
AUTOMATIC CONTROL
REGLERTEKNIK
LINKÖPINGS UNIVERSITET

A Graphics Processing Unit Implementation of the Particle Filter
Gustaf Hendeby, Jeroen D. Hol, Rickard Karlsson, Fredrik Gustafsson

({hendeby, hol, rickard, fredrik}@isy.liu.se)

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Graphical Processing Unit (GPU):
• Is found in almost any modern computer

•Features parallel programmable (simd) hardware

• Is an alternative to parallel multi-core, fpga, or

cluster programming for testing and algorithm de-

velopment

Particle Filter (PF):
•Provides an approximate solution to the general

nonlinear filtering problem

• Is almost parallel in its structure

•Gains a lot from an efficient parallel implementation

Particle Filter

A particle filter (pf) is used to estimate the state vec-

tor xt from measurements yt, related to each other via

the nonlinear model,

xt+1 = f (xt, wt)

yt = h(xt) + et,

where wt and et are process and measurement noise,

respectively, and have known, but not necessarily

Gaussian, distributions; pw and pe.

The particle filter is a good alternative when it

comes to filtering of nonlinear and non-Gaussian

models, however it is computationally quite expen-

sive. Methods to speed up the filtering are hence

vital.

PF: A Parallel Algorithm

Initialization:

Generate N particles {x(i)
0 }N

i=1 ∼ p(x0)

Measurement update:

Compute the particle weights

ω
(i)
t = p(yt|x(i)

t)
/ ∑

j p(yt|x(j)
t)

The weight of all particles can be

computed independently in the

measurement update, and hence

in constant time when fully paral-

lelized.

Resample:

1.Generate N uniform random numbers

{u(i)
t }N

i=1 ∼ U(0, 1).

2.Compute the cumulative weights:

c
(i)
t =

∑i
j=1 ω

(j)
t .

3.Generate N new particles using u
(i)
t and c

(i)
t :

{x(i?)
t }N

i=1 where Pr(x
(i?)
t = x

(j)
t) = ωj

t .

During resampling all particles in-

teract, making parallelization dif-

ficult but to a certain degree still

possible.

Time update:

1.Generate process noise {w(i)
t }N

i=1 ∼ pw(wt).

2. Simulate new particles x
(i)
t+1 = f (x

(i?)
t , w

(i)
t).

During the time-update step every

particle is handled independently,

which parallelizes perfectly.

GPU Basics
•A gpu can be found in most computers.

•Workflow determined by the graphics pipeline:

•Two sets of programmable units with parallel simd

architecture:

–vertex shader (used to handle the transformation

of triangles).

– fragment shader (program to calculate potential

pixels).

•Typical workflow:

1.Program the fragment shader with the desired op-

eration.

2. Send the data to the gpu in the form of a texture.

3.Draw a rectangle of suitable size on the screen to

start the calculations.

4.Read back the resulting texture to the cpu.

PF GPU

The seemingly nonparallel resampling step can be im-

plemented using some more operations that can be

parallelized to a higher degree. Below is an exam-

ple of how to obtain the cumulative sum of a set of

numbers. Sequentially it demands O(N) sequential

operations, which can be cut down to O(log N) in

time using O(N log N) operations in total. This is

an essential part of making the resampling parallel.

1 2 3 4 5 6 7 8

1 + 2 = 3 3 + 4 = 7 5 + 6 = 11 7 + 8 = 15

3 + 7 = 10 11 + 15 = 26

10 + 26 = 36

1 = 3− 2 3 6 = 10− 4 10 15 = 21− 6 21 28 = 36− 8 36

3 = 10− 7 10 21 = 36− 15 36

10 = 36− 26 36

36F
or

w
ar

d
A

d
d
er

B
ack

w
ard

A
d
d
er

Original data Cumulative sum

Parallelized cumulative sum operation.

Result
• Implemented successfully on an Nvidia 7900gtx

(8/24 vertex/fragment pipelines).

10
2

10
4

10
6

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of particles, N

T
im

e
 [
m

s
]

CPU

GPU

Time needed to run particle filter.

•The PF GPU implementation has a nice time com-

plexity compared to a CPU implementation. (The

gain is lost as the number of particles increases, and

for few particles the overhead of interacting with

the gpu is significant. Whether the gpu imple-

mentation is an improvement depends on the ratio

between overhead and number of pipelines.)

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Number of particles, N

R
e

la
ti
v
e

 T
im

e

resampling

time update

measurement update

Proportional time for the different steps in the

parallel algorithm.

• In simulations the resampling is shown to take the

most time and dominate for many particles (as ex-

pected).

Conclusion
•The first complete and general particle filter imple-

mented on a gpu.

• Its time complexity is shown to be encouraging.

http://www.control.isy.liu.se/

