Background

The **problem** is to estimate the tool position for a flexible manipulator. The manipulator is a resonant system with *uncertainties* in the model parameters. There are also *high demands* on the accuracy of the estimation. Earlier work, see [1], has shown that the estimation is

good for frequencies from 3 to 30 Hz but not so good for lower frequencies. The **aim** of this work is therefore to improve the estimation in the low frequency range.

Models

A nonlinear two degrees of freedom **robot model** is used:

$$\dot{x} = f(x, u) = \begin{pmatrix} x_3 \\ x_4 \\ M^{-1}(x_1)(u - C(x) - G(x_1) - D(x) - \tau_s(x_1) \\ M^{-1}(x_1)(u - C(x) - U(x) - \tau_s(x_1) \\ M^{-1}(x_1)(u - C(x) - U(x) - \tau_s(x_1) - U(x) \\ M^{-1}(x_1)(u - C(x) - U(x) - \tau_s(x_1) - U(x) \\ M^{-1}(x_1)(u - C(x) - U(x) - \tau_s(x_1) - U(x) \\ M^{-1}(x_1)(u - U(x) - U(x) - U(x) - U(x) - U(x) \\ M^{-1}(x_1)(u - U(x) - U(x) - U(x) - U(x) - U(x) \\ M^{-1}(x_1)(u - U(x) - U(x) - U(x) - U(x) - U(x) \\ M^{-1}(x_1)(u - U(x) -$$

where $x = (q_a q_m \dot{q}_a \dot{q}_m)^T$. The measured acceleration in frame $\{s\}$ fixed to the sensor gives an **acceleration model**:

$$\ddot{\rho}_s^M = \ddot{\rho}_s + R_s^w(q_a)G_w + \delta_s + e_s.$$

 $\ddot{\rho}_s$ is calculated as $R^w_s(q_a)\ddot{\rho}_w$, where $\ddot{\rho}_w$ is the second derivative of the vector ρ_w with respect to time. ρ_w is a vector from the origin of frame $\{w\}$ to the origin of frame $\{s\}$ expressed in frame $\{w\}$.

Ubserver

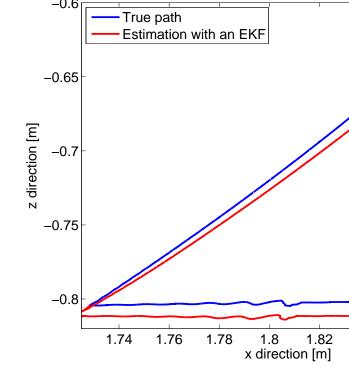
An Extended Kalman Filter, *EKF*, is used to estimate the position of the robot. Euler forward is used to discretize the state space model according to

$$x_{k+1} = F(x_k, u_k) + v_k, \quad F(x_k, u_k) = x_k + T_s f(x_k, u_k)$$

The measurements are motor angles and sensor acceleration and are expressed as

$$z_k = h(x_k, u_k) + w_k = \begin{pmatrix} x_{2k} \\ R_s^w(x_{1k})(\ddot{\rho}_w(x_k) + G_w) \end{pmatrix} -$$

$$\begin{array}{c|c|c} M(q) & \text{Inertia max} \\ C(q,\dot{q}) & \text{Coriolis- an} \\ G(q) & \text{Gravitaion} \\ \tau_s(q) & \text{Onlinear s} \\ D(\dot{q}) & \text{Damping t} \\ \kappa(\dot{q}) & \text{Donlinear s} \\ \kappa(\dot{q}) & \text{Nonlinear s} \\ \kappa(\dot{q}) & \text{Nonlinear s} \\ \kappa(\dot{q}) & \text{Rotation n} \\ G_w & \text{Gravitation} \\ \delta_s & \text{Drift} \\ e_s & \text{Measureme} \end{array}$$



