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ABSTRACT 

Driver errors cause a majority of all car accidents. 
Forward collision avoidance systems aim at avoiding, or 
at least mitigating, host vehicle frontal collisions, of 
which rear-end collisions are one of the most common. 
This is done by either warning the driver or braking or 
steering away, respectively, where each action requires 
its own considerations and design. We here focus on 
forward collision by braking, and present a general 
method for calculating the risk for collision. A brake 
maneuver is activated to mitigate the accident when the 
probability of collision is one, taking all driver actions 
into considerations. We describe results from a 
simulation study using a large number of scenarios, 
created from extensive accident statistics. We also 
show some results from an implementation of a forward 
collision avoidance system in a Volvo V70. The system 
has been tested in real traffic, and in collision scenarios 
(with an inflatable car) showing promising results. 

 
 
INTRODUCTION 

It is well known that driver errors are the main cause, or 
contribute to increased severity, of most accidents. For 
instance, the Indiana Tri-level (Treat et al. 1979) found 
driver errors to be a cause or severity-increasing factor 
in 93% of the accidents. Furthermore, 27% of all 
accidents (USA 1997) were rear-end collisions. This 
shows the potential of forward collision avoidance (FCA) 
systems. The crucial part of the algorithm is the decision 
making, and the conflicting considerations are: 

- Avoid all collisions 

- Never do a faulty intervention 

The design is a compromise between these mutually 
exclusive conditions. For many reasons, such as driver 
acceptance of the system and legal requirement that the 
system itself must not cause hazards, the second 

condition is the most important one when designing a 
FCA system. 

The final responsibility must always be with the driver, 
and we stress that the system presented in this paper is 
driver assistance help. 

A further consideration is that such an active system 
must not brake when the driver can still brake or steer to 
avoid an accident. This leads to mitigation rather than 
avoidance system, and in the sequel we refer to the 
system as Collision Mitigation by Braking (CMBB).  

In a combined CMBB and collision mitigation by steering 
system, CMBB will mainly be activated at low speeds 
when braking is more efficient. 

Algorithms previously proposed in literature for FCA by 
warning [7][17] and braking [2] are almost exclusively 
based on relative velocity and relative distance for 
decision making.  

These metrics are easy to understand, but may not be 
sufficient information in more complex situations such 
as dense city traffic, situations where the driver switches 
lane or does hard handling maneuvers. 

We here present a method to compute the risk for 
collision, taking into account measurement uncertainty 
and driver maneuvers. Decision making is then based 
on the probability density function for the relative 
position from the own vehicle to the most dangerous 
other object for the moment. Similar algorithms have 
been proposed and exist today for military aircraft, but 
have, as far as we know, not been studied for road 
based vehicles. 

TARGET TRACKING 

The information sources that are used for FCA systems 
come from one or more of the following sensors: 

-Millimeter radar measuring bearing, range and range 
rate. 



-IR Radar measuring bearing, elevation, range and 
range rate. 

-Camera with image processing algorithms computing 
bearing and elevation. 

If more than one sensor is used we have a sensor fusion 
problem, which also includes synchronization in time 
and space, which is elegantly handled in the Kalman 
filtering framework described below. The approach is 
model based using a state space model of the form: 
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The model should be able to predict how the position of 
the tracked object evolves in time, and there are a 
variety of possible models available in the target 
tracking literature. The one we have chosen is based on 
the coordinated turn model, where the object is 
supposed to follow straight line segments and circle 
segments. This is a fairly good model of roads and 
typical driver maneuvers, and transitions between 
different segments are modeled as state noise vt. 

The state vector is: 
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xt , yt = position coordinates in a ground fixed coordinate 
system at time t 

vx,t , vy,t = velocity at time t 

ωt = turn rate (yaw rate)  

θt = heading angle 

The state space matrices are given by 
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Finally, the measurement equation incorporates the 
sensor information. 

