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« Model influences as sparse Gaussian processes

« Online learning using sequential algorithm
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Inducing points z}', for l = 1,..., L with values
w = (fHz4),..., f7(z)" represented by
U=t ... ,u)T.

Fully independent conditional (Fic) approximation is

F Qs +A Kp K,
2)-sol5 55 on).

o uu
where Qu = KauK;ulKub and A = diag(Kff — fo).

Using W = (w],...,wi)T = K, .
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Sparse GP approximation gives
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F Qs +A KpKy,
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Adding a prior to the GP gives
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where v}: ~ N(0,A;) and Ay, = [A]gs.

Using Wy = K, [y as the prior.
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Time-Varying Influence
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Multiple Systems with Shared Influence

Multiple systems are modelled by the extension
X6 ~ ./\/()20, Po),
Y}; = CkxﬁC + e};,
X) = Apx)_, + Bk(f{ﬁflwk_l + vzf) + v},
Wo ~ N(Wov K;j%
Wr = GeWg—1 + Vi)

where z! is the input for processi = 1,...,I.
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State-Dependent Influence
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State-Dependent Influence
State dependence is modelled by the extension

XB ~ N(f((), Po),

y}'€ = Ckxi; + ei;,

XZ = Akxf;_l + By (K,M(Dkxi,,l)wk,ﬁr

D)+
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State-Dependent Influence

Resulting in the Gaussian process motion
model(GPMM)

X6 ~ N(i()a P0)7

y}i€ = C]gxg€ + e?ca

xi = Apxi_; + By (Ku,(DA;XZ_l)Wk—lJF
vil (Dixi ) + Vi,

Wo ~ N(W()a K;j),

Wi = GaWyi—1 + vy,

i i
where z;, = D;x}._,.
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Extended Kalman Filter

« Non-linear dependence on state in kernel

+ Almost linear-Gaussian

» Extended Kalman filter(EKF)

« Noisy input compensated for implicitly by filter

« Enormous state space so approximations are
needed
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Sea Ice Tracking

« Radar station detecting ice

« Measurements for long
tracks are extracted from
simple tracker

« Acceleration caused by
currents are modelled by GP

« Prediction errors are
reduced
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