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Dynamic System with an Unknown Influence

x0 ∼ N (x̄0, P0),

yk = Ckxk + ek, k = 1, . . . ,K

xk = Akxk−1 +Bkfk−1 + vk, k = 1, . . . ,K

fk =
(
f1(zfk), . . . , f

J(zfk)
)T

f j(z) ∼ GP(0, K(z, z′)), j = 1, . . . , J

The noise is given by

vk ∼ N (0, Qk) and ek ∼ N (0, Rk).
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Fully Independent Conditional

Inducing points zul , for l = 1, . . . , L with values

ul = (f1(zul ), . . . , f
J(zul ))

T represented by

U = (uT
1 , . . . ,u

T
L)

T .

whereQab = KauK
−1
uuKub andΛ = diag(Kff −Qff ).

UsingW = (wT
1 , . . . ,w

T
L)

T = K̃−1
uuU .
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Approximation of the Influence Function

Original GP model is
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uu Ū0 as the prior.
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Time-Varying Influence
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uu .
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State-Dependent Influence
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State-Dependent Influence
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• Almost linear-Gaussian

• Extended Kalman filter(EKF)

• Noisy input compensated for implicitly by filter

• Enormous state space so approximations are

needed



Gaussian Process Motion Model Clas Veibäck November 7, 2018 17

Extended Kalman Filter

• Non-linear dependence on state in kernel

• Almost linear-Gaussian

• Extended Kalman filter(EKF)

• Noisy input compensated for implicitly by filter

• Enormous state space so approximations are

needed



Gaussian Process Motion Model Clas Veibäck November 7, 2018 17

Extended Kalman Filter

• Non-linear dependence on state in kernel

• Almost linear-Gaussian

• Extended Kalman filter(EKF)

• Noisy input compensated for implicitly by filter

• Enormous state space so approximations are

needed



Gaussian Process Motion Model Clas Veibäck November 7, 2018 17

Extended Kalman Filter

• Non-linear dependence on state in kernel

• Almost linear-Gaussian

• Extended Kalman filter(EKF)

• Noisy input compensated for implicitly by filter

• Enormous state space so approximations are

needed



Gaussian Process Motion Model Clas Veibäck November 7, 2018 17

Extended Kalman Filter

• Non-linear dependence on state in kernel

• Almost linear-Gaussian

• Extended Kalman filter(EKF)

• Noisy input compensated for implicitly by filter

• Enormous state space so approximations are

needed



1 Introduction
2 Unknown Influence
3 Approximation of Influence
4 Time-Varying Influence
5 Shared Influence
6 State-Dependent Influence
7 Estimation
8 Applications
9 Conclusions



Gaussian Process Motion Model Clas Veibäck November 7, 2018 19

Velocity Field Simulation

0 200 400 600 800

Horizontal Position (m)

200

400

600

800

1000

1200

V
e
rt

ic
a
l 
P

o
s
it
io

n
 (

m
) • 200 targets

• 150 time steps

• Velocity given by function

• Targets are identified

• Velocity field estimated well



Gaussian Process Motion Model Clas Veibäck November 7, 2018 19

Velocity Field Simulation

0 200 400 600 800

Horizontal Position (m)

200

400

600

800

1000

1200

V
e
rt

ic
a
l 
P

o
s
it
io

n
 (

m
) • 200 targets

• 150 time steps

• Velocity given by function

• Targets are identified

• Velocity field estimated well



Gaussian Process Motion Model Clas Veibäck November 7, 2018 19

Velocity Field Simulation

0 200 400 600 800

Horizontal Position (m)

200

400

600

800

1000

1200

V
e
rt

ic
a
l 
P

o
s
it
io

n
 (

m
) • 200 targets

• 150 time steps

• Velocity given by function

• Targets are identified

• Velocity field estimated well



Gaussian Process Motion Model Clas Veibäck November 7, 2018 19

Velocity Field Simulation

0 200 400 600 800

Horizontal Position (m)

200

400

600

800

1000

1200

V
e
rt

ic
a
l 
P

o
s
it
io

n
 (

m
) • 200 targets

• 150 time steps

• Velocity given by function

• Targets are identified

• Velocity field estimated well



Gaussian Process Motion Model Clas Veibäck November 7, 2018 19

Velocity Field Simulation

0 200 400 600 800

Horizontal Position [m]

200

400

600

800

1000

1200

V
e
rt

ic
a
l 
P

o
s
it
io

n
 [
m

]

1

2

3

4

5

6

7

8

9

• 200 targets

• 150 time steps

• Velocity given by function

• Targets are identified

• Velocity field estimated well



Gaussian Process Motion Model Clas Veibäck November 7, 2018 20

Sea Ice Tracking
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• splitting up the input space
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