Sensor i gives 
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R = Range 

R& = Range Rate 

α = Bearing angle 

There can be any number of sensors, and they need not 
be synchronized in time. The idea is to compute the a 
posteriori probability density function (PDF) of the state 
vector, given all sensor information up to time t. The 
model is then used to predict future positions and 
simulate how the PDF evolves in the near future. From 
this, we can compute the probability that the relative 
position belongs to a rectangle D, which is the size of 
the own vehicle. The posteriori probability density 
function (PDF) is provided by a model based filter, using 
the state space model. For linear models, the Kalman 
filter provides a finite dimensional algorithm to compute 
this. For non-linear models, such as the one we are 
using, the so called extended Kalman filter can be used 
to approximate the PDF, and this is what we have 
chosen. 

 Other alternatives include point mass filtering 
(deterministic numerical integration) and particle filtering 
(stochastic numerical integration). These may both be 
too complex for the computational platform we are 
using, though we have found them to be an interesting 
alternatives. 

The Kalman filtering equations are summarized below: 
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Here: 

 

A thorough treatment of Kalman filtering and model 
choices is given in [16]. 

In a collision avoidance application you normally want to 
evaluate the probability of collision for several future 
positions. To do this one simply iterates the time update 
as many times as desired. For autonomous braking 
actuation we do not need to look further ahead in time 
than 1.5 seconds (because collisions become 
unavoidable when they are closer in time). This fact can 
be realized from calculating the minimum avoidance 
time from figure 5. 

Other important issues for over all tracking performance 
such as how to handle multiple tracks (many potentially 
dangerous objects) and data association will not be 
discussed in this paper. 

RISK ESTIMATION 

The metric we propose for risk estimation is to calculate 
the probability of collision. This is done by forming the 
joint PDF of the host’s and the other objects’ position 
relative to each other. The probability is calculated by 
integrating the joint PDF over the area which 
corresponds to a collision (the area where the two 
objects physically overlap): 
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PosHost = position of tracked object 

PosObject = position of tracked object 

D = the area which correspond to (geometrical) overlap 
between the host vehicle and the other object. 

fRel_pos(x,y) = the PDF of the position of host and 
obstacle relative to each other 

The joint PDF is formed from the PDF of the host’s 
future position and the other obstacles future position. 
The PDF of the host’s and other vehicles’ future position 
can be obtained with one of the filtering methods 
mentioned above. An example of how the PDFs and the 
joint PDF look like for one situation is shown in Figure 1-
3. Figure 1 below shows two vehicles meeting. In Figure 
2 the PDF for the two vehicles is plotted at 4 different 
future time instances. 

 

Figure 1. Two cars meeting. 

 

Figure 2. PDF’s for the two vehicles in figure 1 at 4 time instances. The 
narrow peaks correspond to time 1 and the widest peaks correspond to 
time 4.   

In figure 3 the joint probability of the vehicles’ position 
relative to each other is shown. 
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Figure 3. Joint PDF for vehicle’s relative position. Again the narrow peak 
corresponds to time 1 and the widest peak corresponds to time 4. 

Notice that in figure 3 we have switched the coordinate 
system to one that is fixed to the front of the car coming 
from the left. At time instance 3 there is a lot of density 
close to the origin. At this time instance the probability 
for collision is high.  

In our case we get the Kalman filter estimate of X and 
covariance matrix P which can be used to compute a 
confidence region (ellipse) where the relative position 
will be with a certain probability. Furthermore, with a 
Gaussian assumption on the PDF, we can compute the 
risk for collision as described above.     

COMPUTATIONAL COMPLEXITY 

Apart from tracking accuracy, computational complexity 
of the algorithm is also an important issue. There are 
several considerations concerning the computational 
complexity of the algorithm. The algorithm has 
computational complexity of O(n) where n is the number 
of future time points evaluated. n is a function of how far 
ahead in time one wants to look and also how close you 
want the future positions to be in time (= how many 
future time instances that are calculated). As mentioned 
above for the CMBB application it is enough to look 1.5 
seconds ahead in time. It remains to decide how many 
points one should calculate for these 1.5 seconds. This 
is a matter of computational power available, and for the 
best result one should space the points as close as 
possible in time. But there is of course a trade-off on 
how many objects you want to be able to track. The 
algorithm is O(m) where we let m be the number of 
tracks to be handled. Looking both at future time points 
and number of tracks the algorithm is O(n*m) in 
computational complexity. 