Tool Position Estimation for a Flexible Manipulator

Patrik Axelsson, Mikael Norrlöf, Stig Moberg and Erik Wernholt

Covariance Optimization

The problem is to choose the covariance matrices for the observer such that the path error is minimized. The path error is defined as

$$e_k = \min_i \sqrt{|p_{x,i} - \hat{p}_{x,k}|^2 + |p_{x,i} - \hat{p}_{x,k}|^2}$$

where $p_{x,i}$, $\hat{p}_{x,k}$, $p_{z,i}$ and $\hat{p}_{z,k}$ are the true and estimated position for the tool in the x- and z-direction at time k and time i, respectively. A qubic spline interpolation to get data points between the estimated points is required. The optimization problem can now be summarized as

Minimize $f_{obj}(\hat{p}_x, \hat{p}_z) = \sqrt{\sum_{k=1}^N |e_k|^2}$

subject to $\lambda_j > 0$ $j = 1, \ldots, 5$

 $\widetilde{Q}_{\lambda} = \begin{pmatrix} \lambda_{1}I_{2\times2} & 0 & 0 & 0\\ 0 & \lambda_{2}I_{2\times2} & 0 & 0\\ 0 & 0 & \lambda_{3}I_{2\times2} & 0\\ 0 & 0 & 0 & \lambda_{4}I_{2\times2} \end{pmatrix} \widetilde{Q}$

 $\widetilde{R}_{\lambda} = \begin{pmatrix} \lambda_5 I_{2 \times 2} & 0\\ 0 & I_{2 \times 2} \end{pmatrix} \widetilde{R}$

$$(\hat{p}_x, \hat{p}_z) = \mathrm{EKF}(\widetilde{Q}_\lambda, \widetilde{R}_\lambda)$$

where λ_j are the optimization parameters. Q and R are diagonal matrices with the elements taken from the covariances for the process noise vand the measurement noise w.

Simulation Setup

Three types of simulations are	executed
set of covariance matrices are	then optim
Sim1: Without errors	Cov1: O _]
Sim2: With calibration errors,	Path A
drift and model errors	Cov2: O _]
Sim3: With calibration errors,	Path A
drift and without model errors	Cov3: O]
	Path A

 $\kappa(x) - \kappa(x_4))$

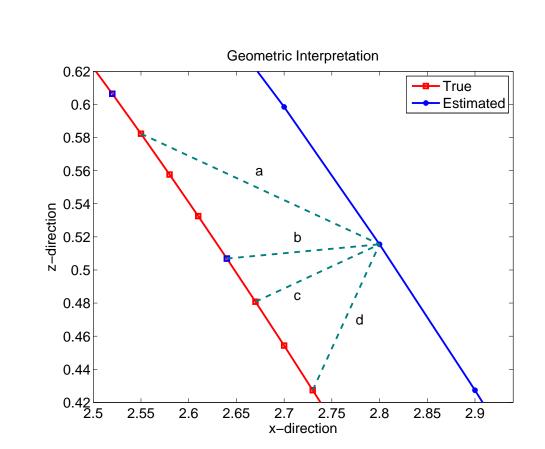
Notation ntrix nd centrifugal terms torque stiffness torque torque friction torque on from the motion matrix from $\{w\}$ to $\{s\}$ on in $\{w\}$ nent noise

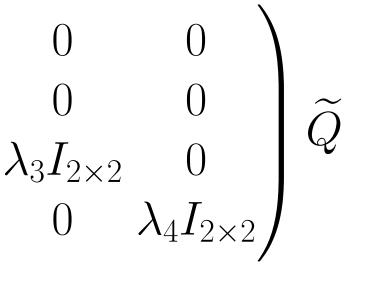
 u_k

 $+ w_k$.

LINK-SIC Linköping Center for Sensor Informatics and Control — A Vinnova Industry Excellence Center

