Linear Systems I

Exam March 6-17, 1995

Solutions to all problems should be well motivated. There is a total of 59 points, including 14 from the hand in problems. At least 30 should be reached for passed exam.
The examination time is 48 hours. Computers may be used and books may be consulted (except for the book where the appendix on four wheel car steering originates). You are encouraged to ask me if anything is questionable or difficult to understand, but you may not use help from each other.
I am grateful for your feedback on the course and would also be happy to have your errata collection for the book.

Good Luck!
Anders

1. The transfer matrix can be rewritten as

$$
\begin{aligned}
& \frac{1}{s+1}\left[\begin{array}{lll}
0 & 0 & 4 \\
3 & 1 & 0
\end{array}\right]+\frac{1}{s+2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & -6
\end{array}\right] \\
& +\frac{1}{s+3}\left[\begin{array}{ccc}
1 & 1 & 2 \\
-3 & -3 & 1
\end{array}\right]+\frac{1}{s+5}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The following minimal realization can therefore be obtained as in Rugh's exercise 10.11 , which was solved in session 5.

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cccccc}
-1 & & & & & \\
& -1 & & & 0 & \\
& & -2 & & & \\
& & & -3 & & \\
& 0 & & & -3 & \\
& & & & -5
\end{array}\right] x+\left[\begin{array}{cccc}
0 & 0 & 4 \\
3 & 1 & 0 \\
0 & 0 & -6 \\
1 & 1 & 2 \\
-3 & -3 & 1 \\
1 & 0 & 0
\end{array}\right] u \\
& y=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & 2
\end{array}\right] x
\end{aligned}
$$

2. All eigenvalues of are inside the unit circle, so there exists a transformation matrix T with $\left\|T^{-1} A T\right\|=\rho<1$. Hence the convergence of the series follows from the bound

$$
\begin{aligned}
& \left\|\sum_{k=0}^{N} A^{k} B B^{T}\left(A^{k}\right)^{T}\right\| \leq \sum_{k=0}^{N}\left\|T\left(T^{-1} A T\right)^{k} T^{-1} B B^{T} T^{-T}\left(T^{T} A^{T} T^{-T}\right)^{k} T^{T}\right\| \\
& \leq \sum_{k=0}^{N}\|T\|^{2}\left\|T^{-1} B B^{T} T^{-1}\right\| \rho^{N} \leq \frac{\|T\|^{2}\left\|T^{-1} B B^{T} T^{-1}\right\|}{1-\rho^{2}}
\end{aligned}
$$

a. The desired equality follows immediately as

$$
\begin{aligned}
A P A^{T} & =A\left(\sum_{k=0}^{\infty} A^{k} B B^{T}\left(A^{k}\right)^{T}\right) A^{T}=\sum_{k=0}^{\infty} A^{k+1} B B^{T}\left(A^{k+1}\right)^{T} \\
& =\sum_{k=1}^{\infty} A^{k} B B^{T}\left(A^{k}\right)^{T}=P-B B^{T}
\end{aligned}
$$

b. Define the linear operator L_{n} by

$$
L_{n} u=\sum_{k=0}^{n-1} A^{n-k-1} B u(k)
$$

Then $x(n)=L_{n}(u)$ and we need to show that every element of $\mathcal{R}(P)$ also is in $\mathcal{R}\left(L_{N}\right)$ for some N. Note that

$$
\begin{aligned}
& L_{n} L_{n}^{*}=\sum_{k=0}^{n} A^{k} B B^{T}\left(A^{k}\right)^{T} \\
& L_{0} L_{0}^{*} \leq L_{1} L_{1}^{*} \leq L_{2} L_{2}^{*} \ldots \leq P
\end{aligned}
$$