 

THEORETICAL PERFORMANCE OF COLLISION 
AVOIDANCE BY BRAKING 

We shall now specifically study what can be achieved 
by autonomous brake intervention. In order to avoid 
faulty interventions braking is only allowed when a 
collision becomes unavoidable i.e. the probability of 
collision is 1. To get a feeling for what performance that 
is possible to achieve we look at one specific scenario. 
The scenario studied is a head on collision with a 
stationary object (see fig. 4 below). 

 

Figure 4. Car on collision course with a stationary obstacle 

The braking distance and the distance needed to avoid 
the obstacle by steering away at different speeds is 
shown in figure 5 below   

Figure 5. Distance needed to avoid a stationary obstacle with a width of 2 
m by means of braking and steering. 

We see in figure 5 that the braking distance (solid) and 
the steering away distance (dotted) cross somewhere 
around 50 km/h. This means that for low speeds, 
braking is the most efficient countermeasure and for 
high speeds steering away is more efficient. If full 
braking is applied at the point were collision becomes 
unavoidable (for low speeds at the braking distance and 
for high speeds at the steer away distance, then the 
collision speed as a function of the initial speed will be 
according to figure 6 below 



 

Figure 6. Collision speed when full braking is applied at 
the point where the collision becomes unavoidable. 

SIMULATON RESULTS 

To evaluate performance of the algorithm we have 
designed and simulated 30 different scenarios. The 
scenarios can be divided in to two groups. The first 
group of scenarios is designed to provoke the system to 
make a faulty intervention (= intervene when no collision 
occurs). The second group is designed to evaluate 
performance of the system in a situation where it should 
intervene i.e. when a collision occurs. Here we describe 
and present results from a selection of the simulated 
scenarios (all scenarios were simulated at speeds 
ranging from 10 –150 km/h):  

Symbols: 

: The CMBB vehicle 

 

: The POV (Principal Other Vehicle) 

GROUP ONE SCENARIOS: 

These scenarios were designed to provoke a faulty 
intervention. The scenarios were simulated 10 times at 
each speed (speeds [10 20 30…. 150]). From the 
simulation results no faulty interventions were observed. 

Scenario 1: 

Head to Head, the CMBB vehicle turns right at the last 
moment.  

 

 

Figure 7. Scenario 1 

Scenario 2: 

Straight roadway, POV travelling in the same lane as 
the CMBB vehicle. Suddenly the POV brakes hard and 
then turns hard. The POV just clears the path of the 
CMBB vehicle.  

 

Figure 8. Scenario 2 

Scenario 3: 

The CMBB vehicle changes from right to left lane (both 
lanes in the same direction) at the same time as it 
meets another vehicle in the opposite lane. 

 

Figure 9. Scenario 3 

GROUP 2 SCENARIOS: 

The group 2 scenarios presented below are used to see 
what performance the system achieves. 

Scenario 4: 

Straight roadway, POV traveling in the same lane as the 
CMBB vehicle. Suddenly the POV brakes hard 
(deceleration 7 m/s2). The headway is 15 m. The initial 
speed, prior to the POV brake maneuver, was the same 
for both vehicles. 



 

Figure 10. Scenario 4 

Result: In figure 11 the relative speed at impact is 
plotted as a function of the initial speed. One can see 
that for low speeds the relative velocity at impact is 
reduced ~10-20 km/h. For higher speeds the system 
response time is too long to be able to reduce the 
collision speed. 

Figure 11. Relative speed at collision for scenario 4. 

Scenario 5: 

This scenario is the same as scenario 4 with the 
exception that there is a lateral offset of 0.5 m between 
the CMBB vehicle and the POV. 

 

Figure 12. Scenario 5 

Result: Again the relative speed of the vehicles at 
impact is plotted as a function of the initial speed (in 
figure 13). For comparison the results from the previous 
scenario has been plotted in figure 13. In the figure one 
can see that there is no intervention for low speeds. The 

reason for this is that before the decision is made the 
target moves out of the sensors' field of view.    

Figure 13. Relative speed at collision for scenario 5. 

Scenario 6: 

Object is on the side of the road and then suddenly 
“jumps” out 10 m in front of the CMBB vehicle. 

 

Figure 14. Scenario 6 

The performance for scenario 6 is plotted as a phase 
diagram in figure 15. This shows impact speed and at 
what distance the system intervenes. 