 $|p_{z,i} - \hat{p}_{z,k}|^2$,



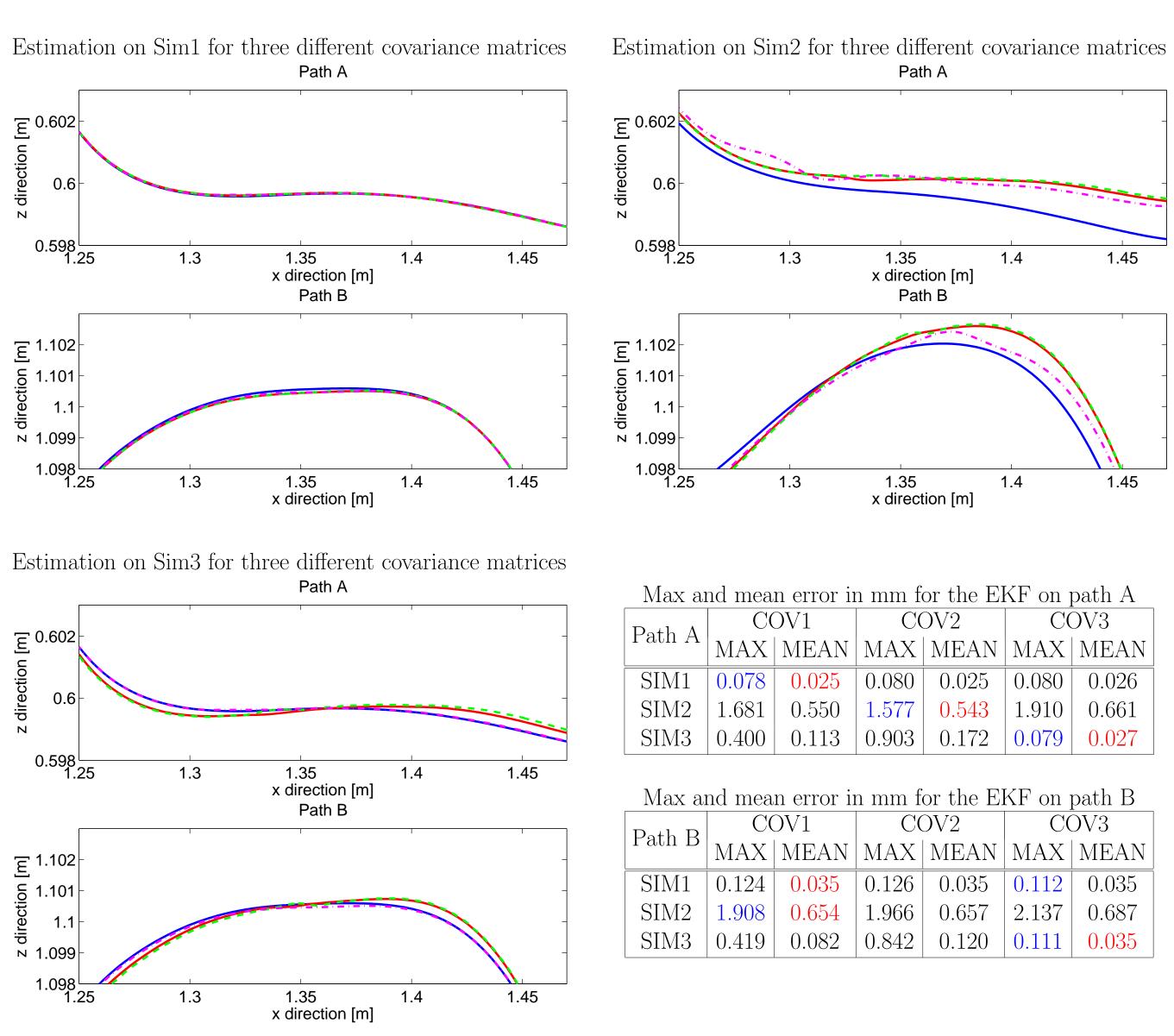


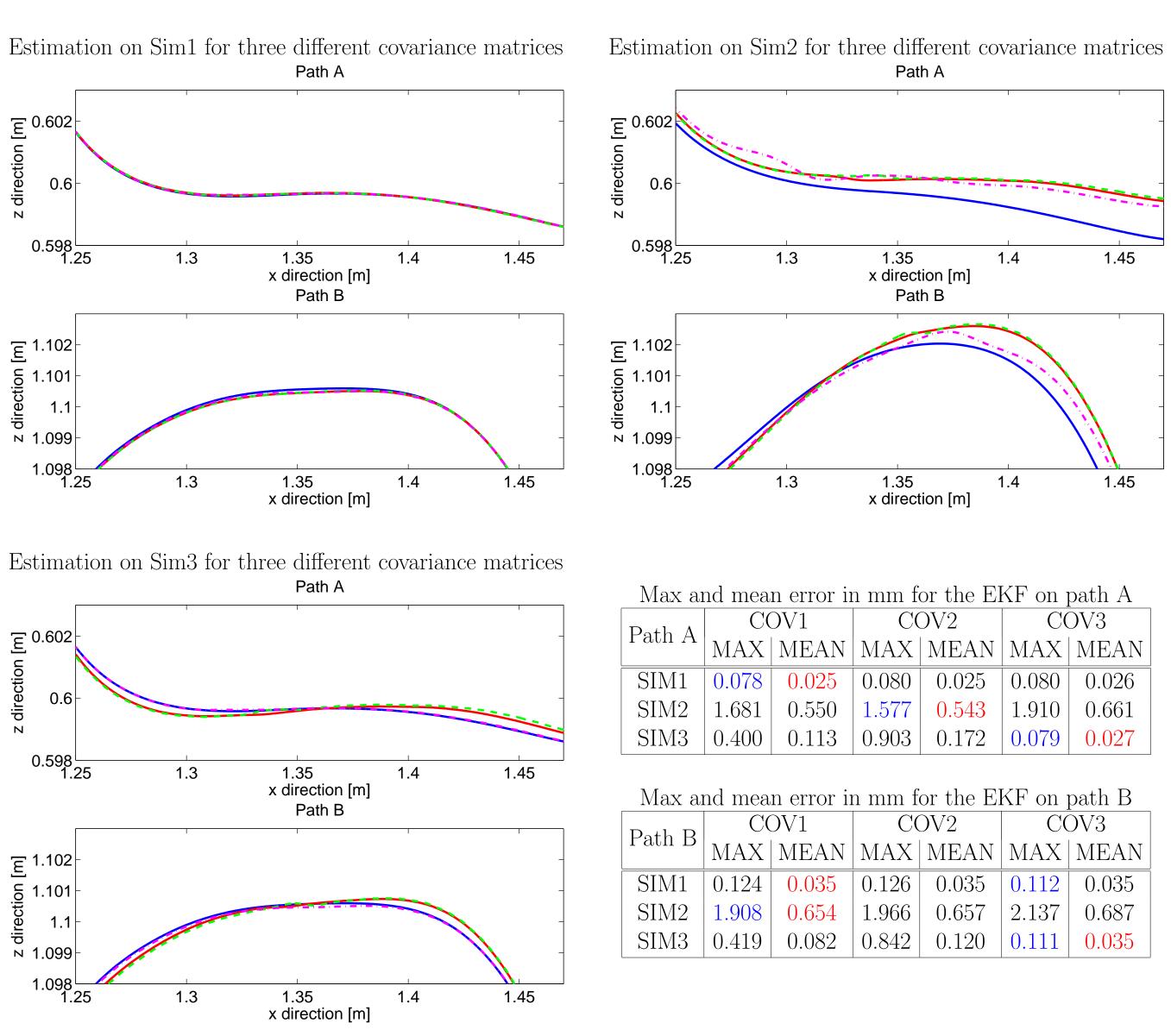
- different paths. A for each simulation. mized ptimized for Sim1 on (Red) ptimized for Sim2 on
- (Green)
- ptimized for Sim3 on (Magenta)

Result

All 9 combinations of the simulations and the covariance matrices are used to evaluate the performance of the observer.

- Calibration errors and drift do not affect very much.
- The estimation is robust for these 4 paths.





Conclusions

- initial values, which affect the estimation.

• Small estimation errors for all 3 set of covariance matrices in Sim1. • Difficult to get good estimations when model errors are present.

• The offset in the estimation in [1] is not present in simulations.

• The covariance optimization gives different minimum due to different

• The optimization of the covariance matrices is a difficult task.

• The estimation is robust for the paths in the simulation. Next step involves to include paths that better cover the complete robot workspace.

[1] R. Henriksson, M. Norrlöf, S. Moberg, E. Wernholt and T. Schön, Experimental Comparison of Observers for Tool Position Estimation of Industrial Robots, 2009, to appear in the 48th IEEE Conference on Decision and Control.

http://www.linksic.isy.liu.se/