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SNR=13dB

Abstract— For certain types of sensor-target configurations a
point target model or approach is not suitable and the physical
extent of the target has to be accounted for in the processing.rA
extended target track before detect algorithm is presented and
the performance is compared to an algorithm based on the point
target assumption. Simulations illustrate the gain in performance
obtained by using the extended target model where a particle
filter is used for the track before detect implementation.

Index Terms— Track Before Detect, Particle Filters, Nonlinear
Filtering, Target Tracking, Radar, Extended Targets.

I. INTRODUCTION

In this paper an extended target tracking radar applicagion
studied. The application under consideration deals withkir (2) SNR=13 dB. A high SNR makes it easy to detect
. . the point target.
ing on the basis of unthresholded measurements, as opposed
to tracking on the basis of thresholded measurements, ar rad
plots. This method is sometimes also referred tack before
detect(TBD), see [1, Chapter 11] for an overview. An efficient
method to implement such a TBD processing is provided by
the particle filter (PF), see the seminal papers on PF TBD [2],
[3]. More work in this area has been performed recently, once
more [1] contains an overview and many additional reference
For PF TBD related issues also see [4].

Mostly, in tracking and detection, targets are assumed to be
point targets. Often this is quite a valid assumption. Havev
there also exist situations in which this is not the case. If
in such situations the target is still treated as a pointetarg
performance degradation or worse failure or divergencéef t (b) SNR=3 dB. A low SNR makes the target hard to
algorithm might occur. detect in a cluttered environment.

Summarizing, the contributions of this paper are: incorp@ig. 1. Examples of simulated measurement data for a point targetise
ration of an extended target model in a PF TBD algorithnith different SNR.
illustration of the working of the new algorithm, a comparis
of the extended target model with the point target model
and showing the superior performance and robustness of appler cells for one fixed bearing angle. In Fig 1 (a), the
extended target algorithm in an example. target is a point target with a relatively higlignal to noise

The paper is organized as follows: In Section Il the TBIpatio (SNR), hence easily detected and spotted if the received
problem is introduced. In Section Ill the nonlinear Bayasiaenergy is above the detection threshold. This is the normal
particle filtering technique is described. Section IV priésea procedure for traditional radar receivers, which only =t
PF TBD simulation study. In Section V concluding remarka single measurement from the radar video signal. This ex-
are given. tracted data is often referred to as a radar plot, consistfing
for instance a single valuér,, d;,b;), for measured range,

Il. TRACK BEFOREDETECT Doppler, and bearing. Tradﬁ;onally 2adar tracking systeare

In Fig 1 typical illustrations of radar measurements aflgased on plots from thresholded data, [5], [6]. In Fig 1 (I th
given, where the power is plotted as a function of range agghget is present as well, though much weaker, and it is not
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TRACK BEFORE DETECT

The constantsk, D, and B are related to the size of the
range cell, the Doppler cell, and the bearing cell. Losses ar
represented by, Ay, and \.

The noise is defined by
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Fig. 2. Radar signal processing : Classical methods basdueshblded data
and the TBD method where tracking and detection is done sinmoiasly. €t = et +1-€qyt, (6)
which is complex Gaussian, whekg; and e, ; are inde-
For track before detec{TBD) problems, [1], [2], [3], [7]. pendent, zero-mean white Gaussian Wlth. varlamggefqr the
. " in-phase and quadrature-phase, respectively. In this Wway t

much lower SNR values are possible, where the target is not : o .

