

Contribution

This work presents a method to estimate the *process noise variance* for a non-linear dynamic system with high state dimension. The proposed method makes use of the *expectation maximization* algorithm, where the E-step is solved by *linearisation*.

Introduction

The performance of a non-linear filter hinges in the end on the accuracy of the assumed non-linear model of the process. In particular, the process noise covariance Q. For non-linear models, there is on-going research on using the expectation maximization (EM) algorithm with a particle smoother to estimate the parameters. However, the particle smoother is not applicable for models with high state dimension. The idea here is to: \succ Linearise the non-linear model.

 \succ Use an extended Kalman smoother (EKS).

Let the model be given by

$$x_{k+1} = F_1(x_k, u_k) + F_2(x_k)v_k$$
$$y_k = h(x_k, u_k) + e_k$$

where $x_k \in \mathbb{R}^n$, $y_k \in \mathbb{R}^m$, $v_k \sim \mathcal{N}(0, Q)$ and $e_k \sim \mathcal{N}(0, R)$. All model parameters are assumed to be known except for $Q \in S^p_+$. Assume also that $F_2(x_k)$ has the following structure

$$F_2(x_k) = \begin{pmatrix} 0\\ \tilde{F}_2(x_k) \end{pmatrix}$$

This type of model structure is common for mechanical systems derived by Newton's law or Lagrange's equation.

The EM Algorithm (Alg. 1)

- 1. Select an initial value Q_0 and set l = 0.
- 2. Expectation Step (E-step): Calculate

$$\Gamma(Q;Q_l) = E_{Q_l} \left[\log p_Q(y_{1:N}, x_{1:N}) | y_{1:N} \right].$$

3. Maximisation Step (M-step): Compute $Q_{l+1} = \arg \max_{Q \in \mathcal{Q}} \Gamma(Q; Q_l)$.

4. If converged^{*a*}, stop. If not, set l = l + 1 and go to step 2. ^aHere an estimate of the log-likelihood function is used. The algorithm stops if no increase in the log-likelihood function can be observed.

ML Estimation of Process Noise Variance in Dynamic Systems

(1a)(1b)

(2)

The E-step

The expectation of the log-likelihood function $\log p_Q(y_{1:N}, x_{1:N})$ is calculated using the EKS and it can be expressed as

$$\Gamma(Q;Q_l) = \bar{L} - \frac{1}{2} \operatorname{Tr} Q^{-1} \sum_{i=2}^{N} F_2^{\dagger}(\hat{x}_{i-1|N}^s) M\left(F_2^{\dagger}(\hat{x}_{i-1|N}^s)\right)^T + \frac{1}{2} \sum_{i=2}^{N} \left[\log |Q^{-1}| + \log \left|\tilde{F}_2^{\dagger}(\hat{x}_{i-1|N}^s)\right| + \log \left|\left(\tilde{F}_2^{\dagger}(\hat{x}_{i-1|N}^s)\right)^T\right|\right],$$

where \overline{L} is a function independent of Q,

 $M = \left(-J_1 I\right) P_{i|N}^{\xi,s} \left(-J_1 I\right)^T + \left(\hat{x}_{i|N}^s - F_1(\hat{x}_{i-1|N}^s)\right) \left(\hat{x}_{i|N}^s - F_1(\hat{x}_{i-1|N}^s)\right)^T$ and J_1 is the Jacobian of $F_1(x, u)$ evaluated at $x = \hat{x}_{i-1|N}^s$. The variables $\hat{x}_{i-1|N}^s$, $\hat{x}_{i|N}^s$ and $P_{i|N}^{\xi,s}$ are obtained if the augmented state vector $\xi_i = (x_{i-1}^T x_i^T)^T$ with the new model $\xi_{k+1} = \begin{pmatrix} x_k \\ F_1(x_k, u_k) \end{pmatrix}$ is used in the EKS. That is, the EKS calculates

$$\hat{\xi}_{i|N}^{s} = \begin{pmatrix} \hat{x}_{i-1|N}^{s} \\ \hat{x}_{i|N}^{s} \end{pmatrix} \text{ and } P_{i|N}^{\xi,s} = \begin{pmatrix} P_{i-1|N}^{s} & P_{i-1,i|N}^{s} \\ \left(P_{i-1,i|N}^{s}\right)^{T} & P_{i|N}^{s} \end{pmatrix}$$

where $\hat{x}_{i-1|N}^s$, $\hat{x}_{i|N}^s$, $P_{i-1|N}^s$ and $P_{i|N}^s$ are the first and second order moments of the smoothed \hat{x}_{i-1} and \hat{x}_i respectively.