Figure 15. Range and Range rate between the host vehicle and the POV 
for scenario 6. The results are based on simulated data.  



TEST RESULTS 

The test vehicle is a Volvo V70 equipped with a 
millimeter wavelength radar and a laser radar. The 
sensor update rate is 10 Hz for both sensors and their 
field of view is ~8 degrees. The sensor fusion, data 
association and decision making algorithm execute on 
an on-board processing unit which is also connected to 
the vehicle’s braking system. The purpose of having two 
sensors is to try to discriminate targets that are not 
valid. For example a millimeter wavelength radar can 
receive a strong echo from a tin can.  

CORRECTNESS OF THE ALGORITM 

To check if the algorithm makes faulty decision the 
prototype system has been driven in real traffic (urban 
and highway traffic) with braking disabled. We found 
that some faulty interventions do occur. These 
interventions mainly occur at low speeds when there are 
a lot of potential targets/obstacles close to the sensors 
(i.e. in front of the car). However we did not find any 
case where it was obvious that the algorithm made an 
erroneous decision based on a target that it had been 
tracking for some samples. All the faulty interventions 
seem to come from erroneous measurements, “false 
targets” or from bad initialization of obstacles. 

PERFORMANCE OF THE ALGORITHM 

To evaluate collision mitigation performance, collision 
tests against a stationary obstacle have been 
performed. As an obstacle, an inflatable car is used (fig 
16). 

 

Figure 16. Inflatable car for testing system performance when colliding.   

Performance for the head-on scenario pictured in figure 
4 is plotted in figure 17. In figure 17 we plot range 
between host vehicle and obstacle vs. range rate, the 
plotted result is an average from 5-20 collisions at each 

speed. As can be seen in the figure, speed was reduced 
10-17 km/h for initial speeds ranging from 30-70 km/h.   

 

 

Figure 17. Range vs. Range Rate for the head on against stationary 
object scenario (figure 4). The result shown is the average performance 
from test drives with the V70 test vehicle. 

CONCLUSION 

A method for decision making in collision avoidance 
applications has been presented. The main advantages 
of the method are:  

�  The use of modern tracking theory makes it straight 
forward how to deal with measurement and process 
noise 

�  Motion in two dimensions is considered. 
 
The prototype system presented in this paper 
significantly reduces the impact speed in frontal 
collisions. As can be seen in figure 17 interventions 
typically occur when the obstacle is closer than 20 m 
away from the CMBB vehicle (more than 90 % of all 
rear end collisions occur at relative speeds below 100 
km/h [4]). A sensor with a shorter detection range but a 
larger field of view might be more appropriate for 
collision mitigation purposes. 
 
Further work on the sensors and the sensorfusion is 
needed to have a system with 0 faulty interventions. It 
would be desirable to have a sensor with better target 
classification capability. 
 

DISCUSSION 

Differences between optimal performance (figure 5 and 
6) and test result (figure 17) can be attributed to: 



�  Measurement uncertainties 
�  System response time (computational time, sensor 

measurement rate) 
�   System modeling errors 
 
By improving these factors one can come closer to 
optimal performance. Some specific problems with the 
system presented here were that the laser radar and 
millimeter radar could not be synchronized. This of 
course causes some discrepancy between laser and 
radar measurement. Both sensor loses the target at 
close range (<10 m) because their narrow field of view. 
This cassias deteriorated performance at low speeds. 
The laser radar seem to have problem “seeing” the 
inflatable car which at some occasions caused missed 
interventions, since both sensors are required to detect 
the obstacle in order to have an intervention.  

Another factor that limits the system performance is the 
time to build up brake pressure and maximum achieved 
pressure. The brake system used on the test vehicle 
here achieved decelerations between 5-7 m/s2. A brake 
system that quickly gives a deceleration of 10 m/s2 
would give an additional speed reduction of ~10 km/h to 
the test results plotted in figure 17.  

To design a good collision avoidance system we need to 
solve two issues. One is the risk estimation discussed in 
this paper. The other issue, that has not been addressed 
here, is that of object recognition. This is a matter of the 
sensing capabilities of the sensors but also a matter of 
how to do the sensor fusion. For correct decision making 
accurate target classification and feature (for example 
width) extraction is imperative. 
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