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Contribution
This work presents a method to estimate the process noise variance for a

non-linear dynamic system with high state dimension. The proposed

method makes use of the expectation maximization algorithm, where

the e-step is solved by linearisation.

Introduction
The performance of a non-linear filter hinges in the end on the accuracy

of the assumed non-linear model of the process. In particular, the pro-

cess noise covariance Q. For non-linear models, there is on-going research

on using the expectation maximization (em) algorithm with a particle

smoother to estimate the parameters. However, the particle smoother is

not applicable for models with high state dimension. The idea here is to:

ã Linearise the non-linear model.

ã Use an extended Kalman smoother (eks).

Let the model be given by

xk+1 = F1(xk, uk) + F2(xk)vk (1a)

yk = h(xk, uk) + ek (1b)

where xk ∈ Rn, yk ∈ Rm, vk ∼ N (0, Q) and ek ∼ N (0, R). All model

parameters are assumed to be known except for Q ∈ Sp+. Assume also

that F2(xk) has the following structure

F2(xk) =

(
0

F̃2(xk)

)
. (2)

This type of model structure is common for mechanical systems derived

by Newton’s law or Lagrange’s equation.

The EM Algorithm (Alg. 1)
1. Select an initial value Q0 and set l = 0.

2. Expectation Step (E-step): Calculate

Γ(Q;Ql) = EQl
[log pQ(y1:N , x1:N)|y1:N ] .

3. Maximisation Step (M-step): Compute Ql+1 = arg maxQ∈Q Γ(Q;Ql).

4. If convergeda, stop. If not, set l = l + 1 and go to step 2.
aHere an estimate of the log-likelihood function is used. The algorithm stops if no increase in the

log-likelihood function can be observed.

The E-step

The expectation of the log-likelihood function log pQ(y1:N , x1:N) is calcu-

lated using the eks and it can be expressed as

Γ(Q;Ql) = L̄− 1

2
TrQ−1

N∑
i=2

F †2 (x̂si−1|N)M
(
F †2 (x̂si−1|N)

)T
+

1

2

N∑
i=2

[
log
∣∣Q−1

∣∣ + log
∣∣∣F̃ †2 (x̂si−1|N)

∣∣∣ + log

∣∣∣∣(F̃ †2 (x̂si−1|N)
)T ∣∣∣∣] ,

where L̄ is a function independent of Q,

M =
(
−J1 I

)
P ξ,s
i|N
(
−J1 I

)T
+
(
x̂si|N − F1(x̂

s
i−1|N)

)(
x̂si|N − F1(x̂

s
i−1|N)

)T
and J1 is the Jacobian of F1(x, u) evaluated at x = x̂si−1|N . The vari-

ables x̂si−1|N , x̂si|N and P ξ,s
i|N are obtained if the augmented state vector

ξi =
(
xTi−1 x

T
i

)T
with the new model ξk+1 =

(
xk

F1(xk, uk)

)
is used in the

eks. That is, the eks calculates

ξ̂si|N =

(
x̂si−1|N
x̂si|N

)
and P ξ,s

i|N =

 P s
i−1|N P s

i−1,i|N(
P s
i−1,i|N

)T
P s
i|N


where x̂si−1|N , x̂si|N , P s

i−1|N and P s
i|N are the first and second order mo-

ments of the smoothed x̂i−1 and x̂i respectively.

The M-step

Take the derivative of Γ(Q;Ql) with respect to Q−1 and let the result be

equal to zero to get the solution in the maximisation step according to

Ql+1 =
1

N − 1

N∑
i=2

F †2 (x̂si−1|N)M
(
F †2 (x̂si−1|N)

)T
.

Two Alternative Algorithms
Two alternative methods are compared to the em algorithm.

Alg. 2: Minimisation of

the path error

1. Select diagonal Q0 ∈ R4×4.

2. Minimise
√∑N

k=1 |ek|2 subject

to λj > 0, j = 1, . . . , 4

Q = diag(λ1, λ2, λ3, λ4)Q0 and

(x̂, ŷ) = EKF(Q).

3.Q = diag(λ∗1, λ
∗
2, λ
∗
3, λ
∗
4)Q0,

where λ∗j is the optimal value

from step 2.

Alg. 3: Iterative covari-

ance estimation with EKS

1. SelectQ0 ∈ R4×4 and set l = 0.

2. Use the eks with Ql.

3. Calculate the noise vk
from (1a).

4. Let Ql+1 be the covariance ma-

trix for vk.

5. If converged, stop, if not, set

l = l + 1 and go to step 2.

Application to Industrial Robots
Consider the non-linear joint flexible two axes robot model

ẋ =


x3

x4

M−1
a (x1) (−C(x1, x3)−G(x1)− A(x) + va)

M−1
m (A(x) + κ(x4) + u + vm)

 ,

where x =
(
xT1 x

T
2 x

T
3 x

T
4

)T
=(

qTa q
T
m q̇

T
a q̇

T
m

)T
and A(x) = D(x3 −

x4) + τs(x1, x2). The model structure (1a)

and (2) is obtained when an Euler forward

approximation is used to discretise the

robot model.

Notation
Ma(x1) Inertia matrix for the arms
Mm Inertia matrix for the motors

C(x1, x3) Coriolis- and centrifugal terms
G(x1) Gravitaion torque

τs(x1, x2) Nonlinear stiffness torque
D(x3 − x4) Damping torque
κ(x4) Nonlinear friction torque

v =
(
va vm

)T
Process noise

I. The model was simulated to get the control signal uk and the measure-

ments, i.e., the motor angles qm and the acceleration of the tool.

II. The true tool position, used in Alg. 2 was also calculated.

III. The three algorithms were applied to the data to get Q.

IV. The three Q-matrices were used in an extended Kalman filter to obtain

an estimate of the tool position.

V. The path errors ek =
√
|xk − x̂k|2 + |yk − ŷk|2 for these estimates were

used to compare the three algorithms.

Result

•Alg. 2 gives different solutions for different initial values.

•em and Alg. 3 give consistent solutions for different initial values.

•The path error for em is much lower than Alg. 2 and Alg. 3.

•em converges in around 50 iterations.

The path error for 10 Monte Carlo simulations of Alg. 2.
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The best path error for em, Alg. 2 and Alg. 3.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time [s]

P
at

h 
er

ro
r 

[m
m

]

 

 

EM
Alg. 2
Alg. 3

Max and min of the 2-norm of the path error for different initial values.

em Alg. 2 Alg. 3

Max 0.2999 3.3769 2.6814
Min 0.2996 1.5867 2.6814
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