higher order terms of V̄ (t, x1) and u∗(t, x1) are obtained from (4.14). In (4.14)
only the series expansion coefficients of the different functions are included and it is
therefore possible to replace these functions with the series expansion coefficients of
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L(t, x1, u) and L̂(t, x1, u), i.e.,

V̄ [m]
x1

(t, x1)Âc(t)x1 + V̄
[m]
t (t, x1) + λV̄ (t, x1) =

−
m−1∑
k=3

V̄ [k]
x1

(t, x1)B̂(t)u[m−k+1]
∗ (t, x1)

−
m−1∑
k=2

V̄ [k]
x1

(t, x1)F̂
[m−k+1]
1h (t, x1, u∗)

− 2
bm−1

2 c∑
k=2

u
[k]
∗ (t, x1)T R̂(t)u[m−k]

∗ (t, x1)

− u
[m/2]
∗ (t, x1)T R̂(t)u[m/2]

∗ (t, x1)− L̂
[m]
h (t, x1, u∗) (4.30a)

V̄ [m](T, x) = e−λTG[m](x) (4.30b)

where m = 3, 4, . . ., Âc(t) = Â(t) + B̂(t)D∗(t), and the terms u[m/2] are to be omitted
if m is odd. The corresponding expression for the series expansion of the feedback law is

u
[k]
∗ (t, x1) = −1

2
R̂−1(t)

{
V̄ [k+1]
x1

(t, x1)B̂(t)

+
k−1∑
i=1

V̄ [k−i+1]
x1

(t, x1)F̂
[i]
1h;u(t, x1, u∗) + L̂

[k]
h;u(t, x1, u∗)

}
(4.30c)

where k = 2, 3, . . .. In (4.30), the terms L[i](t, x1, u∗) and L̂[i]
h (t, x1, u∗) are given by the

corresponding terms in (4.24) and (4.28), respectively.
Since Lh(t, x, u),Rh(t, x1, u) and Lh(t, x, u) are power series of order two, two and

three, respectively, and

L[m](t, x1, u∗) = L(t, x1, u
[1]
∗ + u

[2]
∗ + . . .+ u

[m]
∗ )

R[m](t, x1, u∗) = R(t, x1, u
[1]
∗ + u

[2]
∗ + . . .+ u

[m]
∗ )

it follows that

L[k]
h (t, x1, u∗) = L[k](t, x1, u

[1]
∗ + u

[2]
∗ + . . .+ u

[k−1]
∗ )

L̂
[k]
h (x1, u∗) = L̂

[k]
h (x1, u

[1]
∗ + u

[2]
∗ + . . .+ u

[k−2]
∗ )

and

L[i]
h;u(t, x1, u∗) = L[i]

h;u(t, x1, u
[1]
∗ + . . .+ u

[i]
∗ )

L̂
[i−1]
h;u (t, x1, u∗) = L̂

[i]
h;u(t, x1, u

[1]
∗ . . .+ u

[i−1]
∗ )

In the same way as for the state-space case, the right-hand sides of (4.30a) and (4.30c) will
then only depend on the sequences (4.15) and (4.16), respectively. So by consecutively
calculating the terms of the series

V̄ [2](t, x1), u
[1]
∗ (t, x1), R[1](t, x1, u

[1]
∗ ), L[1](t, x1, u

[1]
∗ ) . . . (4.31)
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it is possible to generate the power series for V̄ (t, x1), u∗(t, x1), L
(
t, x1, u∗(t, x1)

)
and

R
(
t, x1, u∗(t, x1)

)
. Having V̄ (t, x1), V (t, x1) can be computed using (4.11).

In the sequence above, it can be seen that it is unnecessary to calculate orders of
L(t, x1, u) andR(t, x1, u) higher than the desired order of the approximation of u∗(t, x1).
However, if desired for some other reason it is possible to compute arbitrarily high orders
of them.

Summarizing this section the following theorem can be formulated.

Theorem 4.2
Consider the optimal control problem defined by the DAE model (4.2) and the integral
criterion (4.3). Suppose that Assumptions A3 – A6 are satisfied and that(

Q̂(t) Ŝ(t)
ŜT (t) R̂(t)

)
� 0, R̂(t) � 0, M � 0

for t ∈ [T0, T ]. Then, the optimal feedback control u∗(x1) exists and is the unique
solution for small |x1| and t ∈ [T0, T ] of

0 = Lu − Vx1 F̂
−1
1;ẋ1

F̂1;u −
(
Lx3 − Vx1 F̂

−1
1;ẋ1

F̂1;x3

)
F̂−1

2;x3
F̂2;u (4.32a)

0 = L+ Vx1 ẋ1 + Vt (4.32b)

0 = F̂1 (4.32c)

0 = F̂2 (4.32d)

where L is evaluated in (t, x1, x3, u), V in (t, x1), F̂1 in (ẋ1, x1, x3, u, t) and F̂2 in
(x1, x3, u, t).

Furthermore, the optimal solution V (t, x1) and u∗(t, x1) can be computed from the
expressions (4.29) and (4.30).

Proof: To solve the optimal control problem defined by the DAE model (4.2) and the
integral criterion (4.3) is equivalent to solving the problem (4.18). Applying Theorem 4.1
on (4.18) gives

0 = L̂(t, x1, u) + Vt(t, x1) + Vx1(t, x1)L(t, x1, u) (4.33a)

0 = L̂u(t, x1, u) + Vx1(t, x1)Lu(t, x1, u) (4.33b)

Differentiation of the equations

0 = F̂1

(
L(t, x1, u), x1,R(t, x1, u), u, t

)
0 = F̂2

(
x1,R(t, x1, u), u, t

)
L̂(t, x1, u) = L

(
t, x1,R(t, x1, u), u

)
with respect to u gives the following expressions

0 = F̂1;ẋ1Lu + F̂1;x3Ru + F̂1;u (4.34a)

0 = F̂2;x3Ru + F̂2;u (4.34b)

L̂u = Lu + Lx3Ru (4.34c)
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where the unspecified arguments can be found in the equation above.
Solving (4.34b) locally around the origin for Ru, which is possible since by assump-

tion F2;x3 is nonsingular for all t ∈ [T0, T ], and substituting into (4.34a) and (4.34c)
yields

0 = F̂1;ẋ1Lu − F̂1;x3 F̂
−1
2;x3

F̂2;u + F̂1;u (4.35a)

L̂u = Lu − Lx3 F̂
−1
2;x3

F̂2;u (4.35b)

Around the origin the equation for Lu can be solved because of the assumptions and
substitution into (4.33) gives the desired result (4.32).

Note that even if it is possible to first calculate the reduced system and then formulate
the optimal solution in terms of it, there are sometimes structural benefits with formulating
the expression in terms of (4.32), as will be discussed in Chapter 6. Further note that the
Taylor series of the inverse above can be computed efficiently. Let

F2;x3(t, x1, x3, u) = H(t, x, u) = H0(t)−Hh(t, x, u)

where H0(t) = F2;x3(t, 0, 0, 0) and Hh(t, x, u) are the terms of at least order one and
is uniformly convergent for t ∈ [T0, T ]. From the assumptions, it is known that H0(t)
is nonsingular for t ∈ [T0, T ]. Then the following expression can be used, as shown in
Lancaster and Tismenetsky (1985),

(
H0(t)−Hh(t, x, u)

)−1 = H0(t)−1
m−1∑
i=0

(
Hh(t, x, u)H0(t)−1

)i
(4.36)

This expression can be computed easily to rather high orders.

4.4 The Infinite Horizon Case

The infinite horizon case has many similarities with the finite horizon case. However,
there are some major differences. For example, the system is assumed time-invariant
which simplifies the assumption about solvability. The infinite horizon together with the
time-invariant system also means that the optimal feedback law will be time-invariant,
which simplifies for instance the implementation. On the other hand, it is necessary to
require the feedback law to be stabilizing, which restricts the cases that can be handled.

4.4.1 Problem Formulation

In the infinite horizon case, the considered optimal control problem is to minimize the
integral criterion

V (x1,0) = inf
u(·)

∞∫
0

L(x1, x3, u)eλt dt (4.37)
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subject to the differential-algebraic system

F̂1(ẋ1, x1, x3, u) = 0 (4.38a)

F̂2(x1, x3, u) = 0 (4.38b)

with some initial condition x1(0) = x1,0. The initial condition is assumed to satisfy
Assumption A3. The assumption that the DAE model should be strangeness-free can,
since the system is time-invariant, be simplified as follows.

Assumption A7. It holds that F̂ (0, 0, 0, 0) = 0. Furthermore, F̂1;ẋ1(0, 0, 0, 0) and
F̂2;x3(0, 0, 0) are nonsingular.

From the implicit function theorem, i.e., Theorem A.1, it then follows that there exists
a neighborhood Ω of the origin, such that for (ẋ1, x1, x3, u) ∈ Ω, the DAE model can be
written as

ẋ1 = L(x1, u) (4.39a)
x3 = R(x1, u) (4.39b)

As for the finite horizon case, the assumptions above only guarantee that the DAE
model has an underlying ODE description. However, the functions L and R may be hard
or even impossible to express in closed form. Therefore, their power series expansions
are desired and Assumption A5 is reformulated as follows.

Assumption A8. The functions F̂1 and F̂2 in (4.38), and L in (4.37) are real analytic in
W , which is a neighborhood of the origin (ẋ1, x1, x3, u) = 0.

Analyticity of the functions involved makes it possible to write them as power series

F̂1(ẋ1, x1, x3, u) = −E1ẋ1 +A11x1 +A12x3 +B1u+ F̂1h(ẋ1, x1, x3, u) (4.40a)

F̂2(x1, x3, u) = A21x1 +A22x3 +B2u+ F̂2h(x1, x3, u) (4.40b)

L(x, u) = xTQx+ uTRu+ 2xTSu+ Lh(x, u) (4.40c)

that are convergent in W . The functions F̂1h and F̂2h include terms beginning with order
two, while the higher order terms of the performance criterion, i.e., Lh, is of order three
at least. The linearization of the system (4.38) can easily be found as

ẋ1 = Âx1 + B̂u (4.41a)

x3 = −A−1
22 A21x1 −A−1

22 B2u (4.41b)

where

Â = E−1
1

(
A11 −A12A

−1
22 A21

)
(4.41c)

B̂ = E−1
1

(
B1 −A12A

−1
22 B2

)
(4.41d)

The objective is, as for the finite horizon case, to find the optimal feedback control
locally around the origin. However, because of the infinite horizon, the considered class
of feedback laws needs to satisfy some extra conditions.
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Assumption A9. The considered feedback laws are described by uniformly convergent
power series

u(x1) = Dx1 + uh(x1) (4.42)

where uh(x1) are terms of at least order two. Furthermore,

Re eig(Â+ B̂D) < min(0,−λ
2 )

where Â and B̂ are given in (4.41).

The last part of the assumption is introduced for two reasons. First, it is necessary
for the proof to have a feedback law that stabilizes the system, and thereby makes a
neighborhood of the origin invariant. Second, the control law needs to ensure convergence
of the integral criterion locally.

As can be seen above, the discount factor can be used to obtain a controller for which
the linearization of the closed-loop achieves a prescribed degree of stability. That is, the
poles are placed to the right of some specific limit. For linear systems, this fact was devel-
oped already in Anderson and Moore (1969) and has later been developed in numerous
publications so that so that different pole placements can be chosen. In this chapter, the
result in Anderson and Moore (1969) will be generalized to the nonlinear case. An in-
teresting fact is that despite an explicitly time-varying cost function, the optimal solution
will still be time-invariant. In Anderson and Moore (1971), it is shown that the function
eλt is in principle the only time varying element that can be allowed in order to have this
property.

4.4.2 State-Space Models

If the DAE model has no constraints and is explicit in the states, the optimal control
problem can be written as

V (x0) = inf
u(·)

∞∫
0

L(x, u)eλt dt

s.t. ẋ = F (x, u)
x(0) = x0

(4.43)

The solution to this optimal control problem is given by the following Hamilton-Jacobi-
Bellman equation (HJB), see Bardi and Capuzzo-Dolcetta (1997),

0 = min
u

L(x, u) + λV (x) + Vx(x)F (x, u)

and the optimal feedback law u∗(x) must solve the equations

0 = L
(
x, u∗(x)

)
+ λV (x) + Vx(x)F

(
x, u∗(x)

)
0 = Lu

(
x, u∗(x)

)
+ Vx(x)Fu

(
x, u∗(x)

) (4.44)

As for the finite horizon case, it can be shown that under the given assumptions and
for analytic feedback laws, the optimal control problem (4.43) has a solution, see for the



74 4 Power Series Solution of the Hamilton-Jacobi-Bellman Equation

undiscounted case Al’brekht (1961); Lee and Markus (1967); Lukes (1969) and for the
discounted case the extension in Section 4.7. Furthermore, the corresponding optimal
return function will be analytic in a neighborhood of the origin and can therefore be
expressed as a power series. As for the finite horizon case, the equations (4.44) lead to
two polynomial equations in x with coefficients including the unknown parameters in V
and u∗. The following theorem states when an analytic solution exists and how it can be
computed for state-space systems.

Theorem 4.3
Consider the optimal control problem (4.43), satisfying Assumptions A8 and A9. Further-
more, assume that the quadratic part of the cost function satisfies

(
Q S

ST R

)
� 0. Then

there exists an optimal feedback law u∗(x) satisfying Assumption A9 if the ARE

0 = (A+ λ
2 I)

TP + P (A+ λ
2 I)− (PB + S)R−1(PB + S)T +Q (4.45a)

has a unique positive-semidefinite solution such that the matrix A+BD with D given by

D = −R−1(ST +BTP ) (4.45b)

satisfies
Re eig(A+BD) < min(0,−λ

2 ) (4.46)

The equations (4.45) also determines the lowest order terms in V (x) and u∗(x), respec-
tively. The higher order terms in V (x) and u∗(x) can be computed recursively by

V [m]
x (x)Acx+ λV [m](x) = −

m−1∑
k=3

V [k]
x (x)Bu[m−k+1]

∗ (x)

−
m−1∑
k=2

V [k]
x (x)F [m−k+1]

h (x, u∗)− L
[m]
h (x, u∗)

− 2
bm−1

2 c∑
k=2

u
[k]
∗ (x)TRu[m−k]

∗ (x)− u
[m/2]
∗ (x)TRu[m/2]

∗ (x)

(4.47a)

where m = 3, 4, . . . and Ac = A+BD∗, and

u
[k]
∗ (x) = −1

2
R−1

(
V [k+1]
x (x)B+

k−1∑
i=1

V [k−i+1]
x (x)F [i]

h;u(x, u∗)+L
[k]
h;u(x, u∗)

)
(4.47b)

for k = 2, 3, . . ..

In the equations above, F [i] denotes the i:th order terms of F and bic denotes the floor
function, which gives the largest integer less than or equal to i. Moreover, in (4.47) we
use the conventions that

∑l
k = 0 for l < k and that the terms u[m/2] are to be omitted if

m is odd.
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Proof: For the case with λ = 0, the proof is found in Lukes (1969), while the general
proof can be found in Section 4.7.1. That (4.47) can be solved uniquely is proved using
Lemma 4.9.

The theorem above is formulated in terms of the ARE (4.45a). The following lemma
shows some typical situations when the ARE has a solution satisfying the conditions.

Lemma 4.1
Consider the ARE (4.70). Assume the assumptions in Theorem 4.5 are satisfied. Then
there exists a unique positive semi-definite solution such that the eigenvalues of A+BD
satisfies condition (4.68) if

• λ = 0: (A,B) is stabilizable.

• λ > 0: (A,B) is controllable or (A+ 1
2λI,B) is stabilizable.

• λ < 0: (A+ 1
2λI,B) is stabilizable or (A,B) controllable, and the solution yields

eig(A+BD) < 0.

Proof: See for example Bittanti et al. (1991) and Anderson and Moore (1971).

Note that under the assumptions about stabilizability or controllability made above,
it is ensured that there exists a unique positive semi-definite solution such that with D
in (4.71), the eigenvalues of A + BD will have real parts less than −λ/2 (which is nec-
essary in order to obtain a convergent performance criterion). However, in the case when
λ < 0, it means that the eigenvalues need not satisfy condition (4.68) and an extra con-
dition is therefore added in the corollary. Since the extra condition is included it is not
guaranteed from the problem data that a solution exists, but at least in randomly generated
problems it actually seems to happen quite often. For these cases the optimal feedback
law is found.

Having the solution to the ARE, it follows using the same line of reasoning as in the
finite horizon case that the optimal solution can be computed recursively. That is, first the
lowest order terms are obtained as

u
[1]
∗ (x) = D∗x, V [2](x) = xTPx

and having these, the higher order terms in V (x) and u∗(x) are obtained uniquely from
(4.47), in the sequence

V [3](x), u[2]
∗ , V

[4](x), u[3]
∗ , . . .

to any order.
The equations obtained from the higher order terms in (4.47) are linear in the coeffi-

cients from V [m] and u[m−1]
∗ , both separately and simultaneously. If solved recursively,

rather high orders can be computed. However, the size of the set of equations grows rather
fast with the number of states as will be seen in Chapter 6, which limits the size of the
problems that can be handled.

A small remark is that it is not necessary to have a system that is analytic. If the model
is Cr it has been shown in Krener (2001) that the optimal return function up to Cr−2 exists
and can be computed as above.
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4.4.3 DAE Models

In order to solve the optimal control problem described by (4.37) and (4.38), the problem
is rewritten as the following equivalent optimal control problem

V (x1,0) = inf
u(·)

∞∫
0

L̂(x1, u)eλt dt

subject to the dynamics

ẋ1 = L(x1, u)

where L is given by (4.39a) and

L̂(x1, u) = L
(
x1,R(x1, u), u

)
(4.48)

This reformulation can always be done because of Assumption A7.
In principle, the optimal control problem is then a standard problem in the state vari-

ables x1 and Theorem 4.3 is directly applicable. However, as mentioned earlier, there
is a major computational barrier, namely that L and R are usually not explicitly given.
However, Assumptions A7 and A8 ensure the existence of convergent power series of
L(t, x1, u) and R(t, x1, u), and using the methods in Section 4.3.1, these power series
can be derived to any degree.

Summarizing this section we have the following result.

Theorem 4.4
Consider the optimal control problem (4.37) and (4.38). Assume that it satisfies Assump-
tions A3, A7 and A8. Furthermore, assume that the quadratic part of the cost function
satisfies

(
Q̂ Ŝ

ŜT R̂

)
� 0. Then an optimal feedback law u∗(x) satisfying Assumption A9

exists if the ARE

0 = (Â+ λ
2 I)

TP + P (Â+ λ
2 I)− (PB̂ + Ŝ)R̂−1(PB̂ + Ŝ)T + Q̂ (4.49a)

has a unique positive-semidefinite solution such that the matrix Â+ B̂D with D given by

D = −R̂−1(ŜT + B̂TP ) (4.49b)

satisfies
Re eig(Â+ B̂D) < min(0,−λ

2 )

The higher order terms are given by (4.47) with the system and cost function replaced by
L(x1, u) and L̂(x1, u), respectively.

Proof: Follows the line of the proof of the finite horizon case, but by using Theorem 4.3
instead.

Some cases for which the ARE (4.49a) has solutions satisfying the conditions is pro-
vided by Lemma 4.1. The computation of the higher order terms can be done similarly to
the earlier shown results. That is, the optimal solution can be found recursively and the
sequence is the same as in (4.31).



4.5 Conditions on the Original Model and Cost Function 77

4.5 Conditions on the Original Model and Cost
Function

The conditions in Theorems 4.2 and 4.4 are expressed in terms of the reduced optimal
control problem, e.g., Â, B̂ and Q̂. However, in some cases these conditions can be
translated to conditions on the original data. First consider the condition(

Q̂(t) Ŝ(t)
ŜT (t) R̂(t)

)
� 0 (4.50)

Since the variable transformation matrix Π(t) in (4.27) has full column rank, it follows
that (

Q(t) S(t)
ST (t) R(t)

)
� 0 ⇒

(
Q̂(t) Ŝ(t)
ŜT (t) R̂(t)

)
� 0

However, note that the arrow only goes in one direction and the cost matrix (4.50) may
be positive definite also for indefinite matrices in the original problem, as will be seen in
Section 4.6.1.

In some cases, it is not desirable to penalize the variables x3. In these cases, the cost
matrix is given by

(
Q̂(t) Ŝ(t)
ŜT (t) R̂(t)

)
= ΠT

Q11(t) 0 S1(t)
0 0 0

ST1 (t) 0 R(t)

Π(t) =
(
Q11(t) S1(t)
ST1 (t) R(t)

)
which means that if the cost matrix for x1 and u is positive definite, the cost matrix for
the reduced system is so as well.

In 4.1 with modifications to the DAE case, there are some conditions about controlla-
bility and stabilizability. These can be shown equivalent to corresponding notions in the
DAE literature. For example, stabilizability of(

Â, B̂
)

=
(
A11 −A12A

−1
22 A21), B1 −A12A

−1
22 B2

)
(4.51)

is equivalent to stabilizability of the linearization of the DAE model in DAE sense. Here
E−1

1 = I is assumed for notational reasons.

Lemma 4.2
Assume that A22 has full rank, and that E = ( I 0

0 0 ). Then (4.51) is stabilizable if and only
if

Eẋ = Ax+Bu

is stabilizable in DAE sense, that is, there exists a matrix K ∈ Rp×n such that

Eẋ = (A+BK)x (4.52)

is asymptotically stable according to Section 2.6.2.

Proof: Dai (1989) guarantees the existence of a K such that (4.52) is stable if and only if

rank
(
sE −A B

)
= n, ∀s ∈ C+
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where C+ denotes the closed right half complex plane. Note that C+ does not include
infinity and therefore only finite s are considered. Pre-multiplication with a full rank
matrix gives

rank
(
sE −A B

)
= rank

((
I −A12A

−1
22

0 I

)(
sI −A11 −A12 B1

−A21 −A22 B2

))
= rank

(
sI −A11 +A12A

−1
22 A21 0 B1 −A12A

−1
22 B2

−A21 −A22 B2

)
which proves the lemma since A22 is assumed to have full rank.

In the same way, controllability of (4.51) can be shown equivalent to R-controllability
of the linearization of the DAE model, see Dai (1989).

Lemma 4.3
Assume that A22 has full rank, and that E = ( I 0

0 0 ). Then (4.51) is controllable if and
only if

Eẋ = Ax+Bu

is R-controllable.

Proof: Follows immediately from Theorem 2-2.2 in Dai (1989), since Â and B̂ are the
system matrices for the dynamic part of the linearization.

However, note that in general, the linearization of the DAE need not be controllable
in DAE sense, since that would require full row rank of B2. The intuition for this is that
since there is no memory connected to the algebraic variables x3, it must be possible to
place them arbitrarily using the input pointwise.

Another controllability concept for DAE models is impulse controllability, but it will
not be used in this thesis. However, a linear DAE model with A−1

22 nonsingular, can be
shown to be impulse controllable.

4.6 Examples

In order to illustrate the methods described in this chapter, two small examples are in-
cluded here. The first example is an infinite horizon problem since this makes the nota-
tion less tedious. The second example is a finite horizon problem involving a time-varying
electrical circuit.

4.6.1 A Phase-Locked Loop Circuit

Consider a Phase-Locked Loop circuit (PLL) given by the model

ż1 = z2

ż2 = ez3 − 1 +
1
2
u

0 = z1 − arcsin(1− ez3 +
1
2
u)

(4.53)
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Algorithm 4.1 Computation of the locally optimal solution in practice.

1. Compute the power series expansions of the cost function up to the desired order
mm and the system up to order mm − 1.

2. ComputeL(t, x1, u) andR(t, x1, u) as described in Section 4.3.1 up to ordermm−
1.

3. Solve (4.29) to obtain V [2](t, x1) = xT1 P (t)x1 and u[1]
∗ (t, x1) = D∗(t)x1, or the

corresponding expressions for the infinite horizon case. Use these expressions to
compute L[1](t, x1, u

[1]
∗ ) and R[1](t, x1, u

[1]
∗ ).

4. Create parametrized solutions of V (t, x1) and u∗(t, x1) of desired order, with the
lowest order terms given as above.

5. Substitute the parametrized solutions and the power series of L and R into (4.12)
or (4.44). Let m = 3.

6. Extract the coefficients for terms of order m and m − 1 in the equation for V and
u∗, respectively. Solve the corresponding linear set of equations, which yields V [m]

and u[m−1]
∗ . If m is equal to the mm, then stop iterate.

7. Otherwise, substitute the solution into (4.12) or (4.44), increase m by one, and
repeat from 6.

and let z = (z1, z2, z3). The PLL is used to control an oscillator in order to maintain a
constant phase angle relative to a reference signal. The objective is to find a feedback law
(4.42) which minimizes the performance criterion with the cost function chosen as

L(z, u) =
1
2
z2
1 + 2z1z2 + z2

2 + z1(−ez3 + 1 +
1
2
u) +

1
2
u2 (4.54)

and with the discount factor chosen as λ = 0. The cost function is chosen such that the
problems has an analytic solution.

Grouping the variables as x1 = (z1, z2)
T and x3 = z3 gives a model in semi-explicit

form. The power series of L(x1, u) is therefore obtained simply as the composition of the
power series of F̂1 and R. The system is composed of elementary functions which are
real analytic and Taylor series expansion of F̂1(z, u) and F̂2(z, u) around the origin gives
the first order terms

A =

0 1 0
0 0 1
1 0 1

 , B =

 0
1/2
−1/2

 (4.55)

and the higher order terms up to order three as

F̂1h(z, u) =
(

0
1
2z

2
3 + 1

6z
3
3

)
(4.56a)

F̂2h(z, u) =
1
2
z2
3 +

1
3
z3
3 −

1
4
uz2

3 +
1
8
u2z3 −

1
48
u3 (4.56b)
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The matrix A22 = 1 is nonsingular and Assumption A7 is therefore satisfied. The power
series of R(z1, z2, u) is computed as described in Section 4.3.1 and the result is the first
order terms

R[1](z1, z2, u) = −z1 +
1
2
u (4.57)

and the higher order terms up to order three

Rh(z1, z2, u) = −1
2
z2
1 +

1
2
z1u−

1
8
u2 − 1

6
z3
1 +

1
2
uz2

1 −
1
4
u2z1 +

1
24
u3 (4.58)

The system matrices for the reduced system, i.e., Â and B̂, and the local state variable
change Π can then be computed as

Â =
(

0 1
−1 0

)
, B̂ =

(
0
1

)
, Π =


1 0 0
0 1 0
−1 0 1/2
0 0 1

 (4.59)

Using the power series expansion of R, the power series of L̂ around the origin up to the
fourth order becomes

L(z, u) =
(
z
u

)T Q11 Q12 S1

QT12 Q22 S2

ST1 ST2 R

(z
u

)
− 1

2
z1z

2
3 −

1
6
z1z

3
3 (4.60)

where

Q11 =
(

1/2 1
1 1

)
, Q12 =

(
−1/2

0

)
, Q22 = 0

S1 =
(

1/4
0

)
, S2 = 0, R =

1
2

and the sizes corresponds to the size of x1, x3 and u, respectively. The cost matrix in
(4.60) is indefinite, but after a transformation using Π, the cost matrix for the reduced
model becomes (

Q̂ Ŝ

ŜT R̂

)
=

3/2 1 0
1 1 0
0 0 1/2

 (4.61)

which is positive definite.
Since (Â, B̂) is stabilizable and the cost matrix (4.61) is positive definite, it follows

from Theorem 4.4, that the optimal control problem has a unique analytic solution. The
first terms in the approximation can be computed as described in (4.49) which gives the
result

V [2](x1) =
(
z1
z2

)T ( 1 1/2
1/2 1

)(
z1
z2

)
, u

[1]
∗ (x1) =

(
−1 −2

)(z1
z2

)
(4.62a)

The corresponding closed-loop system matrix becomes

Âc =
(

0 1
−2 −2

)
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with the eigenvalues λ = −1± 1i and asymptotic stability is obtained. The higher order
terms become

V [3](x1) = 0, V [4](x1) = − 1
12
z4
1 (4.62b)

and
u

[2]
∗ (x1) = 0, u

[3]
∗ = 0 (4.62c)

Notice that the problem is symmetric in the sense that the same dynamics, except for
the sign of the control input, are obtained if x1 is replaced by −x1. Therefore, the same
optimal performance criterion should be obtained using the same change of variables.
Thus, it is natural that V [k](x1) = 0 for odd k.

In order to validate the solutions of the power series method the explicit solution to the
optimal control problem is computed, which is possible in this case. The system (4.53)
can be formulated in state-space form as

ż1 = z2

ż2 = − sin(z1) + u

with the cost function given as

L(z1, z2, u) =
1
2
z2
1 + 2z1z2 + z2

2 + z1 sin(z1) +
1
2
u2

By solving the equations (4.44), the explicit expressions are given by

u∗(z1, z2) = −z1 − 2z2 (4.63a)

V (z1, z2) = 2
(
1− cos(z1)

)
+ z1z2 + z2

2 (4.63b)

For u∗(z1, z2) truncation is unnecessary, since the exact solution is a polynomial in z1
and z2 of order one. However, for V (z1, z2), the power series of (4.63b) to the fourth
order is computed as

V (z1, z2) = z2
1 + z1z2 + z2

2 −
1
12
z4
1 (4.64)

Comparison of the power series expansions of the explicit solutions (4.63) with the solu-
tions obtained using the power series method derived in Section 4.4.3, i.e., (4.62), shows
that the same expressions are attained. Figure 4.1 shows a comparison between the opti-
mal solution and a fourth order approximation of it. As can be seen, the difference is not
very large in the plotted region. In Figure 4.2, a third order approximation of the optimal
feedback law is depicted. Though, in this particular case, the optimal solution is of order
one and the approximation will then be of order one too.
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Figure 4.1: The fourth order approximation of V (uC ,Φ) (dark grey) compared with
the optimal solution V (uc,Φ) (light grey) for the PLL example.
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Figure 4.2: The third order approximation of u∗(uC ,Φ) for the PLL example. In
this case the approximation is of order one since that is the order of the optimal
solution.
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4.6.2 An Electrical Circuit

v(t) L

R C

i(t)

vC(t)

vL(t)

vR(t)

Figure 4.3: Electrical ciruit

The electrical circuit, depicted in Figure 4.3, consists of an ideal voltage source, an
inductor with a ferromagnetic core, a capacitor and a resistor. Because of the ferromag-
netic core, the flux of the inductor saturates for large currents. Furthermore, the flux is
assumed to decrease with time and for large currents to model temperature dependence.
The capacitor has a voltage dependent capacitance and the resistor depends both linearly
and cubicly on the current. The complete model can then be written as

u̇C = i
1+10−2uC

(4.65a)

Φ̇ = uL (4.65b)

0 = Φ− arctan(i)
1+10−1t+10−2i2 (4.65c)

0 = uR − i− i3 (4.65d)
0 = u− uR − uC − uL (4.65e)

where uC is the voltage over the capacitor, Φ is the flux, uL is the voltage over the
inductor, i is the current, uR is the voltage over the resistor and u is the voltage over
the voltage source. The dynamic variables are in this case chosen as x1 = (uC ,Φ) and
the algebraic variables are x3 = (i, uL, uR). The control signal is the voltage over the
voltage source u. This model satisfies Assumptions A4, A5, and A6. The cost functions
are chosen as

L(uC ,Φ, i, uL, uR) = i2 + i4 + 1
2u

2

G(uC ,Φ) = 0

with no discount factor and the final time is chosen as T = 4.
Applying the method in Section 4.3 gives the third order approximation of the optimal

cost function as

V (t, uC ,Φ) ≈ p11(t)u2
C + 2p12(t)uCΦ + p22(t)Φ2

+ a30(t)u3
C + a21(t)u2

CΦ + a12(t)uCΦ2 + a03(t)Φ3
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where the coefficients can be found in Figure 4.4. The corresponding second order ap-
proximation of the optimal control feedback is

u∗(t, uC ,Φ) ≈ d1(t)uC + d2(t)Φ + b20(t)u2
C + b11(t)uCΦ + b02(t)Φ2

where the coefficients can be found in Figure 4.5.

0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0 1 2 3 4
−2

−1

0

1

2

3
x 10

−3

Figure 4.4: Left: The second order terms of V – solid: p11(t), dash-dotted: p12(t),
dashed: p22(t), Right: The third order terms of V – star-marked: a30(t), dashed:
a21(t), dash-dotted: a12(t), solid: a03(t)
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Figure 4.5: Left: The first order terms of u∗ – solid: d1(t), dashed: d2(t), Right:
The second order terms of u∗ – solid: b20(t), dash: b11(t), dash-dotted: b02(t)

4.7 Proofs

This section contains the proofs of Theorem 4.3 and Lemma 4.9
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4.7.1 Proof of Theorem 4.3

The discounted case is to a large extent similar to the undiscounted case presented in
Lukes (1969). Nevertheless, there are differences in most of the theorems and lemmas
and their corresponding proofs. Therefore, reformulated versions of each of the theorems
and lemmas are presented in this section. The proofs presented here are however most
often not complete. Instead only the main idea and major differences are included to
keep them short. To simplify the reading, the numbering in Lukes (1969) is presented in
parentheses at the beginning of each proof.

