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Contribution

This work presents a method to estimate the process noise variance for a
non-linear dynamic system with high state dimension. The proposed
method makes use of the expectation maximization algorithm, where

the E-step 1s solved by linearisation.

Introduction

The performance of a non-linear filter hinges in the end on the accuracy
of the assumed non-linear model of the process. In particular, the pro-
cess noise covariance (). For non-linear models, there is on-going research
on using the expectation maximization (EM) algorithm with a particle
smoother to estimate the parameters. However, the particle smoother 1s

not applicable for models with high state dimension. The idea here is to:
> Linearise the non-linear model.
> Use an extended Kalman smoother (EKS).

Let the model be given by

Tr1 = Fi(xn, ug) + Fo(xg) vy (la)
yr = h(xg, ur) + e (1b)

where z;. € R", y € R™, v, ~ N(0,Q) and e, ~ N (0, R). All model

parameters are assumed to be known except for ) € S%. Assume also

that F5(xy) has the following structure

FQ(xk) — (FQ(()CEk)> : (2)

This type of model structure is common for mechanical systems derived

by Newton's law or Lagrange’s equation.

The EM Algorithm (Alg. 1)

1. Select an initial value )y and set [ = 0.

2. Expectation Step (E-step): Calculate

F(Qa Ql) — EQZ UngQ(yl:N) 371;N)|y1;]\[] :

3. Maximisation Step (M-step): Compute Q1 = arg maxgeg I'(Q; Q).

4.1f converged?, stop. If not, set [ = [+ 1 and go to step 2.

“Here an estimate of the log-likelihood function is used. The algorithm stops if no increase in the
log-likelihood function can be observed.
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The E-step
The expectation of the log-likelihood function log po(y1.x, £1.v) is calcu-

lated using the EKS and it can be expressed as

['(Q; Q) = L——TTQ 1ZFT Li_1|N M(FT( L 1|N))T

1 _ ~b S s 4
52 log Q! {(a )|+ log | (El@ym)) ||
i=2 L i

where L is a function independent of @,

M = (=3 1) Py (~h 1)+ () — Blay)) ( P — P )

and Jp is the Jacobian of Fi(x,u) evaluated at x = ¢ N L he vari-

’\8

ables T _1| NN, and P57 are obtained if the augmented state vector

i|N
L

= (zl 2! g with the new model — (
f ( 1—1 z) fkﬂ Fl(-fl?k,ulg)

EKS. That 1s, the EKS calculates

. S S
Eiv=1 - and Py = T
] S iN Ps S
—1,4|N i| N

LiN
v B N and P’ v are the first and second order mo-

> 1s used 1n the

S
where ZE,L-_HN,

ments of the smoothed x;_; and x; respectively.

The M-step
Take the derivative of I'(Q; Q;) with respect to Q! and let the result be

equal to zero to get the solution 1n the maximisation step according to

Qi1 = _1ZFT i— 1\NM(FT( Li 1N))T°

Two Alternative Algorithms

Two alternative methods are compared to the EM algorithm.

Alg. 2: Minimisation of Alg. 3:
the path error

1. Select diagonal Q, € R**%.

\/ijvzl ex|? subject

Iterative covari-
ance estimation with EKS

1.Select Qy € R** and set | = 0.
2. Use the EKS with ();.

2. Minimise

to A, > 0, j = 1,...,4 3.Calculate the noise 1wy

() = diag(A1, A9, A3, A\y)@Qg and from (1a).

(x,y) = EKF(Q) 4. Let ();41 be the covariance ma-
3.0 = diag(\] 55 A1) Qo, trix for vg.

where A7 is the optlmal value 5 If converged, stop, if not, set

from step 2. [ =1+ 1 and go to step 2.

Application to Industrial Robots

Consider the non-linear joint flexible two axes robot model

L3
i = “
M) (=C(xy, 23) — G(11) — AlT) +v4) |’
MU (A(x) + k(zy) + 0+ vyy)
_ T .7 T .T\! _ |

WhTereT ? T T_ (xl L2 43 x4) o M, (x1) Ii?%?;ll?l’?atr?x for the arms
(90 Gy ) and A(x) = Dy — M e oo
r4) + Ts(x1, 22). The model structure (1a) G(x1) | Gravitaion torque

7s(x1,x2) | Nonlinear stiffness torque
D(z3 — x4) | Damping torque
K(1y) Nonlinear friction torque

and (2) is obtained when an Euler forward
approximation 1s used to discretise the

T .
v = (va vm) Process noise

robot model.
I. The model was simulated to get the control signal u;, and the measure-

ments, 1.e., the motor angles q,, and the acceleration ot the tool.
II. The true tool position, used in Alg. 2 was also calculated.

II1. The three algorithms were applied to the data to get ().

IV.The three ()-matrices were used in an extended Kalman filter to obtain

an estimate of the tool position.

AN

V. The path errors e, = \/|x; — %k|? + |yz — V5|2 for these estimates were

used to compare the three algorithms.

Result

o Alg. 2 gives different solutions for different initial values.

e EM and Alg. 3 give consistent solutions for different initial values.

e The path error for EM is much lower than Alg. 2 and Alg. 3.

e EM converges in around 50 iterations.

The path error for 10 Monte Carlo simulations of Alg. 2. The best path error for EM, Alg 2 and Alg. 3.
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Max and min of the 2-norm of the path error for different initial values.

EM |Alg. 2/ Alg. 3

Max10.2999 | 3.3769 | 2.6814
Min [0.2996 | 1.5867 | 2.6814

http://www.linksic.isy.liu.se/