L . power measurement in a specific range-Doppler-bearing cell
easily distinguished from the cluttered noisy backgrouod f: :

. . . . is defined by

any given frame. The TBD, despite of its name, consists
of a simultaneous detection and tracking part. Instead Ofyjkl _ ‘yjkl @)
thresholding, the entire radar video signal is used as the’* At
measurement, i.e., the received powe{y;, dx, b;), Vj, k, 1. I These measurements conditioned on the system &taten, }
the application under consideration the measurementdstonare now exponentially distributed, and the likelihood fiimie
of the power levels inV, x N x N, sensor cells, wherd/,., is given as

Ny, and N, are the number of range, Doppler, and bearing Lkl

2 2
| Akl LK ikl ikl
= ’At chy(we) Fepy +u-egy

cells, respectively. (™ @y, my) = %e g (8)
A schematic overview of a TBD processing chain in com- Ho

parison with a more classical one is given in Fig 2. The small@here

boxes represent the steps that are normally distinguisied i R = Byl g, my), (9)

a classical setup, i.e., thresholding, clustering, andufea
: ; : : Eilnd

extraction to obtain a radar plot from the analog video dign

These plots are filtered and connected over time to forrpgkl =

ikl
. . . . . €1,eQ (yg |xt7 mt)
trajectories, or tracks, in the tracking algorithm. kil jkl

E
= E(il-,eQ (|Atez¢th{4kl(xt) + el,t ) + 26Q7t|xtv mt)‘Q)
E

A. Measurement Model = Eepeq (Ahiy" (a0) cos(er) + €]} e, me)?
177kl . jklN2
First, the measurement model under the assumption of a T<Ah]A‘ (1) sin(¢y ) +€ze,t~) ) 4
point target is briefly discussed, as given in [8]. Thus one = A2 (WMa))? 4 202 = P AN (2) + 202,

measurement consists of a frame of reflected power levels ove
a three dimensional array. The measurement model descriB’étQ
how these measurements are related to the target state. For pi¥(z,) = (i (x,))?

. . . A
each range-Doppler-bearing cell the received power in the —“-7",;”2AT—(dk;‘it’?xd—“l*;”?xb

measurement relation is given as =e (10)
‘ Observe that the likelihood under the noise only assumption
ikl elt if m,=0, ) is readily obtained from the above formulations as well. The
t = h{fl(x{’“l,e{kl), it m =1, above model has been taken from [8].

wherej = 1,...,N,., k=1,...,Ng, l = 1,...,N,. The g Extended Target Model
modal state;n;, denotes if the target is present or not, an i )
¢* denotes the measurement noise in a cell, and the functiorf* g€t is denoted extended whenever the target extent is

hg)kl(.) represents the received radar power in a cell. The povx}@Fger than the sensor resolution. Thus, whether or notgetar

measurement per range-Doppler-bearing cell is relatetieto {S considered to be extended does not only depend on the
signal amplitude by physical size of the target, but also on the physical sizivel

to the sensor resolution. Typically for point targets thelem

Gkl Gkl gkl|2 . L. . .

Y =Ypr = \yA_ytI ; (2) lying assumption is that the target occupies one resolwitin
Very recent work on extended target tracking on a plot basis

Gkl .
whereyy, , is the complex amplitude of the target has been done in [9], where a diffuse spatial distributioarov
L pdkL, hjkl(xt) L eI 3) the target extent has been assumed. Here a similar approach
Ag— T4 b is followed, but unlike in [9] no data association has to be
with considered. This is because unthresholded data are coetide

here, so no hypothesizing over clutter target hypothesestoa
be performed, which is a well established additional achget
and wherehffl(;ct) is the reflection form that is defined forof TBD, [1]. Another difference with the approach of [9] is
every range-Doppler-bearing cell by that no a priori knowledge of the target extent is assumed. Th
target extent and orientation are to be inferred from tha.dat
(5) This has been mentioned in [9] under “further developments”

AR = Ak g, € (0,27 (4)