Consider the system
ẋ = F (x, u) (4.66)

and the performance criterion

J
(
x(0), u

)
=

∞∫
0

L(x, u)eλt dt (4.67)

where λ ∈ R is constant and denoted the discount factor. The discount factor λ may be
positive, zero or negative.

Throughout this section, the basic assumption in Assumption A9 will be made, which
here is repeated with minor changes since only state-space models are considered in this
section.

Assumption A10. The considered feedback laws are described by uniformly convergent
power series u(x) = Dx+ uh(x) such that

Re eig(A+BD) < min(0,−λ
2 ) (4.68)

Together with Assumption A8, it follows that the closed-loop system has the form

ẋ = F
(
x, u(x)

)
= (A+BD)x+ Fh

(
x, u(x)

)
(4.69)

where Fh(·) is a uniformly convergent power series around the origin, beginning with
terms of order two. The solution to the closed-loop system will be denoted x(t, x0) where
x0 ∈ Rn is the initial value, that is, x(0, x0) = x0. Sometimes the initial value will be
complex z0 ∈ Cn, and then complex solutions are considered.

Condition (4.68) in Assumption A10 first of all ensure that there exists an invariant
neighborhood around the origin for the closed-loop system. This is essential for the proof.
For a small enough neighborhood, it also ensures the following inequality

|x(t, x0)| ≤ C0e
µt|x0|

for some Re eig(A + BD) < µ < min(0,−λ
2 ). For cases with negative discount or a

discount equal to zero, the convergence rate above will also be enough to ensure conver-
gence of the performance criterion as will be seen later. However, for cases with positive
discount the rate of convergence of x(t, x0) needs to be at least e−λ/2t, which is also
satisfied for control laws that satisfy (4.68).

The main theorem can then be formulated as follows.
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Theorem 4.5 (Theorem 1.1 in Lukes (1969))
Consider a model (4.66) and a performance criterion (4.67) that satisfy Assumption A8.
Furthermore, assume that the quadratic part of the cost function satisfies(
Q S

ST R

)
� 0. Then there exists an optimal feedback law u∗(x) satisfying Assumption A10

if the ARE

0 = (A+ λ
2 I)

TP + P (A+ λ
2 I)− (PB + S)R−1(PB + S)T +Q (4.70)

has a unique positive-semidefinite solution such that matrix A+BD satisfies (4.68) with

D = −R−1(ST +BTP ) (4.71)

The optimal solution solves

0 = Fu
(
x0, u∗(x0)

)
Jx(x0, u∗) + Lu

(
x0, u∗(x0)

)
(4.72a)

0 = λJ(x0, u∗) + F
(
x0, u∗(x0)

)
Jx(x0, u∗) + L

(
x0, u∗(x0)

)
(4.72b)

for all x0 near the origin and is unique in that

1. u∗ is the unique real analytic solution.
2. u∗ is the unique solution satisfying Assumption A10.
3. u∗ synthesizes the unique optimal open-loop control.

The theorem above is formulated in terms of the ARE (4.70). Lemma 4.1 shows some
typical situations when the ARE has a unique solution satisfying the conditions.

The proof of the main theorem includes a number of steps and therefore a brief de-
scription of each step is given. In consecutive steps it is shown that:

• For each u(x) that satisfies Assumption A10, J(z0, u) will converge locally and
satisfy (4.72b).

• Equation (4.72a) can be solved for u when Jx(·) has been replaced by an arbitrary
constant p. The result is denoted u∗(x, p) (i.e., algebraic solvability when p is
independent of u∗, which Jx(·) is not).

• If there exists a u∗(x) that satisfies Assumption A10 and solves (4.72a) with
J(x, u∗), this u∗(x) is the optimal control (here J(x, u∗) denotes the return func-
tion with u∗(x) as feedback law).

• If the ARE (4.70) has a solution that satisfies condition (4.68) with D given
by (4.71), the nonlinear Hamiltonian system (4.78) will have a n-dimensional stable
manifold described by p∗(x). Furthermore, with u∗(x, p∗(x)), the optimal return
will satisfy Jx(x0, u∗) = p∗(x0) and hence (4.72a).

The first part of the proof is to show that for feedback laws satisfying Assumption A10,
the performance criterion will converge and satisfy the HJB.

Lemma 4.4 (Lemma 2.1)
For each feedback law u(x) satisfying Assumption A10 there exists an invariant neighbor-
hood N c

u around the origin in Cn in which J(z0, u) = zT0 Pz0 + Jh(z0) is analytic in z0.
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The function Jh(z0) is a power series beginning with third order terms and converging in
N c
u. The positive definite matrix P is given by

P =

∞∫
0

e(A+BD+λ/2I)T t(Q+ STD +DTSTDTRD)e(A+BD+λ/2I)t dt (4.73)

For z0 ∈ N c
u, J(z0, u) satisfies

0 = λJ(z0, u) + Jz(z0, u)F
(
z0, u(z0)

)
+ L

(
z0, u(z0)

)
(4.74)

The performance criterion J(x0, u) is a real power series for real-valued x0.

Proof: From the eigenvalue condition it follows that there exists a µ such that Re(A +
BD) < µ < min(0,−λ/2). Therefore, there is a neighborhood N c

u of the origin in
Cn where the solution x(t, z0) to (4.69) initiated in N c

u remains in N c
u for all t ≥ 0 and

satisfies the inequality

|x(t, z0)| ≤ C1e
−µt|z0|, 0 ≤ t <∞

The neighborhood N c
u can be chosen small enough so that |u(z)| ≤ C2|z| and

|L
(
z, u(z)

)
| ≤ C3|z|2 for positive numbers C1, C2 and C3. This yields the inequalities

|u
(
x(t, z0)

)
| ≤ C1C2e

µt|z0|, |L
(
x(t, z0), u(x(t, z0))

)
| ≤ C1C3e

2µt|z0|

where 2µ < min(0,−λ). Therefore, the integral

J(z0, u) =

∞∫
0

L
(
x(t, z0), u(x(t, z0))

)
eλt dt (4.75)

converges uniformly in N c
u. Since x(t, z0) and u

(
x(t, z0)

)
are analytic in z0 ∈ N c

u

for each fixed t ≥ 0 and continuous in (t, z0) it then follows that (4.75) is analytic for
z0 ∈ N c

u.
In the same way as in Lukes (1969), it can then be shown that termwise integration of

L
(
x(t, x0), u(x(t, x0))

)
for real valued x0 ∈ NC

u ∩ Rn is possible, yielding the desired
structure of the performance criterion, that is

J(x0, u) = xT0 Px0 + Jh(x0, u)

where P is given by (4.73) and Jh(x0, u) is convergent and begins with third order terms
in x0. Positive definiteness of P follows from the condition on the cost matrix and is not
changed by the factor eλt.

The next step is to show that J
(
z, u(z)

)
and u(z) has to satisfy (4.74). By the unique-

ness of solutions
x
(
s, x(t, z0)

)
= x(s+ t, z0)
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for small |z0| and all t ≥ 0, s ≥ 0, it follows that

J
(
x(t, z0), u

)
=

∞∫
0

L
(
x(s+ t, z0), u(x(s+ t, z0))

)
eλs ds

= e−λt
∞∫
t

L
(
x(v, z0), u(x(v, z0))

)
eλv dv

Differentiation of both sides in the expression above w.r.t. t, which is possible since
J(z, u) is analytic, gives

Jx
(
x(t, z0), u

)
F
(
x(t, z0), u(x(t, z0))

)
= −λJ

(
x(t, z0), u

)
− L

(
x(t, z0), u(x(t, z0))

)
and by setting t = 0, the result is

0 ≡ λJ(z0, u) + Jz0(z0, u)F
(
z0, u(z0)

)
+ L

(
z0, u(z0)

)
for small |z0|.

Lemma 4.5 (Lemma 2.2 in Lukes (1969))
Consider a model (4.66) and a performance criterion (4.67) satisfying Assumption A8.
Then

0 = Lu(x, u) + Fu(x, u)p (4.76)

has a unique analytic solution u∗(x, p) near the origin in R2n for which
u∗(0, 0) = 0. Furthermore,

u∗(x, p) = − 1
2R

−1(2STx+BT p) + u∗,h(x, p) (4.77)

where u∗,h(x, p) is a convergent power series in a neighborhood of the origin beginning
with second order terms.

Proof: See Lukes (1969).

Lemma 4.6 (Lemma 2.4 in Lukes (1969))
Suppose there exists a feedback law u∗(x) that satisfies Assumption A10 for the analytic
system (4.66) and solves (4.72a), that is,

0 = Lu
(
x, u∗(x)

)
+ Fu

(
x, u∗(x)

)
J(x, u∗)

for all x in a neighborhood of the origin in Rn. Then

1. u∗ is the unique analytic solution to (4.72a).

2. u∗ is the unique solution satisfying Assumption A10.

3. u∗ synthesizes the unique optimal open-loop control.
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Proof: Consider the real-valued function defined near the origin in Rn+p

Q(x, u) = λJ
(
x, u∗

)
+ Jx

(
x, u∗)F

(
x, u∗(x)

)
+ L

(
x, u∗(x)

)
Using Lemma 4.4 and equation (4.72a), it can be shown that

Q
(
x, u∗(x)

)
= 0, Qu

(
x, u∗(x)

)
= 0, and Quu

(
x, u∗(x)

)
= 2R � 0

locally around the origin. This means that there exists an ε > 0 such that for |x| < ε and
|u1| < ε,

0 = λJ
(
x, u∗

)
+ Jx

(
x, u∗)F

(
x, u∗(x)

)
+ L

(
x, u∗(x)

)
≤ λJ

(
x, u∗

)
+ Jx

(
x, u∗)F

(
x, u1

)
+ L

(
x, u1

)
with strict inequality for u1(x) 6= u∗(x). The constant ε is also chosen small enough to
ensure that L(x, u) ≥ 0. Let u1(x) be another control law satisfying Assumption A10
and let x∗(t) and x1(t) be solutions to (4.66) for the corresponding feedback laws. Mul-
tiplying both sides with eλt then gives

0 =
d

dt

(
eλtJ

(
x∗(t), u∗

))
+ eλtL

(
x∗(t), u∗(x∗(t))

)
≤ d

dt

(
eλtJ

(
x1(t), u∗

))
+ eλtL

(
x1(t), u1(x1(t))

)
for initial conditions small enough to keep the solutions within an invariant neighborhood
satisfying |x| < ε and |u1(x)| < ε. Integrating the last part gives that

J(x0, u∗) ≤ J(x0, u1) ,

∞∫
0

L
(
x1(t), u1(x1(t))

)
eλt dt

with equality if and only if u1(x) = u∗(x). Here, we have used that

lim
t→∞

eλtJ
(
x∗(t), u∗

)
= lim
t→∞

eλtJ
(
x1(t), u∗

)
= 0

which follows from Assumption A10 for sufficiently small initial values. This shows that
u∗(x) is the unique optimal feedback control and the unique solution to (4.72a).

The last part can be proved as in Lukes (1969) using the same reformulation as above.

The next step is to show that if the ARE (4.70) has a solution which satisfies the
conditions in Theorem 4.5 there will exist a feedback law that satisfies Assumption A10
and solves (4.72a). For this end, the Hamiltonian system is studied. The Hamiltonian
system for this optimal control problem is

ẋ = F
(
x, u∗(x, p)

)
(4.78a)

ṗ = −
(
λ+ Fx(x, u∗(x, p))

)
p− Lx

(
x, u∗(x, p)

)
(4.78b)

where u∗(x, p) is obtained from (4.77) as

u∗(x, p) = −1
2
R−1(2STx+BT p) + u∗,h(x, p)
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Remark 4.1. The Hamiltonian system above is obtained by studying the Hamiltonian

H(x, p̄, u) = L(x, u)eλt + p̄F (x, u)

and using the change of coordinates p̄ = eλtp.

It will prove useful for the nonlinear case to begin with the linear case. However, only
parts needed for the nonlinear case are included. The linear Hamiltonian system in R2n

becomes (
ẋ
ṗ

)
= H

(
x
p

)
(4.79a)

where

H =
(

A−BR−1ST − 1
2BR

−1BT

−2(Q− SR−1ST ) −(A−BR−1ST + λI)T

)
(4.79b)

Lemma 4.7 (Lemma 2.5 in Lukes (1969))
The linear Hamiltonian system (4.79) in R2n transforms into(

ẏ
q̇

)
=
(
Ac 0
0 −(Ac + λI)T

)(
y
q

)
by a nonsingular real linear transformation(

y
q

)
= M

(
x
p

)
where

M =
(
I − 2Q∗P Q∗

2P −I

)
, M−1 =

(
I Q∗

2P 2PQ∗ − I

)
The expression for Ac is given by

Ac = A+BD∗

D∗ = −R−1(ST +BTP )

while Q∗ and P are the positive definite solutions to

0 = (A+ 1
2λI)

TP + P (A+ 1
2λI)− (PB + S)R−1(PB + S)T +Q∗ (4.80a)

0 = (Ac + 1
2λ)Q∗ +Q∗(Ac + 1

2λ)T + 1
2BR

−1BT (4.80b)

Proof: Follows by some cumbersome calculations similar to the calculations in Lukes
(1969).

Then, for linear Hamiltonian systems (4.79) where A + BD becomes Hurwitz there
is a linear invariant manifold in which the origin is asymptotically stable. The manifold is
described by q = 0 or equivalently by p = 2Px. We will denote p on the manifold p∗(x),
i.e., p∗(x) = 2Px. On this manifold the inequalities

|x(t, x0)| ≤ C4e
µt|x0|, |p(t, x0)| ≤ C5e

µt|x0|
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are obtained, where Re eig(Ac) < µ < min(0,−λ/2). Note that, naturally, p∗
(
x(t)

)
solves the Hamiltonian system as well.

Now, the results above can be used to show that there exists an analytic manifold on
which the solutions x(t) and p(t) converge also for the nonlinear case. Moreover, on the
manifold, the convergence is fast enough to obtain a well-defined performance criterion
in a neighborhood of the origin in Rn.

Theorem 4.6 (Theorem 2.7 in Lukes (1969))
Consider the nonlinear analytic Hamiltonian system (4.78). Suppose the ARE (4.70) has
a unique positive semi-definite solution such that, with D given by (4.71), Ac satisfies
(4.68). Then there exists a real n-dimensional analytic invariant manifold S on which the
origin is asymptotically stable and the inequalities

|x(t, x0)| ≤ C6e
µt|x0|, |p(t, x0)| ≤ C7e

µt|x0|

are obtained, where Re eig(Ac)µ < min(0,−λ/2).

Proof: This theorem follows rather straightforwardly from the results about conditional
stability in Coddington and Levinson (1985). In Lukes (1969), their Theorem 4.1 is repro-
duced, but it is only valid when the eigenvalues of the linear Hamiltonian system (4.79)
are separated by the imaginary axis. When λ 6= 0 the eigenvalues are symmetric around
−λ/2 which means that some other cases may happen. However, using different combi-
nations of the theorems in Coddington and Levinson (1985), these cases can be handled
as well.

Consider the nonlinear Hamiltonian system (4.78)(
ẋ
ṗ

)
= H

(
x
p

)
+ r(x, p) (4.81)

where H is given by (4.79b) and

r(x, p) =
(

Bu∗,h + Fh
(
x, u∗(x, p)

)
−2Su∗,h − Lh;x

(
x, u∗(x, p)

)
− Fh;x

(
x, u∗(x, p)

))
From Lemma 4.7, it follows that a linear transformation, defined by the matrix M , exists
such that the eigenvalues of H can be separated as(

ẏ
q̇

)
=
(
Ac 0
0 −(Ac + λI)T

)(
y
q

)
+ rM (y, q)

where
rM (y, q) = Mr

(
M−1(y, q)

)
The function rM (y, q) is differentiable and for every ε > 0 there exists a δ > 0 such that
|rM (y, q) − rM (u, v)| < ε|(y − u, q − v)| for |(y, q)| ≤ δ and |(u, v)| ≤ δ, since the
lowest order terms are of order two. The basic conditions in Theorems 4.1, 4.3, and 4.4
in Coddington and Levinson (1985) are therefore satisfied.

Due to the structure of H , its 2n eigenvalues are symmetric around −λ/2. In order to
use the theorems in Coddington and Levinson (1985), three different constellations of the
theorems are needed.
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The first case is when λ < 0. Then, it is ensured from (4.68) that there are exactly
n eigenvalues in C− and Theorem 4.1 can be applied straightforwardly to prove the re-
sults below. The second case is when λ > 0 and max Re eig(Ac) > −λ. Some of the
eigenvalues to Ac + λI will then belong to C−. However, only n of these correspond
to a convergence that is fast enough and in Theorem 4.4 it is shown that this happens on
a n-dimensional manifold. The third case is when λ > 0 and max Re eig(Ac) < −λ.
Then all the eigenvalues to Ac + λI belong to C+. In this case, Theorem 4.1 ensures that
a stable manifold exists, while Theorem 4.3 guarantees that the convergence rate on the
manifold is the desired.

Hence, the result from all three cases are that there exists an open n-dimensional
invariant manifold S containing the origin such that for sufficiently large t, the solution(
x(t, x0), p(t, x0)

)
on S satisfies

|x(t, x0)| ≤ C8e
µt|x0|, |p(t, x0)

)
| ≤ C9e

µt|x0|

where Re eig(Ac) < µ < min(0,−λ/2). Moreover, for any solution
(
x(t), p(t)

)
not on

S at t = 0, there exists an η > 0 such that any solution satisfying |
(
x(t), p(t)

)
| < η for

t ≥ 0, satisfies

|x(t, x0)| ≥ C10e
µ̄t|x0|, |p(t, x0)| ≥ C11e

µ̄t|x0|

for some µ̄ > min(0,−λ/2).
Since rM is analytic, it also follows that S will be analytic.

A proof of the main theorem can now be presented.

Proof: The only part left to prove is that there exists a solution to (4.72a), i.e.,

0 = Fu
(
x0, u∗(x0)

)
Jx(x0, u∗) + Lu

(
x0, u∗(x0)

)
that satisfy the assumptions because if there is, it is known from Lemma 4.6 that u∗(x) is
the optimal control law.

First, define u∗(x) = u∗
(
x, p∗(x)

)
. In Theorem 4.6, it was shown that the motion of

the nonlinear Hamiltonian (4.78) on S is described by

ẋ = F
(
x, u∗(x)

)
ṗ∗(x) = −

(
λ+ Fx

(
x, u∗(x)

))
p∗(x)− Lx

(
x, u∗(x)

)
for small initial conditions |x0| and where p∗(x) describes the manifold. Note that here,
it has been used that the time derivative of p∗(x) will satisfy the Hamiltonian system.

Using u∗(x), it can be shown that the performance criterion
∫∞
0
L
(
x, u∗(x)

)
eλt dt

is uniformly convergent. To prove this fact, one can use the inequalities obtained in
Theorem 4.6, ∣∣∣∣( x(t, x0)

p∗
(
x(t, x0)

))∣∣∣∣ ≤ C12|x0|eµt

for some Re eig(Ac) < µ < min(0,−λ/2), together with the fact that L is at least
quadratic in x and u.
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The next step is to show that p∗(x0) = p∗
(
x(0)

)
is equal to Jx(x0, u∗). First note

that ∣∣∣∂x(t, x0)
∂x0

∣∣∣ ≤ C13e
µt

which can be found by studying the corresponding sensitivity ODE for which the lin-
earization has the eigenvalues given by eig(Ac).

The uniform convergence together with the continuity and analyticity of the functions
in the integrand permit the following differentiation when the initial conditions are real

∂J(x0, u∗)
∂x0

=
∂

∂x0

∞∫
0

L
(
x, u∗(x, p∗(x))

)
eλt dt

=

∞∫
0

( ∂x
∂x0

∂L(x, u∗)
∂x

+
∂u∗
∂x0

∂L(x, u∗)
∂u∗

)
eλt dt

=
[
∂L(x, u∗)

∂x
= −λp∗(x)− ṗ∗(x)−

∂F (x, u∗)
∂x

p∗(x)
]

=

∞∫
0

∂x

∂x0
e

λ
2 t
(
− λ

2
e

λ
2 tp∗(x)− e

λ
2 tṗ∗(x)

)
+

∂x

∂x0

(
− ∂F (x, u∗(x))

∂x
p∗(x)e

λ
2 t − λ

2
e

λ
2 tp∗(x)

)
+
∂u∗
∂x0

∂L(x, u∗)
∂u∗

eλt dt

=
[
λ

2
e

λ
2 tp∗(x) + e

λ
2 tṗ∗(x) =

d

dt

(
e

λ
2 tp∗(x)

)
,
∂L(x, u∗)
∂u∗

= −∂F (x, u∗)
∂u∗

p∗(x)
]

=
[
− ∂x

∂x0
e

λ
2 tp∗(x)e

λ
2 t

]∞
0

+

∞∫
0

(λ
2
e

λ
2 t
∂x

∂x0
+ e

λ
2 t
d

dt

∂x

∂x0

)
p∗(x)e

λ
2 t

+
∂x

∂x0
e

λ
2 t
(
− ∂F (x, u∗(x))

∂x
− λ

2
)
e

λ
2 tp∗(x)−

∂u∗
∂x0

∂F (x, u∗(x))
∂x

p∗(x)eλt dt

=
[
d

dt

∂x

∂x0
=

∂

∂x0

dx

dt
=
∂F (x, u∗)
∂x0

]

= p∗(x0) +

∞∫
0

( ∂F (x, u∗)
∂x0

− ∂x

∂x0

∂F (x, u∗(x))
∂x

− ∂u∗
∂x0

∂F (x, u∗)
∂u∗︸ ︷︷ ︸

≡0

)
eλtp∗(x) dt

= p∗(x0)

This means that with p∗(x) from the nonlinear Hamiltonian and u∗(x) = u∗
(
x, p∗(x)

)
,

Jx(x0, u∗) is equal to p∗(x0) for small |x0|. The control law u∗(x0, p∗(x0)) is chosen to
satisfy

0 = Lu
(
x0, u∗(x0)

)
+ Fu

(
x0, u∗(x0)

)
p∗(x0)

which since p∗(x0) = Jx
(
x0, u∗(x0)

)
becomes (4.72a) and the existence of a solution is

proved.
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4.7.2 Proof of Lemma 4.9

In this section, Lemma 4.9 is proved. The proof will use the Kronecker product and
properties for such expressions. Therefore, some short facts about Kronecker products
are first presented. A more thorough description of this topic can be found in Graham
(1981).

Consider the matrices A ∈ Rn×m and B ∈ Rp×q. The Kronecker product is then
defined as

A⊗B =

a11B a12B . . . a1mB
...

...
...

an1B an2B . . . anmB


Based on the definition some basic algebraic rules follows

A⊗B ⊗ C = (A⊗B)⊗ C = A⊗ (B ⊗ C)
(A+B)⊗ (C +D) = A⊗ C +A⊗D +B ⊗ C +B ⊗D

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

The following lemma will be useful in the main proof.

Lemma 4.8
Consider a set of matrices Ai, i = 1, . . . , n. Let the eigenvalues of matrix Ai be denoted
λi,j , i = 1, . . . , n. Then the eigenvalues of

A1 ⊗ I ⊗ . . .⊗ I + I ⊗A2 ⊗ . . .⊗ I + . . .+ I ⊗ I ⊗ . . .⊗An

are given by
n∑
i=1

{λi,j}

where {λi,j} denotes the set of all eigenvalues of matrix Ai. That is, the eigenvalues of
the total matrix are all the sums that can be made by combining one arbitrary eigenvalue
from each matrix.

Proof: The proof follows easily as an extension of (Graham, 1981, Result XIV, Sec-
tion 2.4), by noting that

(A1 ⊗ I ⊗ . . . I + I ⊗A2 ⊗ . . . I + . . .+ I ⊗ I ⊗ . . .⊗An)(x1 ⊗ x2 ⊗ . . .⊗ xn) =
A1x1 ⊗ x2 ⊗ . . .⊗ xn + x1 ⊗A2x2 ⊗ . . .⊗ xn . . .+ x1 ⊗ x2 ⊗ . . .⊗Anxn

The main lemma can now be formulated.

Lemma 4.9
Let Pm(x) andQm(x) be homogeneous polynomials of orderm ≥ 3, λ be a real constant
and Ac be a real square matrix of size n by n with eigenvalues eigi, i = 1, . . . , n. Then
an equation of the form

λPm(x) + Pm;x(x)Acx = Qm(x) (4.82)
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for all x in a neighborhood, can be solved uniquely for the coefficients in Pm(x) if and
only if

λ+
n∑
k=1

{eigi} 6= 0 (4.83)

where {eigi} is the set of the eigenvalues. That is, no sum of n arbitrary chosen eigenval-
ues are allowed to equal −λ.

In the case with λ = 0, the lemma was proved in Lyapunov (1992). However, below
a general proof is presented.

Proof: Let
Pm(x) = vTPx

{m}, Qm(x) = vTQx
{m}

where
x{m} = x⊗ x⊗ . . .⊗ x︸ ︷︷ ︸

m

and vQ is a given vector. The term Pm;x(x)Acx can then be obtained as

Pm;x(x)Acx =
d

dt
Pm(x) = vTP

d

dt
x{m} = ẋ⊗ x⊗ . . .⊗ x+ . . .+ x⊗ x⊗ . . .⊗ ẋ

= Acx⊗ x⊗ . . .⊗ x+ . . .+ x⊗ x⊗ . . .⊗Acx

= vTP (Ac ⊗ I ⊗ . . .⊗ I + . . .+ I ⊗ I ⊗ . . .⊗Ac)x{m}

Since (4.82) must hold identically for x in a neighborhood of the origin in Rn, an equiv-
alent equation for the coefficients in (4.82) is

vTP
(
eig I +Ac ⊗ I ⊗ . . .⊗ I + I ⊗ I ⊗ . . .⊗Ac

)
= vTQ

From Lemma 4.8, it follows that a unique solution for vP exists if and only if (4.83) is
satisfied.

For the case with λ = 0, the most common sufficient condition is that all eigenvalues
of Ac are Hurwitz. Then the sum will have a strictly negative real part. In the more
general case, condition (4.68) will be used most.





5
Rational Approximation of Optimal

Feedback Laws

In Chapter 4, optimal control was considered for systems that can be described by conver-
gent power series. It was shown that under quite natural assumptions, the optimal solution
exists. Furthermore, a computational procedure was presented based on series expansion.
The advantage of the method in the latter chapter is that, theoretically, the optimal solu-
tion can be calculated. However, in practice the optimal return function and feedback law
need to be truncated. This chapter deals with some issues that have been seen for these
truncated approximations. One such issue is that the truncated solution tends to have bad
properties for large values of |x|, for example that it most often grows too fast towards
infinity.

The method considered in this chapter will instead approximate the optimal cost by a
rational function. The advantages of using rational functions are several. One advantage
is that the rational approximant can be chosen such that its Taylor series matches the
Taylor series of the optimal solution to some desired order. This means that the fit with
the optimal solution will be good for small |x|. At the same time the rational approximant
can be required to have a predefined rate of growth for large |x|. Another advantage seen
from examples is that sometimes the Taylor series of the rational approximant matches
the optimal solution to a higher order than used in the computations. However, the major
drawback is that it normally comes with a higher computational complexity.

The computational method derived in this section is similar to the method described
in Vannelli and Vidyasagar (1985) for estimating the region of attraction for nonlinear
systems. Other computational methods to find approximate solutions can be found in for
example Beard et al. (1998).

The structure of the chapters is as follows. First a brief problem formulation is pre-
sented in Section 5.1. Then the main method is derived in Section 5.2. The method is
based on nonconvex optimization. Therefore, another method is presented in Section 5.3
which is used to find initial guesses to the optimization. Finally, some examples and
conclusions are presented in Section 5.4 and 5.5, respectively.

97
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5.1 Problem Formulation

Consider an optimal control problem

V (x0) = inf
u(·)

∞∫
0

L(x, u) dt

s.t. ẋ = F (x, u)
x(0) = x0 ∈ Ωx

(5.1)

where x ∈ Rd, u ∈ Rp and Ωx is a neighborhood of the origin. To simplify the notation,
the model is assumed to be control-affine

ẋ = f(x) + g(x)u (5.2)

and the cost function is assumed to have the structure

L(x, u) = l(x) +
1
2
uTRu (5.3)

The derived method will rely on the series expansions of f , g and l, and therefore
these functions are assumed to satisfy Assumption A8. That is, to be real analytic in a
neighborhood of the origin. To obtain a well-defined solution to the ARE, the following
assumption is also introduced.

Assumption A11. The linearization of (5.2), i.e.,

ẋ = Ax+Bu

is stabilizable. Furthermore, the matrix Q in

l(x) = xTQx+ lh(x)

and the matrix R in (5.3) are positive semi-definite and positive definite, respectively.

In Section 4.4, the optimal control problem (5.1) was solved under rather natural as-
sumptions to obtain V (x) and u∗(x) in a neighborhood of the origin expressed as power
series. The optimal solution most often requires an infinite number of terms to be de-
scribed and the solution used in practice is therefore truncated. In simulations, various
drawbacks with the truncated power series solution have been noticed. First, it often
tends to grow too fast compared with the optimal. Second, it is rather common that the
approximation turns negative outside a quite small region which the optimal is not, since
the cost function is always positive. Third, the region in which the truncated feedback law
stabilize the system may be small.

The objective in this chapter is therefore to find approximate solutions that in many
cases have better properties over a larger region. For that reason, another parametrization
of the optimal return function is studied, namely rational functions

Vr(x) =
RV (x)

1 +QV (x)
(5.4)
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where

RV (x) = R
[2]
V (x) +RV,h(x) =

1
2
xTPx+RV,h(x) (5.5a)

QV (x) = Q
[1]
V (x) +QV,h(x) = Tx+QV,h(x) (5.5b)

and where RV,h and QV,h are polynomials beginning with orders three and two, respec-
tively.

The advantage of the rational functions is that while being able to match Taylor series
of the optimal solution up to some desired order, it is possible to specify the growth
rate for large |x| by choosing the difference between the order of the numerator and the
denominator. In this chapter, the difference in the order between RV (x) and QV (x) will
always be chosen as two. The motivation for this choice is that it often gives rather good
approximations. However, note that by choosing the coefficients in the polynomials, the
difference in order may change which means that different growth rates can be obtained.

5.2 Rational Approximation Based on Optimization

In this section, a method is derived which relies on that the HJB is rewritten as a set of
equations, whose solution is parametrized in the denominator coefficients. The advantage
of this approach is that the coefficients to arbitrary high order terms of the HJB can be
reduced and the rational approximant will still have the same power series up to some
desired order.

5.2.1 Derivation of the Equations

The optimal solution to (5.1) is given by the HJB. For this class of optimal control prob-
lems, it was shown in Section 2.7.3, that the HJB will take the form

0 = H
(
x, V (x)

)
= l(x) + Vx(x)f(x)− 1

2
Vx(x)g(x)R−1g(x)TVx(x)T (5.6a)

u(x) = −R−1g(x)TVx(x)T (5.6b)

where the expression for the optimal feedback law is explicit. The objective is now to find
the Vr(x) that satisfies (5.6a) up to some given order. For this end, the derivative of Vr(x)
with respect to x is needed.

Vr;x(x) =
Vr;x,n
Vr;x,d

=
(1 +QV )RV ;x −RVQV ;x

(1 +QV )2
(5.7)

If (5.7) is substituted into (5.6a), the following equation is obtained

0 =
1

V 2
r;x,d

((1
2
xTQx+ lh

)
V 2
r;x,d + Vr;x,n(Ax+ fh)Vr;x,d −

1
2
Vr;x,ngR

−1gTV Tr;x,n

)
(5.8)

where the numerator will be denoted H̃
(
x, Vr(x)

)
. This equation should be satisfied

for all x in a neighborhood of the origin, which is equivalent to H̃
(
x, Vr(x)

)
= 0 in
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a neighborhood up to the given order. Since different powers of x are independent, all
coefficients in H̃ must equal zero.

A more thorough examination of H̃ shows that the coefficients corresponding to the
second order terms form the standard ARE

0 = ATP + PA− PBR−1BTP +Q

while the terms of a general order m ≥ 3 will have the structure

R
[m]
V ;xAcx+M1Qm−2 −R

[2]
V Q

[m−2]
V ;x Acx =

ξ
(
R

[m−1]
V , . . . , R

[m−4]
V , Q

[m−3]
V , . . . , Q

[m−5]
V

)
(5.9)

where

Ac = A−BR−1BTP

M1(x) = xT
(
P (3A−BR−1BT ) + 2Q

)
x

and ξ is a function determined by the functions f , g, l, and R.
To study the solvability of (5.9), Lemma 4.9 can be used. Based on this lemma, the

following result is easily shown.

Lemma 5.1
Assume thatAc is a Hurwitz matrix. For given values ofR[2]

V ,..,R[m−1]
V andQ[1]

V ,..,Q[m−3]
V ,

equation (5.9) is a linear system of equations for the coefficients inR[m]
V andQ[m−2]

V . The
null space of the associated linear map has a dimension equal to(

n+m− 3
n− 1

)
(5.10)

In particular R[m]
V is uniquely determined after an arbitrary choice of Qm−2.

Proof: The size of the null space corresponds to the number of coefficients in QV of
order m− 2. The solvability follows from Lemma 4.9.