The M-step

Take the derivative of $\Gamma(Q; Q_l)$ with respect to Q^{-1} and let the result be equal to zero to get the solution in the maximisation step according to

$$Q_{l+1} = \frac{1}{N-1} \sum_{i=2}^{N} F_2^{\dagger}(\hat{x}_{i-1|N}^s) M\left(F_2^{\dagger}(\hat{x}_{i-1|N}^s)\right)^T$$

Two Alternative Algorithms

- Two alternative methods are compared to the EM algorithm. 2: Minimisation of Alg. the path error
- 1. Select diagonal $Q_0 \in \mathbb{R}^{4 \times 4}$.
- 2. Minimise $\sqrt{\sum_{k=1}^{N} |\mathbf{e}_k|^2}$ subject to $\lambda_i > 0, j = 1, \dots, 4$ $Q = \operatorname{diag}(\lambda_1, \lambda_2, \lambda_3, \lambda_4)Q_0$ and $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \mathrm{EKF}(Q).$
- $= \operatorname{diag}(\lambda_1^*, \lambda_2^*, \lambda_3^*, \lambda_4^*)Q_0,$ 3.Qwhere λ_i^* is the optimal value from step 2.

- from (1a).
- trix for v_k .

LINK-SIC Linköping Center for Sensor Informatics and Control — A Vinnova Industry Excellence Center

Patrik Axelsson, Umut Orguner, Fredrik Gustafsson and Mikael Norrlöf

Alg. 3: Iterative covariance estimation with EKS 1. Select $Q_0 \in \mathbb{R}^{4 \times 4}$ and set l = 0. 2. Use the EKS with Q_l . 3. Calculate the noise v_k 4. Let Q_{l+1} be the covariance ma-5. If converged, stop, if not, set

l = l + 1 and go to step 2.

Application to Industrial Robots

Consider the non-linear joint

$$\dot{x} = \begin{pmatrix} M_a^{-1}(x_1) \left(-C \\ M_m^{-1} \right) \\ \end{pmatrix}$$