_ (Tj*Tt)2 2

- (dg—dp)? (b1 =b4)?
ikl — Aa— A
h (xt) e 2R 4 2D d 2B b



In this section a specific type of extended target model [$0]. The key feature of such a system is that it involves both
introduced by partially following the discussion in [9, Sien  continuous as well as discrete state variables. The canigu
2.3], where a spatial distribution model for extended oigjéz state variables represent kinematic information, e.gitipos
assumed. The spatial extension is modeled by the diswitbutiorientation, and velocity. The discrete state variablecdiess
p(Z|x), which can be interpreted as a generator of a poitite modal state. In this application the modal state is an
sourcet from an extended target with its center and orientatidndicator of target absence/presence, see (1) and (15).
given by the state vector. Receiving a measurement from
a so_u_rcei somewherg_ on th? target Ieads~ to a Iikeli_hooﬂ_ Bayesian Estimation
conditioned on a specific sour@e A(x) = p(y|z). Using this ) ) o
model the total likelihood, conditioned only an is obtained | "€ recursive Bayesian estimation problem can be formu-

as the convolution betwees(y|z) andp(z|z), i.e. lated as a time-update and a measurement-update for the
T posterior pdf, [11]. By extending the state space with the

NPT modal state, i.e.yx; = (27, m.)T, it can be expressed as
p(olo) = [ puielpalo)dz. (a1 o= ) P
Pomt_ Target: T_he mode_l (112) also covers the point target p(xes1|Yy) = / p(xert [xe)p(xe| Ye) dxe, (16a)
case, which is retrieved for: Rn
P(yelxe)p(xe| Ye-1)

- - Y,) = , 16b

p(fe) = 8( - ), 12 POl = T i) (160
wheres§ denotes the delta-Dirac function. where the integration of the modal-space should be intexgre

Point Sources:Also the case of a finite number of pointdS @ summation over the possible combinations and where

target sources over the target extent is covered by the ab@:+1|Y¢) is the prediction density anelx;|Y¢) the filtering

model. For example if there ar®f sources at location(), density. _
i=1,...,M, the pdfp(&|z) is defined as: The solution to the problem can in general not be repre-

sented in a finite dimension. There are two fundamentally

) M - @ different ways to approximately solve the problem:
p(ale) =3 A)o@ - 2. (13) ., The extended Kalman filte(EKF), [12], [13], that is
=t the sub-optimal filter for an approximate linear Gaussian
Extended Targetin its general form the pdf(z|x) could model, or the optimainear filter for linear non-Gaussian

or should reflect (prior) knowledge on the position of poksib systems.

scatterers on the target extent. The general expressiaghdor o Numerical approaches, such as tparticle filter (PF)
likelihood of an extended target, as represented by (1Dhmi [14], [15], [1], that give an arbitrary good approximation
not be available analytically. In this case this expressian of the optimal solution to the Bayesian filtering problem.
always be approximated numerically through an importanceas the TBD problem is highly nonlinear and non-Gaussian,
sampling approach. This approximation is readily cal@dat ihe pF is preferred in this application.

by:

M B. The Particle Filter
plylz) = In > p(ylE™), (14)  In this section theparticle filter (PF) theory is presented
i=1 according to [16], [15], [14], [17], [1]. The particle fil-
with #(), independently drawn according jdi|z) for i = ter provides an approximative solution to the discrete time
1,..., M. Bayesian estimation problem formulated in (16) by updating

an approximate description of the posterior filtering dignsi
The particle filter approximates the densityz,|Y;) by a
large set of N samples (particles){xﬁi) N ., where each
Smticle has an assigned relative weigm%), chosen so that
all weights sum to unity. The location and weight of each

IIl. NONLINEAR STATE ESTIMATION

Consider a general nonlinear and non-Gaussian syst
evolving according to

r1 = flxg, me,wy), (15a) particle reflect the value of the density in that region ofesta
v = h(ze,mer) (15b) space. The particle filter updates the particle location taed
‘ DT o corresponding weights recursively with each new observed
Iij = Prob(my =ilm: =7), 4,5 € {0,1}(15¢)  measurement. If the measurement noise is assumed additive,
wherez, € R is the kinematic state of the system, ¢ N the unnormalized weights are given by
is the modal state of the system, € RP is the measurement, i i ,
ysten), € VD = pe(y — h(2)), i=1,...,N. 17)

wy IS the process noise, is the measurement noisg,is the

system dynamic functiorh is the measurement function, andJsing the samples (particles) and the corresponding weight
IT is the Markov matrix, including all modal state transitionghe Bayesian equations can be approximately solved. Tal avoi
It is assumed that the sample periodlisThe system defined divergence a resampling step is introduced. This is redeie
by (15) is referred to as a jump Markov system, see e.g. [7] and thesampling importance resamplinIR), [14].