To understand the approximating properties of Vr, the following result can be useful.

Lemma 5.2
Assume that Assumption A8 and A11 are satisfied. LetW be an analytic function such that
W (0) = 0, Wx(0) = 0 and suppose that H

(
x,W (x)

)
has a series expansion beginning

with terms of order m + 1. Then W and V have identical series expansions up to and
including terms of order m.

Proof: The optimal return function V has to satisfy (5.9) with QV = 0, RV = V . Under
Assumptions A8 and A11, it follows that V [2], . . . , V [m] are uniquely determined by the
requirement that terms of order up to and including m in H are zero. Since the solution
is uniquely determined, W must have the same Taylor series up to the given order.

From the lemma above, the following useful lemma can be proved.
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Lemma 5.3
Let

R
[m]
V (x), m = 2, . . . ,mo

Q
[m]
V (x), m = 1, . . . ,mo − 2

satisfy (5.9). Then Vr and V have the same series expansions for terms of orders up to
and including mo.

Proof: The expression for H
(
x, Vr(x)

)
will have the structure

H
(
x, Vr(x)

)
=

H̃
(
x, Vr(x)

)(
1 +QV (x)

)4
as was seen in (5.8). By construction, the terms in H̃ of orders less than or equal to mo

are zero. Since the expansion of the denominator begins with 1, this is true for H as well.
The lemma is then a consequence of Lemma 5.2.

5.2.2 Choice of Denominator

It is known from Chapter 4 that the HJB (5.6) can be solved by a polynomial. The extra
degrees of freedom obtained by introducing a denominator in Vr(x) gave a null space. In
Lemma 5.1, it was shown that for a given QV , the terms in RV will be determined. It
means that the denominator can be chosen arbitrarily. Letm be the order of the nominator.
Then the number of free parameters, or with other words, the number of coefficients in
Q
m−2]
V , becomes (m+n−2

n )− 1 (can be shown using mathematical induction).
The free parameters can be used for different purposes, such as reducing extra terms

in (5.6a), or to obtain a Vr(x) that does not tend to infinity too fast etc. In the first case,
it is beneficial, at least from a reduction point of view, to have a large number of free
parameters. However, the obtained minimization problem may become tough and it may
therefore be advantageous to fix some parameters. In some cases, it may even be possible
to obtain a reasonably good approximation even with all parameters chosen as constants.
Below, a few different choices of how to choose the free parameters are discussed.

All Parameters Free

The most general choice of denominator is of course to let all coefficients in QV be free.
In this case, all of them can be used to reduce higher order coefficients in H̃ , but the
obtained optimization problem grows rapidly with the desired order and the number of
states.

Denominator with Fixed Highest Order Term Coefficients

To reduce the computational complexity, some of the parameters can instead be chosen
as constant values. One such choice is to let the highest coefficients be for example
1/(m − 2)! and let the other coefficients be free. The main motivation for this choice
is that the denominator of Vr(x) becomes positive for both large and small |x|, since for
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large |x| the highest order term is dominating while for small |x| the constant term is
dominant.

Denominator with All Coefficients Fixed

The choice which gives the easiest problem to solve is to let all coefficients in QV be
fixed. The result is a well-determined system of equations to solve, similar to the case in
Chapter 4, and no optimization is required. In principle, it also means that the obtained
problem will be as simple to compute as the ordinary power series method. Despite
the simplicity, this choice can sometimes give approximations that are better than the
truncated power series as will be seen in Section 5.4.

One choice that may be interesting to test is for example (x− α)(x+ β)(1 + xm−4),
if the cost function has limits at x = −α and x = β.

5.2.3 Minimization of Higher Order Terms

If not all coefficients in the denominator are chosen as constants, a minimization problem
can be formulated that reduces the coefficients corresponding to terms in the HJB of
higher orders than m.

Denote the higher order terms, i.e., terms in H̃
(
x, V (x)

)
of degree m + 1 or higher,

as Em(x). That is, if

Vrm(x) =
R

[2]
V (x) + . . .+R

[m]
V (x)

1 + . . .+Q
[m−2]
V (x)

(5.11)

where R[i]
V and Q[i−2]

V , i = 3, . . . ,m satisfy (5.6a), are substituted into (5.8) the result is

0 = H̃
(
x, Vrm(x)

)
= terms of degree ≥ m+ 1︸ ︷︷ ︸

Em(x)

The vector with the coefficients of the polynomial Em(x) will be denoted em.
The number of free parameters should be compared with the number of coefficients

in Em(x). The number of terms in Em(x) can be very large and therefore, Em(x) is
truncated at some additional ordermh. That is, m+mh is the maximal order of the terms
in the HJB that is suppressed. The parameter excess Cpe will then be given by

Cpe =
(
m+ n
n

)
−
(
m+mh + n

n

)
(5.12)

IfCpe is larger than zero, i.e., if the number of free parameters is larger than the number of
coefficients, and if the parameters enter the problem in an appropriate way, it is sometimes
possible to zero some of the higher order coefficients exactly using an equation solver. For
scalar problems of orders not too high, this approach seems to work rather well. However,
for larger scalar problems and non-scalar problems, it is quite common that the equation
solver requires a huge amount of time or that no solution is returned at all.

Therefore, another approach is used where the higher order coefficients in the HJB are
minimized using a numerical optimization routine. The advantage of this approach is that
if a set of coefficients exists such that the higher order terms are zeroed, the optimization
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often finds them. On the other hand, if no such solution exists, for example in a case
when the parameter excess Cpe is negative, i.e., the number of parameters are fewer than
the number of terms in Em(x), the optimization will still try to give a solution with |em|2
as small as possible.

The recursive equation (5.9) is equivalent to the under-determined linear system of
equations

AmYm = bm (5.13)

where

Ym = (yR,3, yQ,1, yR,4, yQ,2, . . . , yR,m, yQ,m−2)T

Am =


Am,1(yR,2) 0 . . . 0

0 Am,2(yR,2) . . . 0
...

...
. . .

...
0 0 . . . Am,m(yR,2)

 ,

bm =


bm,1(yR,2)

bm,2(yR,2, yR,3, yQ,1)
...

bm,m(yR,2, . . . , yR,m−1, yQ,m−3)


and yR,i and yQ,i are the unknown coefficients in R[i]

V (x) and Q[i]
V (x), respectively. The

vector yR,2 contains the coefficients in R[2]
V which is P , and is therefore computed using

the standard ARE. The matrices Am,i(·) and bm,i(·) are functions determined by the
left-hand and right-hand side of (5.8), respectively.

The optimization problem is then formulated as

min
Ym

|em(Ym)|2

s.t. AmYm = bm

The optimization problem can be solved either as constrained or unconstrained. To moti-
vate this fact, let i = 3. Then, if the coefficients in the denominator yQ,1 are considered
as parameters, it was shown in (5.9) that only linear equations need to be solved in order
to obtain the coefficients in the nominator yR,3 expressed in terms of yQ,1. Furthermore,
in Lemma 5.1, it was shown that the solution is unique. Repeating this procedure for the
higher indices means that (5.13) is solved recursively. The coefficients yR,i, i = 3, . . . ,m,
will only depend on yQ,j , j ≤ i−2. The result is the unconstrained optimization problem

min
yQ

|em(yQ)|2 (5.14)

where yQ is the concatenation of yQ,i, i = 1, . . . ,m − 2. In this thesis, mostly the
unconstrained approach has been used. However, there might be structural benefits with
keeping the constraints, since simpler expressions in em will be obtained in that case.

The optimization problem (5.14) is polynomial, and normally it becomes nonconvex.
For small m, d, and mh, it is possible to solve the problem globally using for example
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sum-of-squares relaxations and YALMIP, see Löfberg (2008). In this case, it is quite
important in order to reduce the computational complexity, to rewrite the problem as

min
yQ,Ysos

|Ysos|2

s.t. em(yQ) = Ysos

where Ysos are extra variables, one for each term in em, used to reduce the maximal order
of the functions involved.

However, for medium-sized m, n and mh, the expressions in em becomes large and
rather involved. In this case, the global methods seem to be too computationally demand-
ing, and it is necessary to search for a local minimum instead. Then, the initial conditions
become important. The good news is that numerical experience shows that often a local
optimum can be found such that the corresponding approximant match the optimal solu-
tion well (depending on the choices made in the next section). A fact that also simplifies
the problem is that the unconstrained problem (5.14) is a nonlinear least-squares problem.
This is a structure which in many solvers, such as the solver in Maple, can be utilized to
reduce the computation time.

5.2.4 Design Choices in the Minimization

The optimization problem (5.14) involves a number of different design choices. One is the
denominator choice of Vr, discussed in Section 5.2.2. Below some other of the choices
are mentioned.

The Order of f , g and l

The first design choice is the order of the functions that describe the model and the cost
function. It is possible to have arbitrary orders of f , g and l as long as the orders are larger
than or equal to m− 1, m− 1 and m, respectively. Otherwise, the power series solution
up to the desired order m will not be correct as was shown in Chapter 4. The standard
choice in the simulations presented in this thesis, see Section 5.4, have been to truncate at
order m+mh.

Order of Em

Another design parameter is the truncation degree of Em(x). From (5.8), it follows that
the maximal degree that may show up in Em(x) is given by

max
(
ml + 4(m− 2),mf + 4m− 7, 2mg + 4m− 6

)
wheremf ,mg andml are the orders of f , g and l, respectively. This number is often quite
large and therefore it is necessary to truncate Em(x) to obtain a solvable optimization
problem. The truncation also implies that higher order terms in Em(x) are considered
irrelevant.

The most basic choice of mh is to choose the value for which the parameter excess
switches from positive to negative. Then, the optimal em will be zero, i.e., all higher
terms are zeroed. However, in many cases it is possible to obtain better approximations
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by increasing mh even more. In this case, em will in general not equal zero since the
number of free parameters are less than the number of coefficients, but still this choice
is often good. Actually, in some cases one can gain a lot by increasing mh, without
changing m. It means that information from higher order terms are included in the lower
order approximant. For example, this is the case in Section 5.4.3.

However, a small remark is that sometimes it seems like main difficulty is not the
number of terms itself but the complexity of the coefficients due to the reduction of the
problem to an unconstrained problem.

Initial Values

Since the optimization problem (5.14) mostly is nonconvex, the choice of initial values
is important. In this thesis, the default choice is to generate a number of vectors with
uniformly distributed random numbers in the interval [−3, 3]. The optimization prob-
lem (5.14) is then solved for each of them as initial guess, and the best solution is chosen
as the optimum. The number of different vectors can be chosen, but the standard choice
is two.

Another choice is to use the direct approximation, see Section 5.3, as the initial guess.
In many cases, the direct approximation has proved to be better to use than the random
vectors.

General Comments

Normally, many of the computed coefficients will be close to machine precision or at
least small compared to the other coefficients. These terms increase the complexity of
the approximant which is undesired. Therefore, coefficients smaller than some given
threshold, are often truncated. Numerical computations show that even if a rather harsh
truncation is performed, which will yield an slightly erroneous Taylor series compared to
the optimal, the approximation will overall often be fairly good. In practice, this might be
important.

Another comment concerns the issue that sometimes the denominator may be sin-
gular within the region where the approximate solution is supposed to be used. In the
sum-of-squares framework, it is possible to include the constraint QV (x) > 0. In the
local optimization framework, there are no simple conditions to add in order to obtain a
positivity certificate. A simple solution is to include the constraints QV (xi) > 0, where
xi are points on a grid, but of course, this does not give sufficient conditions. In the
presented examples, no such constraints have been included since it was not necessary.

5.2.5 Stability

One of the major objectives for a controller is to stabilize the system. The controller
obtained from the method in this chapter can be shown to yield stability at least locally in
a neighborhood as shown in the following theorem.

Theorem 5.1
Consider a nonlinear system in the form (5.2) that satisfy Assumptions A8 and A11. Let
Vrm(x) in (5.11) solve (5.8) up to orderm and let the corresponding control law be given
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by (5.6b). Then this feedback law will stabilize the system locally in a neighborhood of
the origin, and the cost function Vrm(x) will be a Lyapunov function for the closed-loop
system

ẋ = f(x)− g(x)R−1g(x)TVrm;x(x)T

Proof: First note that the cost function Vrm(x) can be expanded around zero yielding

Vrm(x) =
1
2
xTPx+ Vrm,h(x)

and the time derivative of Vrm(x) using the feedback law (5.6b) becomes

V̇rm = Vrm;x(f − gR−1gTV Trm;x) = −l − 1
2
Vrm;xgR

−1gTV Trm;x +
Em

V 2
rm;x,d

where Vrm;x,d is the denominator of Vrm;x. The series expansion of the first two terms in
the expression above is given by

l +
1
2
Vrm;xgR

−1gTV Trm;x =
1
2
xT (Q+ PBR−1BTP )x+O(x)3

and since Em(x) contains terms beginning with order m + 1, it follows that for x in
a neighborhood of the origin, the optimal return function will satisfy Vrm(x) > 0 and
V̇rm(x) < 0. That is, the function Vrm(x) will be a Lyapunov function for the closed-
loop system and u = −R−1g(x)TVrm;x(x)T is a stabilizing control law.

Hence, the controller stabilizes the system locally around the origin, similar as for the
power series approximation, see Lukes (1969). However, as for the power series method,
no estimate of the region of attraction is obtained by the method. If such an estimate
is desired, one has to use some other method, see for example Vannelli and Vidyasagar
(1985).

5.2.6 Extension to General State-Space Models

In the earlier sections, only control-affine systems and cost functions with a quadratic
dependence of the controls were considered. However, the results are also possible to
extend to a more general class of optimal control problems where the system is

ẋ = F (x, u) = Ax+Bu+ Fh(x, u) (5.15)

and the cost function is

L(x, u) =
1
2
xTQx+ xTSu+

1
2
uTRu+ Lh(x, u) (5.16)

For notational reasons only the single-input case is considered, but the method should
be possible to extend to the multi-input case as well. As in the former section, F and L
are assumed to satisfy Assumption A8.
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In this case, it is not possible to solve the HJB for u explicitly to get a single nonlinear
PDE as in (5.6a). Instead, it is necessary to consider the system of equations

0 = L(x, u) + Vx(x)F (x, u) (5.17a)
0 = Lu(x, u) + Vx(x)Fu(x, u) (5.17b)

which have to be satisfied for all x in a neighborhood of the origin. Let Vr and ur be
given by

Vr(x) =
RV (x)

1 +QV (x)
, ur(x) =

Ru(x)
1 +Qu(x)

(5.18a)

where

RV (x) =
1
2
xTPx+RV,h(x) (5.18b)

QV (x) = Q
[1]
V (x) +QV,h(x) (5.18c)

and

Ru(x) = Dx+Ru,h(x) (5.18d)

Qu(x) = Q[1]
u (x) +Qu,h(x) (5.18e)

The terms RV,h(x) and Ru,h denote terms of order at least three and two, respectively,
while QV,h(x) and Qu,h are both of order at least two.

If the parameterizations in (5.18) are substituted into (5.17) and the equations are
multiplied with a polynomial factor as

0 =
(
1 +Qu(x)

)mm
(
1 +QV (x)

)2(
L(x, u) + Vx(x)F (x, u)

)
(5.19a)

0 =
(
1 +Qu(x)

)mm−1(1 +QV (x)
)2(

Lu(x, u) + Vx(x)Fu(x, u)
)

(5.19b)

the result is two polynomial equations. Since these equations are supposed to be satisfied
for all x in a neighborhood of the origin, coefficients corresponding to different orders all
need to be zero. Therefore, if the second order terms are extracted from (5.19a), and the
first order terms from (5.19b), we obtain the equations

0 = Q+ (S + PB)D +DT (ST +BTP ) + PA+ATP +DTRD

0 = D +R−1(ST +BTP )

which is the standard ARE. The higher order terms of Vr and ur are solved from higher
order terms in (5.19), and after rather cumbersome calculations, the expressions corre-
sponding to the terms of order m and m− 1, respectively, become

R
[m]
V ;xAcx+M1Q

[m−2]
u +M2Q

[m−2]
V −R

[2]
V Q

[m−2]
V ;x Acx =

ξ1
(
R
m−1]
V , Rm−2]

u , Q
m−3]
V , Qm−3]

u

)
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and

RR[m−1]
u +R

[m]
V ;xB +M3Q

[m−2]
u +M4Q

[m−2]
V −R

[2]
V Q

[m−2]
V ;x B =

ξ2
(
R
m−1]
V , Rm−2]

u , Q
m−3]
V , Qm−3]

u

)
where

M1(x) = xT
(
mm

2 Q+ (mm − 1)SD + mm−2
2 DTRD +mmPA+ (mm − 1)PBD

)
x

M2(x) = xT
(
Q+ 2SD +DTRD + PA+ PBD

)
x

M3(x) = xT
(
(m− 1)S + (m− 2)DTR+ (m− 1)PB

)
M4(x) = xT

(
2S + 2DTR+ PB

)
for m = 3, . . . ,mmax and where Ac = A − BR−1BTP and ξi, i = 1, 2 are functions
determined by the model and cost function.

This means that Lemma 5.1 can be generalized to general state-space models as fol-
lows.

Lemma 5.4
Assume that Ac is a Hurwitz matrix and that R is positive definite. For given expressions
of RV , QV , Ru and Qu up to orders m − 1, m − 3, m − 2 and m − 3, respectively,
equation (5.9) is a linear system of equations for the coefficients inR[m]

V , Q[m−2]
V , R[m−1]

u

and Q[m−2]
u . The null space of the associated linear map has a dimension equal to

2
(
n+m− 3
n− 1

)
(5.21)

In particular R[m]
V and R[m]

u are uniquely determined after an arbitrary choice of Q[m−2]
V

and Q[m−2]
u .

Proof: The size of the null space corresponds to the number of coefficients in Q[m−2]
V

and Q[m−2]
u . The solvability follows from Lemma 4.9.

The conclusion is therefore that also the general case can be solved in the same way.
However, the number of free parameters is larger than before, and thereby a tougher
optimization problem need to be solved.

5.3 Direct Approximation

Another method that can be used to compute a rational approximation is Padé approxima-
tion, see Chisholm (1973); Cuyt and Wuytack (1987); Guillaume et al. (1998); Guillaume
and Huard (2000). The idea is to find a rational function that matches the power series
solution up to some desired order. Let the series expansion of the optimal return function
be computed using the method in Chapter 4, and form the following equation

V (x)
(
1 +QV (x)

)
= RV (x) (5.22)
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where RV (x) and QV (x) are given by the expressions in (5.5). In standard multivari-
ate Padé approximation, the number of equations obtained from (5.22) should equal the
number of parameters in RV and QV .

In this thesis, a similar approach has been used, mainly to generate initial guesses to
the minimization (5.14). Let RV and QV be chosen as in (5.5), with orders m and m− 2,
respectively. This choice is made to ensure that the solution has the same structure as used
in the optimization. The order of V is then a design parameter chosen as m+mh and the
equations in (5.22) are truncated at the same order.{

V (x)
(
1 +QV (x)

)
−RV (x)

}[k]

= 0, k = 2, . . . ,m+mh (5.23)

The obtained set of equations will be linear in the parameters in RV and QV , and can be
written as

k−2∑
i=1

V [k−i](x)Q[i]
V (x) + V [k](x)−R

[k]
V (x) = 0, k = 2, . . . ,m

m−2∑
i=1

V [k−i](x)Q[i]
V (x) + V [k](x) = 0, k = m+ 1, . . . ,m+mh

The set of equations above is solved in a least-squared sense, because it is not certain
that a solution exists. First, the set of equations can be under-, well- or over-determined,
depending on the choice of mh. Second, it is assumed that Q[0]

V (x) = 1, because it gives
a rational approximation that is well-behaved locally around the origin. This assumption
leads to that even for the under-determined case, there may be no solution to the equations,
unless mh = 0.

However, if the residuals obtained from the least-squares solution become small, the
obtained rational approximation seems to be a very good initial guess, and the compu-
tational complexity is fairly small. Moreover, if the residuals become zero, the rational
approximation will have the same Taylor series as V up to order m+mh.

5.4 Examples

In this section three examples are presented. The first example is a scalar problem which
comes from Navasca (1996). In this example the cost function includes a barrier function
on the state. The second and third examples are multivariable problems. The second one
is a physical system, namely a nonlinear phase-locked loop, while the third example is
a purely mathematical one. The special feature of the third example is, similarly to the
scalar problem, that the optimal return function tends to infinity for finite x, i.e., the cost
function is a kind of a barrier function.
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5.4.1 A Scalar Problem

The considered system is given by

ẋ = (1 + x)u

which is a stabilizable system around the origin. The cost function is chosen as

l(x) = ln(1 + x)2

The corresponding optimal control problem can be solved explicitly and the optimal cost
function becomes

V (x) =
√

2
2

ln(1 + x)2

while the optimal feedback law is given by

u(x) = −
√

2 ln(1 + x)

In the scalar case, it is most often possible to solve for extra coefficients in the HJB
exactly. This fact has been exploited in this example, where a fifth order rational approx-
imation has been computed. By using the three extra terms in the denominator, three
additional terms in the HJB have been zeroed. The obtained solution will therefore have
the same Taylor series as the optimal solution up to order eight. Actually, the series ex-
pansions are the same with three decimals accuracy up to the 14:th order. The functions
f , g and l are truncated after the eighth degree. The result can be seen in Figure 5.1. The
same figure also shows the rational approximation with a denominator where the highest
order term is fixed. As can be seen the difference is rather small.

In Figure 5.2, an ordinary truncated power series solution of order five and a rational
approximation with fixed denominator have also been included in the comparison. As can
be seen, these solutions are substantially worse than the earlier rational approximations.
However, the rational approximation with fixed coefficients is better than the truncated
power series solution.

Concerning stability it can also be shown that the rational approximation is substan-
tially better than the power series solution. The region in which the rational approximation
with free denominator is stabilizing the system is x0 ∈ [−0.99, 21], while the truncated
power series solution only stabilizes the system in the region x0 ∈ [−0.99, 0.8].

In the last two figures another advantage of the rational approximations is illustrated.
Here a higher order approximation of order 8 plus the 6 free parameters in the denomina-
tor. For the rational approximation a higher order often give a better approximation in a
larger region than a lower one, which is the case for this example as can be seen in Fig-
ure 5.3. However, for truncated power series a higher order often only yields a better fit
with the optimal solution locally around the origin and outside this region an even worse
fit is obtained as can be seen in Figure 5.4.

It can be noticed that no plots of the corresponding feedback laws are shown. The
reason is the explicit relation between the optimal return and the feedback law given
by (5.6b). Due to this relation more or less the same improvement is obtained for the
optimal return function and the feedback law, at least for the examples studied in this
thesis,.
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Figure 5.1: A comparison between V (solid) and two rational approximations. The
dash-dotted line corresponds to the approximation with free denominator and the
dashed line has fixed highest order term in the denominator.
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Figure 5.2: A comparison between the optimal cost (solid), the three different ra-
tional approximations and the truncated power series. The rational approximation
with free denominator and with fixed highest degree term are indistinguishable from
the optimal solution. The dashed line is the rational with fixed denominator and the
dotted line is the power series.
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Figure 5.3: A comparison between the optimal cost (solid) and two rational approx-
imations of different order. The dashed line is a eighth order approximation and the
dashed-dotted line is a fifth order one.
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Figure 5.4: A comparison between the optimal cost (solid) and four different ap-
proximations. Two of them are rational with free denominators but with different
order (4 or 8). They are hidden behind the optimal solution. The other approxima-
tions are truncated power series, one of order 5 (dashed) and order 8 (dash-dotted).
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5.4.2 A Phase Lock Loop Circuit

Consider a model for a nonlinear phase lock loop circuit (PLL). The dynamics for the
system can be written as

ẋ1 = x2

ẋ2 = − sin(x1) + u

The cost function l(x) is chosen as

l(x1, x2) =
1
2
x2

1 + 2x1x2 + x2
2 + x1 sin(x1)

which makes it possible to find an explicit solution as

V (x1, x2) = 2(1− cos(x1)) + x1x2 + x2
2

For this optimal control problem, the fourth order rational approximation is computed.
As the comparison in Figure 5.5 shows, the rational approximation describes the optimal
solution rather well. In this example, the terms of order six and below of the power series
of f , g and l are included in Em(x) and the HJB is also truncated at order six, i.e., two
orders higher than m. The corresponding value of e2m became 3 · 10−13.

In the same figure, also a truncated power series solution of order four is presented.
The improvement by using the rational approximation is quite large, which is even more
clear in Figure 5.6 where the error of the rational approximation is compared with the
error for the truncated power series solution.

In Figure 5.7, another comparison of errors is shown. The error that bends upwards
and which has the smallest amplitude corresponds to a rational approximation of order 4
with the denominator chosen as

QV (x1, x2) = 1 + 1
6x

2
1 + 1

6x1x2 + 1
6x

2
2

The other error corresponds to a truncated power series. As can be seen, the rational ap-
proximation is still better than the power series but worse than the rational approximation
with free denominator (which could be seen in the Figure 5.6).

Figure 5.8 shows the error for two higher order approximations. The order of the
rational approximation has been increased to six and the truncated power series approxi-
mation is of order eight. For the rational approximation, mh = 8 has been used and the
functions are also truncated at m + 8. It means that the order of the rational function
is not that high, but information about the model and the cost function up to order 14 is
included. In this plot, the intervals for the variables are increased, because in a smaller
region both approximations are good.

Finally, Figure 5.9 shows the improvement of using the rational approximation of the
higher order compared with the lower order approximation. As can be seen, the difference
is between 4 and 5 times in this particular example.
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Figure 5.5: A comparison between V (dark), the rational approximation (medium
dark) and truncated power series (light) the applied to the PLL example.
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Figure 5.6: A comparison between the errors of the rational approximation (dark)
and of the truncated power series (light) for the PLL system.
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Figure 5.7: A comparison between the errors of the rational approximation with
fixed denominator (dark) and of the truncated power series (light) for the PLL sys-
tem.
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Figure 5.8: A comparison between the errors of the rational approximation of order
6 (dark) and of the truncated power series of order 8 (light) for the PLL system.
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Figure 5.9: A comparison between the errors of the rational approximation of two
different orders. An fourth order (dark) and a sixth order (light).
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5.4.3 A Barrier Example

Consider the model

ẋ =

−2x1 + x2 + x2
3

x3 + x2
1

0

+

 x2

1 + x2
3

1

u

and let the cost function be
L(x, u) = l(x) + u2

where

l(x) =
(
(4x3x2x1 + 2x3x2 + 2x2

3x
2
2 + x2

2 + x2
3 + 4x1x

2
2 + 4x2

2x1x
2
3 + 4x2

2x
2
1 + x2

2x
4
3

+ 2x2x
3
3 − 2(2x2x1 + x3x2 + 2x2

3x1 + x2
1x2 − 4x2

1) cos(2x2
1 + x2

2 + x2
3)

2
)/

cos(2x2
1 + x2

2 + x2
3)

4

As can be seen l(x) tends to infinity when |2x2
1 + x2

2 + x2
3| → π

2 , because of the cos-term
in the denominator. Hence, l(x) is a barrier function, even though not as obvious as for
l(x) in Section 5.4.1. In this case, the system and the cost function are chosen such that
the corresponding optimal control problem has an explicit optimal return function V (x)
given by

V (x) = tan(2x2
1 + x2

2 + x2
3) (5.24)

which for |2x2
1 + x2

2 + x2
3| close to π

2 , approaches infinity (as expected since the cost
function does so).

The plots requires four dimensions to be visualized with all coordinates at once.
Therefore, one state variable will be set to zero. First, the optimal return function with
x1 = 0 is shown in Figure 5.10. The following figure, i.e., Figure 5.11, includes two plots
with the errors for the two approximants. In Figure 5.11a, the error between the optimal
solution and a truncated power series solution of order 10 is shown, while Figure 5.11b
shows the error for a rational approximation of order 6. The rational approximation has
been computed with mh = 4 and with the model and the cost function truncated at order
10. In this case, the improvement by using the rational function is quite substantial.

Plots with the same configurations but with x3 = 0 are shown in Figure 5.12 and 5.13,
respectively. Also in this case, the improvement is noticeable.

5.5 Conclusions

In this chapter a new method to find approximate solutions to nonlinear optimal control
problems has been derived. The result is a rational approximation. The method is to a
large extent influenced by the power series method. To compute the approximation first
an ARE is solved, then some linear equations and finally an optimization problem.

As for the power series method, the obtained rational approximation is shown to have
the same power series as the optimal solution around the origin. This means that locally
around the origin, the methods produce comparable approximations, but at least in three
examples, the rational approximation is shown to give better performance in a larger re-
gion.
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Figure 5.10: The exact optimal return function when x1 = 0.
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Figure 5.11: The errors between the optimal solution and a) the truncated power
series of order 10, and b) the rational approximation of order 6.
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Figure 5.12: The exact optimal return function when x3 = 0.
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Figure 5.13: The errors between the optimal solution and a) the truncated power
series of order 10, and b) the rational approximation of order 6.





6
Utilization of Structure and

Control Affinity

A problem with the methods described in Chapter 4 and 5 is the computational complex-
ity. The part that consumes most of the time is the solution for the coefficients in the
approximant. Therefore, it would be interesting to reduce the number of equations that
need to be solved. For control-affine systems ẋ = f(x) + g(x)u with cost functions
quadratic in u, it was shown in Section 2.7.3 that the equation being used to determine
the optimal feedback law had an explicit solution. It means the feedback law need not be
parametrized which reduces the size of the system of equations that is solved in the power
series method. Moreover, the number of other computations required is reduced as well,
which shortens the computation time even more.

For state-space models control affinity is recognized by just looking at the equations.
For DAE models it might however be harder. Therefore, some conditions are derived
under which the DAE model is equivalent to a control-affine system. It is also shown
that the DAE model is required to have a certain structure in order to obtain affinity in
the control input. Given the conditions, some theorems under which the optimal control
problem can be simplified are presented.

6.1 Introduction

The standard way to solve the HJB for nonlinear DAE models using the power series
expansions leads to the solution of the following four polynomial equations

0 = Lu − Vx1 F̂
−1
1;ẋ1

F̂1;u −
(
Lx3 − Vx1 F̂

−1
1;ẋ1

F̂1;x3

)
F̂−1

2;x3
F̂2;u (6.1a)

0 = L+ λV (x1) + Vx1 ẋ1 (6.1b)

0 = F̂1 (6.1c)

0 = F̂2 (6.1d)

where V is evaluated at x1, F̂2 and L at (x1, x3, u), and F̂1 at (ẋ1, x1, x3, u).

121



122 6 Utilization of Structure and Control Affinity

In Chapter 4, the procedure used to show that (6.1) has a solution is to first solve
(6.1c) and (6.1d) using the power series method. The outcome is the power series of the
underlying state-space model (4.39). Having this, the cost function L̂ in (4.48) can be
expressed as a power series as well. Finally, the optimal solution is obtained from the
HJB for the state-space model.

0 = L̂u + Vx1(x1)Lu (6.2a)

0 = L̂+ λV (x1) + Vx1(x1)L (6.2b)
(6.2c)

Hence, to find the terms in V (x1) up to order m, and the optimal control law u∗(x1) up
to order m− 1, the total number of equations to solve will be(

d+m
d

)
− (1 + d)︸ ︷︷ ︸

V [m]

+n

(
d+ p+m− 1

d+ p

)
− n︸ ︷︷ ︸

L[m−1] and R[m−1]

+ p

(
d+m− 1

d

)
− p︸ ︷︷ ︸

u
[m−1]
∗

(6.3)

where we have used that there are Σm(n,m) terms of orderm in an n variable polynomial,
and the accumulated number of terms in the same polynomial up to order m is given by
Σm,accum(n,m).

Σm(n,m) =
(
n+m− 1
n− 1

)
, Σm,accum(n,m) =

(
n+m
n

)
(6.4)

The approach to first compute the Taylor series of the reduced system and then solve
the problem in a state-space framework using (6.2), is mostly used because it makes it
easier to refer to earlier results such as Lukes (1969). A better approach is to solve (6.1)
simultaneously, i.e., to solve for x3 and ẋ1 at the same time as for V and u∗. In that way,
it is possible to exploit the property that x3 and ẋ1 only depend on x1 and not on u, as in
the derivation. The number of equations to solve will then be (6.3) but without the term
p in the middle term. If either the desired order m or the number of inputs is large, the
reduction may be quite substantial.

However, if the system and the cost function have certain structure, it is possible to
further reduce the number of equations that need to be solved by power series expansion.
The idea is to find the solution for u∗ explicitly. One important case for which this is
possible is described in Chapter 3. The restriction on the cost function can be relaxed to
l(x1, x3). Note that this structure also contains models for which the underlying state-
space model is not control-affine.

Another important case of optimal control problems for which the computations can
be simplified, is when the underlying state-space model is control-affine, i.e., has the
structure

ẋ1 = L(x1, u) = L1(x1) + L2(x1)u (6.5)

and the cost function is chosen such that

L̂(x1, u) = Q(x1) + S(x1)u+ uTRcu (6.6)
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According to Section 2.7.3, the optimal return function is then found by solving

0 = Q+ Vx1L1 −
1
4
(Vx1L2 + S)R−1

c (Vx1L2 + S)T

and the corresponding optimal control law is given by

u∗ = −1
2
R−1
c (Vx1L2 + S)T

Hence, only the equation for V (x1), i.e., (6.2b), needs to be solved in order to obtain the
optimal solution. The solution above is described in terms of several implicitly known
functions for which the power series can computed by first solving (6.1c) and (6.1d).
However, it is also interesting to study how the expression for u∗ is defined in terms of
the original functions, i.e., F̂1, F̂2 and L.