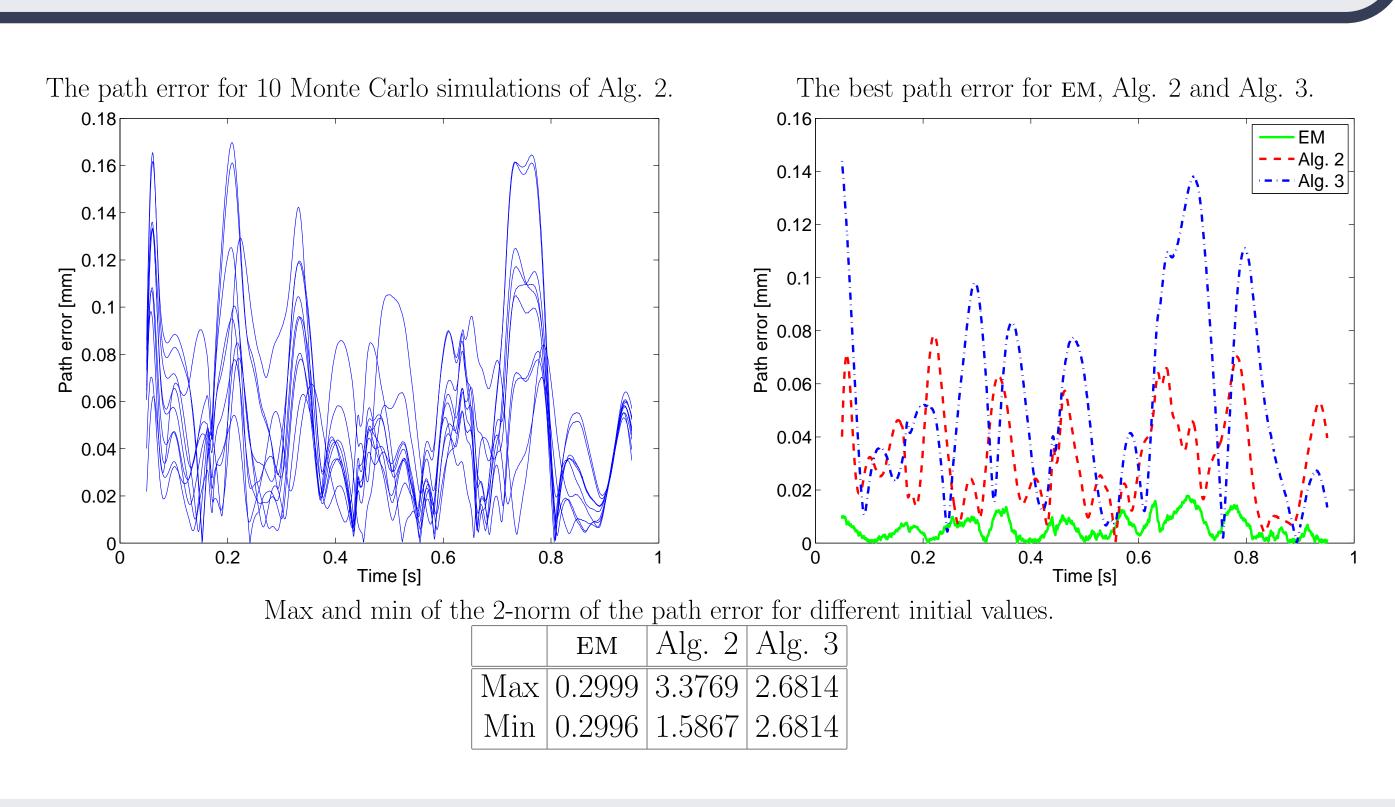
where $x = (x_1^T x_2^T x_2^T x_2^T x_3^T)^T$ $(q_a^T q_m^T \dot{q}_a^T \dot{q}_m^T)^T$ and A(x) $(x_4) + \tau_s(x_1, x_2)$. The model and (2) is obtained when an approximation is used to robot model.

- **II**. The true tool position, used in Alg. 2 was also calculated.
- **III**. The three algorithms were applied to the data to get Q.
- an estimate of the tool position.
- used to compare the three algorithms.

Result

- Alg. 2 gives different solutions for different initial values.

- EM converges in around 50 iterations.



t flexible two axes robot model		
x_3		
x_4		
$C(x_1, x_3) - G(x_1) - A(x) + v_a)$ '		
$ \left[\begin{array}{c} C(x_1, x_3) - G(x_1) - A(x) + v_a) \\ (A(x) + \kappa(x_4) + u + v_m) \end{array} \right], $		
$x_3^T x_4^T \big)^T =$	M(x)	Notation Inertia matrix for the arms
$= D(x_3 -$	$\begin{array}{c c} M_a(x_1) \\ M_m \\ C(x_1, x_2) \end{array}$	Inertia matrix for the motors
structure $(1a)$	$\begin{array}{c c} C(x_1, x_3) \\ G(x_1) \end{array}$	Coriolis- and centrifugal terms Gravitaion torque
Euler forward		Nonlinear stiffness torque Damping torque
discretise the	$\begin{bmatrix} \kappa(x_4) \\ v = \begin{pmatrix} v_a & v_m \end{pmatrix}^T \end{bmatrix}$	Nonlinear friction torque Process noise
		1

I. The model was simulated to get the control signal u_k and the measurements, i.e., the motor angles q_m and the acceleration of the tool.

IV. The three Q-matrices were used in an extended Kalman filter to obtain

V. The path errors $\mathbf{e}_k = \sqrt{|\mathbf{x}_k - \hat{\mathbf{x}}_k|^2 + |\mathbf{y}_k - \hat{\mathbf{y}}_k|^2}$ for these estimates were

• EM and Alg. 3 give consistent solutions for different initial values.

• The path error for EM is much lower than Alg. 2 and Alg. 3.

http://www.linksic.isy.liu.se/