As the estimate for each time, choose the minimum mea ‘ ‘ ‘=§°

) ” 0.15
sguare estimate, i.e.,
0.1r
@:E@WQ:/xw%WHm Eh”()ﬂ&
0.05
The PF approximates the posterior pgfz:|Y:), by a finite
number of particles. However, asymptotically the approxi-g ol
mated pdf converges to the true one, [15]. >
—0.05
IV. APPLICATION
A. Tracking Model -0.11 t
In the dynamic model that is used here both the target’
center dynamics as well as its extent are modeled within th 92 945 95 955 0.6 9.65 0.7
dynamical model. In the application under consideratiom th x fkm]
target is assumed only to have a significant extent in one (a) Entire trajectory and the PF cloud at tirhe= 50.

dimension. The state vector is defined as:
. . T
Ty = (Xt Yt Xt Yt Lt) ) (19)

where (x¢,y:) is the position of the center of the target and -0.0751 - ' ' 1
(x¢,y¢) is the velocity of the center of the target, ahdis the
extension or length of the target.

Note that although in this application the shape of target i
known to the filter, the actual size is not and is to be inferrecE -1l
from the data. Furthermore, it is assumed that the oriemtati ~
is along the direction of the velocity vector, i.e., the hagd
angle. If this is not the case, the state can be extended wi
another state, in order to estimate the orientation.

t=50

-0.1251 1
The systems dynamics are:
= 2 I I L L
1 = f(@eme) + (20, me, wr), (20) 9525 9.55 9575 96
. x [km]
with _ _ _ _
(b) Detail - PF cloud with true target extent (solid) and restied target
1 0 T 0 0 extent (dashed).
01 0 T O . . - . .
Fig. 3. The scenario for the extended target, consistingsifaight moving
f(xt; mt) = 001 00 T, (21) part and a turn with constant angular velocity.
00 0 1 0
0 0 0 01

The relation between the Cartesian coordinates in which the
where T is the update time. The process noise input modekigiem state is given and the radar coordinates is givenghro

given by the nonlinear transformation,
on 00 re = /X2 +vy2 (24a)
oy O Ly
gz, my,we) = | oz 0 0 | wy, (22) d = = M, (24b)
0 o5 O t VN
0 0 g Yk
by = arctan X— , (24c)
wherew;, = (wy, wg, wkg)T and{wyg, }2_; ~ N(0,1). i

The modal state of the system evolves accordlng to (15£9r range, Doppler, and bearing, respectively.

which can be described by a transitional probability matrix

with B. Simulations
_ To illustrate the extended target TBD application a PF is
1-P, p, 09 0.1 . .
ILij = P, 1-P;, )~ L o01 09 (23) employed on simulated measurements from a target with a

physical spatial extent, such that the target occupiesiptailt
This transition model represents transitions from tardet aresolution cells. Apoint target particle filter(PTPF) will be
sence to presence and vice versa. compared to a PF with an extended target model, in this
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Fig. 4. Tracking performance based on 100 Monte Carlo sinmratfor a straight moving target. RMSE for position, velacitgd target length are depicted.

TABLE |
RADAR SENSOR PARAMETERS AND UPDATE RATE

TABLE I
PROCESSING PARAMETERS FOR THE POINT TARGERF (PTPF)AND THE
EXTENDED TARGETPF (ETPF).

Number of cells Resolution

N, | Nqg | N, | Range [m] | Doppler [m/s] | Bearing [mrad] N 7xIm] | oy[m] [ ox[M/s] | oglmis] | o/m]

500 16 11 2 4.25 0.5 BTPE | 2000 1 1 S g -
ETPR | 2000 2 2 4 2 2
ETPR | 2000 4 4 8 8 2

example referred to asxtended target particle filtefETPF).