Assume the model is described by (6.5). Since the model is described by (6.5), it
follows that Lu will be L2 on the solution manifold Lµ. From (4.35a), the relation

Lu = F̂−1
1;ẋ1

(
F̂1;x3 F̂

−1
2;x3

F̂2;u − F̂1;u

)
is obtained on Lµ. With the same motivation, the expression for S(x1) can be obtained
from L̂u, defined in (4.35b), with u = 0 as

S = L̂u(x1, 0) = Lu(x1, x3, 0)− Lx3(x1, x3, 0)F̂−1
2;x3

(x1, x3, 0)F̂2;u(x1, x3, 0)

on Lµ. Finally, the expression for Rc(x1) is obtained as the Hessian of L̂ w.r.t. u as can
be seen in (6.6). The expression for the Hessian in the original functions is

L̂uu(x1, u) = RT
uLx3x3Ru + 2Lx3uRu + Luu +

a∑
i=1

Lx3iRi;uu

whereRi;uu is the Hessian ofRi, which is the implicit function corresponding to x3i, and
the terms derived from L and R are evaluated at

(
x1,R(x1, u), u

)
and (x1, u), respec-

tively. On the solution manifold Lµ, it is possible to formulate all expressions in terms of
the original coordinates and functions, i.e., (x1, x3, u) =

(
x1,R(x1, u), u

)
and

Ru(x1, u) = −F̂−1
2;x3

F2;u, Ruu(x1, u) = − ∂

∂u
F̂−1

2;x3
F2;u (6.7)

Let the elements in Ru be denoted ci,j where i = 1, . . . , a and j = 1, . . . , p. These
elements can be written as

ci,j
(
x1, u

)
=

a∑
r=1

ai,r
(
x1,R(x1, u), u

)
br,j
(
x1,R(x1, u), u

)
where ai,r and br,j are the elements in F−1

2;x3
and F2;u, respectively. The elements inRuu

are computed by differentiating ci,j w.r.t. u. The result is

ci,j;u
(
x1, u

)
=

a∑
r=1

br,j(ai,r;x3Ru + ai,r;u) + ai,r(br,j;x3Ru + br,j;u)
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on Lµ, using Ru in (6.7), and where ai,r and br,j are evaluated at (x1, x3, u). The deriva-
tives of ai,r, i.e., the coefficients of F−1

2;x3
, w.r.t. to x3 and u can be obtained without

differentiating the inverse as

∂F̂−1
2;x3

∂z
= −F̂−1

2;x3

∂F̂2;x3

∂z
F̂−1

2;x3

where z can be either x3i, i = 1, . . . , a or ui, i = 1, . . . , p. Note that for all functions
in this expression, the Taylor series can be computed easily, without doing a symbolic
matrix inverse. In the case when x3 is scalar, the expressions can be simplified to

Ruu = −F̂−1
2;x3

(
RT
u F̂2;x3x3Ru + 2F̂2;x3uRu + F̂2;uu

)
To conclude, the following lemma is shown.

Lemma 6.1
Consider a DAE model for which the underlying state-space model is in the form (6.5)
and for which the reduced cost L̂ has the structure in (6.6). Then, on the solution manifold
Lµ, the optimal feedback law u∗ can be written in terms of the original functions as

u∗ = −1
2
L̂uu(x1, u∗)−1

(
Vx1(x1)Lu + L̂u(x1, 0)

)
(6.8)

with Lu, L̂u and L̂uu defined as above.

Proof: Follows from the discussion above.

This is one motivation to why it is interesting to study when the underlying state-space
model becomes affine in some external input signal. In addition, it is also interesting from
a structural point of view.

6.2 Conditions for Control Affinity

The following sections describe conditions under which the underlying state-space model
of either an implicit ODE model or a DAE model, satisfying Hypothesis 2.2, becomes
affine in an external signal u. It is also shown, that if the underlying state-space model
is affine in u, the implicit ODE model or the DAE model must be equivalent to a model
with a certain structure.

6.2.1 Implicit ODE Models

Consider
F (ẋ, x, u) = 0 (6.9)

where x and u are n- and p-vectors, respectively, and F is a continuously differentiable
function from Rn × Rn × Rp to Rn.

Assumption A12. There exists a point (po, xo, vo) such that

F (po, xo, uo) = 0, Fẋ(po, xo, uo) nonsingular (6.10)
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Theorem 6.1
Suppose that Assumption A12 is satisfied. Then the implicit ODE (6.9) is equivalent to an
explicit ODE, affine in u,

ẋ = f1(x) + f2(x)u (6.11)

in a neighborhood of (xo, uo), if and only if there exists an n×m matrix function M(x)
such that

Fẋ(ẋ, x, u)M(x) + Fu(ẋ, x, u) = 0 (6.12)

in a neighborhood of (xo, uo) on L0 =
{
(ẋ, x, u) ∈ R2n+p | F (ẋ, x, u) = 0

}
.

Note that it is sufficient that the condition is satisfied on the manifold, but in practice
it is sometimes easier to verify the condition on a larger region.

Proof: Necessity.
If (6.11) holds then

F (f1(x) + f2(x)u, x, u) = 0

identically for x and u in the neighborhood of (x0, u0). It follows that

Fẋ
(
f1(x) + f2(x)u, x, u

)
f2(x) + Fu

(
f1(x) + f2(x)u, x, u

)
= 0

which is (6.12) with M(x) = f2(x).
Sufficiency.
First, the implications of Assumption A12 are studied. Application of the implicit func-
tion theorem on (6.9) shows that locally around (xo, uo)

ẋ = f(x, u)

for some function f . Differentiating the relation

F (f(x, u), x, u) = 0

with respect to u gives
Fẋfu(x, u) + Fu = 0 (6.13)

where the terms without arguments are evaluated at (f(x, u), x, u). Now assume that
there exist an M(x) such that (6.12) is satisfied. A comparison of (6.13) and (6.12) then
shows that on L0 in the neighborhood of (x0, u0) it must hold that

Fẋ(fu −M(x)) = 0

or, since Fẋ is nonsingular,
fu(x, u) = M(x)

Since the Jacobian of f with respect to u is independent of u, the function f has to be
f(x, u) = f1(x) +M(x)u, i.e., it is affine with respect to u.

The next theorem shows that the structure of F can also be used to reach the same
conclusion about affinity.
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Theorem 6.2
The implicit ODE (6.9) is equivalent to an explicit ODE, affine in u,

ẋ = f1(x) + f2(x)u

in a neighborhood of (xo, uo), if and only if there exists an n×m matrix function M(x)
and a function F̄ (p, x) such that

F (ẋ, x, u) = F̄ (ẋ−M(x)u, x) (6.14)

in a neighborhood of (xo, uo) on L0 =
{
(ẋ, x, u) ∈ R2n+p | F (ẋ, x, u) = 0

}
.

Proof: It is known from Theorem 6.1 that (6.9) is equivalent to an affine system if and
only if there is a matrix function M(x) such that (6.12) is satisfied. Therefore, it is
sufficient to prove that condition (6.14) is equivalent to condition (6.12).

Let there exist a matrix M(x) satisfying (6.12) in a neighborhood of a point (x0, u0)
on L0. Introduce the coordinate change

ẋ = ẏ +M(y)w, x = y, u = w

and define a function F̃ (ẏ, y, w) as

F (ẋ, x, u) = F (ẏ −M(y)w, y, w) = F̃ (ẏ, y, w) (6.15)

where ẏ = ẏ(ẋ, x, u), y = y(x) and w = w(u). Using the relations above, if follows that

Fẋ(ẋ, x, u) = F̃ẏ(ẏ, y, w)ẏẋ(ẋ, x, u),

Fu(ẋ, x, u) = F̃ẏ(ẏ, y, w)ẏu(ẋ, x, u) + F̃w(ẏ, y, w)wu(u)

For (ẋ, x, u) ∈ L0 in the neighborhood of (x0, u0), condition (6.12) transforms to

0 = Fẋ(ẋ, x, u)M(x) + Fu(ẋ, x, u)

= F̃ẏ(ẏ, y, w)M(x)− F̃ẏ(ẏ, y, w)M(x) + F̃w(ẏ, y, w) = F̃w(ẏ, y, w)

Since the partial derivative of F̃ w.r.t. to w is zero in an open interval (corresponding to
the open interval for u), it means that a function F̄ exists such that

F̃ (ẏ, y, w) = F̄ (ẏ, y) = F̄ (ẋ−M(x)u, x)

which is condition (6.14) with the same M(x) as in condition (6.12).
In the other direction, it follows by straightforward calculations.

6.2.2 DAE Models with Algebraic Equations Independent of the
External Input

Consider the DAE model (6.9). Assume that it satisfies Hypothesis 2.2, i.e., assume there
exist matrices Z1, Z2 and a partitioning x = (x1, x3) of the variables such that the system
(6.9) can be written as

F̂1(ẋ1, ẋ3, x1, x3, u) = 0 (6.16a)

F̂2(x1, x3,uµ) = 0 (6.16b)
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where F̂1 = ZT1 F , F̂2 = ZT2 Fµ and uµ = (u, u̇, . . . , u(µ)). The hypothesis guarantees
that (6.9) can be rewritten as (6.16) for every

(xµ+1,0,uµ+1,0) = (x0, ẋ0, . . . , x
(µ+1)
0 , u0, u̇0, . . . , u

(µ+1)
0 )

on

Lµ =
{
(x0, ẋ0, . . . , x

(µ+1)
0 , u0, u̇0, . . . , u

(µ+1)
0 ) ∈ R(µ+2)(n+p)+p | Fµ = 0

}
However, here only one point in Lµ is considered in order to have fixed Z1 and Z2. From
Hypothesis 2.2, it also follows that the Jacobian of F̂2 with respect to x3 is nonsingular
on Lµ. It means that

x3 = R(x1,uµ) (6.17)

for some function R. Likewise, the Jacobian of

F̂1(ẋ1, Ṙ(x1,uµ), x1,R(x1,uµ), u)

with respect to ẋ1 is nonsingular.
Introduce the following assumption.

Assumption A13. ZT2 Fµ;u,u̇,...,u(µ) = 0 on Lµ.

This assumption will ensure that the algebraic equations are independent of u and
its derivatives. It may seem like a restrictive assumption, but sometimes it is physically
motivated as will be seen in later sections. Under this assumption, the following result
can be shown.

Theorem 6.3
Suppose the DAE model (6.9) satisfies Assumption A13. Then, it is equivalent to the
following model, i.e., an explicit ODE that is affine in u and some static relations,

ẋ1 = f1(x1) + f2(x1)u (6.18a)
x3 = R(x1) (6.18b)

in a neighborhood of (x1,0,uµ,0) on Lµ, if and only if there exists a d×mmatrix function
M(x1) such that(
F̂1;ẋ1(ẋ, x, u)− F̂1;ẋ3(ẋ, x, u)F̂

−1
2;x3

(x,uµ)F̂2;x1(x,uµ)
)
M(x1) + F̂1;u(ẋ, x, u) = 0

(6.19)
on Lµ in a neighborhood of (x1,0,uµ+1,0).

In the condition, the matrix M can also be allowed to explicitly depend not only on
x1 but also on x3, since on Lµ, x3 will be a function of x1. This fact may sometimes
simplify the computations.

Proof: Necessity.
If (6.18) holds then

F̂2

(
x1,R(x1),uµ

)
= 0
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identically in x1, u ,. . . , u(µ). Differentiating the equation w.r.t. x1 gives

Rx1(x1) = −F̂−1
2;x3

(
x1,R(x1),uµ

)
F̂2;x1

(
x1,R(x1),uµ

)
(6.20)

Equation (6.19) can, if (6.18) is valid, be written as

F̂1

(
f1(x1) + f2(x1)u,Rx1(x1)

(
f1(x1) + f2(x1)u

)
, x1,R(x1), u

)
= 0

identically in a neighborhood of (x1,0,uµ,0). Differentiation w.r.t. u will give that(
F̂1;ẋ1 + F̂1;ẋ3Rx1

)
f2 + F̂1;u = 0

and by using (6.20), it follows that (6.12) is obtained with M = f2.
Sufficiency.
First, the implications of the assumptions are studied. From the fact that (6.9) satisfies
Hypothesis 2.2, it follows that

ẋ1 = L(x1,uµ+1)
x3 = R(x1,uµ)

on Lµ in a neighborhood of (x1,0,uµ+1,0). Differentiating the relation

F̂2

(
x1,R(x1,uµ),uµ

)
= 0 (6.21)

with respect to u gives
F̂2;x3Ru + F̂2;u = 0

which since F̂2;x3 has full rank on Lµ can be solved for Ru as

Ru = −F̂−1
2;x3

F̂2;u

However,

F̂2;u =
∂

∂u
(ZT2 Fµ) = ZT2;uFµ + ZT2 Fµ;u = 0

since Fµ = 0 for solutions and ZT2 Fµ;u = 0 from Assumption A13. It means thatRu = 0
and R is therefore independent of u. Repeating the process for u̇, . . . , u(µ), yields that R
is also independent of those and can be written as (6.18b). Finally, differentiating (6.21)
w.r.t. x1 gives

Rx1(x1) = −F̂−1
2;x3

(x,uµ)F̂2;x1(x,uµ) (6.22)

on Lµ in the neighborhood of (x1,0,u0). The derivative of x3 w.r.t. t can be found as

ẋ3 = Rx1(x1)ẋ1 = Rx1(x1)L(x1,uµ+1)

which substituted into F̂1 gives

F̂1

(
L(x1,uµ+1),Rx1(x1)L(x1,uµ+1), x1,R(x1), u

)
= 0 (6.23)
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which holds identically in a neighborhood of (x1,0,uµ+1,0). The derivative of this ex-
pression with respect to u̇ becomes(

F̂1;ẋ1 + F̂1;ẋ3Rx1

)
Lu̇ = 0 ⇒ Lu̇ = 0

and by the same argument also Lü, . . . ,Lu(µ+1) become zero. Hence, L does not depend
on derivatives of u. Differentiation of (6.23) with respect to u yields(

F̂1;ẋ1 + F̂1;ẋ3Rx1

)
Lu + F̂1;u = 0 (6.24)

Now, let there exist a matrix function M(x1) such that (6.19) is satisfied in a neighbor-
hood of (x1,0,uµ,0) on Lµ. On this neighborhood, the condition (6.19) can be written
as (

F̂1;ẋ1 + F̂1;ẋ3Rx1

)
M(x1) + F1;u = 0

using (6.20). A comparison between this expression and (6.24) shows that(
F̂1;ẋ1 + F̂1;ẋ3Rx1

)
(Lu −M(x1)) = 0

or that
Lu(x, u) = M(x1)

since F̂1;ẋ1 + F̂1;ẋ3Rx1 is nonsingular on Lµ. Hence, L(x1, u) = L1(x1) + M(x1)u
which means that it is affine in u.

The next theorem shows that also for DAE models the affinity can be deduced to a
certain structure of the functions involved.

Theorem 6.4
Suppose Assumption A13 is satisfied. Then the DAE (6.9) is equivalent to an explicit
ODE, affine in u as in (6.18) in a neighborhood of (x1,0,uµ+1,0) on Lµ, if and only if
there exist an d× p matrix function M(x1) and a function F̄1(y, u) such that

F̂1(ẋ, x, u) = F̄1

(
ẋ1 −M(x1)u, x1

)
(6.25)

in a neighborhood of (x1,0,uµ,0) on Lµ.

Proof: It is known that the first statement is satisfied if and only if there is a matrix
functions M(x1) such that (6.19) is satisfied in a neighborhood of (x1,0,uµ+1,0) on Lµ.
Therefore, it is sufficient to prove that (6.25) is equivalent to (6.19).
(6.25) ⇒ (6.19).
Let there exist a matrix M(x1) and a function F̄1(ẏ, y) satisfying (6.25) in a neighbor-
hood of (x0,uµ,0) on Lµ. Under the given assumptions, it is known that x3 = R(x1).
Condition (6.25) can therefore be written as

F̂1

(
ẋ1,Rx1(x1)ẋ1, x1,R(x1), u

)
= F̄1

(
ẋ1 −M(x1)u, x1

)
(6.26)

in a neighborhood of (x0,uµ,0). Differentiation of the equation above w.r.t. to ẋ1 and u
yields

F̂1;ẋ1 + F̂1;ẋ3Rx1 = F̄1;ẏ, F̂1;ẋ1 = −F̄1;ẏM(x1)
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where the terms are evaluated in the arguments as in (6.26). It means that(
F̂1;ẋ1 + F̂1;ẋ3Rx1

)
M(x1) + F̂1;u = 0 (6.27)

In the neighborhood of (x10,uµ,0) on Lµ, (6.27) can be rewritten as (6.19) using x3 =
R(x1) and (6.22).
(6.19) ⇒ (6.25).
Let there exist a matrix M(x1) satisfying (6.19) in a neighborhood of (x1,0,uµ+1,0) on
Lµ. On this set, it is known that x3 = R(x1) and the derivative of R w.r.t. x1 is given
by (6.20). Hence, (6.19) can be written as(

F̂1;ẋ1 + F̂1;ẋ3Rx1(x1)
)
M(x1) + F̂1;u = 0 (6.28)

where the functions without arguments are evaluated in
(ẋ1,Rx1(x1)ẋ1, x1,R(x1), u).

Introduce the change of coordinates

ẋ1 = ẏ +M(y)w, x1 = y u = w

ẋ3 = Rx1(y)
(
ẏ +M(y)w

)
, x3 = R(y)

Using this coordinate change, it follows that a function F̃1(ẏ, y, w) can be defined as

F̂1(ẋ1, ẋ3, x1, x3, u) = F̂1

(
ẏ +M(y)w,Rx1(y)

(
ẏ +M(y)w

)
, y,R(y), u

)
= F̃1(ẏ, y, w) = F̃1

(
ẏ(ẋ1, x1, u), y(x1), w(u)

)
in the neighborhood of (x1,0,uµ,0) on Lµ and the following relations for the derivatives
can be obtained

F̂1;ẋ1 + F̂1;ẋ3Rx1 = F̃1;ẏ ẏẋ1 = F̃1;ẏ

F̂1;u = F̃1;ẏ ẏu + F̃1;wwu = −F̃1;ẏM(x1) + F̃1;w

where the transformed variables ẏ, y and w are considered at points that correspond to
the neighborhood of (x1,0,uµ,0) on Lµ. Using the relations above together with the
reformulated version of (6.19), that is, condition (6.28), it follows that

0 = (F̂1;ẋ1 + F̂1;ẋ3Rx1)M(x1) + F̂1;u = F̃1;ẏM(x1)− F̃1;ẏM(x1) + F̃1;w = F̃1;w

on Lµ around (x1,0,uµ). Hence

F̂1(ẋ1, x1, u) = F̃1(ẏ, y, w) = F̄1(ẏ, y) = F̄1(ẋ1 −M(x1)u, x1)

6.2.3 DAE Models with Algebraic Equations Affine in the
External Input

Earlier, it has been assumed that ZT2 Fµ;u,u̇,...,u(µ) = 0. The reason was to ensure that R
is independent of u which sometimes is physically motivated. However, in other cases,
the static relations may depend on u and then Assumption A13 is too restrictive.

Instead, the following assumption is introduced.
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Assumption A14. F̂1;ẋ3 = 0 and F̂2;u̇,...,u(µ) = 0

Note that since it is assumed that F̂1;ẋ3 = 0, it means that F̂1;ẋ1 will be nonsingular
in order to satisfy the conditions in Hypothesis 2.2.

Then, the following result can be shown.

Theorem 6.5
The DAE (6.9) is equivalent to an explicit ODE, affine in u, and static relations

ẋ1 = f1(x1) + f2(x1)u (6.29a)
x3 = R1(x1) +R2(x1)u (6.29b)

in a neighborhood of (x1,0,uµ), if and only if there exist matrix functions M1(x1) and
M2(x1) of dimensions d× d and d× a, respectively, such that

F̂2;x3(x,uµ)M2(x1) + F̂2;u(x,uµ) = 0 (6.30a)

F̂1;ẋ1(ẋ, x, u)M1(x1) + F̂1;x3(ẋ, x, u)M2(x1) + F̂1;u(ẋ, x, u) = 0 (6.30b)

in a neighborhood of (x1,0,uµ,0) on Lµ.

In this case, the matrix functions M1 and M2 are only allowed to depend on x1 in
the general case. The reason is of course that x3 may depend on u. However, if some of
the variables x3 are known to be independent of x1, these x3 can also be included in the
matrices.

Proof: Necessity.
Assume that (6.16) can be written as (6.29). Then

F̂2(x1,R1(x1) +R2(x1)u,uµ) = 0

identically on the neighborhood, which differentiated w.r.t. u gives

F2;x3R2 + F̂2;u = 0

Hence, the same relationship as in (6.30a) is satisfied with M2 = R2 on a neighborhood
of (x1,0,uµ,0).

The equation for F̂1 becomes

F̂1

(
f1 + f2u, ẋ3, x1,R1 +R2u, u

)
= 0

where ẋ3 is left as it is, since F̂1;ẋ3 = 0 and the exact expression is not needed. Differen-
tiation w.r.t. u gives

F̂1;ẋ1f2 + F̂1;ẋ3(·) + F̂1;x3R2 + F̂1;u = F̂1;ẋ1f2 + F̂1;x3R2 + F̂1;u = 0

which is the same as (6.30b) with M1 = f2 and M2 = R2.
Sufficiency.
The first step is to analyze what the assumptions ensure. Since the model is assumed to
satisfy Hypothesis 2.2, it is known that

ẋ1 = L(x1,uµ+1)
x3 = R(x1,uµ)
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and that
F̂2

(
x1,R(x1,uµ),uµ

)
= 0 (6.31)

identically in the variables. Differentiation w.r.t. u̇ gives

F̂2;x3Ru̇ + F̂2;u̇ = 0

which from Assumption A14 and that F̂2;x3 has full rank implies that R is independent
of u̇. Repeating the same procedure for the higher derivatives of u shows that R is inde-
pendent of them all, i.e., R(x1, u). Finally, if (6.31) is differentiated w.r.t. u the result
is

F̂2;x3

(
x1,R(x1,uµ),uµ

)
Ru(x1, u) + F̂2;u

(
x1,R(x1,uµ),uµ

)
= 0 (6.32)

Now assume that there exist matrix function M2(x1) such that (6.30a) is satisfied. A
comparison between (6.32) and (6.30a) yields that Ru(x1, u) = M2(x1), which means
that R(x1, u) = R1(x1) +M2(x1)u, i.e., R is affine in u.

Now consider L. Using the obtained expression for x3, the expression for F̂1 becomes

F̂1(L, ẋ3, x1,R1 +M2u, u) = 0

where ẋ3 is left unevaluated, since it will not be needed in the calculations. The derivative
of the equation above w.r.t. u̇ becomes

F̂1;ẋ1Lu̇ + F̂1;ẋ3(·) = 0

and from Assumption A14 together with that F̂1;ẋ1 is nonsingular, it follows that Lu̇ = 0.
That is, L is independent of u̇. The same procedure can be performed for the higher
derivatives of u with the same result.

Differentiation of F̂1 w.r.t. u instead, gives

F̂1;ẋ1Lu + F̂1;ẋ3(·) + F̂1;x3M2 + F̂1;u = F̂1;ẋ1Lu + F̂1;x3M2 + F̂1;u = 0

If a M1(x1) exists such that (6.30b) is satisfied, a comparison of the obtained expression
with (6.30b) yields that

F̂1;ẋ1(Lu −M1) = 0

and hence L(x1) = L1(x1) +M1(x1)u.

The structure of a DAE model satisfying the conditions must also be in a certain way
as proven in the following theorem.

Theorem 6.6
Suppose Assumption A14 is satisfied. Then the DAE (6.9) is equivalent to an explicit ODE,
affine in u as in (6.29) in a neighborhood of (x1,0,uµ+1,0) on Lµ, if and only if there exist
matrix functions M1(x1) and M2(x1) of dimensions d × d and d × a, respectively, and
functions F̄1(y, u) and F̄2(y, u) such that

F̂1(ẋ, x, u) = F̄1

(
ẋ1 −M1(x1)u, x1

)
(6.33a)

F̂2(x, u) = F̄2

(
x1, x3 −M2(x1)u

)
(6.33b)

in a neighborhood of (x1,0,uµ,0) on Lµ.

Proof: The proof follows the same line as the proof of Theorem 6.3.
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Two Special Cases

In this section, two rather common special cases are presented. The structure in the first
case is, except for affine in u, also affine in x3.

Corollary 6.1
Consider the following DAE model

0 = F̄1

(
ẋ1 − σ1(x1)u− σ2(x1)x3, x1

)
(6.34a)

0 = F̄2

(
x1, x3 −R2(x1)u

)
(6.34b)

Suppose it satisfies the conditions in Hypothesis 2.2. Then it is equivalent to the control-
affine model

ẋ1 = L1(x1) + σ2(x1)R1(x1) +
(
σ1(x1) + σ2(x1)R2(x1)

)
u

x3 = R1(x1) +R2(x1)u

Another common case is when the algebraic constraints are known to have one part
that depend on u and one part that does not. Furthermore, the part that not contains u
should also be solvable for one part of x3, denoted x3,1.

Corollary 6.2
Consider the following DAE model

0 = F̄1

(
ẋ1 − σ1(x1, x3,1)u− σ2(x1, x3,1)x3,2, x1, x3,1

)
(6.35a)

0 = F̄21(x1, x3,1) (6.35b)

0 = F̄22

(
x1, x3,1, x3,2 −R2(x1, x3,1)u

)
(6.35c)

Suppose it satisfies the conditions in Hypothesis 2.2. Then it is equivalent to the control-
affine model

ẋ1 = L1(x1) + σ2(x1)R1(x1) +
(
σ1(x1) + σ2(x1)R2(x1)

)
u

x3 = R1(x1) +R2(x1)u

6.2.4 Conditions on the Original DAE Model

All requirements are given at the strangeness-free level. The main reason is that alge-
braically the solution manifold is not visible for a higher strangeness index. That is, there
are more algebraic connections between the variables than visible in the equations. How-
ever, there are possible to give some simple relations on the original expressions.

The main idea is to use the definitions of F̂1 and F̂2. Equation (6.30) can then be
written as

∂

∂x3
(ZT2 Fµ)M2 +

∂

∂u
(ZT2 Fµ) = 0

∂

∂ẋ1
(ZT1 F )M1 +

∂

∂x3
(ZT1 F )M2 +

∂

∂u
(ZT1 F ) = 0
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which should be satisfied on the solution manifold in a neighborhood of some point. Since
Z1 is constant and Fµ = 0 on the solution manifold, it is possible to move the derivatives
through Z1 and Z2, respectively, and obtain

ZT2
(
Fµ;x3M2 + Fµ;u

)
= 0

ZT1
(
Fẋ1M1 + Fx3M2 + Fu

)
= 0

which then should be valid on Lµ in the considered neighborhood. These expressions
do not contain F̂1 and F̂2, but they still depend on Z1, Z2, and the classification of the
variables in x as either dynamic or algebraic. However, in some cases this information
can be obtained from the physical process.

6.2.5 Test of the Conditions

The conditions above can for many DAE models be hard to verify. As usual, the reason
is that the conditions should be valid for points on the solution manifold. If the solution
manifold is defined by implicit functions, the matrices M1 and M2 will normally be im-
plicitly defined as well, at least in x1. However, a feature for some models is that the
conditions actually are satisfied on a larger region than just on the manifold. This fact
can simplify the test of the conditions to some extent. If the conditions only are satisfied
on the manifold and the manifold is implicitly defined, different approximate methods
can be used, such as power series solution, but then the simpler test in the next section is
probably preferred.

6.2.6 Basic Tests Indicating Control Affinity

The conditions above are exact and yields both necessity and sufficiency. However, they
may be hard to compute analytically. Therefore, consider a control-affine system,

ẋ = f(x) + g(x)u (6.36)

For a given x, it means that ẋ is affine in u. This fact can of course be utilized, if a
numerical solver is used. For u = 0, the value of ẋ will be f(x0), where x0 is the fixed
point. If (6.36) is rearranged as

ẋ− f(x0) = g(x0)u

a practical test would then be to choose the control signal as

. . . , u0, 2u0,−u0,−2u0, . . .

If the corresponding values of ẋ − f(x0) changes nonlinearly, the system is not control-
affine for that x0. If x0 is chosen in the interesting region, the system cannot be assumed
to be control-affine. However, if it changes linearly there is a chance that the system is
affine. If the test is performed for a large number of x0 and a large number of u0, in the
specific region, it is a strong indication that methods that rely on control affinity can be
used.
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For state-space models, the test above is not very useful since most often the structure
can be seen immediately from the equations. However, for large DAE-models, this might
not be the case. If a numerical solver which computes ẋ1 is used, it is possible to use the
same test.

If the models are analytic, it is also possible to use the methods in Section 4.3.1. That
is, the power series of ẋ1 and x3 can be computed. If the model is control-affine around
the considered point, all coefficients that correspond to higher order terms in u should
then be zero. This test is of course also only necessary and not sufficient.

6.3 Optimal Control

In this section, the results about control affinity are merged with conditions of the cost
function. The easiest case, which in practice is quite common, is the following.

Corollary 6.3
Consider an optimal control problem with the model (6.34) and the cost function

L(x1, u) = l(x1) + S1(x1)Tu+ uTR(x1)u (6.37)

Then, locally, the optimal return and control law can be found by the equations

0 = L(x1, x3, u∗) + Vx1(x1)ẋ1 (6.38a)

0 = F̄1

(
ẋ1 − σ1(x1)u∗ − σ2(x1)x3, x1

)
(6.38b)

0 = F̄2

(
x1, x3 −R2(x1)u∗

)
(6.38c)

where

u∗ = −1
2
R−1(x1)

(
Vx1(x1)

(
σ1(x1) + σ2(x1)R2(x1)

)
+ S(x1)

)T
Proof: The model (6.34) and the cost function (6.37) match the structure described in
(6.5) and (6.6) on the solution manifold, and the expression for u∗ in (6.8) then gives the
result.

The number equations to solve will then be reduced to(
d+m
d

)
− (d+ 1)︸ ︷︷ ︸

V [m]

+n

(
d+ p+m− 1

d+ p

)
− n︸ ︷︷ ︸

L[m−1] and R[m−1]

(6.39)

This number is substantially smaller than (6.3) if either the number of variables or the
desired order is large. If F̂1 can be solved explicitly for ẋ1 the equations in (6.38) can
be simplified even more since then L does not need to be solved for with power series
yielding that the number of equations becomes(

d+m
d

)
− (d+ 1)︸ ︷︷ ︸

V [m]

+ a

(
d+ p+m− 1

d+ p

)
− a︸ ︷︷ ︸

R[m−1]

(6.40)
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Two observations can be mentioned here. First, the inverse of R(x1, x3,1) requires a
computation as described in (4.36). This computation is fairly easy, but since R(x1, x3,1)
is a design choice, the computational burden can be decreased if it is chosen simple, for
example, as a diagonal or a constant matrix function, or by defining the inverse. Second,
the more general case with (6.35) and the cost function

L(x1, x3,1, x3,2) =

l(x1, x3,1) + x1S1(x1, x3,1)Tu+ xT3,2W (x1, x3,1)x3,2+

xT3,2S2(x1, x3,1)u+ uTR(x1, x3,1)u

can be handled in the same way.

6.4 Structure in the Equations

If some of the equations in F̂1 or F̂2 are easy to solve explicitly for ẋ1 or x3, this fact
should of course be exploited. Another property which can simplify the computations
substantially is if the variables are ordered such that they can be solved as separately as
possible, i.e., without having to solve one big set of equations. This property may not be
satisfied in the original setting but there are methods, based on structural analysis (graph
theory), that orders the variables in so-called block-lower-triangular (BLT) form which is
a form with this property. A reference which discusses the BLT form but not in the case
of equation solving is Duff and Reid (1978).

As an example, consider a set of algebraic equations in the form

0 = F̂2(x1, x3, u) =


F21(x3,3, x3,4, y1)
F22(x3,2, y2)

F23(x3,2, x3,3, x25, y3)
F24(x3,1, x3,2, y4)

F25(x3,1, x3,3, x3,5, y5)


where yi, i = 1, . . . , 5 denotes the variables in x1 and u present in the corresponding
equation. If a BLT transformationis performed, the result will be

0 = F̂2(x1, x3, u) =


F22(x3,2, y2)

F24(x21, x3,2, y4)
F23(x22, x3,3, x3.5, y3)
F25(x21, x3,3, x3,5, y5)
F21(x23, x3,4, y1)


where the underlined variables denotes the variables to solve for in that equation. In the
case above, it means that first F22 should be solved w.r.t. x3,2. Having x3,2, F24 can be
solved for x3,1 and so forth. In F23 and F25, two variables are underlined. It means that
those correspond to a so-called strong component. Strong components are groups that
need to be solved simultaneous and the BLT transformationwill give that information as
well.
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The most obvious approach to find the power series of x3,i, i = 1, . . . , 5, would be to
let x3,2 depend on the variables in y2 and then find the power series in the ordinary way.
The next step could then be to let x3,1 depend on y4 ∪ y1 and so on. However, eventually
x3,i will then in most cases depend on all variables in x1 and u. This is of course true, but
not efficient. A better way is to use x3,i, i = 1, . . . , 5 as parameters. It means that x3,2 is
computed as a function of y2, x3,1 is computed as a function of x3,2 and y4 and so forth.
Finally, the power series of, for example, x3,2 is obtained as the composition of its series
expansion in x3,2 and y4, and the series expansion of x3,2. Note that in the beginning of
the solution process, it might still be better not to use the variables x3,i as parameters. For
example, if y2 ⊆ y4 in the example above, it is better to parametrize in just y4, since then
the number of parameters will be one less and the computations at the end can be avoided.

