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Contribution
A sensor fusion method for state estimation of a flexible industrial robot
is presented. By measuring the acceleration at the end-effector, the accu-
racy of the arm angular position is improved significantly. The technique
is verified on experiments on the abb irb4600 robot.
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Industrial robot control is based only

on measurements from the motor an-

gles. The aim here is to evaluate the

• extended Kalman filter (ekf)

•particle filter (pf)

for estimation of the end-effector po-

sition with

•motor angles, and

• end-effector acceleration,

as measurements using a state space model with linear dynamic.

Bayesian Estimation
Consider the discrete state-space model

xt+1 = f (xt,ut,wt),

yt = h(xt) + et,

with state variables xt ∈ Rn, input signal ut and measurements Yt =

{yi}ti=1, with known probability density functions (pdfs) for the pro-

cess noise, pw(w), and measurement noise pe(e).

The ekf linearises the nonlinear model around the previous estimate

giving a time variant linear system where the Kalman filter can be ap-

plied.

The pf approximates the density p(xt|Yt) by a large set of N particles

{x(i)
t }Ni=1, where each particle has an assigned relative weight γ

(i)
t , chosen

such that all weights sum to unity. The particles and weights are updated

with each new observation.

Models
A linear state space model for the dynamics with arm angles, arm veloc-

ities and arm accelerations as state variables, together with bias terms

compensating for model errors and sensor drift, is proposed.

The state vector is given by

xt =
(
qTa,t q̇Ta,t q̈Ta,t bTm,t bTρ̈,t

)T
,

where qa,t contains the arm angles from joint 2 and 3, q̇a,t is the angular

velocity, q̈a,t is the angular acceleration, bm,t is the bias terms for the

motor angles, and bρ̈,t is the bias terms for the acceleration at time t.

This yields the following state space model in discrete time

xt+1 = Ftxt + Gu,tut + Gw,twt,

yt = h(xt) + et,

where

Ft =


I T I T 2/2I 0 0
0 I T I 0 0
0 0 I 0 0

0 0 0 I 0
0 0 0 0 I

 , Gw,t =


T 3

6 I 0 0
T 2

2 I 0 0
T I 0 0

0 I 0
0 0 I

 , Gu,t =


T 3

6 I
T 2

2 I
T I

0
0

 .

The input, ut, is the arm jerk reference, i.e., the differentiated arm an-

gular acceleration reference.

The observation relation is given by

h(xt) =

(
qm,t + bm,t
ρ̈t + bρ̈,t

)
,

where

qm,t = r−1
g

(
qa,t + k−1

(
Ma(qa,t)q̈a,t + g(qa,t) + C(qa,t, q̇a,t)q̇a,t

))
is the motor angles from the robot dynamic equation and

ρ̈b,t = J(qa,t)q̈a,t +

(
2∑
i=1

∂J(qa,t)

∂q
(i)
a,t

q̇
(i)
a,t

)
q̇a,t,

is the acceleration of the end-effector, where J(qa,t) is the Jacobian of

the forward kinematic model.

Results
The following three estimates are compared to the true position

Ttcp(q̂ekf,t), Ttcp(q̂pf,t), and Ttcp(qm,t),

where Ttcp(·) is the forward kinematic model. The true position is mea-

sured with a laser tracking system from Leica Geosytems.

•The ekf and pf track the entire path, i.e., the filters do not diverge.

•The ekf has some problems in the corners, where the pf is much
better.

•The pf is closer to the true path.

• Implementing the ekf in Matlab gives almost a real-time solution,
whereas the pf is much slower.

True position (blue), ekf (red), and Ttcp(qm,t) (green).
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True position (blue), ekf (red), and Ttcp(qm,t) (green).

1.148 1.15 1.152 1.154

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

x [m]

z
[m

]

1.35 1.352 1.354 1.356
x [m]

True position (blue), ekf (red), and pf (black).
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True position (blue), ekf (red), and pf (black).
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Future Work

Estimation

6 DOF:Estimation of a fully actuated serial manipulator.

Additional Sensors: Investigate the use of additional sensors in terms

of 1) observability and 2) optimal sensor positioning.

Real time: Implementation aspects to get real time estimates for con-

trol.

Control

ILC: Iterative Learning Control for control of repetitive errors and dis-

turbances.

Stiffness control:Compliance control using estimated states.

Disturbance rejection:Attenuate the effect of disturbances.

Path tracking:Control the end-effector along a user defined path.

The practical work will be together with Lund University and abb

Robotics.
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