In the proceeding three types of filters are compared. These ) . . . .
are the PTPF and two versions of the ETPF. The two versions Results: In Fig 3 (_a) an lllustration of th? scenario for
maneuvering target is given, where the trajectory is shown

of the ETPF differ in the amount of process noise that is usé . oo .
in the models. and the PF cloud at time = 50 is indicated. In Fig 3 (b) a

_ i i ) more detailed representation of the true target extenthege
Setup: In the simulations the target is assumed t0 gy, jts estimate is shown, as well as the particle cloud.
extended in one dimension, with an extent20f m. Again, It has been observed that if the “plain” point target model

it is emphasized, that this not known to Fhe filtgr. AS, can _qg used on extended target data the filter often diverges.
seen from Table |, the target may depending on its oriematiorne reason for this is that the target extent induces virtual

occupy as much as0 range cells. Additionally, N0 prior 4ccelerations. These virtual accelerations, could in “worst
knowledge on spatial distribution is assumed. Therefdre, t.oqe” amount to

density p(Z|x) is assumed to be a uniform over the target
extent. Furthermore, the target appears at time- 6 at
[9.65, 0] km, and is initially moving at a constant velocity of

i[s_cl:gbta}r?cjsb;ogaggr?sigitS\?er;jcc:)irfmihﬁ dcgl/namlcs of the targfﬁus, if t_he level of_ process noise for the point _target model
- ' o is not adjusted, taking into account the above virtual ageel
~ The standard deviations for the process noise inputs gfgyns, divergence occurs frequently. ¢From the targemext
listed in Table Il. The maximum target accelerations arg,q (25), it follows that the maximal virtual acceleratian i
assumed 10 beumax = 4M/s* and aymac = 4M/S. The " 4gm/e. Note that the true maximum target accelerations
update time for the radar is assumed to Be= 1 s and (yithout the virtual acceleration termy, max and Qy.max, are
the average target SNR has been sefi@odB and known ony 4 tenth of the maximum virtual acceleratian, for this
to the filter. It is emphasized that this assumption can l%%tup.
relaxed on, straightforwardly by including the average SNR 1he ETPF is tested with a level of process noise, accounting
or equivalently targetadar cross sectiofRCS) into the filter, )y for true target accelerations. This filter is referredas
see e.g. [1]. ETPR. Also a version of the ETPF is applied, for which
All filters have been implemented through a more or lese process noise has been matched to the same level as the
standard particle filter anty’ = 2000 particles have been usedone used in the point target filter. This filter is referred to
in each of the filters. This number has been obtained expefs ETPE. This model allows us to isolate the performance
mentally. It has been observed that increasing the numberggfin due only to the adaption of the measurement model.
particles to values greater than = 2000 did not significantly - Simulation results in terms @bot mean square errofRMSE)
improve the results, thug000 particles are sufficient for the performance of the different filters ové60 Monte Carlo runs
application at hand. both for a straight moving target as well as for the maneugeri
Measurement data for both a straight moving object andtarget are shown in Fig 4 and Fig 5. It is evident from these
turning object have been generated. For the turning objpect performance figures that the extended target model algarith
lateral acceleration wak m/s’. results in a significantly improved performance in terms of

2L

- (25)

Qy



accuracy, compared to the point target model algorithms Thi
holds even for the case where the process noise level of tt
extended target filter (ETBFhas been increased to match the

level of the process noise in the point target filter. Furthane,
it can also be seen that the target extent is estimatedvediati
well.

A track before detect algorithm for extended targets ha :
been proposed. The algorithm has been implemented throuu

V. CONCLUSIONS
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a particle filter. The performance of the extended targez
algorithm has shown to be superior to the algorithm base 6
on a point target model assumption. Furthermore it has bee

shown that the algorithm is capable of estimating the targe
extent well enough to have a good overall performance,a.e.,
performance that is significantly better than the perfortean

under the point target model assumption.
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Fig. 5. Tracking performance based on 100 Monte Carlo sinaratifor

a maneuvering target. RMSE for position, velocity, and taidgegth are

depicted.