Since it often seems like equations have structures like the one above, and especially
equations generated in an object-oriented fashion, the method above can reduce the time
rather substantially.

6.5 Mechanical Systems

Mechanical systems can be shown to satisfy the conditions in Section 6.2.3 for quite
general configurations. Consider holonomic multibody systems expressed in first order
form (Kunkel and Mehrmann, 2006)

ṗ = q (6.41a)

M(p)q̇ = F (p, q, u) + λTGp(p) (6.41b)
G(p) = 0 (6.41c)

where p are the positions, q are the velocities, M(p) is the mass matrix, G(p) describes
the constraints, and λ are the associated Lagrange multipliers. If the constraints are such
that Gp(p) is nonsingular, that is, has full row rank, and Lµ 6= 0 it can be shown that
(6.41) satisfies Hypothesis 2.2 with µ = 2, d = 2(np − nλ), a = 3nλ and ν = 0. Divide
p into (p1, p2) such that G(p1, p2) = 0 can be solved for p2, and q accordingly. Then
reduced model (2.34) becomes

ṗ1 = q1 (6.42a)

q̇1 =
(
I 0

)
M(p)−1

(
F (p, q, u) +Gp(p)Tλ

)
(6.42b)

0 = G(p) (6.42c)
0 = Gp(p)q (6.42d)

0 = Gpp(p)(q, q)Gp(p)M(p)−1
(
F (p, q, u) +Gp(p)Tλ

)
(6.42e)

It can be seen that this model satisfies the condition in Section 6.2.3 given that

F (p, q, u) = F̄ (p, q) + Ḡ(p, q)u

For mechanical systems, it can also be seen that the constraint equations has a lot of
structure. The first constraint only involves p, the next only involves q and p, while the
last one involves all variables. The method in Section 6.4, then suggests that in first step,
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the first equation can be solved for p2 in terms of p1. The second step is to solve the
second algebraic equation for q2 expressed in p1 and q1. And the last step is to solve the
last equation for λ in terms of p1, q1 and u. In this case, one does not gain by solving the
equations in terms of the variables in each equation as described in Section 6.4 instead of
the variables x1 and u, since x1 and u may be present in all equations.

6.6 Example

In this section, a small example is studied only to give a hint about the differences in time
required to compute an approximate solution. The example is obtained from Kunkel and
Mehrmann (2001) and describes a cart-pendulum system in DAE form as

ṗ1 = q1

ṗ2 = q2

ṗ3 = q3

q̇1 = −2λ(p1 − p3)
q̇2 = −2λp2 − g

q̇3 = 2λ(p1 − p3) + u

0 = (p1 − p3)2 + p2
2 − l2

If the model above is rewritten in the form (6.41) using index reduction, it is possible to
find an optimal control law. For this case, the strangeness-free model becomes

ṗ1 = q1

ṗ3 = q3

q̇1 = −2λ(p1 − p3)
q̇3 = 2λ(p1 − p3) + u

0 = (p1 − p3)2 + p2
2 − l2

0 = (p1 − p3)(q1 − q3) + p2q2

0 = (q1 − q3)2 + q22 − 2λ
(
2(p1 − p3)2 + p2

2

)
− p2g − (p1 − p3)u

The cost function L is chosen as

L(x1, u) = p2
1 + p2

3 + q21 + q23 + u2

The algorithm to find the optimal solution is implemented in Maple 11 on a PC running
Linux. The computation times for four different setups are presented. The first and second
column show the computation times for R up to orders 8 and 12, respectively. In the first
column, the structure has been considered while in column 2 it has not. The third and
fourth columns present the times required to compute V up to the given orders, with and
without computing the equation for u∗.
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Table 6.1: The solution times for the computation of the optimal solution for the
cart-pendulum system, when the structure of the DAE model has been considered to
different extents.

Order R w/o struct. R w/ struct. V w/o control affinity V w/ control affinity
8 11.5 3.5 3.4 2.1

12 220 49 28 13

6.7 Conclusions

In this chapter different methods have been presented of how the structure of a nonlinear
DAE model can be utilized to reduce the computational complexity for certain control op-
timal control problems. One method was to use that for models in control-affine form and
if the cost function is quadratic in the control signal, one of the equations corresponding
to the HJB can be solved explicitly. To test for control affinity, some conditions were de-
rived. It was also shown that a control-affine DAE model must have an equivalent model
in which ẋ1 and u enters in a specific way. Another presented method to reduce the com-
plexity rather much is to first transform the model to the BLT form before solving the
problem.





7
Well-Posedness of SDAE Models

When modeling physical systems, it is usually impossible to predict the exact behavior
of the system. This can have several explanations. One common situation is that it is
known that external signals affect the systems, but these signals neither can be measured
nor chosen. A common choice is then to model them as stochastic processes.

Another common situation is that certain signals in the system are measured, but there
are imperfections in the measurements. For example, a sensor may have an unknown
offset or produce measurements with a time-varying error. This is denoted measurement
noise and can also be modeled as a stochastic process.

A third possibility is that a model has imperfections, which cannot be classified as un-
measured external signals or measurement imperfections. This is denoted process noise,
and is normally modeled as a stochastic process. Hence, above three cases are presented
in which it might be appropriate to include stochastic processes when modeling a physical
system.

This chapter deals with the problem of how to deal with stochastic processes for DAE
models, that is, the objective is to incorporate process noise w(t) and measurement noise
e(tk) in such a model. In the general case, this would result in the stochastic DAE (SDAE)
model

F
(
ẋ(t), x(t), w(t), u(t), t

)
= 0

y(tk) = h
(
x(tk)

)
+ e(tk)

where u ∈ Rp is the control input and y ∈ Rq is a measured output.
The conditions will be very similar to the control-affinity conditions posed in Chap-

ter 6. Having the conditions for well-posedness, it will also be discussed how the variables
x can be estimated using particle filters (Gordon et al., 1993; Doucet et al., 2001; Ristic
et al., 2004).

141
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7.1 Literature Overview

The question whether the state estimation problem for DAE models is well-defined has
been discussed by, e.g., Schein and Denk (1998), Winkler (2004), Darouach et al. (1997),
Kučera (1986), Germani et al. (2002), and Becerra et al. (2001). In Schein and Denk
(1998), linear SDAE models are treated, and it is guaranteed that the noise is not differ-
entiated by assuming that the system has differential index 1 (see for example Chapter 2).
The assumption that the system has differential index 1 is more restrictive than necessary,
and rules out some applications such as many mechanics systems. This assumption will
not be made here. Schein and Denk (1998) also note that some internal variables actually
may be so-called generalized stochastic processes, that is a time-continuous white noise
process. Winkler (2004) makes the same assumption as Schein and Denk (1998), but also
treats a class of nonlinear DAE models.

Darouach et al. (1997) deals with linear DAE models with differential index 1, and
a Kalman filter is constructed. However, in the estimation procedure the authors seem
to overlook the fact that some variables may have infinite variance. In Kučera (1986),
the original linear SDAE system specification may actually specify derivatives of white
noise, but a controller is designed that removes any derivatives. In Germani et al. (2002)
restrictive assumptions are made that guarantee that no derivatives appear in the linear
SDAE, although this is not stated explicitly. Finally, in Becerra et al. (2001) nonlinear
semi-explicit DAE models (e.g., Brenan et al., 1996) are discussed. Here well-posedness
is guaranteed by only adding noise to the state-space part of the system.

7.2 Background and Motivation

As mentioned above, the considered class of system can be written as

F
(
ẋ(t), x(t), w(t), u(t), t

)
= 0 (7.2a)

y(tk) = h
(
x(tk)

)
+ e(tk) (7.2b)

where w is process noise and e is measurement noise. The discussion will only include
the case when w(t) is a Gaussian second order stationary process with spectrum φw(ω).
The spectrum is assumed to be rational in ω with pole excess 2pw, which means that
(Gerdin, 2006; Åström, 1970)

lim
ω→∞

ω2pwφw(ω) = C

0 < C <∞

An important property of DAE models is that the variables x(t) may depend on derivatives
of the inputs to the model as was seen in for example Section 2.4.4. This is one of the
main issues when discussing noise for DAE models. Since w(t) occurs as an external
signal in the DAE equations (7.2), one or more of its derivatives with respect to time may
affect the variables x(t). This is an issue, since time derivatives of a Gaussian second
order stationary process may not have finite variance. Actually, w(t) can be differentiated
at most pw − 1 times, since it has pole excess 2pw, see Gerdin (2006).
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Example 7.1: Noise modeling difficulties
Consider the DAE  ẋ1(t)− x2(t)

ẋ2(t)− x2(t)
x2

1(t) + x2
3(t)− 1− w(t)

 = 0

where a stochastic process has been added to the last equation to model an unmeasured
disturbance. Differentiating the last equation w.r.t. time gives

2x1(t)ẋ1(t) + 2x3(t)ẋ3(t)− ẇ(t) = 0

Eliminating ẋ1(t) and ẋ3(t) using the first two equations of the DAE and solving for x2(t)
gives

x2(t) =
ẇ(t)

2x1(t) + 2x3(t)

If the spectrum of w(t) has pole excess 2, this is questionable since ẇ(t) then has infinite
variance. However, if the pole excess is 3 or higher, the involved signals have finite
variance.

As seen in the example above, it is essential to examine how many derivatives of w(t) that
affect the variables. For this end, the method in Section 2.4.4 is used. Therefore, consider
the DAE model

F
(
ẋ(t), x(t), w(t), u(t), t

)
= 0

and let it satisfy Hypothesis 2.2 for µ and µ + 1 with the same d, a and v. Then, it is
known that there exist matrices Z1 and Z2 such that

F̂1(x1, x2, x3, ẋ1, ẋ2, ẋ3, u, w, t) = ZT1 F (7.3a)

F̂2(x1, x2, x3, u, u̇, . . . , u
(µ), w, ẇ, . . . , w(µ), t) = ZT2


F
d
dtF

...
dµ

dtµF

 (7.3b)

where the derivatives are considered formal. From Section 2.4.4, it is known that F̂2 = 0
can be solved for x3, and after using that equation to eliminate ẋ3 and x3 in F̂1, the
equation F̂1 = 0 can be solved for ẋ1.

Now, let w(t) be a stochastic process which has a spectrum with pole excess 2pw.
Then, it can be differentiated at most pw − 1 times. If it is differentiated pw times or
more, the resulting signal has infinite variance. This means that a sufficient condition for
the signals x in the DAE to have finite variance is that no derivatives of w higher than
pw − 1 occur in F̂2 in (7.3b). As before, only DAE models for which all variables are
determined by the model, except for u and w, are considered. This means that no x2

appear. This discussion leads to the following result.

Lemma 7.1
Consider the SDAE model

F
(
ẋ(t), x(t), u(t), w(t), t

)
= 0
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where w(t) is a Gaussian second order stationary process with spectrum φw(ω), which
is rational in ω with pole excess 2pw. Assume that the SDAE fulfills Hypothesis 2.2 with
both u and w seen as external signals. The signals x(t) then have finite variance provided
that F̂2 can be written as

F̂2 = F̄2(x1, x3, u, u̇, . . . , u
(k), w, ẇ, . . . , w(l), t)

where l ≤ pw − 1, F̄2 is F̂2 with the special structure and F̂2 is defined by (7.3b).

The above discussion shows how it can be examined if a noise process w(t) is dif-
ferentiated too many times so that the resulting equations include signals with infinite
variance. However, it would be nice to be able to discuss solutions to stochastic DAE
models in terms of stochastic differential equations. The approach in this work will be to
convert the SDAE to the state-space form

ẋ(t) = f
(
x(t), t

)
+ σ

(
x(t), t

)
v(t) (7.4)

where the noise enters affinely into the equations. Of course, this is a special case of a
more general model structure where the noise enters through a general nonlinear function.
However, the general case is less treated in the literature. Since our goal is to extend
existing results for state-space models to DAE models, the discussion is limited to the
special case (7.4). Note that (7.4) must be handled as a stochastic integral (Åström, 1970).
To point this out, (7.4) is often written as

dx = f
(
x(t), t

)
dt+ σ

(
x(t), t

)
dv

where v(t) is a Wiener process.
The model (7.4) requires the noise process to be white noise, but in this chapter so

far only noise w(t) with finite variance has been discussed. However, as w(t) is assumed
to be a Gaussian second order stationary process, it can be seen as white noise filtered
through a linear filter, see Åström (1970); Gerdin (2006). The filter can for example be
written in state-space form,

ẋw(t) = Axw(t) +Bv(t) (7.5a)
w(t) = Cxw(t) (7.5b)

where v(t) is white noise. Combining the SDAE model (7.2a) and the noise model (7.5)
gives

F
(
ẋ(t), x(t), Cxw(t), u(t)

)
= 0

ẋw(t) = Axw(t) +Bv(t)

This can be seen as the single SDAE model,

G
(
ż(t), z(t), v(t), u(t)

)
= 0

where v(t) is white noise and

z(t) =
(
x(t)
xw(t)

)
When the SDAE model contains white noise terms, additional restrictions apply. Not only
is it not allowed to differentiate the white noise signal, but it must also be integrated in
the affine form (7.4). As shown in the following example, this is not ensured for a general
SDAE model.
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Example 7.2: White noise modeling difficulties

Consider the nonlinear DAE

ẋ1(t)− x2
2(t) = 0

x2(t)− v(t) = 0

where v(t) is white noise. The second equation states that x2(t) is equal to a time-
continuous white noise process. Since such processes have infinite variance, this is ques-
tionable if x2(t) represents a physical quantity. The first equation states that

ẋ1(t) = v2(t)

which also is questionable since nonlinear operations on white noise cannot be handled
in the standard framework of stochastic integrals (Åström, 1970; Gerdin, 2006).

The main topics of this chapter concern how noise can be included in DAE models without
introducing problems such as those discussed in the example and how particle filters can
be implemented for DAE models with white noise inputs.

7.3 Well-Posedness for Linear SDAE Models

First, the linear case is considered, which has been studied in Gerdin (2006). Let the
linear SDAE be given by

Eẋ(t) = Ax(t) +Bu(t) +
nw∑
l=1

Jlwl(t) (7.7a)

y(tk) = Cx(tk) +Du(tk) + e(tk) (7.7b)

where wl(t) is a Gaussian second order stationary process with a spectrum φwl
which is

rational and has pole excess 2pl. Note that if wl(t) is a white noise, pl is zero.
In the linear case, it is possible to require only a part of the variables to have finite

variance. This is interesting in cases where some variables are used as internal variables
in the model and may have no interest in themselves. The variables that need to have
finite variance are denoted x̄(t) and are selected as

x̄(t) = Mx(t)

for some rectangular matrix M .
In order to formulate the result, first recall the definition of an oblique projection of a

matrix A along the space B on the space C,

A
/
B C =

(
0 C̄

) (
B̄ C̄

)−1
A

where B̄ and C̄ are bases for B and C, respectively. The result can now be formulated as
follows (Gerdin, 2006).
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Theorem 7.1
Consider the linear SDAE model (7.7) and assume that it is regular. Let λ be a scalar
such that (λE +A) is invertible, and define

Ē = (λE +A)−1

Then the variables x̄(t) and the measured output y(tk) will have finite variances if and
only if (

Ēj(λE +A)−1Jl
)/

V(Ēn)
N (Ēn) ∈ N

((
M
H

))
, j ≥ pl, ∀l

where N denotes the null space and V the range.

In the nonlinear case, all variables will be required to have finite variance, which in
the linear case would correspond to the case with M chosen as an identity matrix of size
d× d. This means that the corresponding null space is given by the zero matrix.

7.4 Well-Posedness for Nonlinear SDAE Models

Now, consider the nonlinear case. In this case, a well-posed SDAE model is required to
have the following properties.

Definition 7.1. The SDAE model (7.2) is well-posed if the underlying state-space model
has a solution that is well-defined in the standard framework of stochastic integrals, and
if all variables have finite variance.

It has been motivated in Examples 7.1 and 7.2 that the nonlinear model must not dif-
ferentiate the noise input. Furthermore, the noise input must enter the model affinely. The
following theorem gives sufficient conditions to satisfy these requirements. To simplify
the notation, u(t) is included into t.

Theorem 7.2
Consider the nonlinear SDAE model

F
(
ẋ(t), x(t), v(t), t

)
= 0 (7.8)

and assume that it satisfies Theorem 2.2 with Hypothesis 2.2 with v(t) as the external
input. Let F̂1, F̂2, x1, x2, and x3 be defined as in Section 2 and assume that x2 is of size
zero.

Then there exists a well-defined solution x(t) in terms of stochastic differential equa-
tions to (7.8) with v(t) considered as white noise provided that F̂1 and F̂2 can be written
as

F̂1 = F̄1

(
t, x1, x3, ẋ1 − σ(x1, x3)v, ẋ3 + F̂−1

2;x3
F̂2;x1σ(x1, x3)v

)
(7.9a)

F̂2 = F̄2

(
t, x1, x3

)
(7.9b)

for some function σ(x1, x3).
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Proof: Differentiating (7.9b) w.r.t. time yields

F̄2;t + F̄2;x1 ẋ1 + F̄2;x3 ẋ3 = 0

From the assumptions in Theorem 2.2 it follows that F2;x3 is invertible, and that F̄2 is
locally solvable for x3. This means that ẋ3 can be written as

ẋ3 = −F̄−1
2;x3

(F̄2;t + F̄2;x1 ẋ1)

The constraints (7.9b) can also be locally solved for x3 to give

x3 = R(t, x1) (7.10)

for some function R. Inserting this into (7.9a) gives

F̄1

(
t, x1,R, ẋ1 − σ(x1,R)v,−F̄−1

2;x3
(F̄2;t + F̄2;x1 ẋ1) + F̄−1

2;x3
F̄2;x1σ(x1,R)v

)
The equation F̄1 = 0 now takes the form

F̄1

(
t, x1,R, ẋ1 − σ(x1,R)v,−F̄−1

2;x3
F̄2;t − F̄−1

2;x3
F̄2;x1(ẋ1 − σ(x1,R)v)

)
= 0

Since Theorem 2.2 is fulfilled, this equation can be solved for ẋ1. Since −σ(x1,R)v
enters the equations in the same way as ẋ1, the solution can be written as

ẋ1 − σ(x1,R)v = L(t, x1)

for some function L. This can be interpreted as the stochastic differential equation

dx1 = L(t, x1)dt+ σ(x1,R) dv

which means that x1 has a well-defined solution. A solution for x3 is then defined
through (7.10).

Note that in the derivation of the reduced DAE (and the underlying ODE), derivatives
of the noise may show up. However, as shown in Section 2.4.4, such derivatives can be
neglected if they disappear in the final expressions. Further note that (7.9) can also be
shown to satisfy the conditions in Theorem 6.3 with M(x1, x3) = σ(x1, x3).

If noise has been added to a DAE model using physical insight or for other reasons
in a predefined way, the theorem above gives conditions for the system to be well-posed
using a transformed version of the system. It may also be interesting to be able to see if
the SDAE is well-posed already in the original equations. As discussed in the theorem
above, the SDAE model is well-posed if the equations F̂1 = 0 and F̂2 = 0 take the form

F̄1

(
t, x1, x3, ẋ1 − σ(x1, x3)v, ẋ3 + F̄−1

2;x3
F̄2;x1σ(x1, x3)v

)
= 0

F̄2

(
t, x1, x3

)
= 0.

In the original equations, this can typically be seen as adding noise according to

F

((
ẋ1 − σ(x1, x3)v

ẋ3 + F̂−1
2;x3

F̂2;x1σ(x1, x3)v

)
,

(
x1

x3

)
, t

)
= 0. (7.12)

One common situation when it is easy to see how white noise can be added is for semi-
explicit index one DAE models (Brenan et al., 1996). This is considered in the following
example.
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Example 7.3: Noise modeling: semi-explicit index 1 DAE

Consider a semi-explicit index one DAE model

ẋa = f(xa, xb) (7.13a)
0 = g(xa, xb) (7.13b)

Locally, xb can be solved from (7.13b), so these equations correspond to F̂1 = 0 and
F̂2 = 0 respectively. Noise can thus be added according to

ẋa = f(xa, xb) + σ(xa, xb)v
0 = g(xa, xb)

7.5 Particle Filtering

An important aspect of uncertain models is state estimation and prediction. For nonlinear
systems this is a difficult problem, see for instance Ristic et al. (2004); Andrieu et al.
(2004); Schön (2006). Therefore, it is necessary to resort to approximate methods. One
approximate method for nonlinear state estimation is the particle filter, see for example
Gordon et al. (1993); Doucet et al. (2001); Ristic et al. (2004). In this section, the prob-
lem of how particle filter methods can be extended for use with SDAE models will be
discussed.

To be able to describe how existing particle filtering algorithms can be extended to
DAE models, first a brief summary of how particle filtering can be implemented for state-
space models is presented. For a more thorough treatment, see e.g., Gordon et al. (1993);
Doucet et al. (2001); Ristic et al. (2004). Existing particle filtering methods may allow
other model structures than state-space models, but here the discussion is limited to this
class since it is enough in order to extend particle filtering methods to SDAE models.

Consider a nonlinear discrete-time state-space model,

x(tk+1) = f
(
x(tk), u(tk), w(tk)

)
(7.15a)

y(tk) = h
(
x(tk)

)
+ e(tk) (7.15b)

where x is the state vector, u is a known input, y is a measured output, and w and e are
stochastic processes with known probability density functions. The particle filter is based
on estimating the probability density function of the state x(tk), given the measurements

ZN = {u(t0), y(t0), ..., u(tN ), y(tN )}. (7.16)

The goal is therefore to compute the probability density function

p
(
x(tk)|ZN

)
(7.17)



7.5 Particle Filtering 149

Depending on if k < N , k = N , or k > N the type of the problem is either a smoothing
problem, a filtering problem, or a prediction problem, respectively. In this thesis only the
filtering problem and the one-step-ahead prediction problem are considered, which means
that N = k or N = k − 1.

Once (the estimate of) the probability density function has been computed, it can be
used to estimate the value of x(t). One possibility is to use the expected value of x(tk)
given ZN , another is to use the maximum a posteriori estimate, that is the x(tk) that
maximizes p

(
x(tk)|ZN

)
.

In the particle filter, the probability density function (7.17), here with N = k − 1, is
approximated by a sum of Dirac functions,

p
(
x(tk)|Zk−1

)
≈

M∑
i=1

q
(i)
tk|tk−1

δ
(
x(tk)− x

(i)
tk|tk−1

)
This means that the density function is approximated using M particles{

x
(i)
tk|tk−1

}M
i=1

with associated weights, {
q
(i)
tk|tk−1

}M
i=1

.

Since the approximation is made using Dirac functions, it is not an approximation at each
point x. Instead, the approximation is valid for integrals of p. For example, the mean
value of x(tk) can be estimated as

E
(
x(tk)|Zk−1

)
=
∫
x · p

(
x(tk)|Zk−1

)
dx ≈

M∑
i=1

q
(i)
tk|tk−1

x
(i)
tk|tk−1

Now assume that a new measurement {y(tk), u(tk)} is obtained. Using Bayes’s rule,
the probability density function p

(
x(tk)|Zk−1

)
should be updated according to

p
(
x(tk)|Zk

)
=
p
(
y(tk)|x(tk)

)
p
(
x(tk)|Zk−1

)
p
(
y(tk)|Zk−1

) .

Since p
(
y(tk)|Zk−1

)
does not depend on x, the approximation of the probability density

function is updated by the particle filter by updating the weights {q(i)tk|tk−1
}Mi=1 as

q
(i)
tk|tk =

p
(
y(tk)|x(i)

tk|tk−1

)
q
(i)
tk|tk−1∑M

j=1 p
(
y(tk)|x(j)

tk|tk−1

)
q
(j)
tk|tk−1

, i = 1, . . . ,M.

For the state-space model (7.15), it follows that

p
(
y(tk)

∣∣∣x(i)
tk|tk−1

)
= pe

(
y(tk)− h(x(i)

tk|tk−1
)
)

where pe is the probability density function of e(tk).
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After this step, called the measurement update, the resampling step takes place. The
resampling step redistributes the particles to avoid degeneration of the filter. It does not
introduce additional information (actually, information is lost). The method used here
is sampling importance resampling. For other alternatives, see the Gordon et al. (1993);
Doucet et al. (2001); Ristic et al. (2004). In the resampling step the M particles are
replaced byM new particles. This is performed by drawingM particles with replacement
from the old particles. The probability to draw particle i is proportional to its weight
q
(i)
tk|tk . The new particles x(i)

tk|tk are thus chosen according to

Pr
(
x

(i)
tk|tk = x

(j)
tk|tk−1

)
= q

(j)
tk|tk i = 1, . . . ,M.

The weights are changed to

q
(i)
tk|tk =

1
M

i = 1, . . . ,M

so that the approximation of the probability density function is, approximately, left un-
changed.

After the resampling step, the time update step takes place. This means that x(tk+1)
is predicted using available information about x(tk). For the particle filter and the state-
space model (7.15), this is done by drawing M independent samples w(i)(tk), i =
1, . . . ,M , of w(tk), according to its probability density function pw. The particles are
then updated according to

x
(i)
tk+1|tk = f

(
x

(i)
tk|tk , u(tk), w

(i)(tk)
)
, i = 1, . . . ,M.

In general, this can be seen as drawing new particles according to their conditional distri-
bution,

x
(i)
tk+1|tk ∼ p

(
xtk+1|tk

∣∣∣x(i)
tk|tk

)
, i = 1, . . . ,M.

The weights are unchanged, q(i)tk+1|tk = q
(i)
tk|tk = 1

M . Note that a more general version of
the time update equation is available, see the references. After this step, a new measure-
ment is obtained and the filter is restarted from the measurement update step.

When starting a filter, the particles should be initialized according to available infor-
mation about the initial value, x(t0). If the probability density function of x(t0) is px0 ,
the particles are initially chosen according to that distribution. We can write this as

x
(i)
t0|t−1

∼ px0(x0), i = 1, . . . ,M

and we get

q
(i)
t0|t−1

=
1
M
, i = 1, . . . ,M.

To conclude, the particle filter algorithm can be written as follows.

1. Initialize the M particles,

x
(i)
t0|t−1

∼ px0(x0), i = 1, . . . ,M
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and
q
(i)
t0|t−1

=
1
M
, i = 1, . . . ,M.

Set k := 0.

2. Measurement update: calculate weights {q(i)tk|tk}
M
i=1 according to

q
(i)
tk|tk =

p
(
y(tk)|x(i)

tk|tk−1

)
q
(i)
tk|tk−1∑M

j=1 p
(
y(tk)|x(j)

tk|tk−1

)
q
(j)
tk|tk−1

, i = 1, . . . ,M.

3. Resampling: draw M particles, with replacement, according to

Pr
(
x

(i)
tk|tk = x

(j)
tk|tk−1

)
= q

(j)
tk|tk i = 1, . . . ,M

and set
q
(i)
tk+1|tk =

1
M

i = 1, . . . ,M.

4. Time update: predict new particles according to

x
(i)
tk+1|tk ∼ p

(
xtk+1|tk

∣∣∣x(i)
tk|tk

)
, i = 1, . . . ,M.

5. Set k := k + 1 and iterate from step 2.

To examine how the implementation for DAE models can be done, consider a SDAE
model in the form (7.2),

G
(
ż(t), z(t), w(t), t

)
= 0

y(tk) = h
(
z(tk)

)
+ e(tk)

In order to use the methods for stochastic simulation with white noise inputs, the stochas-
tic process w(t) is realized as white noise v(t) filtered through a linear filter as discussed
in Section 7.2, and the following model is obtained

F
(
ẋ(t), x(t), v(t), t

)
= 0 (7.19a)

y(tk) = h
(
x(tk)

)
+ e(tk) (7.19b)

Now, consider a SDAE model (7.19a) that fulfills the conditions in Theorem 7.2. Then, it
follows that the model has the structure

F̄1

(
t, u, x1, x3, ẋ1 − σ(x1, x3)v, ẋ3 + F̄−1

2;x3
F̄2;x1σ(x1, x3)v

)
= 0 (7.20a)

F̄2

(
t, u, u̇, . . . , u(µ), x1, x3

)
= 0 (7.20b)

y(tk) = h
(
x(tk)

)
+ e(tk) (7.20c)

Since F̄1 and F̄2 are the result of the transformations discussed in Section 2.4, F̄2 can be
solved locally for x3 as

x3 = R(t, x1, u, u̇, . . . , u
(µ)) (7.21)
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After using (7.21) to eliminate x3 and ẋ3 in F̄1, F̄1 can be solved for ẋ1 as

ẋ1 = L(t, u, u̇, . . . , u(µ+1), x1) + σ(x1,R)v (7.22)

Combining (7.20)–(7.22) gives

ẋ1 = L(t, u, u̇, . . . , uµ+1, x1) + σ(x1,R)v (7.23a)

y(tk) = h
(
x1(tk),R(u(tk), u̇(tk), . . . , u(µ)x1(tk)

)
+ e(tk) (7.23b)

The state-space model (7.23) can be used to implement a particle filter for estimation
of x1. After estimating x1, estimates of x3 can be computed using (7.21).

Since it is usually not possible to solve for ẋ1 and x3 explicitly, numerical implemen-
tation methods will be discussed in the following section. Furthermore, the state equation
need to be discretized. This can be done using for example a numerical solver for stochas-
tic differential equations. The time update in step 4 in the particle filtering algorithm is
thus performed by solving (7.23a) for one time step. The measurement update in step 2
of the particle filtering algorithm is performed using the measurement equation (7.23b).

7.6 Implementation Issues

As mentioned in earlier sections, the transformation which brings the model into the
form (7.20) may be difficult to compute in practice. Furthermore, in order to run the par-
ticle filter, the equations (7.20) need to be solved numerically for ẋ1 and x3 which may
be an issue. Therefore, approximate implementations can be considered. One approach
to do this is to use the type of DAE solver that is included in modeling environments for
object-oriented modeling such as Dymola (Mattsson et al., 1998).

As discussed in Section 2.5, DAE solvers that solve models obtained from object-
oriented modeling tools compute an approximation in the form

F̌1(t, x1, x3, ẋ1) = 0

F̂2(t, x1, x3) = 0

where F̌1 is F̂1 with ẋ3 eliminated. This model can be used to examine if a DAE with
a noise model satisfies the conditions of Theorem 7.2. The most straightforward way to
check if a given noise model is correct, is to examine if the transformed system is of the
form

F̌1 = F̃1

(
t, x1, x3, ẋ1 − σ(x1, x3)v

)
= 0 (7.25a)

F̂2(t, x1, x3) = 0 (7.25b)

where F̃1 is F̌1 with the desired structure of the arguments. The check can either be done
by just looking at the equations or by using the methods in Chapter 6. If v appears in
incorrect positions (so that the transformed system is not of the form (7.25)), one way to
handle the situation would be to remove v(t) from these incorrect locations in F̃1 and F̂2,
and assume that noise is added to the original equations so that this is achieved.
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The solvers can also be used for approximate implementation of particle filters for
DAE models. The idea behind this is that the transformation to the form

ẋ1 = L(t, x1) + σ(x1,R)v (7.26a)
x3 = R(t, x1) (7.26b)

can be made by solving F̃1 and F̂2 numerically at each time step using a DAE solver.
This means that given values of x1 and v the solver can give ẋ1 and x3. The state equa-
tion (7.26a) can then be used to estimate x1, and x3 can be computed from (7.26b).

To summarize, the following procedure can be used when modeling noise in DAE
models and implementing a particle filter. First, a DAE model without noise is derived
by writing down equations, or from component-based modeling. This DAE model is then
entered into a DAE solver to determine which variables are states. Using physical insight,
noise is then added to the original equations and the equations are transformed into F̃1 and
F̂2. If noise terms appear at incorrect positions, these are removed so that the equations
are in the form (7.25). For this form a particle filter is then implemented by solving for
ẋ1 and x3 using the DAE solver.

7.7 Example: Dymola Assisted Modeling and Particle
Filtering

mg

z1

z2

Figure 7.1: A pendulum.