Hence $\operatorname{dim} \mathcal{N}\left(L_{n} L_{n}^{*}\right)$ is a decreasing sequence of positive integers and for sufficiently large N, we have $\mathcal{N}\left(L_{N} L_{N}^{*}\right)=\mathcal{N}(P)$. For such N

$$
\mathcal{R}(P)=\mathcal{N}(P)^{\perp}=\mathcal{N}\left(L_{N} L_{N}^{*}\right)^{\perp}=\mathcal{N}\left(L_{N}\right)^{\perp}=\mathcal{R}\left(L_{N}\right)
$$

and the proof is complete.
3. With $z=[\dot{x} x]^{T}$, the equation becomes

$$
\dot{z}=A(t) z(t)
$$

where

$$
A(t)=\left[\begin{array}{cc}
-1-\cos \omega t & -1 \\
1 & 0
\end{array}\right]
$$

For any $\omega \in R$, Theorem 7.2 in Rugh can be applied with $Q=I$. This shows uniform stability, since

$$
A(t)^{T} Q+Q A(t)=A(t)^{T}+A(t)=\left[\begin{array}{cc}
-2-2 \cos \omega t & 0 \\
0 & 0
\end{array}\right] \leq 0
$$

4.

a. The map from the initial state x_{0} and the input u to the output y can be written $y=L_{1} x_{0}+L_{2} u$, where

$$
\begin{aligned}
\left(L_{1} x_{0}\right)(t) & =C(t) \Phi(t, 0) x_{0} \\
\left(L_{2} u\right)(t) & =C(t) \int_{0}^{t} \Phi(t, s) B(s) u(s) d s
\end{aligned}
$$

The formula for the least squares estimate of x_{0}, based on y and u, is

$$
\hat{x}_{0}=\left(L_{1}^{*} L_{1}\right)^{-1} L_{1}^{*}\left(y-L_{2} u\right)
$$

The adjoint L_{1}^{*} can be determined from the identity

$$
<z, L_{1} x_{0}>=\int_{0}^{T} z(t)^{T} C(t) \Phi(t, 0) x_{0} d t=<L_{1}^{*} x, x_{0}>
$$

where

$$
\begin{aligned}
L_{1}^{*} z & =\int_{0}^{T} \Phi(t, 0)^{T} C(t)^{T} z(t) d t \\
L_{1}^{*} L_{1} & =\int_{0}^{T} \Phi(t, 0)^{T} C(t)^{T} C(t) \Phi(t, 0) d t=M(0, T)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\hat{x}_{0} & =M(0, T)^{-1} \int_{0}^{T} \Phi(t, 0)^{T} C(t)^{T} z(t) d t \\
z(t) & =y(t)-C(t) \int_{0}^{t} \Phi(t, s) B(s) u(s) d s
\end{aligned}
$$

solves the least squares problem.
b. We have

$$
\begin{aligned}
\hat{x}_{0} & =M(0, t)^{-1} \int_{0}^{T} \Phi(t, 0)^{T} C(t)^{T}\left[y-L_{2} u\right](t) d t \\
& =M(0, T)^{-1} \int_{0}^{T} \Phi(t, 0)^{T} C(t)^{T}\left[e(t)+C(t) \Phi(t, 0) x_{0}\right] d t \\
& =M(0, T)^{-1} \int_{0}^{T} \Phi(t, 0)^{T} C(t)^{T} e(t) d t+x_{0} \\
\left|\hat{x}_{0}-x_{0}\right|^{2} & =\int_{0}^{T} \int_{0}^{T} e(t)^{T} C(t) \Phi(t, 0) M(0, T)^{-2} \Phi(s, 0)^{T} C(s)^{T} e(s) d s d t \\
& =\int_{0}^{T} \int_{0}^{T} e(t)^{T} W(t, s) e(s) d s d t
\end{aligned}
$$

