

Contribution

Kalman filtering based on a *continuous-time state space model* with discrete-time measurements requires a solver of a continuous-time differential Lyapunov equation (CDLE). This work analyzes i) stability, **ii**) computational complexity, and **iii**) numerical properties of three methods to solve the CDLE. A novel *low-complexity analytical solution* is proposed with significant better stability and numerical properties.

Background

- Kalman filtering based on a *continuous-time state space model* with discrete-time measurements involves a time update that integrates the first and second order moments from one sample time to the next one. The second order moment is a covariance matrix, and it governs a continuous-time differential Lyapunov equation (CDLE).
- Practitioners often tend to *discretize the state space model* to fit the discrete-time KF time update. That leads to well known problems with accuracy and stability, which can be managed by oversampling the system.

Linear Stochastic Differential Equations

For the linear stochastic differential equation (SDE)

$$dx(t) = Ax(t)dt + Gd\beta(t), \qquad E\left[d\beta(t)d\beta(\tau)^{\mathsf{T}}\right] = Qd$$

the update of the first and second order moments, $\hat{x}(t)$ and P(t) respectively, of the stochastic variable x(t), are

$$\dot{\hat{x}}(t) = A\hat{x}(t), \qquad (*)$$

$$\dot{P}(t) = AP(t) + P(t)A^{\mathsf{T}} + \widetilde{Q}. \qquad (**) \qquad \left(\widetilde{Q} = G\right)$$

Here, (*) is an ordinary ODE, and (**) a CDLE. Focus is on solving the CDLE. Three methods to solve the CDLE are:

Exact solution:

$$P(t) = e^{At} P(0) e^{A^{\mathsf{T}}t} + \underbrace{\int_{0}^{t} e^{A(t-s)} \widetilde{Q} e^{A^{\mathsf{T}}(t-s)} \, \mathrm{d}s}_{\stackrel{\Delta}{=} Q_d(t)}$$

2. Matrix fraction decomposition: Let $P(t) = C(t)D(t)^{-1}$, where C(t) and D(t) are solution to

$$\frac{d}{dt} \begin{pmatrix} C(t) \\ D(t) \end{pmatrix} = \begin{pmatrix} A & \widetilde{Q} \\ 0 & -A^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} C(t) \\ D(t) \end{pmatrix},$$

3. Vectorization:

 $\operatorname{vech} \dot{P}(t) = D^{\dagger} (I \otimes A + A \otimes I) D \operatorname{vech} P(t) + \operatorname{vech} \widetilde{Q}$

Discrete-time Solutions to the Continuous-time Differential Lyapunov Equation With Applications to Kalman Filtering

 $dt\delta(t- au)$

 GQG^{T}

The Matrix Exponential

One key approach for numerical calculation of the matrix exponential is oversampling and Taylor expansion,

$$e^{Ah} = \left(e^{Ah/m}\right)^m \approx \left(I + \left(\frac{Ah}{m}\right) + \dots + \frac{1}{p!}\left(\frac{Ah}{m}\right)^p\right)^m \stackrel{\Delta}{=} e_{p,m}(Ah).$$

The Taylor expansion is a special case of the Padé approximation.

Analysis

Stability Analysis

The CDLE has a unique positive solution if A is Hurwitz, $\tilde{Q} \succeq 0$, the pair (A, \sqrt{Q}) is observable, and $P(0) \succ 0$. Does a continuous-time system satisfying these properties give a stable discrete-time recursion?

- 1. Exact solution: No stability problems.
- 2. Matrix frac. decomp.: The ODE has eigenvalues in $\pm \lambda_i$, hence the ODE is unstable. However, since $P(t) = C(t)D(t)^{-1}$ it can still give a correct solution.
- 3. Vectorization: No stability problems if the matrix exponential is solved exactly. Euler sampling, i.e., $e_{1,m}(A_Ph)$, is stable if the sample time h satisfies

$$h < \min\left\{-\frac{2m\Re \left\{\lambda_i + \lambda_j\right\}}{\left|\lambda_i + \lambda_j\right|^2}, \ 1 \le i \le j \le n_x\right\},\$$

where λ_i , i = 1, ..., n, are the eigenvalues to A. **Computational Complexity**

- 1. Exact solution: $(8(\log_2(m) + p) + 6)n_x^3$
- 2. Matrix frac. decomp.: $(8(\log_2(m) + p) + 12)n_x^3$
- 3. Vectorization: $\mathcal{O}(n_r^6)$
- Rewritten solution: $(\log_2(m) + p + 43) n_x^3$, where P(t) is given by