In this section a DAE model of a pendulum is studied. First noise is added, and then
a particle filter is implemented to estimate the internal variables of the pendulum. The
example is slightly modified example from Brenan et al. (1996). As shown in Figure 7.1,
z1 and z2 are the horizontal and vertical position of the pendulum. Furthermore, z3 and z4
are the respective velocities, z5 is the tension in the pendulum, the constant b represents
resistance caused by the air, g is the gravity constant, and L is the constant length of the
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pendulum. The equations describing the pendulum are

ż1 = z3 (7.27a)
ż2 = z4 (7.27b)

ż3 = −z5 · z1 − b · z2
3 (7.27c)

ż4 = −z5 · z2 − b · z2
4 − g (7.27d)

0 = z2
1 + z2

2 − L2 (7.27e)

We will use the approximate methods discussed in Section 7.6, so the equations are
entered into the DAE solver in Dymola. The first step in the noise modeling is to let
Dymola select which variables are states. There are several possible ways to select states
for these equations, but here z1 and z3 are selected, which gives

x1 =
(
z1
z3

)
, x3 =

z2z4
z5


It means that F̂1 can be chosen as

F̂1 =
(

ż1 − z3
ż3 − (−z5 · z1 − b · z2

3)

)
corresponding to (7.27a) and (7.27c). White noise could thus be added to the states z1
and z3. A choice in this case, is to only add noise to ż3 which should model disturbances
caused by, e.g., turbulence. The equations (7.27a) and (7.27c) then take the form

ż1 = z3 (7.28a)

ż3 = −z5 · z1 − b · z2
3 + v (7.28b)

where v is white noise. This corresponds to

σ =
(

0
1

)
in (7.9). The next step in the noise modeling is to transform these equations together with
the remaining noise-free equations into F̃1 and F̂2 in (7.25). Doing this reveals that F̃1,
which is available as C code from Dymola, is of the desired form

F̃1

(
t, x1, x3, ẋ1 − σ(x1, x2)v

)
that is, the noise term only occurs in affine form and together with ẋ1. However, F̂2

includes the noise term v which is not allowed. To solve this problem, occurrences of v
in F̂2 are deleted before it is used for particle filtering. Removing the noise from F2 can
typically be seen as adding noise in the original equations, but a user does not need to
consider the exact form of this. (For illustration, a short discussion of the exact form for
the pendulum case is included is anyway below.)

Next, a particle filter is implemented to estimate the internal variables of the system.
To generate data for the estimation experiment, the model is inserted into the Simulink
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environment using the Dymola-Simulink interface available with Dymola. The purpose
of this experiment is not to demonstrate the performance of a filtering algorithm, but
rather to show how DAE models can be used in a direct way when constructing particle
filters. Therefore it is sufficient to use simulated data for the experiment. The constants
were chosen as L = 1, b = 0.05 and g = 9.81. Process noise was generated with the
Band-Limited White Noise-block in Simulink with noise power 0.01. The initial values
of the states were z1 = 0.5 and z3 = −0.1. The measured variable is the tension in the
pendulum z5,

y(tk) = z5(tk) + e(tk)

Measurements with noise variance 0.1 were collected at the sampling interval 0.05 s.
After generating the data, a particle filter was implemented using the algorithm in

Section 7.5 to estimate the internal variables z1, z2, z3, z4, and z5. Since the selected
states are z1 and z3, these are the variables that are estimated directly by the particle filter.
The remaining variables are then computed by Dymola using F̂2.

The particle filter was implemented in MATLAB with the time updates being per-
formed by simulating the model using the Dymola-Simulink interface. The initial parti-
cles were spread between z1 = 0.1 and z1 = 0.6 and between z3 = −0.2 and z3 = 0.2.
Only positive values of z1 were used since the symmetry in the system makes it impossi-
ble to distinguish between positive and negative z1 using only measurements of z5. The
particle filter was tuned to use noise power 0.1 for the process noise and variance 0.2 for
the measurement noise to simulate the situation were the noise characteristics are not ex-
actly known. A typical result of an estimation is shown in Figure 7.2 where an estimation
of z1 is plotted together with the true value.
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Figure 7.2: Typical result of particle filtering.

To examine the reliability of the filtering algorithm, 100 Monte Carlo runs were made.
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Then the RMSE value was calculated according to

RMSE(t) =

√√√√ 1
M

M∑
j=1

(
x(t)− x̂j(t)

)2
where M is the number of runs, here M = 100, x(t) is the true state value and x̂j(t) is
the estimated state value in run j. The result is shown in Figure 7.3. The estimation error
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Figure 7.3: RMSE for the estimations of z1 and z3 for 100 Monte Carlo runs.

in the velocity z3 is larger when the pendulum changes direction, which could mean that
it is more difficult to estimate the velocity there.

Noise Modeling Details

When adding noise to a DAE, a user can only add noise so that it enters through a func-
tion σ. This was done in equation (7.28) above. However, noise must also be added
according to the term F̂−1

2;x3
F̂2;x1σ(x1, x3)v in (7.12) to make all variables well-defined

(otherwise the conditions of Theorem 7.2 will not be satisfied).
To compute F̂2, consider the pendulum equations (7.27). The constraints that defines

the circle is
0 = z2

1 + z2
2 − L2. (7.29)

Differentiating (7.29) w.r.t. time gives

0 = 2z1ż1 + 2z2ż2.

Inserting (7.27a) and (7.27b) gives

0 = 2z1z3 + 2z2z4 (7.30)
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which after differentiation gives

0 = 2ż1z3 + 2z1ż3 + 2ż2z4 + 2z2ż4

Inserting the expressions for the derivatives gives

0 = 2z2
3 + 2z1(−z5 · z1 − bz2

3) + 2z2
4 + 2z2(−z5 · z2 − bz2

4 − g) (7.31)

The equations (7.29), (7.30), and (7.31) together define one possible selection of F̂2.
These can be used to compute

F̂−1
2;x3

F̂2;x1σ(x1, x3)v = F̂−1
2;x3

F̂2;x1

(
0
1

)
v =

 0
z1
z2
∗

 v (7.32)

where the last term ∗ is unimportant since ż5 does not occur in the equations. It can be
realized that noise should be added to ż4 according to

ż4 +
z1
z2
v = −z5 · z2 − b · z2

4 − g (7.33)

to satisfy the conditions of Theorem 7.2.

7.8 Conclusions

In this chapter, a theoretical basis for introduction of noise processes in DAE models
has been presented. The exact conditions that is obtained can be hard to use in practice,
for instance since it requires rank tests. Therefore, an approximate solution was pro-
posed. This solution uses the type of DAE solvers included in modeling environments
for object-oriented modeling. Typically, these solvers produce an approximation of the
transformation that is necessary to include noise in a feasible way.

It was also discussed how particle filtering can be implemented for DAE models, and
an example which shows the required steps was presented. The results were similar to
what could be expected from an implementation using a regular state-space model.





8
The Controllability Function

In this chapter the controllability function for nonlinear DAE systems is considered.
The controllability function describes the minimum amount of control energy required
to reach a specific state in infinite time. That is, a large value means that the specific
state requires a lot of input effort reach. As the formulation suggests, the controllability
function is defined as the solution to an optimal control problem where the performance
criterion is an energy measure of the control input.

For state-space systems the controllability function is studied in for example Scherpen
(1994); Newman and Krishnaprasad (2000). Scherpen shows that for linear time-invariant
state-space models, the controllability function is given by the inverse of the controllabil-
ity gramian multiplied from the left and right by the state. The connection between a finite,
nonzero controllability function and different concepts of controllability for control-affine
nonlinear systems is to some extent studied in, for example Scherpen and Gray (2000).

The controllability function for regular time-invariant linear DAE models with con-
sistent initial conditions, has been considered in Stykel (2004). The method suggested by
Stykel also handles models that are not strangeness-free, without first using index reduc-
tion.

For nonlinear DAE systems, Lin and Ahmed (1991) consider controllability using the
maximum principle. However, instead of formulating the controllability function, they
solve the problem, using optimal control, as a feasibility problem.

In this chapter, the optimal control problem for the controllability function is solved
using the results obtained in Chapter 3 and Chapter 4. Three different methods are de-
rived. In Section 8.2.1, necessary conditions are derived based on the necessary condi-
tions given in Chapter 3. The second method is described in Section 8.2.2 and is similar
to a method derived in Scherpen (1994). It is based on completion of squares and gives
sufficient conditions. These two methods find the controllability function on some set
x1 ∈ Ωx. The third method, presented in Section 8.3, finds a local solution, i.e., a con-
trollability function valid in a neighborhood of the origin. In practice, the local solution is
truncated and this method will then give an approximation of the controllability function.

159
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8.1 Problem Formulation

Basically, a general controllability function should measure the minimal amount of energy
in the control signal u(t) required to reach a specific state x. Therefore, it is necessary to
define a measure of the control signal energy. The most common energy measure, see for
example Scherpen (1994), and the energy measure used in this thesis is

Jc =

0∫
−∞

m
(
u(t)

)
dt =

1
2

0∫
−∞

u(t)Tu(t) dt (8.1)

It would be possible to use a more generalm
(
u(t)

)
, but in order to get a nice interpretation

it has to be positive definite, i.e., satisfying m
(
u(t)

)
> 0 for all nonzero u(t).

The controllability function Lc(x1) is defined as the solution to the optimal control
problem

Lc
(
x1,0

)
= min

u(·)
Jc

s.t. ẋ1 = F1(x1, x3, u)
0 = F2(x1, x3, u)

x1(0) = x1,0 ∈ Ωx
0 = lim

t→−∞
x1(t)

(8.2)

The DAE model is for notational reasons assumed semi-explicit, but as was seen in
Chapter 4 more general definitions are possible to include. The model is also assumed
to have an equilibrium at the origin and to be strangeness-free. However, the region in
which the model must be strangeness-free will vary between the sections. It means that
either the assumption is required locally around a point or in a whole region.

Since the origin is an equilibrium, no control effort is required to stay there. This
means that controllability function must satisfy Lc(0) = 0. Moreover, Lc(x1,0) is defined
as infinite if x0 cannot be asymptotically reached from 0, i.e., if no control input such that
x1(−∞) = 0 and x1(0) = x1,0 exists.

The boundary conditions implies that the feedback law u(·) must give a closed-loop
system asymptotically anti-stable for x1,0 ∈ Ωx. That is, if the time is reversed and
considered as going from 0 to −∞, the system must be asymptotically stable.

Throughout the chapter, only points in the set

N = {x1 ∈ Ωx, x3 ∈ Rn2 |x3 = R(x1, u), u ∈ Ωu}

are considered, where Ωu is either Rp or a neighborhood of u = 0 depending on which
assumption that is used. That is, the controllability function is only computed for points
not violating the constraints. This is ensured by choosing the final state x1,0 in Ωx. Note
that if all x1,0 ∈ Ωx can be reached, it is also possible to reach all (x1,0, x2,0) ∈ N . The
reason is that it is possible to use some u(t) for−∞ < t < 0 and then at t = 0 use u(0) to
obtain x3(0) = x3,0, which will leave the value of the controllability function unchanged.



8.2 Methods Based on HJB Theory 161

8.2 Methods Based on HJB Theory

In this section, two different methods are derived. The first method relies on the condi-
tions derived in Chapter 3, while the second method uses completion of squares to find
sufficient conditions for optimality.

8.2.1 Necessary Conditions

Consider a DAE model that satisfies Assumption A2, that is the model is strangeness-free
for u ∈ Rp. The optimal control problem (8.2) can then be seen as a special case of the
case studied in Chapter 3 with the cost function L chosen as the squared input.

A difference compared to the standard optimal control problem is that the final state,
and not the initial state, is specified. This means that the time can be considered as going
backwards compared to the standard case, and the HJB (3.7) becomes

0 = min
u

(1
2
uTu−W1(x1)F1(x1, x3, u)−W2(x1, x3)F2(x1, x3, u)

)
(8.3)

where W1(x1) and W2(x1, x3) are continuous functions such that W1(x1) is the gradient
of some continuously differentiable function V (x1).

The necessary conditions for optimality that corresponds to (8.3) can be found in
Section 3.3. However, due to the structure of the cost function, the conditions can be
simplified.

Corollary 8.1
Consider the optimal control problem (8.2). Then, the optimal solution must satisfy

0 = uT −W1(x1)F1;u(x1, x3, u)−W2(x1, x3)F2;u(x1, x3, u) (8.4a)

0 =
1
2
uTu−W1(x1)F1(x1, x3, u) (8.4b)

0 = F2(x1, x3, u) (8.4c)

0 = W2(x1, x3) +W1(x1)F1;x3(x1, x3, u)F−1
2;x3

(x1, x3, u) (8.4d)

for x1 ∈ Ωx.

In the corollary above, (8.4d) is included since the system is assumed to satisfy As-
sumption A2. Note that if the model has the control-affine-like structure discussed in
Section 3.5, it is possible to simplify the equations even more.

8.2.2 Sufficient Conditions

The HJB equation yields both necessary and sufficient conditions for optimality. How-
ever, when differentiation with respect to u is used to find the optimal control, the suffi-
ciency is lost and only necessary conditions are obtained.

Therefore, consider the class of models

Eẋ = f(x) + g(x)u (8.5)
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whereE =
(
In1 0
0 0

)
. For models with this structure, another approach can be used to show

optimality. The approach is to a large extent similar to the approach in Scherpen (1994)
and uses the fact that the performance criterion only depends on the squared control signal.
The advantage is that sufficient conditions for optimality are obtained. The result is stated
in the following theorem.

Theorem 8.1
Suppose there exist continuous functions W1(x1) = Vx1(x1) and W2(x1, x3) such that
L̃c(x) =

(
W1(x1), W2(x1, x3)

)
fulfills

0 = L̃c(x)f(x) +
1
2
L̃c(x)g(x)g(x)T L̃c(x)T (8.6)

for all x ∈ N . Furthermore, assume that for the control choice

u = g(x)T L̃c(x)T (8.7)

the system (8.5) can be solved backwards in time from t = 0, with x(t) → 0, t → −∞.
Under these conditions, Lc(x1) = V (x1) on Ωx and the corresponding u is the optimal
control law.

Proof: Assume that x1,0 ∈ Ωx. For any control signal u(·) such that the solution to (8.5)
fulfills x(t) → 0 as t→ −∞ it follows that

1
2

0∫
−∞

uTu dt = V (x1,0) +

0∫
−∞

(1
2
uTu− Vx1(f1 + g1u)−W2(f2 + g2u)

)
dt

where V (x1), W2(x1, x3) are arbitrary sufficiently smooth functions. Completing the
squares gives

1
2

0∫
−∞

uTu dt = V (x1,0) +

0∫
−∞

1
2
‖u− g(x)T L̃c(x)T ‖2 dt

provided (8.6) is satisfied. It can be realized that V (x1,0) is a lower bound for the integral
in (8.1). By choosing u = g(x)T L̃c(x)T , this lower bound is obtained and since this
control choice is such that the closed-loop system can be solved backwards in time and
x(−∞) = 0, it is optimal. Therefore, for all x1,0 ∈ Ωx

Lc(x1,0) = min
u(·)

1
2

0∫
−∞

uTu dt = V (x1,0)

The proof require Ωx to be an invariant set for the closed-loop system. However,
since the closed loop system is asymptotically anti-stable, such a choice of Ωx is always
possible, as shown in Section 2.6.1.



8.3 Existence and Computation of a Local Solution 163

The requirement that the closed-loop model with (8.7) must be asymptotically stable
going backwards in time for x ∈ N is equivalent to

E ˙̃x(s) = −
(
f(x̃(s)) + g(x̃(s))g(x̃(s))T L̃c(x̃(s))T

)
(8.8)

being asymptotically stable on Ωx, where x̃(s) = x(−s) and s = −t. To verify that (8.8)
is asymptotically stable, the methods described in Section 2.7 can be used.

Similarly to the method by Xu and Mizukami (1993), Theorem 8.1 is primarily in-
tended to verify optimality and not to calculate W1 and W2, since additional equations
are needed in order to have the same number of unknowns as equations, see Chapter 3.
Therefore, the standard procedure in cases when the model match the structure (8.5) is
to combine the sufficient and necessary conditions in Section 8.2. That is, first candidate
solutions are found using the necessary conditions and the optimal solution is then chosen
using the sufficient conditions. The approach is illustrated in Section 8.4.1.

8.3 Existence and Computation of a Local Solution

In Chapter 4, it was proved that under certain conditions, an optimal control problem is
ensured to have real analytic solution. Moreover, a computational procedure to obtain the
solutions as Taylor expansions was presented. In this section, the same approach will be
applied on the optimal control problem that defines the controllability function. However,
minor changes of the assumptions on the cost function are needed.

In Chapter 4, and more specifically Theorem 4.4, the cost function is assumed to be
positive definite in both x1 and u locally around the origin. In the controllability function
case, x1 and x3 do not appear in the cost function and the cost function can therefore not
be positive definite. However, using slightly different requirements, it is still possible to
guarantee the existence of a local optimal solution in a neighborhood of the origin, i.e., a
local controllability function.

8.3.1 Basic Assumptions and Formulations

The goal is to find the controllability function expressed as a convergent power series
expansion

Lc(x1) =
1
2
xT1 Gcx1 + Lch(x1) (8.9)

where Lch(x1) contains higher order terms of at least order three.
For this end, the model is assumed to satisfy Assumption A8, i.e., being real analytic

on some setW , which means that F (x1, x3, u) = (F1(x1, x3, u)T , F2(x1, x3, u)T )T can
be expressed as convergent Taylor series as in (4.40). Since the boundary condition on x1

is the final state and not the initial state, time is considered as going backwards compared
to the optimal control problem (4.37). It means that the underlying state-space model will
be

ẋ1 = −Âx1 − B̂u− F̂1h(x1, u) (8.10)

where Â = A11 − A12A
−1
22 A21, B̂ = B1 − A12A

−1
22 B2 and F̂1h(x1, u) are terms of at

least order 2.
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The cost function is already a convergent power series, since

L(x1, x3, u) =
1
2
uTu (8.11)

In this case, the reduced cost function L̂ becomes very simple, since L depends neither
on x1 nor on x3, and can be written as

L̂(u) =
1
2
uTu

which yields the cost matrix (
Q̂ Ŝ

ŜT R̂

)
=
(

0 0
0 1/2I

)
(8.12)

and no higher order terms, i.e., L̂h(u) = 0. The lack of higher order terms also leads to
L̂h;u(u) = 0.

As in Chapter 4, only feedback laws given by uniformly convergent power series are
considered. However, because of the time change, Assumption A9 is reformulated as
follows.

Assumption A15. The feedback laws are described by uniformly convergent power se-
ries

u(x1) = Dx1 + uh(x1) (8.13)

where uh(x1) are terms of at least order two. Furthermore, D must satisfy

Re eig(−Â− B̂D) < 0

8.3.2 Existence of a Local Solution

From Theorem 4.4, it can be realized that a fundamental assumption in Chapter 4 was
a positive definite cost matrix (8.12). However, this requirement is not satisfied in the
calculation of the controllability function. The results in Chapter 4 are based on the proof
in Lukes (1969) (see also Section 4.7). Careful examination of the proof shows that most
parts are still valid when x is not present in the cost function as long as R̂ is positive
definite, which is satisfied in the computation of the controllability function.

However, positive definiteness of (8.12) enters in two places of the proof. First, it is
used to prove that the second order term in the optimal performance criterion is positive
definite. This fact is used to determine which solution is optimal. Second, the equations
corresponding to the lowest order terms of the optimal cost and optimal feedback law, i.e.,
ARE (4.49a) and the matrix D∗ (4.49b), need to have a stabilizing solution such that the
condition above is satisfied.

In this case, (4.49a) and (4.49b) become

GcÂ+ ÂTGc +GcB̂B̂
TGc = 0 (8.14a)

D∗ − B̂TGc = 0 (8.14b)
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and hence there must exist a solution Gc such that the eigenvalues to −Â− B̂B̂TGc are
all in C−.

Therefore, it is necessary to study what propertiesGc will have when the cost function
is given by (8.12), and under which conditions the ARE (8.14a) has a stabilizing solution
such that the necessary properties of Gc are satisfied.

The following lemma answers the first question.

Lemma 8.1
Given an asymptotically stable matrix Â and a matrix D such that −Âc = −Â− B̂D is
Hurwitz, the matrix Gc in the controllability function (8.9) is positive definite.

Proof: Consider a model (8.10) and feedback laws (8.13) such that−Âc is Hurwitz. Then
if follows from Lukes (1969), that for a general optimal control problem, as in Chapter 4,
the matrix P is given by

P =

∞∫
0

e−Â
T
c t
(
Q̂+ ŜD +DT ŜT +DTD

)
e−Âct dt

In the controllability function case, where the cost matrix is given by (8.12), it follows
that

Gc =

∞∫
0

e−Â
T
c tDTDe−Âct dt

which obviously is positive semidefinite. For Gc to be zero, it requires that De−Âctx0 ≡
0. Differentiation of this expression yields that

D

D(−Âc)
...

D(−Âc)d−1


︸ ︷︷ ︸

DA

e−Âctx0 = 0,∀t

The property above, can only hold if DA does not have full column rank. Therefore, the
rank properties of this matrix is studied. The PBH-test, see Kailath et al. (2000), states
that the matrix DA will have full column rank if and only if Dv 6= 0 for all non-trivial v
such that −Âcv = vλ.

Therefore, let λ and v satisfy the equality and assume that Dv = 0 for a non-trivial v.
Then it follows that

0 = (−Â− B̂D)v − vλ = −Âv − λv

which means that λmust be an eigenvalue to both−Âc and−Â. This is impossible, since
their eigenvalues are strictly separated by the imaginary axis. Hence, there is no λ and v
and the theorem is proved.

The lemma below shows when the considered ARE can be expected to have a solution
such that Gc becomes positive definite and D∗ becomes stabilizing.
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Lemma 8.2
Assume that Â is Hurwitz and (Â, B̂) is controllable. Then the ARE (8.14a) has a unique
positive definite solution Gc such that Âc,b = −Â− B̂D∗ = −Â− B̂B̂TGc is Hurwitz.

Proof: Since only Gc � 0 are considered, the ARE (8.14a) can be rewritten as the fol-
lowing Lyapunov equation

0 = ÂG−1
c +G−1

c ÂT + B̂B̂T (8.15)

It is well-known that (8.15) has a unique positive definite solution if Â is asymptotically
stable and (Â, B̂) is controllable, see for example Kailath et al. (2000).

For the solution above, it follows algebraically that

G−1
c ÂTc,b + Âc,bG

−1
c = −B̂B̂T

since Gc is symmetric. A linear feedback law does not change the controllability and
therefore (Âc,b, B̂) is controllable. Then it follows as a standard result that Âc,b is Hur-
witz, see for example Khalil (2002).

The results in this section is summarized in the following theorem.

Theorem 8.2
Consider the optimal control problem (8.2). Assume the DAE model satisfies Assump-
tions A7, A8 and A15. Furthermore, assume that Â is Hurwitz and (Â, B̂) is controllable.
Then locally the controllability function Lc(x1) exists and is the unique solution to

0 = uT∗ (x1)− Lc;x1(x1)
(
F1;u − F1;x3F

−1
2;x3

F2;u

)
(8.16a)

0 = 1
2u

T
∗ (x1)u∗(x1)− Lc;x1(x1)F1 (8.16b)

0 = F2 (8.16c)

where F1 and F2 are evaluated in (x1, x3, u).

Proof: First, using the same approach as in Theorem 4.2, it is possible to show that
the system of equations (8.16) is equivalent to formulating the problem in terms of the
underlying state-space model (8.10) and the cost function L̂ in (8.11). For this problem, it
was motivated in the discussion that only two parts were left to prove. Both of these parts
dealt with choosing the right solution to the ARE (8.14a).

From the assumptions, it is given that Â is Hurwitz andD must be such that−Â−B̂D
is Hurwitz. Lemma 8.1, shows that these facts imply that the optimal solution Gc have to
be positive definite. From Lemma 8.2 it then follows that, under the given assumptions,
there exists a unique positive definite solution Gc such that Âc,b is Hurwitz. Since Âc,b is
the closed-loop system obtained if D∗ in (8.14b) is used, it means that Gc is the unique
solution that has the required properties. The existence of the controllability function then
follows from Lukes (1969) or Section 4.7.1.

Note that also fully implicit DAE models can be included as can be seen in Chapter 4.
As in Chapter 4 the conditions in Theorem 8.2 are formulated in terms of the reduced

system. Controllability of (Â, B̂) is equivalent to R-controllability of (A,B). This can
be proved in a very similar way to the proof regarding stabilizability, see Section 4.5 or
Dai (1989).
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8.3.3 A Computational Algorithm

In the former section, it was proved that the controllability function exists. In this section,
a computational algorithm is given. Based on the discussion in Chapter 6, it is known that
it is favorable to solve the set of equations (8.16) at once, i.e., without deriving the power
series of R. However, of course the expressions for the higher order terms in Chapter 4
can be modified to fit the controllability function problem.

First the lower order terms are obtained from (8.14) and then the higher order terms
of Lc(x1) are, similarly as in Chapter 4, obtained from the expressions

L[m]
c;x1

(x1)Âcx1 =

−
m−1∑
k=3

L[k]
c;x1

(x1)B̂u
[m−k+1]
∗ (x1)−

m−1∑
k=2

L[k]
c;x1

(x1)F̂
[m−k+1]
1h (x1, u∗)

+
bm−1

2 c∑
k=2

u
[k]
∗ (x1)Tu

[m−k]
∗ (x1) +

1
2
u

[m/2]
∗ (x1)Tu

[m/2]
∗ (x1)

(8.17a)

where m = 3, 4, . . ., Âc = Â+ B̂D∗, and the terms u[m/2] are to be omitted if m is odd.
The corresponding equation for the series expansion of the feedback law is obtained as

u
[k]
∗ (x1) = L[k+1]

c;x1
(x1)B̂ +

k−1∑
i=1

L[k−i+1]
c;x1

(x1)F̂
[i]
1h,u(x1, u∗) (8.17b)

where k = 2, 3, . . ..
The equations in (8.17) are very similar to the original equations in Chapter 4, how-

ever, the computation of the equations above are less involved, since L̂h and L̂h;u are
zero.

8.4 Examples

In order to illustrate the methods for computing the controllability function, two different
examples will be presented.

8.4.1 A Rolling Disc

Consider a DAE model given by the set of differential and algebraic equations

ż1 = z2 (8.18a)

ż2 = −k1

m
z1 −

k2

m
z3
1 −

b

m
z2 +

1
m
λ (8.18b)

ż3 = − r
J
λ+

1
J
u (8.18c)

0 = z2 − rz3 (8.18d)

The model describes a disc, rolling on a surface without slipping, see Figure 8.1. The
disc is connected to a fixed wall with a nonlinear spring and a linear damper. The spring
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u(t), z3(t)

λ(t)

z1(t), z2(t)

Figure 8.1: A disc, which rolls on a surface without slipping. The disc is affected
by a nonlinear spring and a linear damper.

has the coefficients k1 and k2, which both are positive. The damping coefficient of the
damper is b which is also positive. The radius of the disc is r, its inertia is given by J and
the mass of the disc is m. The position of the center of the disc along the surface is given
by z1, while z2 the translational velocity of the same point. The angular velocity of the
disc is denoted z3. The control input is denoted u and is a torque applied at the center of
the disc. Finally, λ is the contact force between the disc and the surface.

This model has strangeness index one and before the methods in this chapter are
applied, index reduction is needed. If the method in Section 2.4 is used, (8.18) can be
rewritten as the strangeness-free model

ż1 = z2 (8.19a)

ż2 = −k1

m
z1 −

k2

m
z3
1 −

b

m
z2 +

1
m
λ (8.19b)

0 = z2 − rz3 (8.19c)

0 = −k2

m
z3
1 −

k1

m
z1 −

b

m
z2 +

(
r2

J
+

1
m

)
λ+

−r
J
u (8.19d)

The variables will be denoted x = (z1, z2, z3, λ)T and it can be seen that x1 = (z1, z2)T

and x3 = (z3, λ)T .
From (8.4d), it follows that W2 must satisfy

W2(x1, x3) = −Vx1(x1)F1;x3(x1, x3, u)F−1
2;x3

(x1, x3, u)

= −Vx1(x1)
(

0 0
0 J

J+mr2

) (8.20)

Since F1 is independent of u, (8.4a) becomes

u = F2,u(x1, x3, u)TW2(x1, x3)T =
(
0 r

J+mr2

)
Vx1(x1)T (8.21)
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For (8.19), it is possible to compute x3 = R(x1, u) explicitly using the last two rows as

z3 =
1
r
z2

λ =
(
r2

J
+

1
m

)−1(
k1

m
z1 +

k2

m
z3
1 +

b

m
z2 +

r

J
u

) (8.22)

If (8.21) and (8.22) are substituted into (8.4b) and if the performance criterion is assumed
to have the structure V (x1) = a1z

2
1 + a2z

4
1 + a3z

2
2 . Then (8.4b) can be solved for the

unknowns a1, a2 and a3 and the solutions for V (x1) become either

V (x1) = bk1r
2z2

1 +
1
2
bk2r

2z4
1 + b

(
J +mr2

)
z2
2 (8.23)

or the trivial solution V (x1) = 0. Back-substitution of (8.23) into (8.20) and (8.21) yields

W2(x1, x3) =
(
0 −2bJz2

)
, u(x1) = 2brz2 (8.24)

The system is polynomial, and for given values of the parameters it would be possible
to use the method in (Ebenbauer and Allgöwer, 2004) to show asymptotic anti-stability
of (8.19) with the control choice (8.24). Instead, stability is proved using the closed-loop
reduced system when the time is considered as going backwards, i.e.,

ẋ1 = −Fred,cl(x1)

where

Fred,cl(x1) =

(
z2

− k1
J
r2 +m

z1 − k2
J
r2 +m

z3
1 − b

J
r2 +m

z2 + 1
( J

r2 +m)r
2brz2

)

For this system, V (x1) is a Lyapunov function since

V (x1) = bk1r
2z2

1 +
1
2
bk2r

2z4
1 + b

(
J +mr2

)
z2
2 > 0

−Vx1(x1)Fred,cl(x1) = −2b2r2z2
2 < 0

for all x1 6= 0. The motivation is that if Vx1(x1)Fred,cl(x1) = 0 it requires that z2 = 0,
but then z1 = 0 because k1 and k2 are positive. Therefore, the conditions in Theorem 8.1
are fulfilled, yielding

Lc(x1) = V (x1)

for all x1 ∈ R2 with u(x1) chosen as (8.24).
Note that since the controllability function is polynomial it is also possible to find the

solution using the method in Section 8.3.

8.4.2 An Artificial System

This example considers a completely artificial model, but illustrates an advantage of the
methods in Section 8.2.
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The models is

ż1 = −z1 + z2 +
1
2
z2
2

0 = z2 − u

where x1 = z1 and x3 = z2, and fits into the affine structure (8.5). The interesting feature
is that the underlying state-space model

ż1 = −z1 + u+
1
2
u2

is not control-affine, and it would therefore not be possible to handle using the results in
Scherpen (1994). It can also be realized that the smallest reachable state is z1 = − 1

2 ,
since u+ 1

2u
2 > − 1

2 .
Since the model fits within the structure (3.14), the necessary conditions in Corol-

lary 8.1 reduce to

0 = W1(x1)(−z1 −
1
2
z2
2) +

1
2
W1(x1)2(1 + z2)2 (8.25a)

0 = z2 − (1 + z2)W1(x1) (8.25b)

where we have used that

f̂(x1, x3) = −z1 + z2 +
1
2
z2
2 − (1 + z2)z2 = −z1 −

1
2
z2
2

ĝ(x1, x3) = 1 + z2

The expressions for u and W2(x1, x3) become

u = (1 + z2)W1(x1), W2(x1, x3) = −(1 + z2)W1(x1)

From (8.25b), it follows that

W1(x1) =
z2

1 + z2

where it is assumed that z2 6= −1. Combining this equation with (8.25a) yields

0 =
z2

(1 + z2)

(
− z1 +

1
2
z2

)
which has the solutions

z2 = 0, z2 = 2z1

For the first solution, z2 = 0, the variables u, W1(x1) and W2(x1, x3) become

u = 0, W1(x1) = 0, W2(x1, x3) = 0

while the second solution, z2 = 2z1, gives

u = 2z1, W1(x1) =
2z1

1 + 2z1
, W2(x1, x3) = −2z1
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Hence, two different solutions to the necessary conditions in Corollary 8.1 are ob-
tained. Since the system has control-affine structure, Theorem 8.1 can be used to de-
termine which of these solutions that is optimal. The first solution solves (8.6) on N =
{z1 ∈ R, z2 ∈ R | z2 = 0}, while the second solution solves (8.6) onN = {z1 ∈ R, z2 ∈
R | z1 > − 1

2 , z2 = 2z1}. The solution with z1 < − 1
2 has been omitted, since the set for

z1 must contain the origin.
For the first solution the closed-loop dynamics are given by ż1 = −z1, which is

asymptotically stable. Therefore, this solution cannot correspond to the controllability
function.

For the second solution the closed-loop system ż1 = z1(1 + 2z1) is asymptotically
anti-stable on N . Hence, this solution corresponds to the controllability function, which
in this case for z1 > − 1

2 becomes

Lc(x1) = z1 −
1
2

ln(2z1 + 1) (8.26)

Figure 8.2 shows the controllability function. As can be seen the energy for reaching
states close to z1 = − 1

2 goes towards infinity, which agrees with the discussion earlier.

z1

32.521.510.50

2

-0.5

1.5

1

0.5

0

Figure 8.2: The controllability function L(x1) for the artificial example.





