
Discrete-time Solutions to the Continuous-time Differential
Lyapunov Equation With Applications to Kalman Filtering

Patrik Axelsson and Fredrik Gustafsson

Contribution
Kalman filtering based on a continuous-time state space model with

discrete-time measurements requires a solver of a continuous-time dif-

ferential Lyapunov equation (cdle). This work analyzes i) stabil-

ity, ii) computational complexity, and iii) numerical properties of three

methods to solve the cdle. A novel low-complexity analytical solution

is proposed with significant better stability and numerical properties.

Background
•Kalman filtering based on a continuous-time state space model with

discrete-time measurements involves a time update that integrates

the first and second order moments from one sample time to the next

one. The second order moment is a covariance matrix, and it governs

a continuous-time differential Lyapunov equation (cdle).

•Practitioners often tend to discretize the state space model to fit the

discrete-time kf time update. That leads to well known problems

with accuracy and stability, which can be managed by oversampling

the system.

Linear Stochastic Differential Equations
For the linear stochastic differential equation (sde)

dx(t) = Ax(t)dt + Gdβ(t), E
[
dβ(t)dβ(τ )T

]
= Qdtδ(t− τ )

the update of the first and second order moments, x̂(t) and P (t) respec-

tively, of the stochastic variable x(t), are
˙̂x(t) = Ax̂(t), (∗)
Ṗ (t) = AP (t) + P (t)AT + Q̃. (∗∗)

(
Q̃ = GQGT

)
Here, (∗) is an ordinary ode, and (∗∗) a cdle. Focus is on solving the

cdle. Three methods to solve the cdle are:

1.Exact solution:

P (t) = eAtP (0)eA
Tt +

∫ t

0

eA(t−s)Q̃eA
T(t−s) ds︸ ︷︷ ︸

∆
=Qd(t)

2.Matrix fraction decomposition: Let P (t) = C(t)D(t)−1, where

C(t) and D(t) are solution to

d

dt

(
C(t)

D(t)

)
=

(
A Q̃

0 −AT

)(
C(t)

D(t)

)
,

3.Vectorization:

vech Ṗ (t) = D† (I ⊗ A + A⊗ I)DvechP (t) + vech Q̃

The Matrix Exponential
One key approach for numerical calculation of the matrix exponential is

oversampling and Taylor expansion,

eAh =
(
eAh/m

)m
≈
(
I +

(
Ah

m

)
+ · · · + 1

p!

(
Ah

m

)p)m
M
= ep,m(Ah).

The Taylor expansion is a special case of the Padé approximation.

Analysis
Stability Analysis

The cdle has a unique positive solution if A is Hurwitz, Q̃ � 0, the pair

(A,

√
Q̃) is observable, and P (0) � 0. Does a continuous-time system

satisfying these properties give a stable discrete-time recursion?

1.Exact solution: No stability problems.

2.Matrix frac. decomp.: The ode has eigenvalues in ±λi, hence the

ode is unstable. However, since P (t) = C(t)D(t)−1 it can still give a

correct solution.

3.Vectorization: No stability problems if the matrix exponential is

solved exactly. Euler sampling, i.e., e1,m(APh), is stable if the sample

time h satisfies

h < min

{
−2mRe {λi + λj}

|λi + λj|2
, 1 ≤ i ≤ j ≤ nx

}
,

where λi, i = 1, . . . , n, are the eigenvalues to A.

Computational Complexity

1.Exact solution: (8(log2(m) + p) + 6)n3
x

2.Matrix frac. decomp.: (8(log2(m) + p) + 12)n3
x

3.Vectorization: O(n6
x)

•Rewritten solution: (log2(m) + p + 43)n3
x, where P (t) is given by

P (t) = eAtP (0)eA
Tt+Qd(t), AQd(t)+Qd(t)A

T+Q̃−eAtQ̃eATt = 0.

Numerical Properties (mc sim. with A ∈ R2×2 randomly chosen)

1) A large enough value of t should give that P (t) equals the stationary

solution given from the stationary Lyapunov equation AP stat +P statAT+

Q̃ = 0. 2) The recursive updates should approach P stat when k →∞.

1.Exact solution: 1) P (100) 6= P stat. 2) limk→∞P (t) = P stat

2.Matrix frac. decomp.: 1) P (100) 6= P stat. 2) limk→∞P (t) 6= P stat

3.Vectorization: 1) P (100) = P stat. 2) limk→∞P (t) = P stat

Level curves for h using e1,m(APh).
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Computational Complexity.
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Linear Spring-damper Example
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Continuous-time solutions of the sde will be

compared to discrete-time solutions where the

model has been discretized. Four Kalman fil-

ters are used with h = 0.09 s.

1.Fh = e1,m(Ah) and P (k + 1) = FhP (k)F T
h + GhQhG

T
h,

2.Fh is given by expm in Matlab and P (k+1) = FhP (k)F T
h +GhQhG

T
h,

3.Fh = e1,m(Ah) and P (k + 1) = FhP (k)F T
h + Qd(h),

4.Fh is given by expm in Matlab and P (k + 1) = FhP (k)F T
h +Qd(h),

Root mean square error over 1000 mc simulations.
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Norm of the stationary covariance matrix.
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•A factor of m = 20 or higher is required for the discretized methods.

•The execution time increases when m increases, hence the continuous-

time solution is to prefer.

•The covariance matrix is important in e.g. target tracking, hence essen-

tial not to get too high or too low values.

Conclusions
•Kalman filtering is improved if the continuous-time update is solved

directly instead of first discretizing the model.

•A novel solution to the cdle was proposed and compared to existing

methods.

•Extensions to nonlinear systems are also possible.
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