with

$$
W(t, s)=C(t) \Phi(t, 0) M(0, T)^{-2} \Phi(s, 0)^{T} C(s)^{T}
$$

c. The formulas in \mathbf{a} and \mathbf{b} give

$$
\begin{aligned}
\hat{x}_{0} & =\left[\begin{array}{ll}
\left(1-e^{-2 T}\right) / 2 & \left(1-e^{-3 T}\right) / 3 \\
\left(1-e^{-3 T}\right) / 3 & \left(1-e^{-4 T}\right) / 4
\end{array}\right]^{-1} \int_{0}^{T}\left[\begin{array}{c}
e^{-t} \\
e^{-2 t}
\end{array}\right] z(t) d t \\
z(t) & =y(t)-\int_{0}^{t}\left(e^{s-t}+e^{2(s-t)}\right) u(s) d s \\
W(t, s) & =\left[\begin{array}{ll}
e^{-t} & e^{-2 t}
\end{array}\right]\left[\begin{array}{ll}
\left(1-e^{-2 T}\right) / 2 & \left(1-e^{-3 T}\right) / 3 \\
\left(1-e^{-3 T}\right) / 3 & \left(1-e^{-4 T}\right) / 4
\end{array}\right]^{-2}\left[\begin{array}{c}
e^{-s} \\
e^{-2 s}
\end{array}\right]
\end{aligned}
$$

d. The relationship $\left(L_{1}^{*} L_{1}\right)^{-1} L_{1}^{*} e=\left(\hat{x}_{0}-x_{0}\right)$ from \mathbf{b}, together with the least squares formula

$$
\min _{A e=b}|e|^{2}=b^{*}\left(A A^{*}\right)^{-1} b
$$

gives

$$
|e|^{2}=\left(\hat{x}_{0}-x_{0}\right)^{*} L_{1}^{*} L_{1}\left(\hat{x}_{0}-x_{0}\right)=\left(\hat{x}_{0}-x_{0}\right)^{*} M(0, T)\left(\hat{x}_{0}-x_{0}\right)
$$

With $\left|\hat{x}_{0}-x_{0}\right|^{2}$ fixed to ϵ, the norm of e is therefore minimal if $\hat{x}_{0}-x_{0}$ is chosen as an eigenvector of $M(0, T)$ corresponding to the smallest eigenvalue. If the system is close to unobservable, in the sense that $M(0, T)$ is close to singular, even a small disturbance e chosen this way, may cause a large observation error $\left|\hat{x}_{0}-x_{0}\right|$.
e. The formulas in \mathbf{a} and \mathbf{b} give

$$
\begin{aligned}
\hat{x}_{0} & =\frac{1}{2 \pi} \int_{0}^{4 \pi}\left[\begin{array}{c}
\sin t \\
\cos t
\end{array}\right] z(t) d t \\
z(t) & =y(t)-\left[\begin{array}{ll}
\sin t & \cos t
\end{array}\right] \int_{0}^{t} u(s) d s \\
W(t, s) & =\frac{1}{4 \pi}\left[\begin{array}{ll}
\sin t & \cos t
\end{array}\right]\left[\begin{array}{c}
\sin s \\
\cos s
\end{array}\right] \\
& =\frac{1}{4 \pi} \cos (t-s)
\end{aligned}
$$

5. This is essentially a problem of noninteracting control, the main difference being that the matrix N is fixed to identity. Considering a_{f} and r as outputs, the matrix Δ in Theorem 14.12 is

$$
\Delta=\left[\begin{array}{c}
L_{A}^{0}\left[C_{a f}\right] B \\
L_{A}^{0}\left[C_{r}\right] B
\end{array}\right]=\left[\begin{array}{cc}
d_{1} & c_{1} b_{12}+c_{2} b_{22} \\
0 & b_{22}
\end{array}\right]
$$

By Rugh, Lemma 14.11, $L_{A}^{0}\left[C_{a_{f}}\right]=L_{A+B K}^{0}\left[C_{a_{f}}\right]$ regardless of K, so in order for a_{f} not to be controllable from u_{r}, it is necessary to assume that

$$
c_{1} b_{12}+c_{2} b_{22}=0
$$

(In fact, this identity always holds for a vehicle model consisting of two point masses, one at the front axis and one at the rear axis.) Then Δ is diagonal, so N is not needed and the formula (45) for noninteracting control

$$
\begin{aligned}
K & =-\Delta^{-1}[\Omega A+\dot{\Omega}] \\
& =-\left[\begin{array}{cc}
d_{1} & 0 \\
0 & b_{22}
\end{array}\right]^{-1}\left[\begin{array}{ccc}
c_{1} & c_{2} & d_{1} \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & a_{12} & b_{11} \\
a_{21} & a_{22} & b_{21} \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

solves the problem.