9
The Observability Function

In the previous chapter, the controllability function was investigated and some different
methods to compute it were derived. In this chapter, the observability function is consid-
ered instead. The observability function measures the energy in the output signal when
the model is released from a given state and the control input is equal to zero. The basic
idea is that if a state is observable, the energy in the output signal will be nonzero.

For nonlinear state-space models in control-affine form, the computation of the ob-
servability function has been studied in for example (Scherpen, 1994; Gray and Mesko,
1999). Both these references also show that for a time-invariant linear state-space model,
the observability function equals the observability gramian post- and pre-multiplied by
the state. To find the observability function, a linear partial differential equation needs
to be solved. In practice, an explicit solution can be hard to find. Therefore, numeri-
cal methods to compute the observability function have been studied. One such method
is described in Scherpen (1994) and yields a local observability function expressed as a
power series. The computations are very similar to the computations in Chapter 4, and is
based on that the solution is found recursively. Another kind of methods are the empirical
methods, based on stochastics, see Newman and Krishnaprasad (1998, 2000).

The observability function has also been studied for regular linear time-invariant DAE
models with consistent initial conditions, see Stykel (2004). The method presented by
Stykel can also handle DAE models of higher index without using index reduction.

In this chapter, two different methods to calculate the observability function for non-
linear DAE models are presented. In Section 9.2, the approach based on the explicit
solution of the first order linear partial differential equation is extended. As earlier men-
tioned, it can in many cases be hard to find an explicit solution, and in Section 9.2, the
power series method is presented and extended.

173
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9.1 Problem Formulation

The observability function should reflect the energy in the output signal when the model
is released from a certain initial state. It is only the energy corresponding to the initial
state that is of interest and therefore the control signal is set to zero. The observability
function Lo(x1) is then defined as

Lo
(
x1(0)

)
=

1
2

∞∫
0

y(t)T y(t) dt (9.1)

subject to

x1(0) = x1,0 ∈ Ωx
u(t) = 0, 0 ≤ t <∞

and a DAE model. In this chapter, the DAE model is assumed to be in the form

ẋ1 = F1(x1, x2) (9.2a)
0 = F2(x1, x2) (9.2b)
y = h(x1, x2) (9.2c)

Hence, an output equation is added explicitly and it is assumed that h(0, 0) = 0. The
DAE model in (9.2) is also assumed to have an equilibrium at the origin.

Similar to Chapter 8, different assumptions on the implicit function is used in the
different sections. In Section 9.2, Assumption A2 is made while in Section 9.3, As-
sumption A7 is used instead. In both cases, it is known that on a set Ωx, it holds that
x2 = R(x1). The corresponding set of points (x1, x2) satisfying the constraints will be
denoted N , i.e.,

N = {x1 ∈ Ωx, x2 ∈ Rn2 |x2 = R(x1)} (9.3)

Throughout this chapter, it is assumed that x2(0) = x2,0 is chosen such that (x1,0, x2,0) ∈
N , i.e., only consistent initial values are considered.

Since the control input cannot be used to stabilize the model, it is also necessary that
(9.2) is asymptotically stable, at least locally on some set Ω′

x ⊂ Ωx around the origin.
Otherwise, Lo(x1,0) might become infinite. For notational convenience the consistent
states corresponding to Ω′

x is defined as

N ′ = {x1 ∈ Ω′
x, x2 ∈ Rn2 |x2 = R(x1)}

A boundary condition for the observability function is Lo(0) = 0, since the origin is
an equilibrium and h(0, 0) = 0.

A small but perhaps clarifying note is that in contrast to the controllability function
computation, the observability function computation does not include optimization. It is
just a matter of finding the solution to the model, i.e., x(t), for a given initial condition
and then integrate the square of the corresponding output.

Remark 9.1. As in the controllability function case it is possible to consider more general
energy measures. That is, instead of using 1

2y(t)
T y(t) in (9.1), the energy measure can

be some positive definite function m
(
y(t)

)
.
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9.2 A Method Based on Partial Differential Equation

Solving the DAE model (9.2) in order to obtain an explicit solution for y(t), which can
be squared and integrated, is typically very hard. Therefore, other methods need to be
derived.

One such method is based on a first-order linear partial differential equation. The
method is presented in the following theorem and is an extension of a result in Scherpen
(1994).

Theorem 9.1
Suppose the model (9.2) is asymptotically stable for x1,0 ∈ Ω′

x. Further, assume there ex-
ists a continuously differentiable positive semidefinite function V (x1) satisfying V (0) = 0
and

0 =
1
2
h(x1, x2)Th(x1, x2) + Vx1(x1)F1(x1, x2) (9.4)

for all (x1, x2) ∈ N ′. Then for all x1,0 ∈ Ω′
x, it holds that

Lo(x1,0) = V (x1,0) (9.5)

Proof: Assume that only x1,0 ∈ Ω′
x are considered. Then, for any solution to (9.2) it

follows that

V
(
x1(0)

)
=

∞∫
0

dV
(
x(t)

)
dt

dt =

∞∫
0

−Vx1F1 dt =

∞∫
0

yT y dt (9.6)

provided (9.4) is satisfied and V (x1) is a sufficiently smooth function. Therefore, for all
x1,0 ∈ Ω′

x it follows that

Lo(x1,0) =
1
2

∞∫
0

yT y dt = V (x1,0)

The setN ′ defines, in a rather implicit manner, that (9.4) only needs to be satisfied for
(x1, x2) satisfying the constraint equation. However, this dependence can be expressed
more explicitly by including the constraint equation as part of the condition as well. Then,
the condition (9.4) can be reformulated as

0 =
1
2
h(x1, x2)Th(x1, x2) + Vx1(x1)F1(x1, x2)

0 = F2(x1, x2)

which must hold for x1 ∈ Ω′
x. Another reformulation is to use that for onN ′, it is known

that x2 = R(x1) and the result becomes

0 =
1
2
h
(
x1,R(x1)

)T
h
(
x1,R(x1)

)
+ Vx1(x1)F1

(
x1,R(x1)

)
(9.7)

which must hold for x1 ∈ Ω′
x. The last equation clearly shows that the implicit function

must be known explicitly to compute the observability function in this way. This is a
major drawback for many models.
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9.3 A Method to Find a Local Solution

In earlier chapters, it has been shown that one method to overcome the problem of not
knowing an explicit expression for the implicit function R(x1) is to solve the problems
locally in some neighborhood of the origin. In that case, a power series expansion of the
implicit function is enough and if certain assumptions are made, it is well-known that
such a power series can be calculated. In this section, these assumptions are formulated,
and a local observability function valid in an neighborhood of the origin, is derived.

9.3.1 Power Series Expansion of the Reduced Model

Consider DAE models (9.2) which satisfy Assumption A7. Similar to in Chapter 4, an-
other assumption is also made.

Assumption A16. The functions F1, F2 and h are analytic on a setW , which is a neigh-
borhood of the origin (x1, x3) = 0

For notional reasons, W is assumed to be large enough to cover the region in which
the R is defined. Based on Assumption A16 it follows that F1, F2 and h in (9.2) can be
expanded in convergent power series as(

F1(x1, x2)
F2(x1, x2)

)
=
(
A11 A12

A21 A22

)(
x1

x2

)
+
(
F1h(x1, x2)
F2h(x1, x2)

)
h(x1, x2) =

(
C1 C2

)(x1

x2

)
+ hh(x1, x2)

where Fih(x1, x2) for i = 1, 2 and hh(x1, x2) contains higher order terms of at least order
two. From Assumption A7, it is known that A22 has full rank, since F2;x2(0, 0) = A22 is
nonsingular.

The model (9.2) can be written as the reduced state-space model

ẋ1 = F̂1(x1) = F1

(
x1,R(x1)

)
y = ĥ(x1) = h

(
x1,R(x1)

)
and by making a series expansion of the implicit function R(x1) using the method in
Section 4.3.1, the power series expansions of the composite functions F̂1 and ĥ can be
expressed as

F̂1(x1) = Âx1 + F̂1h(x1), ĥ(x1) = Ĉx1 + ĥh(x1) (9.8)

where

Â = A11 −A12A
−1
22 A21, Ĉ = C1 − C2A

−1
22 A21

and the higher order terms of F̂1h(x1) and ĥh(x1) can be obtained as

F̂
[m]
1h (x1) = F1h

(
x1,R[1](x1) + . . .R[m−1](x1)

)
+A12R[m]

h (x1)

ĥ
[m]
h (x1) = h1h

(
x1,R[1](x1) + . . .+R[m−1](x1)

)
+ C2R[m]

h (x1)

for m = 2, 3, . . ..
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9.3.2 Existence and Computation of a Local Solution

Assume that Â is Hurwitz. Then in some neighborhood of x1 = 0, it is known that for
x1,0 in that neighborhood the solution to (9.2) will converge exponentially towards the
origin. Using similar methods to those presented in Lukes (1969), it is possible to show
that the local solution for Lo(x1) will have the form

Lo(x1) =
1
2
xT1 Gox1 + Loh(x1) (9.9)

where Loh(x1) is a convergent power series on some neighborhood of x1 = 0 containing
terms of order three or higher. It can also be shown that Go must be at least positive
semidefinite (or even positive definite) under the given assumptions.

From Section 9.2, it is known that the observability function can be found by solving
(9.7). If (9.8) and (9.9) are inserted into (9.7) we obtain

0 =
1
2
(
Ĉx1 + ĥh(x1)

)T (
Ĉx1 + ĥh(x1)

)
+
(
xT1 Go + Loh;x1(x1)

)(
Âx1 + F̂1h(x1)

)
=

1
2
xT1

(
ĈT Ĉ +GoÂ+ ÂTGo

)
x1

+ Loh;x1(x1)Âx1 + Lo;x1(x1)F̂h(x1) + xT1 Ĉ
T ĥh(x1) +

1
2
ĥh(x1)T ĥh(x1)

which is supposed to hold for x1 in a neighborhood of the origin. The coefficient for each
power of x1 must then equal zero, leading to that Go must satisfy

0 = GoÂ+ ÂTGo + ĈT Ĉ (9.10a)

and the higher order terms in Lo(x1), i.e., Loh(x1) must satisfy

L[m]
o;x1

(x1)Âx1 = −
m−1∑
k=2

L[k]
o;x1

(x1)F̂
[m+1−k]
1h (x1)− xT1 Ĉ

T ĥ
[m−1]
h (x1)

− 2
bm−1

2 c∑
k=2

ĥ
[k]
h (x1)T ĥ

[m−k]
h (x1)− ĥ

[m/2]
h (x1)T ĥ

[m/2]
h (x1)

(9.10b)

where m = 3, 4, . . .. The terms ĥ[m/2]
h are to be omitted for odd m and we use the

convention that
∑l
k = 0 for l < k.

The second order term in Lo(x1) is given by a Lyapunov equation (9.10a). A lemma
presenting conditions under which the Lyapunov equation will have a solution is formu-
lated below.

Lemma 9.1
Assume that Â is Hurwitz. Then the Lyapunov equation

0 = GoÂ+ ÂTGo + ĈT Ĉ

has a unique positive semidefinite solution. If in addition (Â, Ĉ) is observable, the solu-
tion is positive definite.
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Proof: See for example Kailath et al. (2000).

The higher order terms are given by (9.10b). The right-hand-side is determined by the
sequence

L[2]
o (x1), L[3]

o (x1), . . . , L[m−1]
o (x1)

and expressions known from (9.8). Hence, when computing L
[m]
o (x1) only terms of

Lo(x1) up to order m − 1 are needed. Since Â is assumed Hurwitz it is known that
(9.10b) has a unique solution, see for example Lyapunov (1992). Therefore, by starting
with the L[2]

O (x1) = 1
2x

T
1 Gox1, where Go is the solution to the Lyapunov function, it is

possible to recursively compute Lo(x1).
The results are summarized in the following theorem.

Theorem 9.2
Consider a DAE model given in the form (9.2). Assume that it satisfies Assumptions A7
and A16. Furthermore, assume Â is Hurwitz. Then, a local observability function, given
in the form (9.9), exists.

The first term Go, is given as the positive semidefinite solution to

0 = GoÂ+ ÂTGo + ĈT Ĉ

and higher order terms in Lo(x1) can recursively be computed using (9.10b). If in addi-
tion (Â, Ĉ) is observable, Lo(x1) > 0 for x1 in a neighborhood of the origin.

Proof: The first part follows immediately from the discussion in the section. The second
part, i.e., that Lo(x1) is positive definite locally in a neighborhood of the origin when
(Â, Ĉ) is observable, follows since Go � 0, see Lemma 9.1.

Remark 9.2. Similar to the stabilizability case and the controllability case, it is possible
to show that observability of (Â, Ĉ) is equivalent to that (A,C) is R-observable.

Remark 9.3. As in the computation of the controllability function, more general model
descriptions, not being semi-explicit, can be treated using the results presented in Sec-
tion 5.2.6.
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Model Reduction

In many engineering situations, the model obtained becomes rather complex. To simplify
the analysis and control design, it is desirable to reduce the order of the model without
affecting the accuracy too much. In this context, accuracy most often refers to the input-
output behavior. The basic idea, invented for linear state-space system by Moore (1981),
is to analyze the system and find a linear coordinate change such that the transformed
system reveals which coordinate directions that are most important for the input-output
behavior. The analysis is done by measuring the energy a certain state corresponds to
in the input and output signals, respectively, using the controllability and observability
gramians. The coordinate change is chosen such that the gramians are simultaneously
diagonalized and equal, and the diagonal terms are the squared Hankel singular values.
The system is, after this coordinate change has been applied, denoted balanced.

The interpretation is then that a small Hankel singular value means that the particular
direction is hard to control, i.e., requires a large amount of control effort, while its con-
tribution to the output energy is small. Therefore, the given direction does not influence
the input-output behavior as much as a direction with a larger singular value. In Moore
(1981), the reduction was then accomplished by removing the states with small Hankel
singular values.

In Scherpen (1994), the earlier results for linear state-space models were partially
extended to nonlinear state-space models. Scherpen used the nonlinear variants of the
controllability and observability functions, mentioned in the earlier chapters, to measure
the input and output energies. She showed that, using a state transformation, it is possible
to transform the controllability function to one half the sum of the squares of the new
states variables, while the observability function is diagonalized. The diagonal terms,
denoted singular value functions, are in this case state dependent, and depend normally
on all states. The model reduction was then, similar to Moore, done by removing states
with small singular value functions.

In the structure obtained by Scherpen the different directions are not really separated
from each other. Therefore, an enhanced form denoted input-normal/output-diagonal,
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is introduced in Fujimoto and Scherpen (2003a,b). This form is also studied in Krener
(2008). He shows how the controllability and observability functions can be written in so-
called input normal form of degree m, which means that the contributions from different
coordinate directions are separated up to some desired order. There are two differences
compared with the nonlinear reduction methods described by Scherpen and Fujimoto.
First, this method does not simply pick out the part of the system corresponding to the
largest singular value functions as done in their papers. Instead, a minimization is done
to create a reduced order model which hopefully fits the true model better. Second, this
work includes error bounds, which the earlier mentioned nonlinear methods do not. As
usual for nonlinear systems, the error bounds depend on the input signals, and in his work
the input signals are those obtained when solving for the controllability function.

The results in Krener (2008) are based on power series computations, which make
them possible to use computationally. The same idea was also derived in Fujimoto and
Tsubakino (2007) for the standard truncation method.

The methods described above take into account that the model is nonlinear. However,
it means that the computational complexity is rather high. Therefore, another approximate
computational approach is to use empirical measures of the energy instead. The method
based on empirical gramians assume that the input consists of impulses and computes an
estimate of them, see Lall et al. (1999, 2002); Hahn and Edgar (2002). The estimate is
exact if Dirac impulses are used as inputs and the system is linear. Later, the concept
is extended in Hahn et al. (2003), where the input need not be impulses but can be step
signals or signals closer to those that the model will be used for. The gramians are then
denoted controllability and observability covariances, respectively.

A method which also aims at finding the controllability functions without solving the
corresponding partial differential equation is described in Newman and Krishnaprasad
(1998, 2000). The method relies on theory for stochastically excited systems, and is exact
for linear systems and approximate for nonlinear systems.

The area of model reduction for general DAE models is not very large. For linear
DAE models, Stykel (2004) is a good reference where higher index problems are studied
as well. For nonlinear DAE models, the papers Hahn and Edgar (2002) and Sun and Hahn
(2005) are based on the covariance measures mentioned above. For model reduction of
chemical systems, see Vora and Daoutidis (2001).

10.1 Model Reduction of State-Space Models

In this section, a short introduction to model reduction of state-space systems is given.
For a more thorough discussion see Scherpen (1994); Fujimoto and Scherpen (2005);
Krener (2008); Skogestad and Postlethwaite (2001). There are two major steps in model
reduction. First the system needs to be transformed to a form which reveals which parts
are most important. Second, the model has to be approximated in some sense.
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10.1.1 Revealing the Important Parts of the System

Linear Systems

The first step in model reduction is to extract the parts of the system that are most impor-
tant for the input-output behavior. First consider the linear case

ẋ = Ax+Bu (10.1a)
y = Cx+Du (10.1b)

where x ∈ Rn, y ∈ Rq and u ∈ Rp.
From Chapters 8 and 9, it is known that the controllability and observability functions

for the linear case can be written as

Lc(x) =
1
2
xTGcx

Lo(x) =
1
2
xTGox

whereG−1
c andGo are the controllability and observability gramians, respectively. Using

a linear change of coordinates, i.e., x = Tz, it is possible to simultaneously diagonalize
both G−1

c and Go as

Σ ,G−1
c = Go =

σ1 0
. . .

0 σn

 (10.2)

where σ1 ≥ σ2 ≥ . . . ≥ σn > 0 , see Moore (1981). The values σi, i = 1, . . . , n
are denoted the Hankel singular values. A representation with a diagonal Σ is called
balanced. Another representation possible to obtain from (10.2) using a linear coordinate
change z = Σ

1
2 q is the so-called input normal form where G−1

c = I and Go = Σ2.
The name Hankel singular values stems from the fact that σ1 is the Hankel norm of

the system, defined as

‖Σ‖H , sup
x∈Rn

x6=0

Lo(x)
Lc(x)

= sup
x∈Rn

x6=0

xTGox

xTGcx
= sup
q∈Rn

q 6=0

qTΣ2q

qT q
= σ2

1 (10.3)

The basic idea is that for small σi, the amount of control energy required to reach the
state z = (0, . . . , 0, zi, 0, . . . , 0) is large while the output energy generated by the same
state is small. It means that if there is a major gap between two Hankel singular values,
i.e., if σk � σk+1 for some k, the last state components xk+1 to xn will be less important
from an energy point of view and can therefore be approximated without affecting the
input-output behavior too much.

Note that even though the Hankel singular values are similarity invariant, i.e., inde-
pendent of the choice of state coordinates, it is important that the inputs and outputs are
scaled such that their different components match in size.
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Nonlinear Systems

Now consider a general nonlinear model

ẋ = F (x, u) (10.4a)
y = h(x) (10.4b)

where x ∈ Rd, y ∈ Rq, u ∈ Rp, F : Rd+p → Rd and h : Rd → Rq.
Motivated by the case for linear systems, the objective is to find a structure of the

controllability and observability function, respectively, which separates the coordinates
in a way such that their relative importance is revealed. This problem has been studied
in numerous works. One of the first is presented in Scherpen (1994). However, first two
assumptions are needed.

Assumption A17. The linearization of (10.4) is asymptotically stable, controllable and
observable.

Assumption A18. The eigenvalues of G−1
c Go are distinct.

Under these assumptions, it is possible to prove the following result given that F and
h are smooth, see Scherpen (1994).

Theorem 10.1
Consider the system (10.4) and assume that it satisfies Assumption A17 and A18. Then
there exist a neighborhood U and a smooth coordinate transformation x = Φ(z), Φ(0) =
0 on U , which converts the system (10.4) into an input normal/output diagonal form,
where

Lc
(
Φ(z)

)
=

1
2
zT z (10.5a)

Lo
(
Φ(z)

)
=

1
2
zT

τ1(z) 0
. . .

0 τn(z)

 z (10.5b)

with τ1(z) ≥ . . . ≥ τn(z) being the so-called smooth singular value functions on U .

Proof: See (Scherpen, 1994, pp. 38 and 45).

The form above has three drawbacks. First, the different axes are not completely
separated. It means that it can be hard to decide whether a state is important or not.
Second, as pointed out in Gray and Scherpen (2001), the singular value functions τi(z),
i = 1, . . . , n in (10.5) are not unique except for x = 0, where they coincide with the
squared singular values as defined in (10.2). Third, except for x = 0, the squared singular
value functions τi(z) are not equal to the Hankel norm of the nonlinear system.

To solve the first and the third issue, an additional coordinate transformation is per-
formed in Fujimoto and Scherpen (2005).

Theorem 10.2
Consider a nonlinear system (10.4). Suppose that Assumptions A17 and A18 hold. Then
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there exist a neighborhood U of the origin and a coordinate transformation x = Φ(z),
Φ(0) = 0 on U converting the system into input normal/output diagonal form (10.5) with
the following properties:

zi = 0 ⇔ Lc;zi

(
Φ(z)

)
= 0 ⇔ Lo;zi

(
Φ(z)

)
= 0 (10.6a)

τi(0, . . . , 0, zi, 0, . . . , 0) = ρ2
i (zi) (10.6b)

τi;z(0, . . . , 0, zi, 0, . . . , 0) =
(
0, . . . , 0, dρ

2
i (zi)
dzi

, 0, . . . , 0
)

(10.6c)

for i = 1, . . . , n. Here, ρi(zi) are the axis singular value functions which are the gain
functions to the Hankel operator. In particular, if U = Rn, then

‖Σ‖H = sup
z1∈R

√
τ1(z1, 0, . . . , 0)

Proof: See Fujimoto and Scherpen (2005). Note that in Fujimoto and Scherpen (2005),
the prerequisites are formulated in terms of existence of the controllability operator C, the
pseudo-inverse of this operator and the observability operator. All these can be proved to
exist under Assumption A17.

The last theorems show what can be obtained using smooth transformations. However,
in this chapter, the goal is to obtain an algorithm that finds the reduced order model for a
nonlinear DAE model order-by-order. For this purpose, the form defined in Krener (2008)
is introduced.

Theorem 10.3
Consider the nonlinear system (10.4) and assume that it fulfills Assumption A17 and A18.
Then there exists at least one coordinate transformation

x = Φd](z), Φ(0) = 0 (10.7)

converting the system into input normal form of degree m for which

Lc
(
Φ(z)

)
=

1
2
zT z +O(zi)m+2 (10.8a)

Lo
(
Φ(z)

)
=

1
2

n∑
i=1

τ
m−1]
i (zi)z2

i +O(zi)m+2 (10.8b)

where τm−1]
i (zi) = τi0 + τ

m−1]
ih (zi) are polynomials in zi with terms of order 0 through

m− 1. They are called squared singular value polynomials of order m− 1.
Furthermore, for m ≤ 6 (or if the system is odd m ≤ 12), the observability and

observability functions will be unique. However, the system and change of coordinates
that achieves input normal form of degree m are not necessarily unique even to order m.

Proof: See Krener (2008).

In Fujimoto and Tsubakino (2006), which together with the work by Krener, is the
foundation of the work presented here, another structure is used instead. However, as
shown below both of these structures have the same computational properties.
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Lemma 10.1
Suppose (10.4) satisfies Assumptions A17 and A18. Then there exists a coordinate trans-
formation

x = Φd](z), Φ(0) = 0

in a neighborhood of the origin that brings the system to a form for which

Lc
(
Φ(z)

)
=

1
2
zT z +O(z)m+2 (10.9a)

Lo
(
Φ(z)

)
=

1
2

n∑
i=1

z2
i ρ
m−1]
i (zi)2 +O(z)m+2 (10.9b)

where ρi(zi) are polynomials, such that for i = {1, 2, . . . , n}.

Proof: The property to prove is that for given squared singular values τm−1]
i (zi), i =

1, . . . , n, the singular value functions ρm−1]
i (zi) are uniquely determined from the fact

that (10.8) should equal (10.9) up to order m + 1. To prove uniqueness, the following
equations are analyzed

τ
m−1]
i (zi) =

(
ρ
m−1]
i (zi)

)2 +O(zi)m

Let each ρm−1]
i (zi) be a polynomial of maximal order m − 1 and assume that ρ0,i > 0,

i.e., the constant term in each ρm−1]
i (zi) should be positive. Then it follows that

ρ0 =
√
τ , ρ

[m]
i (zi) =

1
2ρ0

τ
[m]
i (zi), i = 1, . . . , n

for m up to the given order.

The expressions for Lc and Lo in (10.8) or (10.9) will normally be used to determine
which states are most important. However, compared with the linear case they are not
completely balanced. Though, if desired, it is possible to obtain a balanced realization
using an additional change of coordinates as described by the following lemma. (The
lemma is a minor extension of the lemma in Fujimoto and Tsubakino (2007) in the sense
that it is proved that the solution exists and can be computed recursively.)

Lemma 10.2
Consider a model (10.4) which is assumed to be in input normal form of degree m. Then,
using an m:th order coordinate transformation

z = Ψm](q) =
(
ψ(q1), ψ2(q2), . . . , ψn(qn)

)
, Ψ(0) = 0 (10.10)

where ψi, i = 1, . . . , n is given as the solution to

qi = ψi(qi)
(
τ
m−1]
i

(
ψi(qi)

)) 1
4
, ∀qi ∈ Ω (10.11)
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the controllability function and observability function can be written as

Lc
(
Ψm](q)

)
=

1
2

n∑
i=1

q2i

σ
m−1]
i (qi)

+O(q)m+2 (10.12a)

Lo
(
Ψm](q)

)
=

1
2

n∑
i=1

σ
m−1]
i (qi)q2i +O(q)m+2 (10.12b)

where the singular value functions are defined as

σi(qi) ,
√
τ
m−1]
i

(
ψi(qi)

)
(10.13)

Proof: First, by substituting the expressions above into the controllability and observ-
ability functions in (10.8), it can be verified that the expressions in (10.12) are obtained.

Second, it needs to be shown that (10.11) has a well-defined solution. Consider the
equation

0 = qi − zi

(
τ
m−1]
i (zi)

) 1
4
, i = 1, . . . , d (10.14)

It can be shown that (10.14) is satisfied for (qi, zi) = 0, and that the derivative of its
right-hand side w.r.t. zi is nonsingular (due to that τ0 6= 0). Moreover, the right-hand side
is a real analytic function. Therefore, the implicit function theorem ensures that (10.14)
has a solution zi = ψi(qi), where each ψi is described by a convergent power series.

Third, the solution can be computed recursively. Let ψi(qi) = ψ
[1]
i (qi) + ψih(qi),

τ
d−1]
i (zi) = τi0 + τ

d−1]
ih (zi) and

(a+ x)
1
4 = a

1
4 + ξ(a, x)

where a > 0 and ξ denote terms of at least order one. The equations (10.11) can then be
written as

0 = qi −
(
ψ

[1]
i (qi) + ψih(qi)

)(
τ

1
4
i0 + ξ

(
τi0, τ

d−1]
ih (ψi(qi))

))
, i = 1, . . . , n

The composite function ξ(·) is convergent, since it is the composition of three real analytic
functions. From the terms of order one in the equations above, it follows that

τ
1
4
i0ψ

[1]
i (qi) = qi

while a general term of order m gives the equations

τ
1
4
i0ψ

[m]
ih (qi) = −ψ[1]

i (qi)
{
ξ(τi0, τ

d−1]
ih )

}[m−1]

−
m−1∑
j=1

ψ
[j]
h (qi)

{
ξ(τi0, τ

d−1]
ih )

}[m−j]

where {
ξ(τi0, τ

d−1]
ih )

}[m−1]

= ξ[m−1]
(
τi0, τ

m−1]
ih (ψm−1]

i (qi))
)

for m = 1, 2, . . . up to the order of interest. Hence, the terms in the right-hand side only
depend on lower orders of ψi(qi) which makes recursive computation possible.
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Note that since the lowest order terms in ψi(q) are of order 1, the order of theO-terms
in (10.8) will be unchanged.

Fourth, even though terms of ψi and σi up to an arbitrary order can be computed only
those of order 1 through m−1 are needed. In Lo it is easily seen since σi is multiplied by
q2i . However, also in Lc, where σi appears in the denominator, it is possible to motivate
the choice of order. If the terms 1/σi are Taylor expanded, terms in σi of higher order
than m− 1 will end up in the O-term.

10.1.2 Approximation of the Model

Given a change of coordinates bringing the system to input normal form of degree m, the
next step is to extract the parts of the system that contribute the most to the input-output
behavior. There are a number of different choices.

Balanced Truncation

The easiest and most common method to approximate a model is to remove the part that
corresponds to the smallest squared singular value functions (Scherpen, 1994; Fujimoto
and Scherpen, 2001).

Therefore, let x = Φm](z) be a coordinate transformation such that the transformed
system is in input normal form of order m. Then under the given assumptions Φm](z) is
invertible, at least locally, and the transformed system can be written as

ż = F̃ (z, u) (10.15a)

y = h̃(z, u) (10.15b)

where

F̃ (z, u) =
(∂Φm](z)

∂z

)−1

F
(
Φm](z), u

)
h̃(z, u) = h

(
Φm](z), u

)
Partition the transformed system (10.15) into two parts

F̃ (z, u) =
(
F̃a(z, u)
F̃b(z, u)

)
where z = (za, zb) with za = (z1, . . . , zk) and zb = (zk+1, . . . , zn). The structure of
F̃ (z, u) is

F̃ (z, u) =
(
Aa,1 Aa,2
Ab,2 Ab,2

)(
za
zb

)
+
(
Ba
Bb

)
u+ F̃h(z, u)

h̃(z, u) =
(
Ca Cb

)(za
zb

)
+Du+ h̃h(z, u)

where F̃h and h̃h denote terms of at least order two.
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Now, assume that the squared singular value functions are in order, i.e.,

min
zi∈[−c,c]

τi(zi) > max
zi∈[−c,c]

τi+1(zi), i = 1, 2, . . . , n

where c determines the range of states of interest, and that τk is substantially larger than
τk+1 for some k. Then

ża = F̃ (za, 0, u), y = h̃(za, 0, 0) (10.16)

is a k:th order reduced model of (10.4).
The reduced order model locally preserves several important properties of the origi-

nal system, such as controllability, observability and stability as proved in the following
lemma.

Lemma 10.3
Consider the state-space model (10.4) and assume that it satisfies Assumption A17 and
A18. Let x = Φd](z) = Tz + Φd]h (z) be a change of coordinates that brings (10.4) to
input normal form of degree m. Then the following properties hold

• Aa,1 and Ab,2 are Hurwitz matrices.

• (Aa,1, Ba) and (Ab,2, Bb) are controllable.

• (Aa,1, Ca) and (Ab,2, Cb) are observable.

independently of the partition.

Proof: The proof follows easily by first noting that T is determined by the linearization
of (10.4) and then using the results in Pernebo and Silverman (1982).

Note that the properties above are not true for general full rank matrices T . Even
though the transformed system (10.15) will have the properties mentioned above as a
whole, the parts will not necessarily have them.

Let the controllability and observability functions, computed for the reduced model,
be denoted Lca(za) and Loa(za). Then these will be the same as if z = (za, 0) is sub-
stituted into Lc

(
Φ(z)

)
and Lo

(
Φ(z)

)
. The same holds symmetrically for the zb. This

is formalized in the following lemma which is an extension of a result in Fujimoto and
Tsubakino (2006) to the case when only finite series are considered.