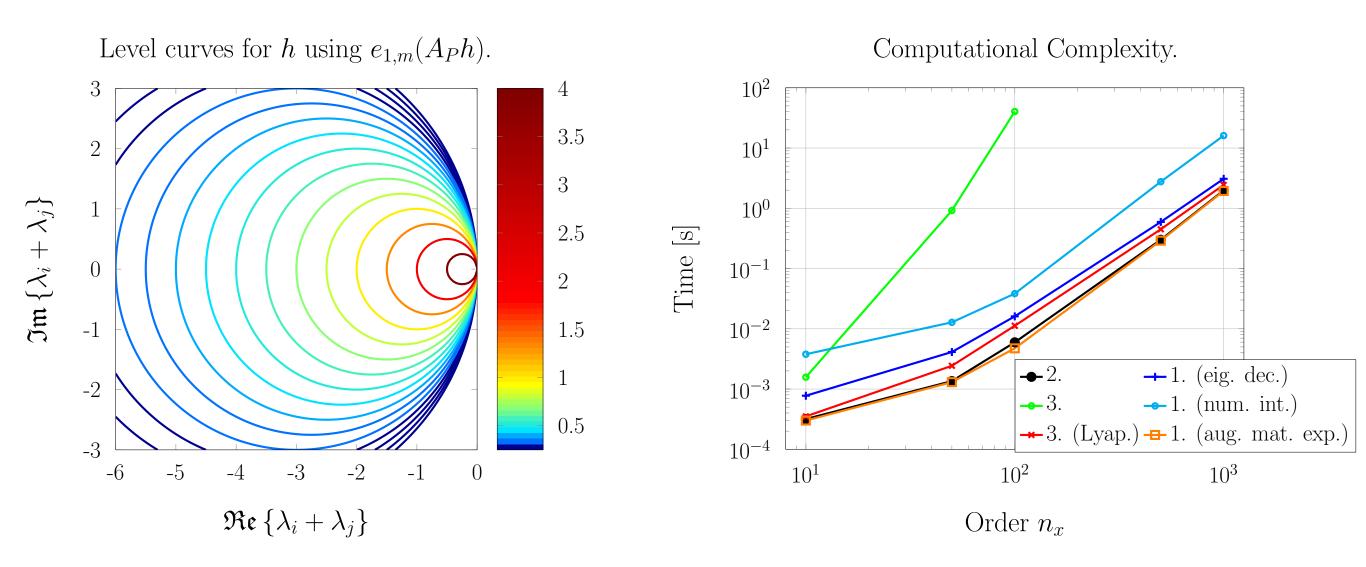
$$P(t) = e^{At} P(0) e^{A^{\mathsf{T}}t} + Q_d(t), \quad AQ_d(t) + Q_d(t) +$$

Numerical Properties (MC sim. with $A \in \mathbb{R}^{2 \times 2}$ randomly chosen) 1) A large enough value of t should give that P(t) equals the stationary solution given from the stationary Lyapunov equation $AP^{\text{stat}} + P^{\text{stat}}A^{\mathsf{T}} + P^{\mathsf{stat}}A^{\mathsf{T}} + P^{\mathsf{stat}}A^{\mathsf{stat}}A^{\mathsf{stat}} + P^{\mathsf{stat}}A^{\mathsf{stat}}A^{\mathsf{stat}} + P^{\mathsf{stat}}A^{\mathsf{stat}} + P^{\mathsf{stat}}$ $\tilde{Q} = 0.$ 2) The recursive updates should approach P^{stat} when $k \to \infty$. 1. Exact solution: 1) $P(100) \neq P^{\text{stat}}$. 2) $\lim_{k\to\infty} P(t) = P^{\text{stat}}$ 2. Matrix frac. decomp.: 1) $P(100) \neq P^{\text{stat}}$. 2) $\lim_{k\to\infty} P(t) \neq P^{\text{stat}}$ 3. Vectorization: 1) $P(100) = P^{\text{stat}}$. 2) $\lim_{k\to\infty} P(t) = P^{\text{stat}}$

LINK-SIC Linköping Center for Sensor Informatics and Control — A Vinnova Industry Excellence Center