Lemma 10.4
Consider the system. Then

Lca(za) = Lc
(
Φm](za, 0)

)
+O(za)m+2, Loa(za) = Lo

(
Φm](za, 0)

)
+O(za)m+2

Lcb(zb) = Lc
(
Φm](0, zb)

)
+O(zb)m+2, Lob(zb) = Lo

(
Φm](0, zb)

)
O(zb)m+2

u∗a(za) = u∗
(
Φ(za, 0)

)
+O(za)m+1, u∗b(zb) = u∗

(
Φ(0, zb)

)
+O(zb)m+1

That is, the controllability and observability functions for the reduced system are the same
up to order m + 1 as for the original system with the coordinate transformation Φm](x)
which transforms the system to input normal form of degree m.
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Proof: First consider the observability function case. The key property of the observabil-
ity function in input normal form of degree m is that

Lo;zi

(
Φm](z)

)
= 1

2τ
m−1]
i;zi

(zi)z2
i + τ

m−1]
i (zi)zi + ∂

∂zi
O(z)m+2, i = 1, . . . , d

In a sufficiently small neighborhood U of the origin, the term with zi is dominating and
since τm−1]

i (zi) has a non-zero constant term, the conclusion is that

Lo;zi

(
Φm](z)

)
= O(z)m+1, zi → 0 (10.17)

Otherwise, it is O(z).
For the non-transformed system, the observability function is given as the solution to

0 = Lo;x(x)F (x, 0) + 1
2h(x, 0)Th(x, 0) (10.18)

The equation above has a solution for arbitrary x ∈ Ω and then specifically for x =
Φm](z) where z ∈ Ωz . If this fact is used together with the following relation, obtained
using the chain rule,

∂Lo(Φm](z))
∂z

=
∂Lo(x)
∂x

(Φm](z))
∂Φm](z)
∂z

it follows that
0 = Lo;z

(
Φm](z)

)
F̃ (z, 0) + 1

2 h̃(z, 0)Th(z, 0) (10.19)

Assume that (10.19) is evaluated in z = (za, 0). Then, using (10.17), it follows that

0 =
∂Lo(Φm](z))

∂za
(za, 0)F̃a(za, 0, 0) + 1

2

∣∣h(Φm](za, 0), 0)
∣∣2 +O(za)m+2 (10.20)

Note that the expression above also holds symmetrically for z = (0, zb).
The reduced model is obtained by letting z = (za, 0) and picking out the upper part

described by F̃ (za, 0, 0). The equation for calculating the observability function for the
reduced system becomes

0 = Loa;za(za)F̃a(za, 0, 0) + 1
2h(Φ

m](za, 0), 0)Th(Φm](za, 0), 0) (10.21)

This is the same equation as (10.20) up to order m + 1. From Lemma 10.3, it is known
that the local properties of the reduced system is such that (10.21) has a unique solution,
and therefore it must hold that

Loa(za) = Lo
(
Φ(za, 0)

)
+O(za)m+2

The same property can then be shown for Lob(zb).
For the controllability function, the same steps can be performed, but in this case with

the equations

0 = Lc;x(x)F (x, u∗(x))− 1
2u∗(x)

Tu∗(x) (10.22a)

0 = Lc;x(x)Fu
(
x, u∗(x)

)
− 1

2u∗(x)
Tu∗(x) (10.22b)
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Balanced Truncation based on the Co-Observability Function

In the last section the most common method for approximating the system was described.
However, in Krener (2008) another approach is presented. The main motivation starts with
the question: What is minimized with balanced truncation? To explain this, introduce a
projection defined by the submersion φ and the embedding ψ as

q = φ(z), z = ψ(q)

where φ : Rd → Rk and ψ : Rk → Rd such that φ
(
ψ(q)

)
= q and (ψ◦φ)2(z) = ψ◦φ(z).

The corresponding reduced order model is then given by

q̇ = f̄(q, u) (10.23a)
y = h̄(q, u) (10.23b)

where

f̄(q, u) =
∂φ(z)
∂z

(ψ(q))f̃
(
ψ(q), u

)
h̄(q, u) = h̃

(
ψ(q), u

)
First, consider the linear case. In balanced truncation, the projection is given by

φ(z) = Tφz and ψ(q) = Tψq, where

Tφ = TTψ =
(
I 0

)
(10.24)

Intuitively, to obtain a good reduced model of order k, Tψ should be chosen such
that the states in its range maximize Lo(z) when Lc(z) = c with c given. This means
that if the Hankel singular values are sorted in descending order, the range should satisfy
zk = zk+1 = . . . = zd = 0. A convenient choice is then (10.24).

The choice of Tφ can be motivated by studying the norm of the difference between the
outputs starting from z and TψTφz. Therefore, define the co-observability function for a
general nonlinear model (10.15) as

Loo(z, q) =
1
2

∞∫
0

(y(t)− ȳ(t))T (y(t)− ȳ(t)) dt (10.25)

where y and ȳ are the outputs of the nonlinear system (10.15) starting from z and z̄,
respectively, with u(t) = 0.

The co-observability is calculated from the equation (cf. with the ordinary observabil-
ity function)

0 =
(
∂Loo(z,z̄)

∂z
∂Loo(z,z̄)

∂z

)(
F̃ (z, 0)
F̃ (z̄, 0)

)
+

1
2

∥∥h(z, 0)− h(z̄, 0)
∥∥2

(10.26)

The following lemma gives conditions under which (10.26) has a unique solution.
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Lemma 10.5
Consider a nonlinear state-space model (10.15) in input normal form of degree m. As-
sume that its linearization is asymptotically stable and observable. Then there exists a
unique solution to (10.26) given by

Loo(z, z̄) =
1
2

k∑
i=1

τi0(z − z̄)2 + L
m]
oo,h(z, z̄) +O(z, z̄)d+1 (10.27)

where Loo,h(z, z̄) denotes terms of at least order three.

Note that it is not necessary for the existence and uniqueness of a solution to (10.26)
that the system is in input normal form of degree m. However, then the second order
terms in (10.27), which in the general case is given by 1

2 (z − z̄)TQ(z − z̄) where

ATQ+QA = −CTC

do not need to be diagonal and have the squared Hankel singular values on the diagonal.
In the linear case, Loo(z, z̄) will be quadratic and the choice of Tφ that minimizes the
norm of the difference between the two different outputs is therefore given by (10.24).
Hence, the projection is chosen such that the extra energy in the output that is obtained by
starting outside the projected space is minimized.

Inspired by the linear case, a nonlinear extension is derived in Krener (2008). Again,
one would like to choose ψ such that its range is the k-dimensional submanifold on which
Lo(z) is maximized when Lc(z) = c for given values of c. However, this is not a well-
defined submanifold unless k = 1 (i.e., the same number as c).

However, an approximate optimal choice is zk+1 = . . . = zd = 0, that is,

z = ψ(q) = (q1, . . . , qk, 0, . . . , 0) (10.28)

The submersion φ is chosen to minimize Loo
(
z, ψ(φ(z))

)
which gives

φi(zi) = zi −
1
τi

∂Loo,h(z, z̄)
∂z̄i

(z, (φi(zi), 0)), i = 1, . . . , k (10.29)

In many cases, this method may give reduced order models with an input-output be-
havior more similar to the original model than the standard balanced truncation method.
However, there are three issues. First, there is not guarantee that the obtained control-
lability and observability functions are the restricted version of the original model, as in
standard balanced truncation. Second, more computations are required. Third, the static
gain need not be preserved, which is a disadvantage this method shares with standard
balanced truncation.

Residualization

In residualization, the time derivatives of the less important states are assumed to be zero.
The main advantage of this method is that it gives better low frequency behavior, for
example, the correct static gain.
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Again, consider a model in input normal form of degree m (10.15) and assume there
is a gap in the squared singular value functions for some k. Then, by letting the last n− k
derivatives of the states be zero, the reduced model will be the following nonlinear DAE
model. (

ża
0

)
=
(
Aa,1 Aa,2
Ab,1 Ab,2

)(
za
zb

)
+
(
Ba
Bb

)
u+ F̃h(za, zb, u) (10.30a)

y =
(
Ca Cb

)(za
zb

)
+Du+ h̃h(za, zb, u) (10.30b)

Nonlinear residualization is a rather well-studied method since it is the limit case for
singular perturbation, see Kokotović et al. (1986), but model reduction of such systems
is mostly studied for particular classes of systems such as chemical system, see Vora and
Daoutidis (2001); Schneider and Wilhelm (2000). Results for more general systems are
more unusual but some can for example be found in Hahn (2003); Sun and Hahn (2005).
The obtained model will in this case have the same number of equations as the original
model. The only difference is that some of the differential equations have been converted
into algebraic equations.

For the reduced model (10.30) a similar lemma to Lemma 10.3 can be proved. How-
ever, except for the standard properties, an important feature concerning the solvability is
also shown.

Lemma 10.6
Consider the state-space model (10.4) and assume that it satisfies Assumption A17 and
A18. Let x = Φm](z) = Tz + Φm]

h (z) be a coordinate change obtaining input normal
form of degree m.

Then, the reduced model (10.30) will satisfy Assumption A7. Furthermore, its lin-
earization will be asymptotically stable, R-controllable and R-observable.

Proof: The linear part of the transformation Φm](z), i.e., T , is determined by the lin-
earization of (10.4). The linear part of (10.30) will therefore be the same as obtained
in Liu and Anderson (1989), where the three latter properties are shown.

To prove the first property, first note that F̃ (0, 0) = 0, since Φm](0) = 0 and F (0, 0) =
0. It is also known from Liu and Anderson (1989) that Ab,2 is Hurwitz, which means it is
nonsingular as well, and the conditions in Assumption A7 are satisfied.

A general definition of R-controllability and R-observability can be found in Dai
(1989), but for the linearization of a strangeness-free semi-explicit model as in (10.30), it
simplifies to (Â, B̂) = (A11 − A12A

−1
22 A21, B1 − A12A

−1
22 B2) being controllable and

observable.
An interesting feature, which at least numerical computations seems to confirm, is

that the controllability and observability functions for the residualized model become
the restricted versions of the corresponding functions for the full system. If so, it is in
accordance with the linear case as can be seen in for example Liu and Anderson (1989);
Skogestad and Postlethwaite (2001).



192 10 Model Reduction

10.2 Model Reduction of DAE Models

Now the focus is turned to nonlinear DAE models

F̂1(ẋ1, x1, x3, u) = 0 (10.31a)

F̂2(x1, x3, u) = 0 (10.31b)
y − h(x1, x3, u) = 0 (10.31c)

From earlier chapters, it is known that if the considered model satisfies Assump-
tion A7, there is a neighborhood around the origin in which the DAE model is equivalent
to

ẋ1 = L(x1, u) (10.32a)

y = ĥ(x1, u) = h
(
x1,R(x1, u), u

)
(10.32b)

Since this is a state-space model, it is from a theoretical point of view possible to use the
results in Section 10.1. However, as in the former chapters, the challenge comes from the
fact that L and R normally cannot be written in closed form. Also for nonlinear state-
space models, it is normally hard or even impossible to find solutions in closed form to
the equations in Section 10.1.

Therefore, a similar computational method as shown earlier which only relies on
power series expansions will be used find the transformation and reduce the DAE model.
The method is based on the methods derived in Fujimoto and Tsubakino (2006) and
Krener (2008).

10.2.1 Computing the Input Normal Form of Order m

The first step is to compute the balanced form. To obtain a well-posed problem the fol-
lowing assumption will be needed.

Assumption A19. The linearization of the DAE model (10.31) is asymptotically stable,
R-controllable and R-observable.

The first step in order to find the input normal form of degree m is to compute the
controllability and observability functions up to some desired order. The key point is that
even though closed expressions for F̂ and ĥ are not known, their series expansions can be
computed locally in a neighborhood of the origin and the functions will be expressed as
power series, see Chapter 8 and 9, respectively, for details. If the DAE model (10.31) sat-
isfies the required assumptions, it is known from Theorem 8.2 and 9.2 that these functions
can be computed to an arbitrary order as

Lc(x1) =
1
2
xT1 Gcx1 + Lch(x1)

Lo(x1) =
1
2
xT1 Gox1 + Loh(x1)
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The next step is to let the transformation and the squared singular value functions be
expressed as power series of order m and m− 1, respectively,

x1 = Φm](z) = TΦz + Φm]
h (z) (10.33a)

τ
m]
i (zi) = τi,0 + τi,h(zi)m−1], i = 1, . . . , d (10.33b)

If Φm](z) and τm−1]
i (zi) in (10.33) are substituted into the controllability and observabil-

ity functions the result should be the input normal form in (10.8). The equations formed
then become

0 = zT (TTΦGcTΦ − I)z + zTTTΦGcΦ
m]
h (z) + Φm]

h (z)TGcΦm](z)

+ 2Lc
(
Φm](z)

)
+O(z)m+2 (10.34a)

0 = zT
(
TTΦGoTΦ − τ(z)

)
z + zTTTΦGoΦ

m]
h (z) + Φm]

h (z)TGoΦm](z)

+ 2Lo
(
Φm](z)

)
+O(z)m+2 (10.34b)

where
τ(z) = diag

(
τ1(z1), τ2(z2), . . . , τd(zd)

)
Since these equations are supposed to be valid for all z in a neighborhood, the coefficients
corresponding to different orders in z must equal zero. The second order terms yield the
equations

G−1
c GoTΦ = TΦ diag(τ1,0, τ2,0, . . . , τd,0) (10.35a)

TTΦGcTΦ = I (10.35b)

and solving these equations then give the zeroth order terms of τm−1]
i and the first order

terms of Φm]. The obtained τi,0, i = 1, . . . , d and TΦ become unique for a given rep-
resentation of a system. However, TΦ is not similarity invariant, i.e., it may change if a
different coordinate system is used.

The higher order terms of Φ(z) and τi(zi) of order m and m − 1, respectively, are
obtained from the terms in (10.34) of order m+ 1 as

Φ[m]
h (z)TGcTΦz = −1

2

m∑
i=1

Φ[m−i]
h (z)TGcΦ

[i]
h (z)−

{
L
m+1]
ch

(
Φm−1](z)

)}[m]

(10.36a)

and

zTTTΦGoΦ
m]
h (z) + zT τ

m−1]
h (z)z = −

m∑
i=1

Φ[m−i]
h (z)TGcΦ

[i]
h (z)

− 2
{
L
m+1]
oh

(
Φm−1](z)

)}[m]

− 1
2
zT τ

m−1]
h (z)z (10.36b)

where
τh(z) = diag

(
τ1,h(z1), . . . , τd,h(zd)

)
As can be seen from (10.36), the system of equations will be linear in the unknown

coefficients if the equations are solved recursively one order at a time.
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In Krener (2008), it is shown that the system of equations (10.36) has at least one
solution, and in most cases there will be many because the set of equations is under-
determined. However, in Krener (2008) it is also shown that (10.36) will have a unique
solution for m up to 6 (or 12 if the system is odd, i.e., f(−x,−u) = −f(x, u) and
h(−x,−u) = −h(x, u)). Another case that also yields unique solutions is for d ≤ 2, as
shown in Fujimoto and Tsubakino (2007).

Remark 10.1. It might seem like Φh is uniquely determined by (10.36), since GcTΦ is
nonsingular (compare with the discussion in for example Lukes (1969)). However, this is
not the case since it will be the m:th order terms of (10.36) that determine the terms in Φ
of order m− 1. Therefore, the system of equations will normally be under-determined.

If a balanced form of order m is wanted, the next step is to obtain the coordinate
change Ψm]. The computations are described in the proof of Lemma 10.2. The terms
in Ψ are computed recursively using (10.11), and the singular value functions σi(qi) can
then be computed from (10.13) up to order m− 1.

10.2.2 Balanced Truncation

Given the change of coordinates, it is now possible to express the reduced nonlinear DAE
model. Consider the semi-explicit model

ẋ1 = F1(x1, x3, u) (10.37a)
0 = F2(x1, x3, u) (10.37b)
y = h(x1, x3, u) (10.37c)

and assume that the first k squared singular value functions are significantly larger than
the other d − k. Divide the states z into two subspaces za and zb, where the former
corresponds to the larger singular values and form the subsystems

ża = F̄1a(za, 0, x3, u) (10.38a)
0 = F̄2(za, 0, x3, u) (10.38b)
ya = h̄(za, 0, x3) (10.38c)

and

żb = F̄1b(0, zb, x3, u) (10.39a)
0 = F̄2(0, zb, x3, u) (10.39b)
yb = h̄(0, zb, x3) (10.39c)

where F̄1a and F̄1b correspond to the first k rows and the last d− k rows, respectively, of

F̄1(z1a, z1b, x3, u) =
(
∂Φm](z)
∂z

)−1

F1

(
Φm](z), x3, u

)
and F̄2 and h̄ are given by

F̄2(z1a, z1b, x3, u) = F2

(
Φm](z), x3, u

)
h̄(z1a, z1b, x3) = h

(
Φm](z), x3

)
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A reduced order model of order k of the DAE model (10.37) is then given by (10.38). The
subsystems will both locally retain some of the important properties of the original DAE
model.

Lemma 10.7
Consider a nonlinear DAE model (10.37) and assume that it satisfies Assumption A7 and
A19. Let x1 = Φd](z) be obtained using the procedure in Section 10.2.1. Then both
(10.38) and (10.39) will satisfy Assumption A7 and A19.

Proof: The subsystems (10.38) and (10.39) are calculated from

ża = ˆ̄F1a(za, u) = F̄1a

(
za, 0, R̄(za, 0, u), u

)
(10.40a)

ya = ˆ̄h(za, u) = h̄
(
za, 0, R̄(za, 0, u), u

)
(10.40b)
(10.40c)

and

żb = ˆ̄F1b(zb, u) = F̄1b

(
0, zb, R̄(0, zb, u), u

)
(10.40d)

yb = ˆ̄h(zb, u) = h̄
(
0, zb, R̄(0, zb, u), u

)
(10.40e)

where R̄(z, u) = R
(
Φm](z), u

)
. The system in (10.40) is a state-space model. The linear

part of the transformation, i.e., TΦ, is determined from its linearization and will make
the linear part of each subsystem in (10.40) controllable, observable and asymptotically
stable. Since the solvability properties of the constraints (10.37b) are not changed locally
by the change of coordinates, R

(
Φ(z), u

)
can be replaced by (10.38b) and (10.39b).

Using the same discussion as in the last lemma, the following theorem can be proved.

Theorem 10.4
Consider a nonlinear DAE model (10.37), satisfying Assumptions A7 and A18. Then it
holds that

Lca(za) = Lc
(
Φm](za, 0)

)
+O(za)m+2, Loa(za) = Lo

(
Φm](za, 0)

)
+O(za)m+2

Lcb(zb) = Lc
(
Φm](0, zb)

)
+O(zb)m+2, Lob(zb) = Lo

(
Φm](0, zb)

)
+O(zb)m+2

Proof: Follows similarly as in Lemma 10.4.

Balanced Truncation based on the Co-Observability Function

The method in Section 10.1.2 can be applied straightforwardly by expressing the system
in terms of the series expansion of the underlying state-space model.

10.2.3 Residualization

Consider the residualization method instead. Assume that the DAE model is given by
the general model (10.31). Then a k:th order reduced model for the DAE model can be
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written as

0 = F̂1(Φm]
za

(z)za, 0,Φm](z), x3, u) (10.41a)

0 = F̂2(Φm](z), x3, u) (10.41b)

y = h(Φm](z), x3, u) (10.41c)

For this model the following lemma can be proved.

Lemma 10.8
Consider the reduced model (10.41). This system is locally asymptotically stable and
satisfies Assumption A7 and A19.

Proof: The proof follows the same line as the proof for Lemma 10.7. The matrix TΦ

is derived based on the underlying state-space model. The solvability properties do not
change when żb is set to zero, which proves the result.

The main advantage of the residualized model is the improved low frequency proper-
ties as will be seen in Section 10.3. However, for some models, the approximation and
the simulation properties are better if the model, on which the coordinate transformations
are applied, is the exact model. That is, the coordinate change Φm](z) is computed from
a truncated version of the system, but Φm](z) is then substituted into the non-truncated
expressions. If the system then is fully implicit, i.e., also in ẋ1, the residualized model is
the best choice.

In summary, the steps need to be performed in order to obtain the reduced order model
can be seen in Algorithm 10.1.

10.3 Example

In this section the methods are exemplified on a model of a double pendulum. The input
torque τ is applied to the top joint and the output is the horizontal displacement of the
bottom. The mass of the pendulums are m1 and m2, respectively, and the mass of each
pendulum is concentrated to the ball. That is, the rod of each pendulum is massless.
The length of the pendulums are L1 and L2, respectively. To make the system passive, a
viscous damping with coefficient b1 and b2, respectively, are introduced in the two joints.

The coordinates xi, i = 1, . . . , 4 are defined as

x1 = L1 sin(θ1) x2 = L1 − L1 cos(θ1)
x3 = L2 sin(θ1 + θ2) x4 = L2 − L2 cos(θ1 + θ2)

where θ1 is the angle from the vertical axis to pendulum 1 and θ1 + θ2 is the angle from
the same axis to pendulum 2 (see Figure 10.1). The choice of putting the origin in the
point furthest down follows from the fact that the origin should be a stationary point. The
output signals are chosen as the x and y position of the second mass, i.e.,

y1 = x1 + x3

y2 = x2 + x4
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Algorithm 10.1 Computation of the reduced order model.

1. Compute the controllability and observability functions up to orderm+1 by solving
the equations in Section 8.3 and 9.3, respectively. (In this step, the power series
expansion of the DAE model is also obtained).

2. Solve the set of equations (10.35) and (10.36) to obtain Φm] and τm−1], to trans-
form the system into input normal form of degree m. (The eigenvalue problem is
solved by first solving (10.35a) and then normalize TΦ to satisfy (10.35b))

3. Examine the squared singular value functions τd−1]
i (zi) to see if there is a gap for

some k over the range of interest of the states x1.

4. Choose approximation method.

• Standard balanced truncation:
Remove the d− k last states as seen in (10.38).

• Balanced truncation based on the co-observability function:
Define the embedding ψ as in (10.28). Compute the submersion φ by solv-
ing (10.26) up to order m and formulate the approximate model as (10.23).

• Balanced Residualization:
Set the derivatives of the last d− k states to zero, as can be seen in (10.41).

θ1

θ1

θ2

τ

m1g

m2g

Figure 10.1: A double pendulum with friction in the joints and a torque in the first
joint as control input.
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The pendulum is modeled using Euler-Lagrange theory, see Goldstein (1980). The
output from such a modeling process is naturally a DAE model which fits into the structure
described in Chapter 6. First, the kinetic energy of the double pendulum is expressed as

T =
m1

2
(ẋ2

1 + ẋ2
2) +

m2

2
(
(ẋ1 + ẋ3)2 + (ẋ2 + ẋ4)2

)
(10.42)

Second, the potential energy becomes

V = m1g(x2 + L2) +m2g(x2 + x4) (10.43)

where the zero-level has been placed at the lowest vertical position. That is, both pen-
dulums hanging straight down. Third, the friction terms are modeled using the Rayleigh
function

Frayleigh =
1
2
b1

( ẋ1

L1 − x2

)2

+
1
2
b2

( ẋ3

L2 − x4
− ẋ1

L1 − x2

)2

(10.44)

The two terms correspond to the energy dissipated in the first and second joint, respec-
tively. In this case, the constraints are given by

G(x) =
(
x2

1 + (L1 − x2)2 − L2
1

x2
3 + (L2 − x4)2 − L2

2

)
(10.45)

since xi,i = 1, . . . , 4 are local coordinates for each pendulum.
From the equations above, the Lagrangian is formulated as follows

L = T − V − (λ1 +
(m1 +m2)g

2L1
)G1(x)− (λ2 +

m2g

2L2
)G2(x) (10.46)

where G1(x) and G2(x) denote the first and second row of G(x), respectively, and λ1

and λ2 are the corresponding Lagrange multipliers. The DAE model is then found from
the Euler-Lagrange equation (Goldstein, 1980)

d

dt

∂L

∂ẋi
− ∂L

∂xi
+
∂Frayleigh

∂ẋi
= fext(x, u), i = 1, . . . , 4 (10.47)

where fext corresponds to external forces and torques, i.e., the input torque τ , that act on
the system. In this case, fext becomes

fext(x, u) =



1

L1

r
1+

x2
1

(L1−x2)2

u

x1

L1(L1−x2)

r
1+

x2
1

(L1−x2)2

u

0
0


The result of (10.47) is then a model in the multibody form (6.41),

ṗ = q

M(p)q̇ = fext(p, u) + λT gp(p)
G(p) = 0
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where p = x and q are the corresponding velocities. The partial derivatives of the con-
straints, i.e., Gp(p), are nonsingular, and (6.41) can then be shown to satisfy Hypothe-
sis 2.2 with µ = 2, d = 4, a = 6 and ν = 0. Let x be divided as p1 = (x1, x3) and
p2 = (x2, x4), which means that p2 can be solved from G(p) = 0 (note that another
possible choice is p1 = (x2, x4) and p2 = (x1, x3)). The strangeness-free model locally
becomes

ṗ1 = q1

q̇1 =
(
I 0

)
M(p)−1

(
fext(p, u) +Gp(p)Tλ

)
0 = G(p)
0 = Gp(p)q

0 = Gpp(p)(q, q)Gp(p) +Gp(p)M(p)−1
(
fext(p, u) +Gp(p)Tλ

)
with λ = (λ1, λ2) and with the constants chosen as

g = 9.8, m1 = 1, m2 = 2, L1 = 1, L2 = 1, b1 = 1, b2 = 2

Different reduced order models are derived using the procedure described in Algo-
rithm 10.1. In all cases except for the plot showing the true outputs, the nonlinear DAE
model has been described by power series of order 5. This makes it possible to write the
DAE model as a state-space model. When the truncation methods are used it means that
the reduced order model will be a state-space model, which can be solved using Maple.
However, when residualization is used the resulting model is a DAE model (note that
even in this case an extra step could have been performed to obtain a state-space model in
power series form), which then is solved using Dymola.

In Figure 10.2, the singular value functions are shown. The figure shows that the
two first singular value functions are substantially larger than the other two. Therefore, a
reduced order model of order two is appropriate.

Figure 10.3 shows the first output y1 with the input signal u = sin(2.5t) for five dif-
ferent systems. The five different systems are the following: the true model, a linear and
a fifth order approximation obtained using standard balanced truncation, a fifth order bal-
anced truncation approximation where the co-observability function has been minimized
and finally a residualized model of order 5. As can be seen all the different models match
the true output well.

The next figure, i.e., Figure 10.4, shows the output signal y2 for the same set of models
with the same input signal as in the last figure. The main feature to see in this figure is
that the output for the linear approximation is identically zero, while all the nonlinear
approximations reproduce the true output rather accurately.

In Figure 10.5, output y1 is shown again for all the models but with the input chosen as
a unit step starting at t = 0.1. A feature with this input signal is that it tests the accuracy
in stationarity. The five models are clustered into two groups. The two models obtained
using balanced truncation and the linear approximation are all very similar and form the
upper of the two visible curves, while the true model and the residualized model coincides
and form the lower curve.

The same tendency as in Figure 10.5 can be seen in the last figure, i.e., Figure 10.6. In
this figure, the y2 signal is shown for all the models but with the unit step as input signal.
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The output of the linear model is similarly to Figure 10.4 equal to zero, while the other
signals are divided into two groups. The lower curve is the two models obtained using
balanced truncation, while the upper curve is the output from true and the residualized
model.

The two latter figures show that also for nonlinear models (obtained as a truncated
power series) the residualized model often has better low frequency behavior.

It might be good with two final remarks. In this case, the DAE model was expressed as
truncated power series also in the simulations since the truncation of the DAE model did
not change the output too much. However, experience shows that for the residualization
method it is often quite good to let the system be non-approximated. That is, to substitute
x1 = Φm](z) into the DAE model without Taylor expanding the model first.

It is also very important that the basis, i.e., the set of coordinates, is chosen in an ap-
propriate way. This fact can change the behavior of the approximated model substantially.
An intuitive explanation is if the coordinates are chosen such that the original model in-
cludes a lot of terms with infinite series expansions, the truncation of the system may
remove a lot of information. In the pendulum case, a more natural set of coordinates is to
choose the angles, but the improvements in the simulations are in this case small.
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Figure 10.2: The Hankel singular values σi, i = 1, 2, 3, 4, for the double pendulum.

10.4 Conclusion

In this chapter it has been shown that for quite a large class of nonlinear DAE models
it is possible to find a reduced model computationally. Further, it has been shown in an
double pendulum example that the reduced nonlinear model can re-create the behavior of
the true model not shown by the reduced model obtained from the linearization. However,
it comes with a price. First, the computational complexity grows rather rapidly with the
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Figure 10.3: The output y1 corresponding to the x-position of the lower mass, when
the input is the sinusoid u(t) = sin(2.5t). In the figure, both the true solution and
all approximations are shown.
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Figure 10.4: The output y2 corresponding to the y-position of the lower mass, when
the input is the sinusoid u(t) = sin(2.5t). In the figure, both the true solution and
all approximations are included.
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Figure 10.5: The output y1 corresponding to the x-position of the lower mass, when
the input has been a unit step starting at t = 0.1s. In the figure, both the true solution
and all approximations are included.
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Figure 10.6: The output y2 corresponding to the y-position of the lower mass, when
the input has been a unit step starting at t = 0.1s. In the figure, both the true solution
and all approximations are included.
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number of variables in the model. This is a large issue. Second, the reduced model is
expressed in terms of power series which means the reduced model will only be a good
approximant locally around the expansion point.





11
Concluding Remarks

In this chapter some conclusions and some possible research openings found during the
work are presented.

11.1 Conclusions

In this thesis, three major topics are studied. The foremost is optimal feedback control of
nonlinear DAE models. It is shown that one possible method to deal with nonlinear DAE
models is to use Taylor series expansions. Both time-invariant and time-varying models
have been considered. Furthermore, it is shown that a discount factor can be introduced in
both cases and the solution will remain to be a convergent series. However, a disadvantage
with the power series solutions is that, when truncated, the obtained approximants tend
to be accurate in a region that is rather small. Therefore, another approach based on
rational approximants is presented. At least in a number of examples, these approximants
approximate the optimal solution with higher accuracy over a larger region. A common
issue with both the methods above is that the computational complexity is high and it
increases rapidly with the size of the problem. Therefore, some conditions are derived
under which the system has a structure that can be used to reduce the complexity.

The second topic that is covered is how white noise can be introduced into a nonlinear
DAE model in a mathematical well-posed way. Some conditions are derived and for
models that satisfy the conditions, it is shown how the variables in the model can be
estimated.

The final topic is model reduction based on energy analysis. The main idea is to use
the framework developed for optimal control, i.e., power series. First, the controllabil-
ity and observability functions are studied, since these functions are central in nonlinear
model reduction. Then, it is shown how some methods for state-space models can be
adapted to the DAE case.
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11.2 Future Work

During the work on this thesis some possible research ideas have appeared. Most of them
concern the power series method and the rational approximation method, described in
Chapter 4 and 5, respectively. The reason is the lack of an explicit expression for the
implicit function. However, one interesting question about the method in Section 3.2 is
what conditions W2 must satisfy in cases when the DAE model is not strangeness-free.
The answer would probably increase the usability of the theorem in Xu and Mizukami
(1993).

For the methods that rely on power series expansion there are numerous extensions.
For example, it would be interesting to handle discrete-time DAE models or stochastic
state-space and DAE models. Another extension would be to find the power series solu-
tion of the optimal feedback control problem for systems of higher strangeness index. In
this case, the controller must be such that the closed-loop system becomes strangeness-
free.

A problem with the methods based on power series expansions is that it can often
be difficult to determine in what region the optimal solution is obtained. For state-space
models other methods to find approximate optimal solutions exist, for instance, succe-
sive Galerkin approximations. It would be interesting to study if these methods can be
extended to handle DAE models as well.

Concerning model reduction, it would be nice to prove that the residualized model
obtain the restricted versions of the controllability and observability functions for the full
system. Furthermore, in the methods above, the dynamic part is reduced. However, it
would be nice to reduce the number of algebraic equations as well.

Finally, it would be interesting to implement some of the methods in real life applica-
tions.
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A
Some Facts from Calculus and Set

Theory

This appendix provides the reader with simple definitions of some frequently used results
from mathematics. For more rigorous mathematical definitions of the different concepts
the reader is referred to (Isidori, 1995; Khalil, 2002) and references therein.

Manifolds

A k-dimensional manifold in Rn can be thought of as the solution of the equation

η(x) = 0

where η : Rn → Rn−k is sufficiently smooth, i.e., sufficiently many times continuously
differentiable. A small example of a manifold is the n-dimensional unit sphere{

x ∈ Rn |
n∑
i=1

x2
i = 1

}
which is a (n− 1)-dimensional manifold in Rn.

Sets

Two topological concepts frequently used in this thesis are neighborhoods and balls. A
neighborhood of a point p is any open set which contains p. A ball Bδ is an open set
around some point p with radius δ, i.e.,

Bδ = {x ∈ Rn | ‖x− p‖ < δ, 0 < δ}

where the norm can be any norm, but in this thesis always the Euclidian norm, i.e., ‖x‖ =√
xTx, will be used. Since a neighborhood is an open set, it is always possible to place

a ball inside it and vice versa. It is therefore common that neighborhoods are assumed to
be balls.
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In many cases, such as in the stability analysis, the considered sets are assumed open
and connected. A set is connected if every pair of points in the set can be joined by an arc
lying in the set.

Rank of Matrix-Valued Functions

The rank of a matrix-valued function F : Rn → Rm at x0 ∈ Rn, is the rank of the matrix
obtained if F is evaluated at x0. Sometimes the rank of F on a manifold is considered.
The rank of F is then evaluated pointwise for all points belonging to the manifold.

The corank of a matrix-valued function F in x0 is the rank deficiency of F (x) with
respect to rows. That is, it is the rank of the corange, which is the nullspace of F (x)T .
These concepts can be studied on a manifold as well. A small example is the function

F (x1, x2) =

x1 0
0 x2

x2
1 x2

2


which at (x0

1, x
0
2) = (1, 0) has rank one and corank two, while for (x0

1, x
0
2) = (1, 1) has

rank two and corank one.

Implicit Function Theorem

One of the most used theorems in this thesis is the implicit function theorem, Theo-
rem A.1.

Theorem A.1
Let F : Cm × Cn → Cm be an analytic function of (x, y) in a neighborhood of a point
(x0, y0). Assume that F (x0, y0) = 0 and that the matrix Fx(x0, y0) is nonsingular. Then,
the equation F (x, y) = 0 has a uniquely determined analytic solution

x = ϕ(y)

in a neighborhood of y0, such that ϕ
(
y0
)

= x0.

Proof: See Hörmander (1966).

If F is k-times continuously differentiable instead, the implicit function ϕ is k-times
continuously differentiable as well. The function ϕ is often called a diffeomorphism. It
means that ϕ is a continuously differentiable function between manifolds, with a continu-
ously differentiable inverse. However, in some references the continuous differentiability
is strengthened to C∞.
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