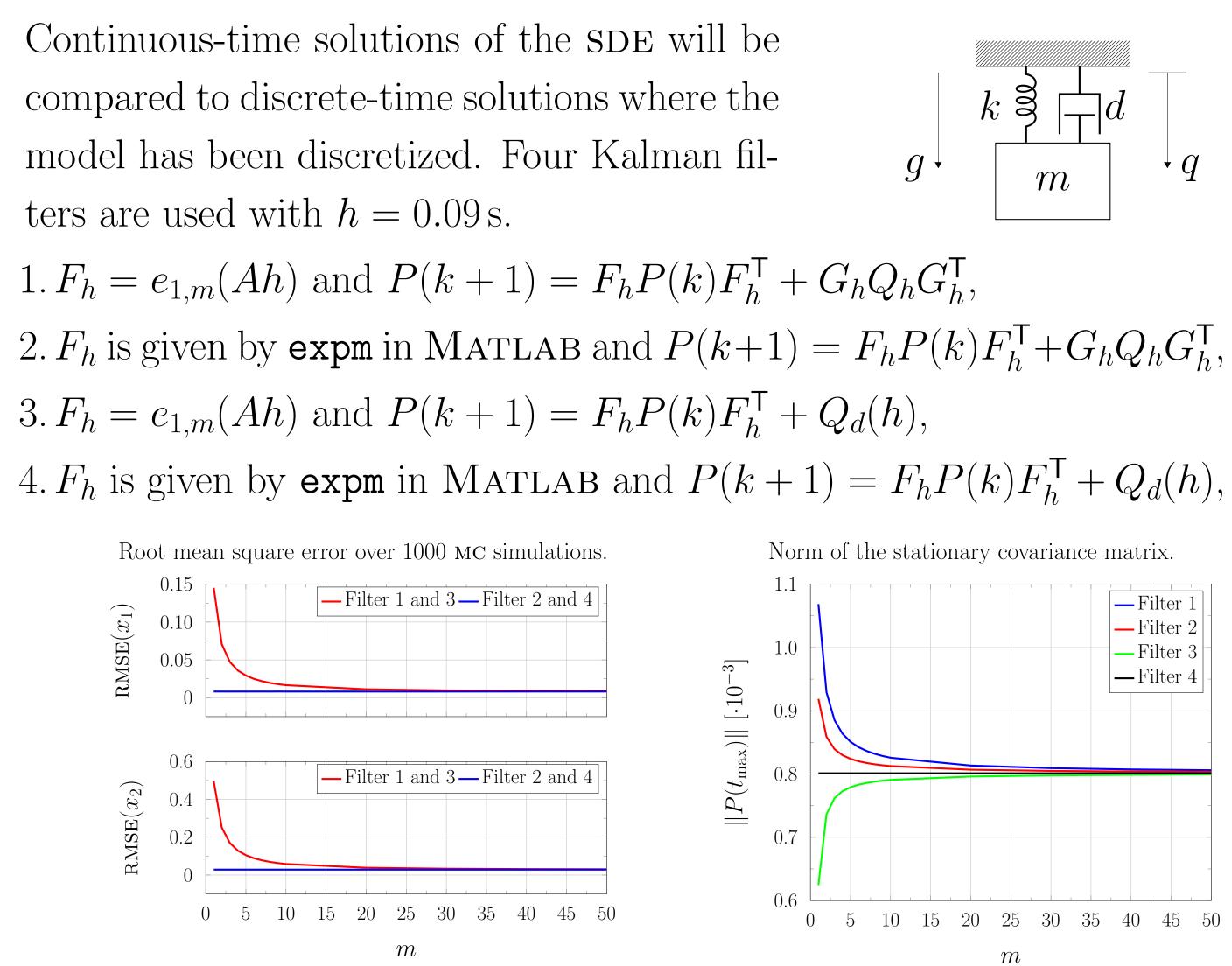
Patrik Axelsson and Fredrik Gustafsson

 $Q_d(t)A^{\mathsf{T}} + \widetilde{Q} - e^{At}\widetilde{Q}e^{A^{\mathsf{T}}t} = 0.$



Linear Spring-damper Example

ters are used with $h = 0.09 \,\mathrm{s}$.



- time solution is to prefer.
- tial not to get too high or too low values.

Conclusions

- directly instead of first discretizing the model.
- methods.
- Extensions to nonlinear systems are also possible.

• A factor of m = 20 or higher is required for the discretized methods. • The execution time increases when m increases, hence the continuous-

• The covariance matrix is important in e.g. target tracking, hence essen-

• Kalman filtering is improved if the continuous-time update is solved

• A novel solution to the CDLE was proposed and compared to existing

http://www.linksic.isy.liu.se/